Holley 950 Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 98 Seiten
- 9.48 mb
Zur Seite of
Ähnliche Gebrauchsanleitungen
-
Automobile Parts
Holley 05177NOS
18 Seiten 4.03 mb -
Automobile Parts
Holley 12-150
6 Seiten 0.39 mb -
Automobile Parts
Holley 950
98 Seiten 9.48 mb -
Automobile Parts
Holley P/N A5177-SNOS
18 Seiten 4.03 mb -
Automobile Parts
Holley 12-125
6 Seiten 0.39 mb -
Automobile Parts
Holley none
3 Seiten 0.09 mb -
Automobile Parts
Holley Carburetor none
3 Seiten 0.09 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung Holley 950 an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von Holley 950, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung Holley 950 die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung Holley 950. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung Holley 950 sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts Holley 950
- Den Namen des Produzenten und das Produktionsjahr des Geräts Holley 950
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts Holley 950
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von Holley 950 zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von Holley 950 und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service Holley finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von Holley 950 zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts Holley 950, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von Holley 950 widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
COMMANDER 950 TOTAL ENGINE MANAGEMENT SYSTEM ELECTRONICS AND FUEL INJECTION MANUAL 199R-10149-5 NOTE: These instructions must be read and fully understood before beginning installation. If this manual is not fully understood, installation should not be attempted. Failure to follow these instructions may result in subsequent system failure. Copyrigh[...]
-
Seite 2
2 INTRODUCTION ................................................................................................................................................... 4 1.0 TERMS & DEFINITI ONS OF FUEL INJECTION MANAGEMENT SYSTEMS .............................................. 5 1.1 F UEL M ANAGEMENT S YSTEM ........................................[...]
-
Seite 3
3 9.0 REQUIRED ADDITIONAL EFI TUNING ......................................................................................................... 36 10.0 ALPHA-N TUNING ....................................................................................................................................... 50 11.0 DATA LOGGER ............................[...]
-
Seite 4
4 INTRODUCTION Thank you for your purchase of the Holley Commander 950 Fuel Injection System. This tuning manual is designed to take all of the guesswork out of tuning your Commander 950. Holley is dedicated to providing products for our customers that not only outperform your expectations, but also are easy to install and tune. NOTE: We highly rec[...]
-
Seite 5
5 Appendix 7 covers the description of fuel injection systems, including : combustion principles and air/fuel ratios, emissions and performance, and engine management systems. These engine management systems consist of: air management, fuel management, and ignition timing management. Appendix 8 covers the engine application and the selection of you[...]
-
Seite 6
6 1.3 Multi -Point Fuel Injection (MPFI) A multi point fuel injection systems meters the fuel to each cylinder individually via the fuel injector located just upstream of the intake valve. The fuel is supplied to the injectors via a fuel pump. The MPFI is superior to the TBI systems because it will generate better fuel economy, higher power output [...]
-
Seite 7
7 1.6 Fuel Injectors There are basically two approaches in delivering the fuel to the engine: • Above the throttle plate as in throttle body injection • In the intake port toward the intake valves as in multi -point injection The fuel injector is continuously supplied with pressurized fuel from the electric fuel pump. The pressure to the inject[...]
-
Seite 8
8 § 3 Ball-on-a-stick injector . This metering design is mostly used in the director plate application. The seal is achieved between a conical seat and a spherical plunger. The director plate has the function of metering the fuel and generating the required spray geometry. Fuel flow is adjusted by the size of the hole machined into the director pl[...]
-
Seite 9
9 1.9 Idle Air Control Valve (IAC) The IAC is located in the throttle body of the TBI and MPFI. The valve consists of a stepper motor that adjusts the position of its pintle to vary the bypass air during idle and of idle conditions. During the closed throttle condition (idle), the ECU constantly compares actual engine speed with the programmed desi[...]
-
Seite 10
10 1.13 Electric In -line Fuel Pump The function of the electric fuel pump is to deliver pressurized fuel to the fuel injection system. The ECU activates the fuel pump relay to operate the fuel pump when the ignition switch is in the On or start position. The pumps are designed to match certain flow and pressure specification for the engine applica[...]
-
Seite 11
11 1.16 Main Fuel Filter The function of this filter is to eliminate any contaminants after the fuel pump. These are either small enough to pass through the fuel filter of the pump inlet or are generated by the fuel pump. This fuel filter is also of the cartridge type, but is designed to sustain much higher fuel pressures than the fuel pump inlet f[...]
-
Seite 12
12 O 2 Sensor Voltage 1.21 Open Loop Open loop defines the engine operation where the fueling level is calculated by the ECU with only the input signals from the throttle position sensor (TPS), from the coolant and/or air charge temperature, and from the manifold absolute pressure (MAP). For additional information, see Appendix 7 (Description of Fu[...]
