HP (Hewlett-Packard) HP 33s Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 387 Seiten
- 2.63 mb
Zur Seite of
รhnliche Gebrauchsanleitungen
-
Calculator
HP (Hewlett-Packard) HWPNW280AAABA
3 Seiten 0.36 mb -
Calculator
HP (Hewlett-Packard) 10BII
145 Seiten 4.99 mb -
Calculator
HP (Hewlett-Packard) 10BII
2 Seiten 0.22 mb -
Calculator
HP (Hewlett-Packard) 100
32 Seiten 0.31 mb -
Calculator
HP (Hewlett-Packard) HP 50g
184 Seiten 5.41 mb -
Calculator
HP (Hewlett-Packard) 12C
278 Seiten 2.11 mb -
Calculator
HP (Hewlett-Packard) HP 17bII+
310 Seiten 2.59 mb -
Calculator
HP (Hewlett-Packard) HP 6S
21 Seiten 0.24 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkรคufer zur รbertragung der Gebrauchsanleitung HP (Hewlett-Packard) HP 33s an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher รผbertragen werden, bilden eine Grundlage fรผr eine Reklamation aufgrund Unstimmigkeit des Gerรคts mit dem Vertrag. Rechtsmรครig lรคsst man das Anfรผgen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von HP (Hewlett-Packard) HP 33s, sowie Anleitungsvideos fรผr Nutzer beifรผgt. Die Bedingung ist, dass ihre Form leserlich und verstรคndlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen โinstructioโ, d.h. ordnen. Demnach kann man in der Anleitung HP (Hewlett-Packard) HP 33s die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Gerรคts oder auch der Ausfรผhrung bestimmter Tรคtigkeiten. Die Anleitung ist eine Sammlung von Informationen รผber ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung HP (Hewlett-Packard) HP 33s. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusรคtzlicher Funktionen des gekauften Gerรคts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung HP (Hewlett-Packard) HP 33s sollte vor allem folgendes enthalten:
- Informationen รผber technische Daten des Gerรคts HP (Hewlett-Packard) HP 33s
- Den Namen des Produzenten und das Produktionsjahr des Gerรคts HP (Hewlett-Packard) HP 33s
- Grundsรคtze der Bedienung, Regulierung und Wartung des Gerรคts HP (Hewlett-Packard) HP 33s
- Sicherheitszeichen und Zertifikate, die die รbereinstimmung mit entsprechenden Normen bestรคtigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafรผr ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Gerรคte angeht. Leider ist das Anschlieรen und Starten von HP (Hewlett-Packard) HP 33s zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezรผglich bestimmter Funktionen, Sicherheitsgrundsรคtze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von HP (Hewlett-Packard) HP 33s und Lรถsungsarten fรผr Probleme, die wรคhrend der Nutzung auftreten kรถnnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service HP (Hewlett-Packard) finden, wenn die vorgeschlagenen Lรถsungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularitรคt, die den Nutzer besser ansprechen als eine Broschรผre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von HP (Hewlett-Packard) HP 33s zu รผberspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort รผber den Bau sowie die Mรถglichkeiten des Gerรคts HP (Hewlett-Packard) HP 33s, รผber die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Gerรคts, sollte man einige Zeit fรผr das Kennenlernen jedes Teils der Anleitung von HP (Hewlett-Packard) HP 33s widmen. Aktuell sind sie genau vorbereitet oder รผbersetzt, damit sie nicht nur verstรคndlich fรผr die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfรผllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
h p 3 3s sc ientif ic calc ulator us er' s g uid e H Edition 3 HP part number F2216-90001[...]
-
Seite 2
Notice REGISTER YOUR PRO DUCT AT: www.register.hp.com THIS MANUAL AND AN Y EXAMPL ES CONTAIN ED HER EIN ARE PROVIDED โAS ISโ A ND ARE SUBJECT TO C HANGE WITHOUT NOTICE. HEWLETT- PACKARD COM PANY MAKE S NO WAR RANTY O F ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WA RRANTIES OF MERCHANTABILITY, NON-INFRINGEMEN[...]
-
Seite 3
Contents 1 Contents Part 1. B a s i c O p e ra t i o n 1 . Gett in g S tar ted Important Prelim inar ie s ....................................................... 1โ1 T urning the C alcu l ator On a nd Off ................................. 1โ1 Adj u st ing Disp la y Contr ast ............................................ 1โ1 Hi ghli ghts o f th[...]
-
Seite 4
2 Contents P er iods and C ommas in N umber s................................ 1โ18 Number o f De c imal P laces ......................................... 1โ19 SHO Wing F ull 12 โDig it Pr ec isi on ................................ 1โ20 F r acti ons ........................................................................ 1โ21 Enter ing F r[...]
-
Seite 5
Contents 3 3 . S to r i n g D a t a int o V ariables Stor ing and R ecalling Numbers ........................................... 3โ2 V ie w ing a V ari able w ithout R ecalling It ................................. 3โ3 R e v ie wing V aria bles in the V AR Catalog ............................... 3โ3 Clear ing V aria ble s .....................[...]
-
Seite 6
4 Contents F ac tor i al .................................................................. 4โ14 Gamma................................................................... 4โ14 Pr oba bility ............................................................... 4โ14 P arts of Nu mbers ............................................................ 4โ16[...]
-
Seite 7
Contents 5 E diting and C learing E quations ........................................... 6โ7 T ypes o f E quations............................................................. 6โ9 Ev al uating E quati ons.......................................................... 6โ9 Using ENTER f or E v aluation ........................................ 6โ11[...]
-
Seite 8
6 Contents Using Comp le x Nu mbers in P olar Notati on........................... 9โ5 1 0 . Base Conversions an d Arithmetic Ar ithmeti c in B ase s 2 , 8, and 16....................................... 10โ2 The R epresentati on o f Number s......................................... 10โ4 Negati ve Number s......................................[...]
-
Seite 9
Contents 7 Selecting a M ode ...................................................... 12โ3 Pr ogr am Bou ndar ie s (LB L and R TN) .............................. 12โ3 Using RPN , AL G and Equ ations in Pr ograms .................. 12โ4 Data Inpu t and Output ............................................... 12โ4 Enter ing a Pr ogram ...........[...]
-
Seite 10
8 Contents Se lecting a B ase Mode in a Pr ogram ......................... 12โ2 2 Number s Ente r ed in Pr ogr am Line s ............................ 12โ2 3 P oly nomial Expr es sions an d Hor ner's Method ................... 12โ2 3 1 3 . Progr amming T ec hniques R outine s in Pr ograms ..................................................[...]
-
Seite 11
Contents 9 1 5 . Ma thematics Progr ams V ector Oper ati ons ........................................................... 15โ1 Soluti ons of Sim ultan eou s E quati ons ................................. 15โ12 P oly nomial R oot F inder ................................................... 15โ20 Coor dinate T ransf o rmati ons ...................[...]
-
Seite 12
10 Contents R es etting the C alc ulator ..................................................... Bโ2 Clear ing Memory ............................................................. Bโ3 T he S tatu s of St ack L if t ....................................................... Bโ4 Disa bling Oper ations ................................................[...]
-
Seite 13
Contents 11 Underfl ow ...................................................................... Dโ14 E . More about Integ r ation Ho w the Integral Is E v alu ated .............................................. Eโ1 Conditi ons T hat Cou ld Cau s e Incorr ect Re sults ....................... Eโ2 Condit ions T hat Pr olong C alc ulati on T ime ..[...]
-
Seite 14
[...]
-
Seite 15
Part 1 Basic Operation[...]
-
Seite 16
[...]
-
Seite 17
Getting Sta r te d 1โ1 1 Getting St ar t e d v Watch for thi s symbol in the margin. It identifie s exam ple s or keyst rokes th at are show n in RP N mode and m ust be perfo rmed di fferentl y in A LG mode. App endix C expl ains ho w to use yo ur c alcula tor in A LG mo de. Important Preliminar ies T u rn i n g t h e C a l c u l a t o r O n a n [...]
-
Seite 18
1โ2 G et tin g Star ted H i g h l i g h t s o f t h e Key b o a rd a n d D i s p l a y S h i f t e d Key s Each key has three functions: one printed on its face, a leftโshifted f u n c t io n (Green), an d a rightโshi fted function (P urple). The shifted function names are printed in green and purple above each key. Press the appropri ate shi[...]
-
Seite 19
Getting Sta r te d 1โ3 Pressing { or | turns on t he corresponding ยก or ยข annu nciator symbol at the top of the display. The ann unciator remains on until you press the next key. To cancel a shift key (and turn off its annunciator), press the same shift key again. A l p h a Keys Ri ght- shi fted fun ct io n Le ft-shifted func tion Letter for al[...]
-
Seite 20
1โ4 G et tin g Star ted S i lv e r Pai n t Key s Those eight silver paint keys have their specific pressure points marked in blu e position in the illustration below. To use those keys, make sure to press down the corresponding position for the desired function. B a c k s p a c i n g a n d C l e a ri n g One of the first things you need to know i[...]