-
Seite 13
13 The Air Temperature Sensor monitors the temperature of the incoming air. This tells the ECU what the outside temperature is and allows the ECU to adjust the fuel for this. The Coolant Temperature Sensor tells the ECU the temperature of the engine and will add extra fuel when the engine is colder, just like the choke on a carburetor. Using these [...]
-
Seite 14
14 2.1 Speed Density 1. Engine speed (1000 RPM) and manifold pressure from the MAP sensor (38 kPa) are read by the ECU. From these values, it obtains a number from the base fuel map (32). 2. The ECU then looks at the reading from the Air Temperature Sensor and may modify the fuel value. In this case it adds .8% more fuel. 3. The ECU looks at the re[...]
-
Seite 15
15 2.2 Alpha-N An Alpha-N system is similar to a speed density EFI system, except that for step 1, the ECU will look at engine speed and the position of the Throttle Position Sensor, instead of the MAP Sensor, to determine the value from the base fuel map. The following flowchart ( Figure 2 ) illustrates this example. 100.8% 1000 RPM 40 47 ° F ENG[...]
-
Seite 16
16 3.0 SKILL LEVEL REQUIRED Installation of the COMMANDER 950 intake system and the ECU requires approximately the same level of skill and experience to replace or service an induction system consisting of a carburetor and conventional intake manifold (as well as basic wiring skills for the installations of the ECU). Tuning of the system requires b[...]
-
Seite 17
17 5.1 Step -by-Step Wiring Harness Installation NOTE: It is advised to leave the battery completely disconnected until the installation of the entire system is completed. 1. ECU MOUNTING – The ECU should be mounted as far away from the ignition box as is feasible (minimum 6”). The ECU must be installed in the vehicle in a location free from mo[...]
-
Seite 18
18 1. BLACK WIRE - Connect the black wire to a solid chassis ground with the ring terminal provided. The best place to connect is the negative side of the battery. 2. RED WIRE - Connect the red wire directly to the positive side of the battery with a ring terminal provided. 3. RED/WHITE WIRE - Connect the red wire with the white stripe to a 12 volt[...]
-
Seite 19
19 Crank Trigger CD Ignition Systems – The Commander 950 can control the timing on any engine that uses a crank trigger (magnetic or Hall effect) and capacitive discharge ignition box. Non-Computer Controlled Inductive Ignition Systems – Any inductive (non-CD) ignition system (most stock ignition systems are inductive) can be used to provide an[...]
-
Seite 20
20 6.3 Software Operation and Navigation The Commander 950 is a Windows-based software. It functions the same as all other windows software. Pull-down menus are selected with the mouse. These are then opened to view the various tables. Software Data Capture – When a window is opened, the software checks for the ECU. If it is present (powered up a[...]
-
Seite 21
21 Mouse Free Navigating – Often it is easier to not use the mouse when operating a laptop. The C950 software can be operated without the use of a mouse. From the main window, press “Alt” and then the underlined letter of the window or menu you want to open (i.e. press “Alt” and then “F” to open the “file menu”). Different locatio[...]
-
Seite 22
22 NOTE: There is a vacuum line going to the fuel pressure regulator. This is needed to compensate for vacuum present in the intake manifold. Make sure you always use this vacuum line. When the engine is running and the vacuum line is hooked to the regulator, the pressure seen on the fuel pressure gauge will be lower depending on how much vacuum is[...]
-
Seite 23
23 Figure 5 Engine Parameters Screen Record your selection in the spaces provided. __________Cylinders – Pick 4, 6, or 8 __________Port Fuel Injection or Throttle Body Injection – Select Multi-Port or Throttle Body fuel injection __________Ignition Type – See page 63-64 (Appendix 1—Hardware Settings) FOR DETAILED INFORMATION if you are not [...]
-
Seite 24
24 9. ¨ SAVE PARAMETERS It is recommended that you save your map to the computer hard drive anytime you make changes, that way you can always go back to a previous version. At this time you should save that map that has the correct engine parameters. To save the map perform the following: A. Turn the ignition on. B. Go to “File” and “Retriev[...]
-
Seite 25
25 Check the following sensor outputs. After each, record the value in the space provided. ¨ __________MAP (Manifold Air Pressure) – The manifold air pressure when the engine is not running should be between about 88 and 94 with the engine not running. In higher elevations it will be lower. Possibly as low as 75-80. ¨ __________TPS (Throttle Po[...]
-
Seite 26
26 8.0 STEP-BY-STEP BASIC TUNING The following is a step-by-step guide to perform basic tuning that will be required with all applications. TIPS: - Tune one parameter at a time. Don’t change things unless you know what they do. - Follow the instructions. They provide a methodical tuning plan. - This section is designed to help you with 75% of the[...]