-
Seite 21
Getting Sta r te d 1โ5 K e ys f o r C l e a r i n g K e y D e sc r i pt i on b Backspace. ๎๎ K ey boar d โentry mode: Eras es the char acter immediately to t he left of "_" (the digitโentry curs or ) or backs out o f the curr e nt menu . (Men us ar e desc r ibed in "Using Menus" on page 1โ7.) If the number is complet[...]
-
Seite 22
1โ6 G et tin g Star ted K e ys f o r C l e a r i ng ( co n t i n u e d ) K e y D e sc r i pt i on {c The CLEAR menu ({ ยบ } { #๎๎ } { ๎๎๎ } { ยด }) Contains options for clear ing x (the number in the X โregister), all variables, all of mem ory, or all statistical data. If you select { ๎๎๎ }, a new menu ( ๎๎๎ ๎๎๎@ { &[...]
-
Seite 23
Getting Sta r te d 1โ7 U s i n g M e n u s There is a lot more power to the H P 33s than what you see on th e keyboard. This is because 14 of the keys are menu keys. There are 14 menus in all, whic h provide many mor e function s, or mor e options for more functio ns. HP 3 3 s M e nu s M e nu N a m e M e nu Des crip tion C ha p t er Nu m e r i c [...]
-
Seite 24
1โ8 G et tin g Star ted H P 3 3 s M e n us ( c o n ti n u e d ) M e nu Na m e M e nu Description C ha p t e r O th e r fu n c t i o n s MEM #๎๎ ๎๎๎ Memory status (bytes of m emory available); catalog of variables; catalog of programs (program labels). 1, 3, 12 MODES ๎๎๎ ๎๎๎ ๎๎๎๎ * 8 Angular modes an d " ) "[...]
-
Seite 25
Getting Sta r te d 1โ9 Example: 6 รท 7 = 0.857142857 1โฆ K e ys : D is p l a y : 6 ๎ 7 q๎๎ ๎๎๎% ๎ ๎๎ ๎ ๎๎๎๎ ๎๎๎๎ ๎ ({ ๎๎ ๎ }) ( or ๎๎๎ ) ๎)๎๎๎๎๎ ๎๎ ๎๎๎ ๎ .๎๎ Menus help you execute dozens of fu nctions by guiding you to them with menu choices. You don't have to rem[...]
-
Seite 26
1โ10 G et t i n g Star ted R P N a n d A L G K e y s The calculator can be set to pe rform arithmetic operations in either R PN (Reverse Polish Nota tion ) or AL G (Algeb raic) mo de. In Reverse Polish Notation (RPN) mode, the intermediate results of calculations are stored automatically; hence, you do not have to use parentheses. In algebraic ( [...]
-
Seite 27
Getting Sta r te d 1โ11 Th e D i s p l ay a n d A n n u n c i a t o r s Fir st Lin e Sec on d Li ne Annunc ia tors The display comprises two lines and annunciator s . The first line can display up to 255 characters. Entries with m ore than 14 characters will scroll to the left. However, if entries are m ore than 255 characters, the characters f r[...]
-
Seite 28
1โ12 G et t i n g Star ted H P 3 3 s A n n un c i a t o rs A nn u n c i a t or M e an i ng C ha p t er ยฃ๎ The " ยฃ (Busy)" an nunciator blin ks while an operation, equation, or program is executing. c d ๎ When in Fractio nโdisplay mode (press { ๎ ), only one of the " c " or " d " halves of the " cd &quo[...]
-
Seite 29
Getting Sta r te d 1โ13 H P 3 3 s A n n u nc i a t o r s ( c o n t i n ue d ) A nn u n c i a t or M e an i ng C ha p t er ยง , ยจ The ๎ or ๎ keys are active to scroll the display, i.e. there are more digits to the left and righ t. (Equationโ entry and Programโ entry mode arenโt i ncluded) Use |๎ to see the rest of a decimal number; us[...]
-
Seite 30
1โ14 G et t i n g Star ted Keyi n g i n N u m b e r s You can key in a number that has up to 12 di gits plus a 3โd igit exponent up to ยฑ499. If you try to key in a number l arger tha n this, d igit entr y halt s a n d t h e ยค annunciator briefly appears. I f you make a mistake while k eying in a numb er, pre ss b to backspace and delete t he [...]
-
Seite 31
Getting Sta r te d 1โ15 Keying in Exponents of Te n Use a ( expo nent ) to key in numbers m ultiplied by powers o f ten. For example, take Planck's constant, 6.6261 ร 10 โ34 : 1. Key i n t h e mantis sa (the non โexp onent part) of the number . If the m an t i s sa i s nega tiv e , press ^ af ter ke ying in its di git s. K e ys : D is p[...]
-
Seite 32
1โ16 G et t i n g Star ted Keys: Display: Description: 123 ๎๎ ๎ _ Digit entry not t er minated: the nu mber is not complete. If you ex ecute a function to calculate a result , the cursor disappears because the number is complete โ digit ent ry has been terminated. # ๎๎)๎๎๎๎๎ Digit entry is terminated. Pressing ๎ terminates [...]
-
Seite 33
Getting Sta r te d 1โ17 O n e โ N u m b e r Fu n c t i o n s To use a oneโnumber function ( such as ๎ , # , ! , ๎{ @ , {$ , | K , ๎{ ๎ , ๎Q or ^ ) 1. Ke y i n t h e n u mbe r . ( Y ou don't need to press ๎ .) 2. Pr ess the func tion k ey . (F or a shifted functi on, pr e ss the appr opr iate { or | shift k e y f irs t .) For [...]
-
Seite 34
1โ18 G et t i n g Star ted For example, T o c a l cu l a te : P re s s : D is p l a y : 12 + 3 12 ๎ 3 ๎ ๎๎)๎๎๎ ๎๎ 12 โ 3 12 ๎ 3 ๎ ๎)๎๎๎๎๎ 12 ร 3 12 ๎ 3 z ๎๎)๎๎๎ ๎๎ 12 3 12 ๎ 3 ๎ ๎8๎๎ ๎) ๎๎๎๎๎ Percent change from 8 to 5 8 ๎ 5 |T .๎๎)๎๎ ๎๎๎ The order of entry [...]
-
Seite 35
Getting Sta r te d 1โ19 N u m b e r o f D e c i m a l Pl a c e s All numbers are stored with 12โdigit precision, but you can select the number of decimal places to be displaye d by pressing ๎ (the displa y menu). Du ring some complicated internal calculations, the calculator uses 15โdigit precision for intermediate results. The displayed nu[...]
-
Seite 36
1โ20 G et t i n g Star ted Engineering F ormat ({ ๎๎๎ }) ENG format disp lays a numb er in a manner similar to scientific no tation, excep t that the exponent is a m ultiple of three (there can be up to three dig its before the " ) " or " 8 " radix mark). This format is most useful for scientific and engineer ing calcula[...]
-
Seite 37
Getting Sta r te d 1โ21 For example, in the n umber 14.8745632019, you see on ly "14.8746" when the display mode is set to FIX 4, but the last si x digits ("632019") are present internally in the calculator. To temporarily display a number in full precision, press |๎ . Th is show s you the mantissa (bu t no exponent) o f the[...]
-
Seite 38
1โ2 2 G e t t i ng Star ted 2. K ey in the fraction numerator and pres s ๎ ag ai n. The second ๎ sepa r ates the n umer ato r fr om t he deno minat or . 3. K ey in the denominato r , then pres s ๎ or a function key to t e r m i n a t e digit entry . T he numb er or r esul t is f orma tte d a cco r d ing to the current display format. The ab[...]
-
Seite 39
Getting Sta r te d 1โ23 D i s p l ayi n g Fr a c t i o n s Press {๎๎ to switch between Fractionโ display mode and the c u r r e n t decima l displ ay mode . K ey s : D is p l a y : De s c ri p t i o n : 12 ๎ 3 ๎ 8 ๎๎ ๎+๎ _ ๎ Displays characters as you key them in. ๎ ๎๎ )๎๎๎๎๎ Terminates dig it entry; displays th[...]
-
Seite 40
1โ2 4 G et t i n g Started C a l c u l a t o r M e m o r y The HP 33s ha s 31KB of me mor y in which y ou can sto re any co mbination o f data (variables, equations, or progr am lines). C h e c k i n g Av a i l a b l e M e m o r y Pressing {Y displays the following menu: ๎#๎๎ ๎ ๎๎๎๎ ๎๎8๎ ๎๎๎ Where ๎๎8๎ ๎๎ is the[...]
-
Seite 41
RPN: The Automatic Memor y Stack 2โ1 2 RPN: The Automati c Memory Stack This ch apter explains how calculations take place in the automatic memory stack in RPN mod e. You do not need to rea d and understan d this material to use th e calculator , but understanding the material will greatly en hance your use of the calculator, especially when prog[...]