-
Seite 27
27 2. CHECK TIMING If the ECU is getting an RPM signal, the next best thing is to make sure that the ignition is firing. To check this, connect a timing light to spark plug #1, and make sure that it is firing while it is cranking. If it is, try to see approximately what the timing is on the harmonic balancer. If it is not between approximately 0 an[...]
-
Seite 28
28 Figure 9 Startup Enrichment Table 4. STARTUP / STARTS AND STALLS If the engine starts and then stalls, it most likely needs more air and/or fuel. There are several areas that may need tuning that relate to fuel. For simplicity’s sake, at this time, we are going to stay in one area, the main fuel map. The other areas that will likely need to be[...]
-
Seite 29
29 Figure 11 Example of Fuel Map with Graphical Representation TIP: This red box will move around. Notice where the red box is when the engine starts. If the engine stalls, leave the key on and increase the values in the area where the engine was trying to idle. Raise this area in increments of 5 units at a time. A typical small block or big block [...]
-
Seite 30
30 Figure 12 Spark Map with Engine Idling When the engine is running, the area that it is getting its timing advance from will be highlighted in red. The advance is also shown in the data monitor ( spk adv). With a timing light, check the advance at the crankshaft. The value at the crankshaft needs to be the same as the value on the data monitor. I[...]
-
Seite 31
31 Figure 13 Fuel Map Showing Proper IAC Position For more information on how an IAC works, see Appendix 1—Idle Air Control . 7. FUEL MAP TUNING (LOW SPEED) The next step is to adjust the base fuel map. The method used requires that an oxygen sensor is installed and operating properly. See Appendix 1—O 2 for VERY important information about oxy[...]
-
Seite 32
32 Figure 14 Engine Idling with Proper O 2 Mod The number should be about 85 -100 when tuned properly. This means the base map is slightly richer than 14.7:1, which will promote good driveability. If it is over 100 it is lean and if it is less than about 85-90 it is too rich. The software limits the amount of compensation possible, although this va[...]
-
Seite 33
33 Figure 15 Example of Smooth Fuel Graph To modify the graph, move the pointer by using the arrow keys. When you want to raise or lower a point, hold the shift key down and use the arrow keys to raise or lower a point one value at a time. Holding the Control (Ctrl) key and using the arrow keys changes the value by 5. The graph can be rotated by us[...]
-
Seite 34
34 GOOD! DRIVE TO ANOTHER AREA ON THE FUEL MAP “O2 Mod” ON THE FUEL MAP IS… LESS THAN 85 MORE THAN 105 SUBTRACT FUEL PULSE WIDTH* AND SMOOTH SURROUNDING CELLS** BRING UP THE SPARK MAP DOES THE ENGINE RUN WELL? YES BETWEEN 85 AND 105 NO SUBTRACT ADVANCE* AND SMOOTH SURROUNDING CELLS DOES THE ENGINE RUN WELL? YES NO ADD FUEL PULSE WIDTH* AND SM[...]
-
Seite 35
35 To tune WOT, find a safe place where the vehicle can be accelerated to legal speeds. Again, you need one person driving and one person tuning and monitoring. Open the main fuel map. The sensor that needs to be monitored carefully is the oxygen sensor voltage output. This is found on the data monitor (O 2 V). This voltage is also shown in large n[...]
-
Seite 36
36 GOOD! MAKE ANOTHER RUN TO DOUBLE-CHECK TUNING WATCH THE “O2 (V)” VALUE ON FUEL MAP (RED OR YELLOW) LESS THAN 0.75 (GREEN) MORE THAN 0.85 STOP IMMEDIATELY! ADD FUEL PULSE WIDTH IN LEAN AREAS* AND SMOOTH SURROUNDING CELLS STOP IMMEDIATELY! BRING UP THE SPARK MAP DOES THE ENGINE PING? ** NO (GREEN) BETWEEN 0.75 AND 0.85 YES SUBTRACT ADVANCE* AN[...]
-
Seite 37
37 NOTE: In the idle air control motor, there is simply a valve that lets extra air into an engine. It is used to raise the idle when an engine is cold and to maintain a desired rpm when a vehicle with an automatic transmission is placed in gear. You must set the throttle plates to provide the majority of the airflow at idle to an engine. The IAC j[...]
-
Seite 38
38 B. AE Correction vs. Coolant Temperature – The second line down says “AE correction vs. Coolant temperature”. These numbers are to modify the TPS based acceleration enrichment when the engine is colder. Just like the coolant temperature modifiers, a number 110 for example adds 10% more acceleration enrichment fuel. When the engine temperat[...]
-
Seite 39
39 GOOD! MAKE ANOTHER RUN TO DOUBLE-CHECK TUNING. THEN PROCEED TO MEDIUM LOAD TRANSIENT TUING DOES THE ENGINE REV SMOOTHLY? NO RAISE LEFT 6 BOXES OF THE “Pulse Width – Rate of Change of TPS” TABLE 0.3 mSec* DOES THE ENGINE REV SMOOTHLY? YES * Most of the time, fuel pulse width needs to be added to these tables if the engine doesn’t rev smoo[...]
-
Seite 40
40 DOES THE ENGINE HEISTATE OR STUMBLE? RAISE LEFT 6 BOXES OF THE “Rate of Change of MAP Sensor” TABLE 10 UNITS* YES * Most of the time, fuel pulse width needs to be added to these tables if the engine doesn’t rev smoothly. A lot of fuel needs to be added before the engine stumbles due to too much fuel. As always, if the symptom gets worse, t[...]
-
Seite 41
41 3. Spark Advance - The next area that can be reviewed is the spark advance map. The base spark maps provided should provide a good performing baseline but are conservatively low for some applications and may need less for others. Optimizing timing is very important for best idle, peak safe power, and best driveability. Most people do not underst[...]
-
Seite 42
42 Also make sure you listen for engine knock, especially in the peak torque area when you are changing timing. If you drag race, sometimes putting in more timing in the map area where you stage and launch will help 60 foot times. Usually, there is little to be gained with a few extra degrees of timing at WOT, so be somewhat conservative or you may[...]
-
Seite 43
43 Figure 24 Poor Spark Map at Idle Figure 25 Poor Fuel Map at Idle and Cruise[...]
-
Seite 44
44 C. As was mentioned before, another key for best idle is to adjust the throttle plates so the idle air control motor is not open much or at all when the engine is hot and in neutral. To do this, look at the data monitor and the IAC Position. It should read 10-15 with the engine at the programmed desired idle. If the IAC is too far open, the desi[...]
-
Seite 45
45 Desired Idle – The engine idle speed will be controlled by the ECU and can be changed at different temperatures. If the engine is cold, the idle speed will need to be higher than if the engine is warm for best idle stability. These values are very specific to each application. Stock engines can idle as low as 600 RPM and some race engines need[...]
-
Seite 46
46 TIP: As a guideline a TPS position that is between 2/3 and 3/4 throttle usually works fine for naturally aspirated engines. This is an important value, but does not need to be exact down to 5 or 10 numbers. A supercharged or turbocharged engine will have this value set much lower. Normally, this value should be 17-25% of WOT. O 2 Compensation St[...]
-
Seite 47
47 Figure 30 Air and Coolant Temperature Modifier Table Figure 30 shows an example of the coolant temperature enrichment table. With the Commander 950, you enter a number that multiplies whatever fuel value you are using from the base fuel map (based on the RPM and load of the engine). This number needs to be larger, the colder the engine is. It is[...]
-
Seite 48
48 Figure 31 Fuel Map Showing Coolant Mod and Afterstart Mod After Engine Start To tune the Coolant Temperature Enrichment, make sure the vehicle sits overnight to completely cool down. Start the vehicle. If it stalls, start it again. Try to keep it running for a few seconds with the gas pedal. If you can’t at all, go to the Coolant temperature e[...]
-
Seite 49
49 GOOD! START THE ENGINE THE NEXT MORNING TO RECHECK SETTINGS** DOES THE ENGINE STALL IN THE FIRST 2 SECONDS? YES INCREASE AFTERSTART ENRICHMENT 5% AT THAT ENGINE TEMP* ADD 5% MORE COOLANT TEMP ENRICHMENT AT THAT ENGINE TEMP* DOES THE ENGINE STALL DURING WARMUP? NO NO * The actual amount of fuel that needs to be added depends upon how far the sett[...]
-
Seite 50
50 Afterstart enrichment is found in “Fuel” and then “Startup Enrichment”. There are three parts of this area that deal specifically with afterstart enrichment. They are: Ø Afterstart Enrichment – Works the same way as the coolant temperature enrichment. If the number is 140, then 40% more fuel is added from the base fuel map when the ve[...]
-
Seite 51
51 a large increase in fuel. This makes the fuel map very uneven. This causes poor driveability that is hard or impossible to resolve with mapping. If this same engine were mapped using speed density operation, this large change in airflow would create a large change in the position of the fuel map. This would allow for the map to be smooth creatin[...]
-
Seite 52
52 Figure 34 Typical Alpha-N Fuel Map Mapping is the same as speed density from the aspect that the area on the base fuel map that you are obtaining fuel map values from will be highlighted in red. Drive the vehicle at different throttle positions and engine speeds to modify the fuel map as needed. Closed loop feedback and oxygen sensor voltage can[...]