-
Seite 42
2โ2 RPN: The Automatic Memory Stack T 0.0000 "O ldest " n umb er Z Y X Displa yed 0.0000 0.0000 0.0000 Displa yed The most "recent" number is in the Xโregister: this is the nu mber you see in the second line of the display. In programming, the stack is used to pe rform ca lculations, to temporarily store intermediate results[...]
-
Seite 43
RPN: The Automatic Memor y Stack 2โ3 R ev i ew i n g t h e S t a c k R ยถ (Roll Down) The (rol l dow n) key lets you rev iew the e ntire co nten ts of the s ta ck b y "rolling" the contents downward, one register at a time. Yo u ca n se e e a ch numb er when it enters th e Xโr egist er. Suppose the stack is filled with 1, 2, 3, 4. (pr[...]
-
Seite 44
2โ4 RPN: The Automatic Memory Stack Exchanging the Xโ and YโRegisters in the Stack Another key tha t manipula tes the stack co ntents is [ ( x exchange y ) . This key swaps the contents of the Xโ and Yโreg isters without affecting the rest of the stack. Pressing [ twice restores the orig inal order of the Xโ and Yโregister co ntents. [...]
-
Seite 45
RPN: The Automatic Memor y Stack 2โ5 3. The stack dr ops. ๎๎ Notice that w hen the s tack lifts, it r eplace s the conte nts of the Tโ (top) r egist er with the cont ents of the Zโre gister , and th at the form e r conte nts of the Tโ registe r are l ost. Y o u ca n se e, th erefore, that th e sta ck's memo ry is l im it ed to four[...]
-
Seite 46
2โ6 RPN: The Automatic Memory Stack Using a Nu mber Twice i n a Row You can use the replicating featu re of ๎ to other advantages. To add a number to itself, press ๎๎ . Filling the s tack w ith a c onsta nt The replicatin g effect of ๎ together with the replicating effect of stack drop (from T into Z) allows you to f ill the stack with a [...]
-
Seite 47
RPN: The Automatic Memor y Stack 2โ7 ๎๎ D uri n g p rog ra m e nt r y , b deletes the curr e ntlyโdispla y ed pr ogram line and ๎ cancels pr ogr am entry . ๎๎ During digit entry , b backspaces o ver the displa y ed number . ๎๎ If the disp la y sho w s a labeled nu mber (su ch a s ๎/๎ )๎๎๎๎ ) , pressi ng ๎ or b cancels[...]
-
Seite 48
2โ8 RPN: The Automatic Memory Stack 2. Re using a number i n a calculation . See appendix B for a comprehensive list of the functions that save x i n t he LAST X register. C o rr e c t i n g M i s t a ke s wi t h L A ST X Wrong OneโNum ber Function If you execu te t he w r o n g oneโnumber function, u se {๎ to retrieve the nu mb er so y o u[...]
-
Seite 49
RPN: The Automatic Memor y Stack 2โ9 Example: Suppose you made a mistake while calculating 16 ร 19 = 304 There are three kinds of mistakes you cou ld hav e ma de : Wr o n g Calculation: M is t a k e : C or r e c t io n : 16 ๎ 19 ๎ Wrong function {๎๎ ๎ {๎ z 15 ๎ 19 z Wrong first nu mber 1 6 {๎ z 16 ๎ 18 z Wrong second number {?[...]
-
Seite 50
2โ10 RPN: The Automatic Memory Stack T ttt Z zz t 96. 7 04 Y 96 . 7 04 0 96 . 70 4 0 z X 96 . 70 4 0 52. 3 94 7 52. 3 9 47 149 .098 7 LAS T X ll 52. 3 94 7 T tt Z zt Y 149 . 09 8 7 z X 52. 3 94 7 2. 8 4 57 LAS T X 52. 3947 52.3 947 K ey s : D is p l a y : De s c r ip t i o n : 96.704 ๎ ๎๎)๎๎๎๎๎ Enters first number. 52.3947 ๎ ๎[...]
-
Seite 51
RPN: The Automatic Memor y Stack 2โ11 9.5 a 15 ๎)๎ ๎ ๎๎ _ ๎ Speed of light, c . z ๎)๎๎๎๎ ๎ ๎๎๎ Meters to R. Centaurus. 8.7 {๎ ๎)๎๎๎๎ ๎ ๎๎๎ Retrieves c . z ๎)๎ ๎๎๎ ๎ ๎๎๎ Meters to Sirius. Chain Calculations in RPN mode In RPN mode, the automatic lifting and dropping of the stack&ap[...]
-
Seite 52
2โ12 RPN: The Automatic Memory Stack Now study the following examples. Remember that you need to press ๎ only to separate sequentiallyโentered numbers, su ch as at the beginni ng of a problem The operations themselves ( ๎ , ๎ , e tc .) separate subsequent numbers and save intermediate results. The last result saved is the fi rst one retri[...]
-
Seite 53
RPN: The Automatic Memor y Stack 2โ13 E xe rc i s e s Calc ul at e: 0000 . 181 05 . 0 ) 5 3805 . 16 ( = x Solution: 16.3805 ๎ 5 z# .05 q Calc ul at e: 5743 . 21 )] 9 8 ( ) 7 6 [( )] 5 4 ( ) 3 2 [( = + ร + + + ร + Solution: 2 ๎ 3 ๎ 4 ๎ 5 ๎z# 6 ๎ 7 ๎ 8 ๎ 9 ๎z #๎ Calc ul at e: (10 โ 5) รท [ (17 โ 12) ร 4] = 0.2500 Solution[...]
-
Seite 54
2โ14 RPN: The Automatic Memory Stack This method takes one addi tional keystroke. Notice that th e first intermediate result is still the innermost parenthes es (7 ร 3). The a dvantage to worki ng a problem leftโtoโr ight is that you d on't ha ve to use [ to reposition operands for nomcommu taiive fu nctions ( ๎ and q ). However, the [...]
-
Seite 55
RPN: The Automatic Memor y Stack 2โ15 A Solution: 14 ๎ 12 ๎ 18 ๎ 12 ๎ z 9 ๎ 7 ๎ q Calc ul at e: 23 2 โ (13 ร 9) + 1/7 = 4 12.1429 A Solution: 23 ! 13 ๎ 9 z๎ 7 ๎๎ Calc ul at e: 5961 . 0 ) 7 . 0 5 . 12 ( ) 8 . 0 4 . 5 ( 3 = โ รท ร Solution: 5.4 ๎ .8 z .7 ๎ 3 ๎ 12.5 [ ๎ q๎# or 5.4 ๎ .8 z 12.5 ๎ .7 ๎ 3 ๎๎ q#[...]
-
Seite 56
[...]
-
Seite 57
S t o r i n g D a t a into Variables 3โ1 3 Storing Data i n t o V a r i ab l e s The HP 33s has 31KB of user memory : memory that you can u se to store numbers, equations, and program lines. Numbers are stored in locations called variables , each named with a letter from A through Z . ( You can choose the letter to remind you of what is stored th[...]
-
Seite 58
3โ2 Storing Data into Var iables Each black letter is associ ated with a key and a unique vari able. The letter keys are automatically active when needed. (The A..Z annun ciator in the display confirms this. ) Note that the variables, X , Y , Z and T are different storage locations from the Xโregister, Yโregister, Zโregister, and Tโregist[...]
-
Seite 59
S t o r i n g D a t a into Variables 3โ3 Vi e wi n g a Var i a b l e w i t h o u t R e c a l l i n g I t The |๎ function shows you the conten ts of a variable without puttin g that number in the Xโregister. The display is labeled for the variable, such as: ๎/๎ ๎๎ ๎๎)๎๎๎๎๎ In Fractionโdi splay mode ( {๎ ), part of the [...]
-
Seite 60
3โ4 Storing Data into Var iables C l e a r i n g V ar i a b l e s Variables' values are retained by Continuous Memory until you replac e them or clear them. Clearing a variable stores a zero there; a value of zero takes no memory. To clear a single variable: Store zero in it: Press 0 I variable . To clear selected variable s: 1. Press {Y { #[...]
-
Seite 61
S t o r i n g D a t a into Variables 3โ5 A 15 A 12 Re s u l t : 1 5 3 t h a t i s , A x T t T t Z z Z z Y y Y y X 3 X 3 R e c a l l A ri t h m e t i c Recall arithmet ic uses L๎ , L๎ , Lz , or Lq to do arithmetic in the X โregister using a recalled number and to le ave the result in the display. Only the Xโregister is affected. New x = Pr[...]
-
Seite 62
3โ6 Storing Data into Var iables K ey s : D i s p l a y : De s c ri p t i o n : 1 I D 2 I E 3 I F ๎)๎๎๎๎๎ ๎ )๎๎๎๎๎ ๎)๎๎๎๎๎ Stores the assumed values into the variable. 1 I๎ D I๎ E I ๎ F ๎ ๎ ๎)๎๎๎๎๎ Adds1 to D , E , and F . |๎ D ๎/๎ ๎ )๎๎๎๎๎ Displays the current value of D .[...]