-
Seite 53
53 11.0 D ATA LOGGER Figure 35 Main Datalogger Screen The Commander 950 includes a data logger that serves many useful purposes. It can be used for logging runs at the dragstrip or used to analyze data when tuning a vehicle. To start the data logger, first select “File”, and “Log Data”, after the datalogger is opened. This will bring up the[...]
-
Seite 54
54 After you enter a filename hit “OK”. The “Trigger” screen below (Figure 37) will appear. Figure 37 The trigger screen (Figure 37) allows you to start the data logger immediately or wait for a trigger point. The trigger point is a selectable input such as RPM, TPS, and more. You can input a value for any of these. When the system reaches [...]
-
Seite 55
55 Figure 38 TIP: If more than 5,000 data points are taken, the software will automatically split them up into separate files. 5,000 data points amount to 5-8 minutes depending on the computer. TIP: For example, if you take 15 minutes of data and name the data file TEST, you will have 3 separate files automatically saved. When you go to load a file[...]
-
Seite 56
56 APPENDIX 1 COMPLETE SOFTWARE OVERVIEW Appendix 1 provides a description of all the software functions. It is not intended to describe how to tune an engine, but rather to provide one section that details all the different screens that will be used. FUEL – These allow the user to alter the fuel specific parameters of the engine. Main – This i[...]
-
Seite 57
57 DATA MONITOR – Used for monitoring real-time engine parameters Both the Main Fuel Map and Spark Map screens have a readout of real-time engine parameters above the graph. This is an essential tool when tuning an engine. The following is an explanation of each readout: 0 2 Mod – Indicates the percent modification to the base fuel injection pu[...]
-
Seite 58
58 Fuel Graph – This is a graphical representation of the fuel cell values. When properly tuned, the fuel map should be smooth. The graph mode can be used to refine the fuel values into a smoother curve. You will want to view some of the supplied fuel maps to see what a fuel graph should look like once finished. Once you become familiar with engi[...]
-
Seite 59
59 Afterstart Holdoff – These parameters control the number of revolutions the ECU waits before adding the afterstart fuel enrichment. Afterstart Decay Rate – Rather than deleting the afterstart enrichment after the afterstart holdoff period all at once, the ECU allows the user to program the speed of decay. The number in each cell corresponds [...]
-
Seite 60
60 AE of MAP vs. Coolant Temperature (%) – Colder engine temperatures may require different transitional fueling requirements. This table allows the user to tailor the synchronous fueling to the engine temperature. Numbers are percentage based with number below 100 subtracting a percentage from the base Delta MAP and numbers higher adding a perce[...]
-
Seite 61
61 Figure 44 Figure 45[...]
-
Seite 62
62 Idle spark control – These parameters allow the ECU to adjust the idle spark timing to control the engine idle speed. This function can be turned on or off. The P term : adjusts the timing to assist in idle stabilization. The D term : compensates for overshoot. The Max TPS for idle : tells the ECU when to stop trying to adjust the engine timin[...]
-
Seite 63
63 Hardware Settings ( Hdwr Settings) Figure 48 Engine Parameters Engine Parameters – Base engine parameters that must be adjusted before the engine is started. Number of cylinders - Select from 4, 6, or 8 cylinders. Only even-fire engines can be used. Most engines are even fire except for some V6 engines. Open or Closed Loop operation . See the [...]
-
Seite 64
64 Inductive Pickup – Use with a magnetic pickup crank trigger. See Appendix 10 for wiring specifics. Ford TFI – Use with Ford TFI electronic distributors. Allows for the Commander 950 to control ignition timing. Requires adapter cable PN 534-139, which is included in Ford 5.0L MPFI kits. GM HEI – If any of the following ignition systems are [...]
-
Seite 65
65 Rev. limiter high RPM – At this rpm, the engine will stop injecting fuel to limit the speed of the engine in an attempt to protect the engine from self-destruction. Rev. limiter low RPM – Once the ECU has quit injecting fuel because the rev. limiter has been hit, this is the rpm the engine will have to drop below before the ECU starts inject[...]
-
Seite 66
66 Figure 51 Idle Air Control Desired Idle – The engine idle speed will be controlled by the ECU and can be changed at different temperatures. If the engine is cold, the idle speed will need to be higher than if the engine is warm. This is because the oil will be thick and the friction internal to the engine will be greater. IAC Parked position ?[...]
-
Seite 67
67 Hot Start Delay – The amount of time the engine will wait before entering closed loop operation when the engine is restarted while still hot. This should be about 30 seconds. RPM to Enter Closed Loop – Any rpm above this point will activate closed loop. RPM to Return to Open Loop – If the rpm falls below this point, open loop operation wil[...]
-
Seite 68
68 Tuning a Race Engine : By far the best way to tune a high horsepower race engine is on the engine dyno. The dyno must provide certain feedback as to the brake specific fuel consumption (BSFC), and/or Air/Fuel Ratio to help initial tuning. Exhaust gas temperatures also provide helpful feedback. If the engine is already installed in the vehicle, a[...]
-
Seite 69
69 1. Fuel Injection Type - In the engine parameters screen, Throttle Body Inj. must be selected for the fuel injection type. 2. TBI Switch – If a TBI system with progressive throttle linkage is used, the following two parameters must be set correctly or significant problems will occur. They also need to be adjusted with a non-progressive TBI sys[...]
-
Seite 70
70 Appendix 3 Tuning Troubleshooting Engine will not Start There are several different reasons why an engine will not start. - Make sure that the engine is receiving a RPM signal. To verify this, see if the “Fuel Pump On” which is located on the data monitor on the base fuel map screen, is highlighted in red (indicating the fuel pump is turned [...]
-
Seite 71
71 Engine Hesitates When the Throttle is Applied The following tuning will help alleviate hesitation when the throttle is applied. The flowchart (Figure 21) shows a graphical representation. - Injection volume map not correct. When the throttle is applied to accelerate, the area on the injection volume map that the ECU reads from changes (rpm and l[...]
-
Seite 72
72 GOOD! START THE ENGINE THE NEXT MORNING TO RECHECK SETTINGS** DOES THE ENGINE STALL IN THE FIRST 2 SECONDS? YES INCREASE AFTERSTART ENRICHMENT 5% AT THAT ENGINE TEMP* ADD 5% MORE COOLANT TEMP ENRICHMENT AT THAT ENGINE TEMP* DOES THE ENGINE STALL DURING WARMUP? NO NO * The actual amount of fuel that needs to be added depends upon how far the sett[...]
-
Seite 73
73 Appendix 4 GENERAL TROUBLESHOOTING Double check ALL wiring connections and system voltages BEFORE replacing components. If you suspect an ECU or component failure, check all other possible problems before replacing a component. CONDITION POSSIBLE CAUSE REMEDY 1. Fuel Pump fails to operate - Open or blown fuse - Poor ground connection - Faulty po[...]
-
Seite 74
74 Appendix 5 TESTING AND TROUBLESHOOTING ELECTRICAL COMPONENTS Testing Relays 1 - To test the relays, apply a 12 volt power source to terminal 85 and ground terminal 86. The relay should click. Using an ohm meter, check for low resistance across terminals 87 and 30. 2 - With the 12 volt power source removed from terminal 85, check for high resista[...]
-
Seite 75
75 3 - Check the voltage on the TPS with the throttle closed. It should be between approximately .3 and .8 volts. While watching the voltmeter, move the throttle lever from fully closed to fully open. The voltage should change smoothly from the idle voltage to 4.5-5.0 volts. If the reading fluctuates, the TPS is intermittent and should be replaced.[...]
-
Seite 76
76 Appendix 6 OXYGEN SENSOR EFFECT ON PERFORMANCE The oxygen sensor monitors the exhaust gases and outputs a voltage that corresponds to the air/fuel mixture. The range of voltage output from the oxygen sensor is 0.0 to 1.0 volts. A lean fuel/air mixture gives a lower oxygen sensor output voltage while a rich fuel/air mixture gives a higher oxygen [...]
-
Seite 77
77 Figure 57 O 2 Sensor Voltage Appendix 7 DESCRIPTION OF FUEL INJECTION SYSTEMS Combustion Principles and Air / Fuel Ratios During combustion of any substance a required surface to mass ratio and a correct amount of oxygen must be must be available. In internal combustion engines these requirements are controlled by the fuel management system. Opt[...]
-
Seite 78
78 80 82 84 86 88 90 92 94 96 98 100 A/F=14.7:1 A/F=12.6:1 A/F=15.4:1 Percent [%] FUEL AIR 93.5% AIR 6.5% FUEL 7.5% FUEL 6% FUEL 74% AIR 92.5% AIR Figure 58 Percent Air vs. Fuel as a Function of A/F Ratios Figure 59 Engine Performance and Fuel Economy as a function of Air/Fuel Ratio[...]
-
Seite 79
79 Emissions and Performance Internal combustion engines generate power by burning air and fuel mixtures. In gasoline fueled engines, the proportions of air and fuel (air/fuel ratio) are critical for optimum combustion. The quality of combustion is directly related to engine power output and its running characteristics. The goal of a fuel metering [...]
-
Seite 80
80 The volumetric efficiency is a ratio that describes how efficiently the engine acts as an air pump for its size. The volumetric efficiency is calculated by the following equation: Volumetric efficiency (VE) = Actual Volume of Air/Fuel induced into the Engine Engine Displacement In general, the volumetric efficiency of naturally aspirated engine [...]