-
Seite 63
S t o r i n g D a t a into Variables 3โ7 |Z A ๎๎ )๎๎๎ ๎๎ Exchanges contents of t he Xโregister an d variable A. |Z A ๎)๎๎๎๎๎ Ex changes contents of the Xโregister an d variable A. A 12 A 3 T t T t Z z Z z Y y Y y X 3 X 12 Th e Var i a b l e " i " There is a 27th variable that you can access directly โ t he[...]
-
Seite 64
[...]
-
Seite 65
RealโNumber Functions 4โ1 4 RealโNumber Functions This chapter c overs most of the calculator's functions th at perform computations on real numb ers, includi ng some numeric functio ns used i n progr ams (such a s ABS, the absoluteโvalue function): ๎๎ Exponenti al and logar ithmi c f unc tio ns. ๎๎ Q uo tie nt and Rem ai n der[...]
-
Seite 66
4โ2 RealโNumber Functions T o C al c u la t e : P re s s : Natural logarithm ( base e ) ๎ Common logar ithm (ba se 10) {๎ Natural ex ponential ๎ Common exp onentia l (antilo garithm) {๎ Q u o t i e n t a n d R e m a i n d e r of D iv i s i o n You can use {F and |D to produce either the quotient or remainder o f division o perations inv[...]
-
Seite 67
RealโNumber Functions 4โ3 In RPN mode, to calculate a number y raised to a power x , key in y ๎ x , then press ๎ . (For y > 0, x can be any nu mber; fo r y < 0, x must be an odd integer; for y = 0, x must be positive.) To Calculate: Press: Result: 15 2 15 ! ๎ ๎ ๎)๎๎๎๎๎ 10 6 6 {๎ ๎8๎๎๎8๎๎๎ )๎๎๎๎ 5 [...]
-
Seite 68
4โ4 RealโNumber Functions S e t t i n g t h e A n g u l a r M o d e The angular m ode specifies which uni t of measure to assume for ang les used in trigonometric functio ns. The mode does not convert numbers already present (see "Conversion Funct ions" later in this chapter). 360 degrees = 2 ฯ radi ans = 400 grads To set an angular [...]
-
Seite 69
RealโNumber Functions 4โ5 Example: S h o w t h a t c o s i n e ( 5 / 7 ) ฯ radians and cosine 128.57ยฐ are equa l (to four sign ificant digits). Keys: Display: Description: ๎ { ๎๎๎ } ๎ Sets Radians mode; RA D annunciato r on. ๎ 5 ๎ 7 ๎ ๎)๎๎๎๎๎ 5/7 in decimal format. |NzR .๎)๎๎ ๎๎๎ Cos (5 /7) ฯ . ๎ { ?[...]
-
Seite 70
4โ6 RealโNumber Functions Hy per bolic F unctions With x in the disp lay: To Calculate: Press: Hyperbolic sine of x (SINH). {๎ O Hyperbolic cosin e of x (COSH). {๎ R Hyperbolic tangent of x (TANH). {๎U Hyperbolic arc sin e of x (ASIN H). {๎ { M Hyperbolic arc cosi ne of x (AC OSH). {๎{ P Hyperbolic arc tang ent of x (ATA NH). {๎ { S[...]
-
Seite 71
RealโNumber Functions 4โ7 ๎ ๎๎)๎๎๎ Total cost (base price + 6% tax) . Suppose that the $1 5.76 item c ost $16.12 last year. What is the perc entage change from last year' s price to this year's ? Keys: Display: Description: 16.12 ๎ ๎๎)๎๎ ๎ 15.76 |T .๎ )๎ ๎๎ This year's price dropped a bout 2.2% from l[...]
-
Seite 72
4โ8 RealโNumber Functions Ph y sics Constants There are 40 physics constants in the CONST menu. You can press | ๎๎ to view the following items. C ON S T M e n u It e m s Desc ripti on Val ue { F } Speed of light in vacuum 299792458 m s โ1 { J } Standard acceleration of gravi ty 9.80665 m s โ2 { ๎ } Newtonian co nstant of gravit ation [...]
-
Seite 73
RealโNumber Functions 4โ9 It e m s Desc ripti on Val ue { TH } Classical electron radius 2.817940285 ร 10 โ15 m { ' ยต } Characteristic im pendence of vacuum 376.730313461 โฆ { ฮป F } Compton wavelengt h 2.426310215 ร 10 โ12 m { ฮป FQ } Neutron Compto n wavelength 1.319590898 ร 10 โ15 m { ฮป FR } Proton Compton waveleng th 1.3214[...]
-
Seite 74
4โ10 RealโNumber Functions C o o rd i n a t e C o nv e r s i on s The function names for these co nversions are y , x ร ฮธ , r and ฮธ , r ร y , x . Polar coordinates ( r , ฮธ ) and rectangular coordin ates ( x , y ) are measured as shown in the illustration. The a ngle ฮธ uses units set by the current ang ular mode. A calculated result for ฮธ[...]
-
Seite 75
RealโNumber Functions 4โ11 Example: Polar to Rect an gular Con vers ion. In the following right triangles, find sides x and y in the triangle on the left, and hypotenu se r and angle ฮธ in the triangle on the right. y 10 30 o x r 4 3 ฮธ Keys: Display: Description: ๎ { ๎๎๎ } ๎ Sets Degrees mode. 30 ๎ 10 |s ๎)๎๎๎๎๎ Calcu l[...]
-
Seite 76
4โ12 RealโNumber Functions R C R X c _ 36.5 o 77 .8 ohm s ฮธ Keys: Display: Descript ion: ๎ { ๎๎๎ } ๎ Sets Degrees mode. 36.5 ^๎ .๎๎)๎๎๎๎๎ Enters ฮธ , degrees of voltage lag . 77.8 ๎๎)๎ _ Ente rs r , ohms of total impedance. |s ๎๎ )๎๎๎๎๎ Ca lculates x , ohms resistance, R . [ .๎๎)๎ ๎๎๎ ๎ [...]
-
Seite 77
RealโNumber Functions 4โ13 |u ๎)๎๎๎๎๎ ๎๎ Equals 8 minutes and 34.29 seconds. ๎ { ๎๎% } 4 ๎)๎๎๎๎๎ Restores FIX 4 display format. A n g l e C o nv e r s i on s When converting to radian s, the number in the xโregister is assumed to be degrees; when converting to degrees, the number in the xโre gister is assume[...]
-
Seite 78
4โ14 RealโNumber Functions P ro b a b i l i t y F u n c t i o n s Fa c to ri a l To calculate the factoria l of a displayed non- negative integer x (0 โค x โค 253), press {๎ (the leftโs hifted ๎ key). G a m m a To calculate the gamma fu nctio n of a no ninteger x , ฮ ( x ), key in ( x โ 1) and press {๎ . The x ! function calculates[...]
-
Seite 79
RealโNumber Functions 4โ15 The RANDOM fu nction uses a seed to generate a random numb er. Each random number generated becomes the seed for the next rand om number. Therefore, a sequence of random numbers can be repeated by starting with the same seed. You can store a new seed with the SEED function. If memory is clear ed, the seed is reset to [...]
-
Seite 80
4โ16 RealโNumber Functions P a r t s o f N u m b e r s These functions are primarily used in progra mming. Integer part To remove the fracti onal part of x and replace it with zeros, press |" . (For example, the integ er part of 14.2300 is 14.0 000.) Fractional part To remove the integer part of x and replace it with zeros, press |? . (For[...]
-
Seite 81
RealโNumber Functions 4โ17 N a m e s o f F u n c t i o n s You migh t have noticed that the name of a function appears in the display when you press and hold the key to e xecute it. (The name remains displayed for as long as you hold the ke y down.) For in stance, while pressing O , the display shows ๎๎ . "SIN" i s the name of the[...]
-
Seite 82
[...]
-
Seite 83
Fracti ons 5โ1 5 Fractions "Fractions" in chapter 1 introduc es the basics about entering, di splaying, and calculating wi th fractions: ๎๎ T o enter a fracti on, pr e ss ๎ tw ice โ after the integer part, and betw een the numerator and denominator . T o enter 2 3 / 8 , pre ss 2 ๎ 3 ๎ 8 . T o e nt er 5 / 8 , pr ess ๎ 5 ๎[...]
-
Seite 84
5โ2 Fractions If you didn' t get the same results as the example, y ou may have acc identally changed h ow fractions are displayed. (See "Chang ing the Fraction Display" later in this chapt er.) The next topic includes more examples of valid an d invalid i nput fractions. You can type fracti ons only if the n umber base is 10 โ t[...]
-
Seite 85
Fracti ons 5โ3 E nt e r e d V a l u e I nt e r n a l V al u e Di s p l ay e d F r a c t i o n 2 3 / 8 2.37500000000 ๎ ๎+๎๎ 14 15 / 32 14.4687500000 ๎๎ ๎๎+๎๎ ๎ 54 / 12 4.50000000000 ๎ ๎+๎ ๎ 6 18 / 5 9.60000000000 ๎ ๎+๎๎ 34 / 12 2.83333333333 ๎ ๎+๎๎ T 15 / 8192 0.00183105469 ๎ ๎+๎๎๎ ๎๎ S 1234[...]
-
Seite 86
5โ4 Fractions This is espec ially important i f you change th e rules about h ow fractions are displayed. (See "Chang ing the Fraction Display" later.) For ex ample, if you forc e all fractions to have 5 as the denominator, then 2 / 3 is displayed as ๎๎ + ๎ c because the exact fraction is approxim ately 3.3333 / 5 , "a little[...]
-
Seite 87
Fracti ons 5โ5 ๎๎ Y ou can select one of thr ee fr action f or mats. The next few topi cs show how to change the fraction display. Setting th e Maximum Denominat or For any fraction , the denominator is selected based on a value stored in the calculator. If you thi nk of fractions as ab / c , then /c corresponds to the value that controls the[...]
-
Seite 88
5โ6 Fractions To select a frac tion format, you m ust change the states of two fla g s . Each fla g can be "set" or "clear," and in one case the state of fl ag 9 doesn't matter. C ha n g e T h e se F l a g s : T o G e t T h is F r a c ti o n F o r m a t : 8 9 Most precis e Clear โ Fact ors of d en omi nat or Set Clear F[...]
-
Seite 89
Fracti ons 5โ7 N u mb e r En t e r e d an d F r a c t i o n D i s p l a ye d F ra c t i o n F o r ma t ยผ 2 2.5 2 2 / 3 2.99 99 2 16 / 25 Most precis e 2 2 1/ 2 2 2/3 S 3 T 2 9/14 T Fact ors of denomi nator 2 2 1/ 2 2 11/1 6 T 3 T 2 5/8 S Fixed denomi nator 2 0/16 2 8/ 16 2 11/1 6 T 3 0/16 T 2 10/ 16 S ยผ For a /c value of 16. Example: Suppose a [...]
-
Seite 90
5โ8 Fractions In an equation or program, the RND function does fracti onal rounding if Fractionโdi splay mode is activ e. Example: Suppose you h ave a 56 3 / 4 โi nch space th at you want to divi de into six equ al sections. How wide is eac h sectio n, assuming y ou can conveni ently measu re 1 / 16 โinch incr ements ? W hat's the cumu[...]
-
Seite 91
Fracti ons 5โ9 Fra c t i o n s i n P r o g ra m s When you're typi ng a program , you can type a number as a f raction โ but it' s converted to its dec imal value. All numeric values i n a prog ram are shown as decimal values โ Fracti onโdisplay mode is ig nored. When you're run ning a program, displayed v alues are shown usi[...]
-
Seite 92
[...]
-
Seite 93
Entering and Evaluating Equatio ns 6โ1 6 Entering and Evaluating Equations H ow Y ou C a n U s e E q u a t i o n s You can use equation s on the HP 33s in several ways: ๎๎ F or sp ecify ing an eq uation to e valuate (this cha pter ). ๎๎ F or sp ecify ing an eq uation to s olv e f or unkno w n va lues (cha pter 7). ๎๎ F or spec ify ing[...]
-
Seite 94
6โ2 Entering and Evaluating Equations L ยพ๎ Begins a new equ ation, turning on the " ยพ " equationโ entry cursor. L turns on the A..Z annunciator so you ca n enter a variable name. V |d #/ยพ๎ L V types # and mov es the cursor to the right. .25 #/๎๎)๎ ๎ _ ๎ Digit entry uses the "_" digitโentry cursor. z|Nz #/?[...]
-
Seite 95
Entering and Evaluating Equatio ns 6โ3 Summary of Equation Oper ations All equations you create are saved in the equation list. This list is visible whe never you activate Equation mode. You use certain keys to perform operations involving equations. They 're described in more detail later. K ey O pe r a ti o n |H Enters and leaves Equation [...]
-
Seite 96
6โ4 Entering and Evaluating Equations Entering Equations int o the Equation List The equation list is a collection of eq uations you enter. The list is saved in th e calculator's memory. Each equation y ou enter is automatically saved in the equation list. To enter an equatio n: 1. Make sur e the calculator is in its normal operating mode , [...]
-
Seite 97
Entering and Evaluating Equatio ns 6โ5 N u m b e r s i n E q u a t i o n s You can enter any valid numbe r in an equati on except fracti ons and numbers that aren't base 10 numbers. N umbers are always shown using ALL displa y format, which di splays up to 12 characters. To enter a number in an equat ion, you can use th e standard numberโe[...]
-
Seite 98
6โ6 Entering and Evaluating Equations Pare n t h e s e s i n E q u a t io n s You ca n include parentheses in equatio ns to control the order in which opera tions are performed. Press |] and |` to insert parentheses. (For more information, see "Operator Precedence" later in this chapter.) Example: Entering an Eq uation. Enter the equati[...]
-
Seite 99
Entering and Evaluating Equatio ns 6โ7 ๎๎ ๎๎๎ ๎๎ ! !๎๎ if there ar e no eq uati ons in the eq uation li st or if th e equa tion pointer is at the top of the lis t . ๎๎ T he cur r ent equ ation (the last e qu ation y ou v ie w ed). 2. Pr es s ๎ or ๎ to step t hr ough the eq uation lis t and v ie w eac h equati on. T he li[...]
-
Seite 100
6โ8 Entering and Evaluating Equations To edit an equation you're typing : 1. Pre ss b r epeatedly until y ou delete the unw anted number or fu nction . If you'r e typ ing a decimal number and the "_ " digitโentr y cu rsor is on , b deletes only the r i ghtmost c hara cter . If you delete all c harac ters in the number , the [...]
-
Seite 101
Entering and Evaluating Equatio ns 6โ9 Keys: Display: Description: |H ๎/๎ ยบ๎ยบ๎๎ 1!.๎2๎ Shows the current equation in t he equation list. b ๎ยบ๎๎ 1!.๎ 2-๎ ๎ ยพ ๎ Turns on Equation โentry mode and shows the " ยพ " cursor at the end of the equation. bb /๎ ยบ๎ยบ๎๎ 1 !.๎2 ยพ ๎ Deletes the number 25. ?[...]
-
Seite 102
6โ10 Entering and Evaluating Equatio ns Because many equati ons have two sides separated by "=", the basi c value of an equation is the difference between the values of the two sides. For this calculation, "=" in an eq uation essentially t reated as " เฒฅ ". The val ue is a measure of how well the equation balanc es.[...]
-
Seite 103
Entering and Evaluating Equatio ns 6โ11 The evaluation of an equation takes no values from the st ack โ it uses only numbers in the equation and variable values. The valu e of the equation is retu rned to the Xโregister. The LAST X register isn't affected. U s i n g E N T E R fo r E v al u a t i o n If an equation is displayed in the equ[...]
-
Seite 104
6โ12 Entering and Evaluating Equatio ns a 6 q ๎๎)๎ ๎๎ ๎๎ Changes cubic mi llimeters to liters (but doesn't change V ). U s i n g X E Q fo r E va l u a t i o n If an equation i s displayed in the equation list, you can press X to evaluate the equation. The entire equation is evaluated, regardless of the type of equation. The resu[...]
-
Seite 105
Entering and Evaluating Equatio ns 6โ13 ๎๎ To c h a n g e t h e n u m b e r, t ype the ne w number and press g . This ne w number w r ites o ver the old value in the Xโr egister . Y ou can enter a nu mber as a frac tion if you w an t. If y ou need to calc ulate a number , use normal keybo a rd c a lc ul at i o n s, t h e n p res s g . F or [...]
-
Seite 106
6โ14 Entering and Evaluating Equatio ns O r de r O pe r a ti o n E xa m pl e 1 Functions and Parenth eses ๎๎1%- ๎2 , 1%-๎2๎ 2 Power ( ๎ ) %:๎๎ 3 U na r y M in u s ( ^ ) .๎๎ 4 Multiply and Divide %ยบ& , ๎ยช๎๎ 5 Add and Subtract ๎-๎ , ๎.๎๎ 6 E q u al it y ๎/๎๎ So, for example, all operat ions inside par[...]
-
Seite 107
Entering and Evaluating Equatio ns 6โ15 Equation Func tions The following table lists the functions that are valid i n equations. Appendi x G, "Operation Index" also gi ves this information . LN LOG EXP A LOG SQ SQRT INV IP FP RND ABS x! S G N IN TG IDIV RMD R SIN C OS TAN ASIN ACOS ATAN SINH COSH TANH ASINH ACOSH ATANH ๎ DEG ๎ RAD [...]