-
Seite 81
81 (lambda sensor) oscillates between rich and lean within a defined operating window. As the O 2 sensor switches, the injector pulse width is adjusted by the ECU until the lambda sensor switches again to the opposite condition. This switching operation continuously supplies the ECU with the information needed to maintain a stoichiometrically corre[...]
-
Seite 82
82 NOTE: If the application requires a static flow rate that falls in between two available injectors always use the next larger injector. For the example above if only 25 Ib./hr. and 30 Ib./hr. injectors are available, choose 30 lb./hr. injectors. Fuel pressure In certain occasions matching of the injectors' static fuel flow for a specific en[...]
-
Seite 83
83 Appendix 9 FUEL PUMPS Fuel pumps produce volume. Fuel pressure regulators make fuel pressure. It is important to understand this principle. An adjustable fuel pressure regulator can be used to raise or lower fuel pressure, if necessary. When doing this, one must ensure that the fuel pump can maintain the needed volume at higher pressures. System[...]
-
Seite 84
84 Appendix 10 WIRING DIAGRAMS Figure 61 : Commander 950 to Ford TFI Ignition Using Ford Computer Controlled Distributor, TFI Module. Figure 62 : Commander 950 to Aftermarket Ignition Using Ford Computer Controlled Distributor, TFI Module. Figure 63 : Commander 950 to GM HEI Using Mechanical and Vacuum Advance 4-Pin Module Distributor. Figure 64 : [...]
-
Seite 85
85 COMMANDER 950 TO AFTERMARKET IGNITION USING FORD COMPUTER-CONTROLLED DISTRIBUTOR, TFI MODULE (COMMANDER 950 CONTROLLING IGNITION TIMING) COMMANDER 950 BLUE/WHITE YELLOW/BLACK TAN/BLACK BLACK (16 AWG) DISTRIBUTOR GROUND CASE TO ENGINE BLOCK (PIP) YELLOW/BLACK (SPOUT) BLUE/WHITE (START) PIN NOT USED (POWER) RED (TACH) RED/WHITE (GROUND) BLACK 4-PI[...]
-
Seite 86
86 COMMANDER 950 TO GM HEI USING MECHANICAL AND VACUUM ADVANCE 4-PIN MODULE DISTRIBUTOR (COMMANDER 950 “NOT” CONTROLLING IGNITION TIMING) COMMANDER 950 INSTALL SUITABLE WIRE TERMINALS WITH PLASTIC CONNECTOR (FACTORY HARNESS) YELLOW BROWN BROWN (FACTORY HARNESS; TO TACHOMETER) DISTRIBUTOR NOTE: ON VEHICLES WITHOUT A FACTORY TACHOMETER, CONNECT T[...]
-
Seite 87
87 COMMANDER 950 TO AFTERMARKET IGNITION USING GM HEI WITH MECHANICAL AND VACUUM ADVANCE 4-PIN MODULE DISTRIBUTOR (COMMANDER 950 “NOT” CONTROLLING IGNITION TIMING) COMMANDER 950 YELLOW/BLACK DISTRIBUTOR GROUND CASE TO ENGINE BLOCK 5 TACHOMETER 0 2 1 3 4 RPM 10 9 7 6 8 BATTERY + - ORANGE (+) AND BLACK (-) VIOLET (+) AND GREEN (-) RED (+) SWITCHE[...]
-
Seite 88
88 COMMANDER 950 TO GM HEI IGNITION USING COMPUTER-CONTROLLED DISTRIBUTOR, 7-PIN MODULE (COMMANDER 950 CONTROLLING IGNITION TIMING) COMMANDER 950 BLUE/WHITE YELLOW/BLACK TAN/BLACK BLACK (16 AWG) DISTRIBUTOR 4-PIN PIGTAIL CONNECTOR GROUND CASE TO ENGINE BLOCK B+ (NOT SUPPLIED) TACH (NOT SUPPLIED) 5 TACHOMETER 0 2 1 3 4 RPM 10 9 7 6 8 IGNITION SWITCH[...]
-
Seite 89
89 COMMANDER 950 TO GM HEI IGNITION USING COMPUTER-CONTROLLED DISTRIBUTOR, EXTERNAL COIL (COMMANDER 950 CONTROLLING TIMING) COMMANDER 950 QUICK DISCONNECT BY-PASSES COMMANDER 950 TIMING BLUE/WHITE YELLOW/BLACK TAN/BLACK BLACK (16 AWG) HOLLEY ADAPTER P/N 534-138 TO REVERT TO HEI MODULE TIMING INDUCTIVE COIL IGNITION SWITCH (+) SWITCHED POWER (-) (+)[...]