-
Seite 108
6โ16 Entering and Evaluating Equatio ns 0๎๎๎1.%(.๎ 2๎ 0๎๎๎1%(1.&22๎ Eleven of the equation functi ons have names that differ from their equivalent operations: Operation Equation function x 2 SQ x SQRT e x EXP 10 x ALOG 1/x IN V X y XROOT y x ^ IN T รท IDIV Rmdr RM D R x 3 CB 3 x CBRT Example: P erime ter o f a Tr apezoi d. Th[...]
-
Seite 109
Entering and Evaluating Equatio ns 6โ17 Single letter name No impl ied multipli cati on D i v i s i o n i s d o n e befor e addition P ar ent hes es used to g rou p it e m s P=A+B+Hx(1 S IN(T)+1 S IN(F )) ฮ ฮ Th e next equation also obeys the syntax rules. This equation uses the inverse function, ๎๎#1 ๎๎1!22 , instead of the f ractional[...]
-
Seite 110
6โ18 Entering and Evaluating Equatio ns Syn t a x E r ro r s The calculator doesn't check the syntax of an equation until you eval uate the equation and respon d to all the prom pts โ only when a val ue is actually bei ng calculated. If an error is detected, ๎๎#๎๎๎๎ ๎๎๎ is d is pl ay ed . Y ou ha ve t o ed it the equation[...]
-
Seite 111
Solving Equations 7โ1 7 Solving Equations In chapter 6 you saw h ow you can use ๎ to find the valu e of the leftโhand variable in an assignment โtype equation. Well, you can use SOLVE to fin d the value of any variable in any type of equation. For example, consider the equation x 2 โ 3 y = 10 If you know the value of y in this equation, t[...]
-
Seite 112
7โ2 Solving Equatio ns ๎๎ If the displa y ed valu e is the one y ou w ant , pr es s g . ๎๎ If you w ant a differ ent va lue, ty pe or calc ulate the value and pres s g . (F or details, s ee "R esponding to E qu ation Pr ompts" in c hap ter 6 .) You ca n halt a running calculatio n by pr essing ๎ or g . When the root is found, [...]
-
Seite 113
Solving Equations 7โ3 ๎ ๎/#ยบ!-๎)๎ ยบ๎ยบ!: ๎ ๎ Terminates the equation and displays the left en d. |๎ ๎๎/๎๎๎๎๎ ๎๎/๎๎๎ Checksum and len gth. g (accelerati on due to gravit y) is included as a v ariable so you c an chang e it for differen t units (9.8 m/s 2 or 32.2 ft/s 2 ). Calculate how ma ny meters an objec[...]
-
Seite 114
7โ4 Solving Equatio ns Example: S olving the Ideal Gas Law Equation. The Ideal Gas Law describes the relationship between pressu re, volume, temperature, and the amoun t (moles) of an i deal gas: P ร V = N ร R ร T where P is pressure (in atmos pheres or N/m 2 ), V is vo lume (in liters), N is t he number of moles of gas, R is th e universal ga[...]
-
Seite 115
Solving Equations 7โ5 g ๎๎#O๎๎๎ ๎/๎ ๎)๎๎๎๎๎ Stores 297.1 in T ; solves for P in a tmospheres. A 5โliter flask c ontains nitrogen g as. The pressure is 0.05 atmospheres when the temperature is 18ยฐC. Calculate the density of the gas ( N ร 28/ V , where 28 is the molecular weight of nitrogen). Keys: Display: Description[...]
-
Seite 116
7โ6 Solving Equatio ns When SOLVE evaluates an equation, it do es it the same way X does โ any "=" in the equation is treated as a " โ ". For example, the I deal Gas Law equation is evaluated as P ร V โ ( N ร R ร T ). This ensures tha t an equality or assignment equation bal ances at the root, an d that an expression [...]
-
Seite 117
Solving Equations 7โ7 I n t e rr u p t i n g a SO LVE C a l c u l a t i o n To halt a calculation, press ๎ or g . The current best estimate of the root is in the unknown variable; use |๎ to view it without disturbing the stack. C h o o s i n g I n i t i a l G u e s se s fo r S O L VE The two initial guesses come fr om: ๎๎ T he number c ur[...]
-
Seite 118
7โ8 Solving Equatio ns ๎๎ If an equation does not allow certain values f or the unknown , gues ses can pre v ent these v alue s from occ urr ing. F or ex ample , y = t + log x r esults in a n err or if x โค 0 (messa ge ๎๎๎๎๎๎!๎๎๎ ๎ ). In the following example, the e quation has more tha n one root, bu t guesses help find [...]
-
Seite 119
Solving Equations 7โ9 Type in the equation: Keys: Display: Descript ion: |H ๎ L V |d ๎ #/ยพ๎ Selects Equation mode and starts the equation. |] 40 ๎ ๎ L H |` ๎ #/1๎๎.๎2 ยพ ๎ z|] 20 ๎ L H |` ๎ 1๎๎.๎2ยบ1๎ ๎.๎2 ยพ ๎ z 4 zL H ๎2ยบ1๎ ๎.๎2ยบ๎ ยบ๎ยพ ๎ ๎ #/1๎๎.๎2ยบ 1๎ ๎.๎๎ Terminates and disp[...]
-
Seite 120
7โ10 Solving Equations K ey s : D is p l a y : D e sc r i p t i o n: ๎๎)๎๎๎๎๎ This valu e from the Yโre g ister is the estimate made just prior to the final result. Since it is the same as the solution, the solution is an exact root. ๎)๎๎๎๎๎ This value from the Zโregister shows the equation equals zero at the root. T[...]
-
Seite 121
Solving Equations 7โ11 Fo r M o r e I n f o r m a t i o n This chapter gives you instructions for solvin g for unknowns or roots over a wide range of appli cations. Appendi x D contains m ore detailed information about how the algorithm for SOLVE works, how to interpret results, what happens when no solution is fou nd, and conditio ns that can ca[...]
-
Seite 122
[...]
-
Seite 123
Integrating Equations 8โ1 8 Integrating Equations Many problems in m athematics, scien ce, and engineering require calculati ng the defini te integral of a function. If the function is denoted by f(x) and the interval of integratio n is a to b , then the integral can be expressed mathematically as ยณ = b a dx (x) f I f ( x ) b x a I The quantity [...]
-
Seite 124
8โ2 Integrating Equatio ns Integrating Equatio ns ( ยณ F N ) To integrate an equation: 1. If the equ ation that de fine s the integr and's funct ion i sn't stor ed in the eq uation list , k e y it in (see "En ter ing E qua tions into the E q uation L i st" in chap ter 6) and leav e E quation mode . T he equation u sually conta[...]
-
Seite 125
Integrating Equations 8โ3 Find the Bessel funct ion for xโ values of 2 and 3. Enter the expression that defines th e integrand's funct ion: cos ( x sin t ) Keys: Display: Descript ion: {c { ๎๎๎ } { & } ๎ Clears memory. |H Current equati on or ๎๎๎ ๎๎ ! !๎๎๎ Selects Equation mode. RL X ๎๎ 1%ยพ ๎ Types the eq[...]
-
Seite 126
8โ4 Integrating Equatio ns Now calculate J 0 (3 ) with the same limits of integration. Y ou must respeci fy the limits of inte gration (0, ฯ ) since they were pushed off the stack by th e subsequent division by ฯ . Keys: Display: Descript ion: 0 ๎|N ๎)๎๎๎๎๎ Enters the limits of inte g ration (lower limit first). |H ๎๎ 1%ยบ ๎[...]
-
Seite 127
Integrating Equations 8โ5 K ey s : D is p l a y : D e s c ri p t i o n : |H The current equation or ๎๎๎ ๎๎ ! !๎๎๎ Selects Equation mode. OL X ๎๎1% ยพ ๎ Starts the equation. |` ๎๎1%2ยพ๎ The closing right parenthesis is required in this case. qL X ๎๎1%2ยช% ยพ ๎ ๎ ๎๎1%2ยช%๎ Terminates th e equation. |๎ ๎[...]
-
Seite 128
8โ6 Integrating Equatio ns S p e c i f y i n g A c c u ra c y The display format' s setting (FIX, SCI, ENG, or ALL) determines the precisio n of the integration calculation: the gre ater the number of digits displayed, the greater the precision of the calculated integral (and the greater the time r equired to calculate it). The fewer the num[...]
-
Seite 129
Integrating Equations 8โ7 |๎ X ๎๎!๎๎๎๎!๎ ๎๎๎ ยณ /๎ ๎)๎๎ ๎ ๎๎ The integ ral approximated to two decimal places. [ ๎)๎๎ ๎ .๎ ๎ The uncertainty of the approximation of the integ ral. The integ ral is 1.61ยฑ0.0161. Si nce the unc ertainty would n ot aff ect the approximation un til its thi rd deci mal pl[...]
-
Seite 130
8โ8 Integrating Equatio ns ๎ { ๎๎๎ } ๎)๎๎๎๎ ๎ Restores Degrees mode. This unc ertainty indicates th at the result mig ht be correct to only three decimal places. In reality, this result i s accurate to seven decimal places when compared with the actual value of this integ ral. Since the uncertain ty of a result is calculated co[...]
-
Seite 131
Operations with Complex Numbers 9โ1 9 Operations with Complex Numbers The HP 33s can use complex numbers in the form x + iy . It has operat ions for comp lex arithmet ic (+, โ, ร , รท ), complex trigonometry (sin, cos, tan), and the mathematics functions โ z , 1/ z , 2 1 z z , ln z , and e z . (where z 1 and z 2 are complex nu mbers). To ent[...]
-
Seite 132
9โ2 Operations with Complex Numbers Since the im aginary and real parts of a complex number are entered and stored separately, you can easi ly work with or alter either part by its elf. y 1 Z 1 x 1 Compl ex fun ctio n y 2 y imag in ary part Z 2 x 2 x re a l pa r t Compl ex i np ut z o r z 1 an d z 2 Co m ple x res ult , z (d is pla y ed) (d is pl[...]
-
Seite 133
Operations with Complex Numbers 9โ3 F un c t i o ns f o r O n e C om p l e x N u mb e r , z T o C a l c ul a te : P re s s : Change sign, โz {G^ Inverse, 1/z {G๎ Natural log, ln z {G๎ Natural antilog, e z {G๎ Sin z {GO Cos z {GR Tan z {GU To do an ar ithmetic op eration with two c omplex nu mbers : 1. Enter the fir st com ple x nu mber , [...]
-
Seite 134
9โ4 Operations with Complex Numbers Examples: Here are some examples of trigonometry and arithm etic with complex numbers: Evaluate sin (2 + i 3) Keys: Display: Description: 3 ๎ 2 {GO ๎ .๎)๎๎๎๎๎ ๎)๎๎๎๎๎ Result is 9.1545 โ i 4.1689. Evaluate the expression z 1 รท (z 2 + z 3 ), where z 1 = 23 + i 13, z 2 = โ2 + i z 3[...]
-
Seite 135
Operations with Complex Numbers 9โ5 ๎ 2 ๎ 3 ^๎ .๎)๎๎๎ ๎๎ .๎)๎๎๎๎๎ Enters imagin ary part of second complex number as a fraction . 3 {Gz .๎)๎๎๎๎๎ ๎๎)๎๎๎๎๎ Completes entry of second number and then multiplies the two complex numbers. Result is 11.7333 โ i 3.8667. Evaluate 2 โ z e , where z[...]
-
Seite 136
9โ6 Operations with Complex Numbers r real (a, b) imaginary ฮธ Example: Vec tor Addition. Add the following three loads. You will first need to convert the polar coordinates to rectangular coordi nates. y 1 8 5 l b 62 o 1 0 0 l b 26 1 o 17 0 lb 14 3 o L 1 L 2 L 3 x Keys: Display: Description: ๎ { ๎๎๎ } ๎ Sets Degrees mode. 62 ๎ 185 |s[...]
-
Seite 137
Operations with Complex Numbers 9โ7 {G๎ ๎๎๎)๎๎๎๎๎ .๎๎)๎๎๎๎ ๎ Adds L 1 + L 2 + L 3 . {r ๎๎๎)๎๎๎๎๎ ๎๎๎)๎๎๎๎ ๎ Converts vector back to polar form; displays r , ฮธ[...]
-
Seite 138
[...]
-
Seite 139
Base Conversions and Arithmetic 10โ1 1 0 Base Conversions and Ar ithmetic The BASE menu ( {x ) lets you change the number base used for entering numbers and other operati ons (i ncluding programming). Changi ng bases also converts the displayed number to the new base. B AS E M e nu M e nu l a b el Des crip tion { ๎๎๎ } Decimal mode. No a nn[...]
-
Seite 140
10โ2 Base Conversions and Arithmetic {x { ๎๎๎ } ๎๎๎๎๎๎๎๎ Base 2. {x { ๎๎๎ } ๎๎ ๎)๎๎๎๎๎ Restores base 10; the original decimal value has been preserved, includi ng its fracti onal part. Convert 24FF 16 to binary base. The bin ary number will be more than 12 digits (the maximum displa y) long. K ey s : D i[...]
-
Seite 141
Base Conversions and Arithmetic 10โ3 If the result of an operation cannot be represented in 36 bi ts, the display shows ๎#๎๎๎๎๎$ and then shows the largest positive or negative number possible. Example: Here are some examples of arit hmetic in Hexadecimal, Octal, and Binary modes: 12F 16 + E9A 16 = ? Keys: Display: Description: {x { ?[...]
-
Seite 142
10โ4 Base Conversions and Arithmetic Th e R e p r e s e n t a t i o n o f N u m b e r s Although the display of a number is converted when the ba se is changed, its stored form is not mod ified, so decimal numbers are not trunca ted โ until they are used in ar ithmetic calcula tions. When a number appears i n hexadecimal, octal, or bin ary base[...]
-
Seite 143
Base Conversions and Arithmetic 10โ5 R an g e o f N u m b e r s The 36-bit word size determin es the range of numbers that can be represented in hexadecim al (9 digits), octal (12 di gits), and binary bases (36 di gits), and the range of decim al numbers (11 digits) that can be conv erted to these other bases. R an g e o f N u m b e r s fo r B a [...]
-
Seite 144
10โ6 Base Conversions and Arithmetic Wi n d o ws f o r Lo n g B i n a r y N u m b e r s The longest b inary number can ha ve 36 di gits โ three times as many d igits as fit in the di splay. Each 12โdig it display of a long number is called a window . 36 - bi t nu m b e r Highest window Lowes t win d ow (di spl ayed) When a binary number is la[...]
-
Seite 145
Statistical Operations 11โ1 1 1 Statistical Operati ons The statistics menus in th e HP 33 s provide functi ons to statistically analyze a set of oneโ or twoโvari able data: ๎๎ Mean, s ample and po pulation standard de v iations. ๎๎ Linear r egre ssio n and linear estimation ( x ห and y ห ). ๎๎ We i g h t e d m e a n ( x weig h [...]
-
Seite 146
11โ2 Statistical Operations E n t e r i n g O n e โ Va ri a b l e D a t a 1. Pre ss {c { ฮฃ } to c lear ex i sting statisti cal data. 2. Key i n e a c h x โvalue and pre ss ๎ . 3. The displa y sho ws n , the number of statistical data value s now acc umu lated . Pressing ๎ actually enters two variables i nto the statistics registers becau[...]
-
Seite 147
Statistical Operations 11โ3 1. Reenter the incor rec t data , but instead of pr essing ๎ , pr es s {๎ . T his deletes the v alue(s) and decr ements n . 2. Enter the cor r ect v alu e(s) using ๎ . If the incorrect values were the ones just entered, press {๎ to retrieve them, then press {๎ to delete them. (The in correct y โval ue was s[...]
-
Seite 148
11โ4 Statistical Operations Statistical Calculations Once you have entered your da ta, you can use the functions in the statistics menus. S ta t i s t i c s M e n us M e nu K e y D e sc r ip t i on L.R. |๎ The linearโregression me nu: linear estimation { ยบ ห } { ยธ ห } and curveโf itting { T } { P } { E }. See ''Linear Regres s[...]
-
Seite 149
Statistical Operations 11โ5 15.5 9.25 10.0 12.5 12.0 8.5 Calculate the mean of the times. (Treat all dat a as x โvalu es.) Keys: Display: Description: {c { ยด } ๎ Clears the statistics registers. 15.5 ๎ ๎)๎๎๎๎๎ Enters the first time. 9.25 ๎ 10 ๎ 12.5 ๎ 12 ๎ 8.5 ๎ ๎ ๎)๎๎๎๎๎ Enters the remaining data; six d[...]
-
Seite 150
11โ6 Statistical Operations S a m p l e S t a n d a rd D ev i a t i o n Sample standard deviati on is a measure of how dispersed th e data values are about the mean sam ple standard deviation assumes the data is a sam pling of a larger, complete set of data, a nd is calculated usin g n โ 1 as a divisor. ๎๎ Pr es s |๎ { Uยบ } f or the stan[...]
-
Seite 151
Statistical Operations 11โ7 Example: Popula tion Standard Deviation. Grandma H inkle has four g rown sons with h eights of 170, 17 3, 174, and 1 80 cm. Find the population standard deviati on of their heights. Keys: Display: Description: {c { ยด } ๎ Clears the statistics registers. 170 ๎ 173 ๎๎ 174 ๎ 180 ๎ ๎ ๎)๎๎๎๎๎ Ente[...]
-
Seite 152
11โ8 Statistical Operations ๎๎ T o find an estima ted v alue f or x (or y ) , ke y in a giv en h ypothetic al value f or y (or x ) , t hen press |๎ { ยบ ห } (or |๎ { ยธ ห }) . ๎๎ T o find the values that def ine the line that best fits y our data , pr ess |๎ follo w ed b y { T }, { P }, or { E }. Example: C urve Fitting. The yield[...]