-
Seite 90
90 COMMANDER 950 TO AFTERMARKET IGNITION USING A GM 7-PIN STYLE DISTRIBUTOR AND EXTERNAL COIL (COMMANDER 950 CONTROLLING IGNITION TIMING) COMMANDER 950 QUICK DISCONNECT BY-PASSES COMMANDER 950 TIMING DISTRIBUTOR BLUE/WHITE YELLOW/BLACK TAN/BLACK BLACK (16 AWG) HOLLEY ADAPTER P/N 534-138 TO REVERT TO HEI MODULE TIMING HOLLEY P/N 890-160 IGNITION SWI[...]
-
Seite 91
91 COMMANDER 950 TO AFTERMARKET IGNITION USING MAGNETIC PICK-UP DISTRIBUTOR (COMMANDER 950 “NOT” CONTROLLING IGNITION TIMING) COMMANDER 950 YELLOW/BLACK GROUND CASE TO ENGINE BLOCK 5 TACHOMETER 0 2 1 3 4 RPM 10 9 7 6 8 BATTERY + - ORANGE (+) AND BLACK (-) VIOLET (+) AND GREEN (-) RED (+) SWITCHED POWER (CRANE: GREEN) BROWN HEAVY RED (+) HEAVY B[...]
-
Seite 92
92 COMMANDER 950 TO AFTERMARKET IGNITION USING MAGNETIC PICK-UP CRANK TRIGGER (COMMANDER 950 CONTROLLING IGNITION TIMING) HEAVY RED (+) WHITE BROWN SWITCH ORANGE (+) AND BLACK (-) RED (+) SWITCHED POWER IGNITION VIOLET (+) GREEN (-) APPLICATION SEE LISTED WIRE CODES FOR YOUR CONNECTOR WITH PLASTIC WIRE TERMINALS INSTALL SUITABLE MSD 6-SERIES IGNITI[...]
-
Seite 93
93 COMMANDER 950 TO AFTERMARKET IGNITION USING HALL EFFECT PICK-UP CRANK TRIGGER (COMMANDER 950 CONTROLLING IGNITION TIMING) HEAVY RED (+) WHITE BROWN SWITCH ORANGE (+) AND BLACK (-) RED (+) SWITCHED POWER IGNITION MSD 6-SERIES IGNITION SENSOR PICKUP TRIGGER WHEEL CRANK VIOLET (+) AND GREEN (-) NOT USED 0 RPM 10 9 8 7 6 5 4 3 2 1 + - TACHOMETER BAT[...]
-
Seite 94
94 D8 NOSenable NOS1 ECU GND NOT USED NOT USED Injector A Injector B Injector D Injector C D16 D14 D15 D11 D12 D13 D9 D10 B2 NOT USED ECU GND Analog GND EST / SPOUT Bypass Analog GND IPU (-) Park / Neutral SlewFuel ECU GND SlewSpark O2 Sensor signal Analog GND ESC (knock) IPU (+) AC Request Ref / PIP MAP B12 D3 D6 D7 D4 D5 D1 D2 B7 B11 B10 B9 B8 B4[...]
-
Seite 95
95 D8 NOSenable NOS1 ECU GND NOT USED NOT USED Injector A Injector B Injector D Injector C D16 D14 D15 D11 D12 D13 D9 D10 B2 NOT USED ECU GND Analog GND EST / SPOUT Bypass Analog GND IPU (-) Park / Neutral SlewFuel ECU GND SlewSpark O2 Sensor signal Analog GND ESC (knock) IPU (+) AC Request Ref / PIP MAP B12 D3 D6 D7 D4 D5 D1 D2 B7 B11 B10 B9 B8 B4[...]
-
Seite 96
96 Points Out Purple/Yellow Analog GND ECU GND Injector C Injector D Injector B Injector A NOT USED NOT USED Analog GND Bypass EST / SPOUT NOS1 NOSenable O2 Sensor signal MAT singnal Battery TPS signal +5 Volt ref NOT USED Analog GND ECU GND Coolant Temp Coil (-) Points Out NOT USED NOT USED IAC "A" Lo IAC "A" Hi D3 Black/White [...]
-
Seite 97
97 C6 Bypass NOT USED Injector D Injector C Injector B Injector A O2 Sensor signal Analog GND NOT USED ECU GND NOSenable NOS1 +5 Volt ref NOT USED Analog GND EST / SPOUT Analog GND ECU GND Battery Coolant Temp TPS signal MAT singnal Points Out NOT USED NOT USED Coil (-) D12 White/Green White/Brown White/Red White/Blue D16 D13 D15 D14 Black Purple B[...]
-
Seite 98
98 Holley Performance Products 1801 Russellville Road, P.O. Box 10360 Bowling Green, KY 42102-7360 Technical Service : 1-270-781-9741 Fax: 1-270-781-9772 Email: support@holley.com Website: www.holle y.com Holley Performance Products Limited Warranty Holley Performance Products warrants its new performance product, Annihilator product, Weiand produc[...]