-
Seite 153
Statistical Operations 11โ9 x 0 2 0 4 0 6 0 8 0 8. 5 0 7. 5 0 6.50 5.50 4. 5 0 r = 0 . 9 880 m = 0 . 03 87 b = 4 . 85 6 0 (7 0, y ) y X What if 70 kg of nitrog en fertilizer were applied t o the rice field ? Predict the grain yield based on the above stati stics. K ey s : D is p l a y : D e sc r i p t i o n: ๎ 70 ๎)๎๎๎๎๎ ๎๎ _ ?[...]
-
Seite 154
11โ10 Statistical Operations Normalizing Close, Larg e Nu mbers The calculator mi ght be unable to correctly calc ulate the standard deviation an d linear regression for a variable wh ose data values differ by a relatively sm all amount. To avoid th is, normalize the data by en tering each value as the differen ce from one central value (such as [...]
-
Seite 155
Statistical Operations 11โ11 If you've entered statistical data, you can see the contents of the statistics re gisters. Press {Y { #๎๎ }, then use ๎ and ๎ to view the statistics reg isters. Example: Viewing the Statis tics Regi sters. Use ๎ to store data pairs (1,2) an d (3,4) in the stati stics registers. Then view the stored stat[...]
-
Seite 156
11โ12 Statistical Operations S ta t i s t i c s R e g is t er s R e gi s t e r Nu m be r D es c r i pt i on n 28 Number of accum ulated data pairs. ฮฃ x 29 Sum of accumu lated x โvalu es. ฮฃ y 30 Sum of accumu lated y โvalu es. ฮฃ x 2 31 Sum of squares of accumu lated x โvalues. ฮฃ y 2 32 Sum of squares of accumu lated y โvalues. ฮฃ xy 33[...]
-
Seite 157
Part 2 Programming[...]
-
Seite 158
[...]
-
Seite 159
Simple Progra mming 12โ1 1 2 Simple Progr amming Part 1 of this manual introduce d you to functions an d operation s that you can use manua lly , that is, by pressing a key for each individual oper ation. And you saw how you can use eq uations to repeat calculations wi thout doing all of the keystrokes each time. In part 2, you'll learn ho w[...]
-
Seite 160
12โ2 Simple Programming RPN mo de ALG mode ๎๎๎๎๎ ยบ ๎ ๎๎๎๎ ๎๎ยบ ๎ ๎๎๎๎๎ ฯ ๎๎๎๎๎ ยบ ๎๎๎๎๎ ยบ ๎๎๎๎๎ ฯ ๎ ๎๎๎๎๎ ๎๎!๎๎๎ This very simple program a ssumes that the value for the radius is in the Xโ register (the display) when the program starts to run. It comput[...]
-
Seite 161
Simple Progra mming 12โ3 Designing a Pr ogr am The following topics show what instructions you can put in a program. What you put in a program affects how it appears when you v iew it and how it works when you run i t. S e l e c t i n g a M o d e Programs cr eated and saved in RPN mode can only be edited and executed in RPN mode, an d programs or[...]
-
Seite 162
12โ4 Simple Programming When a program finishes running, the last RTN instruction retu rns the program pointer to ๎๎๎๎ !๎๎ , the top of p rogram memory. U s i n g R P N , A LG a n d E q u a t i o n s i n P ro g ra m s You can calculate in programs th e same ways you calculate o n the keyboard: ๎๎ Using RPN operations (whi ch w ork[...]
-
Seite 163
Simple Programming 12โ5 For output, you can di splay a variable with the VIEW instructi on, you can display a message derived from an equation, or you can leave unmarked values on the stack. These are covered later in th is chapter under "Entering and Displaying Data." E n t e r i n g a P r o g ra m Pressing {e toggles the calculator in[...]
-
Seite 164
12โ6 Simple Programming 5. End th e pr ogram w ith a ret u rn i nstruction , w hich sets the progr am pointer back to ๎๎๎๎ !๎๎ after the pr ogr a m runs . Pr es s |๎ . 6. Pre ss ๎ (o r {e ) to cancel pr ogram e ntry . Numbers in program lines are stored as precisely as you entered them , and they're displayed using ALL or SCI[...]
-
Seite 165
Simple Progra mming 12โ7 Fu n c t i o n N a m e s i n P ro g ra m s The name of a function th at is used in a program li ne is not necessarily the same as the function's na me on its key, in its menu, or in an eq uation. The na me that is used in a program is usually a fuller abbrevi ation than th at which can fit on a key or in a menu. This[...]
-
Seite 166
12โ8 Simple Programming Example: En tering a Prog ram with an Equation. The following program calculates the area of a circle using an equation, rather than using RPN operations like the previous prog ram. K e ys : ( In R P N mo d e ) Display: Descript ion: {e { V๎๎ ๎๎๎๎ !๎๎๎ Activates Programโentry mode; sets pointer to top o[...]
-
Seite 167
Simple Progra mming 12โ9 R unning a Progr am To run or execute a prog ram, program entry cannot be acti ve (no program โline numbers display ed; PRG M of f). Pressing ๎ will cancel Programโentry mode. E xe c u t i n g a P ro g ra m ( X E Q ) Press X label to execute the program labeled with that letter. If there is only one program i n memo[...]
-
Seite 168
12โ10 Simple Programming 2 . Pr es s {V label to s et the progr am pointer to th e start of the pr ogr am (that is, at its LBL ins tru ctio n). T he ๎!๎ instr ucti on mo v es the p r ogr am po int er w ithout starting e x ec ution . (If the pr ogr am is the fir st or onl y pr ogr am , y ou can pre ss {V๎๎ to mo ve to its begin ning .) 3. [...]
-
Seite 169
Simple Progra mming 12โ11 Entering and Displa ying Data The calculator's variables are used to store data input, intermediate results, and final results. (V ariables, as explained in chapter 3, are identified by a letter from A through Z or i , but the variable names have nothing to do with program labels.) In a program, you can get data i n[...]
-
Seite 170
12โ12 Simple Programming Press g (run/stop) to resume the program. The value you keyed in then writes over the contents of the Xโregis ter and is stored in the given va riable. If you have not changed the displayed valu e, then that value is retained in the Xโregister. The areaโofโ aโcircle program with an IN PUT instruction looks like [...]
-
Seite 171
Simple Progra mming 12โ13 For example, see the " Coordin ate Transformation s" program in c hapter 15. Routine D collects all the necessary input for the variables M, N, and T (lines D0002 through D00 04) that def ine the x and y coordinates a nd angle ฮธ of a n ew system. To respond to a prompt: When you run th e program, it will stop [...]
-
Seite 172
12โ14 Simple Programming ๎๎ Pr es sing {c clear s the conte nts of the dis pla y ed var ia ble . Press g to continue the program, If you don' t want the program to stop, see "Displa ying Inform ation without Stopping" below. For example, see the prog ram for "Norm al and InverseโN ormal Distributions" in chapter 16.[...]
-
Seite 173
Simple Progra mming 12โ15 V = ฯ R 2 H S = 2 ฯ R 2 + 2 ฯ RH = 2 ฯ R ( R + H ) K e ys : ( In R P N mo d e ) D is p l a y : De s c ri p t i o n : {e{ V๎๎ ๎ ๎๎๎๎ !๎๎๎ Pro g ram, entry; sets pointer to top of memory. {๎ C ๎๎๎๎๎ ๎ ๎๎ ๎๎ Labels program. {๎ R ๎๎๎๎๎ ๎๎๎" ! ๎๎ {๎ H [...]
-
Seite 174
12โ16 Simple Programming K e ys : ( In R P N mo d e ) D is p l a y : De s c ri p t i o n : |๎ V ๎๎๎๎๎ #๎๎$ #๎ Displays volume. |๎ S ๎๎๎๎๎ #๎๎$ ๎ Displays surface area. |๎ ๎๎๎๎๎ ๎!๎๎ En ds program. {Y { ๎๎๎ } ๎๎๎ ๎ ๎๎/๎๎๎ Displays label C and the length of the program in[...]
-
Seite 175
Simple Programming 12โ17 The display is c leared by other di splay operations, an d by the RND operation if flag 7 is set (rounding to a f raction). Press |f to enter PSE in a program. The VIEW and PSE lines โ o r the equation and PSE lin es โ are treated as one operation when you execute a program one line at a ti me. Stopping or Interr upti[...]
-
Seite 176
12โ18 Simple Programming To see the line in the program containing the errorโcausing instruction, press { e . The program will have stopped at that point. ( For instance, it might be a รท instruction, which caused a n illegal divisio n by zero.) Editing a Progr am You can modif y a program in program memory by i nserting, deletin g, and editing[...]
-
Seite 177
Simple Progra mming 12โ19 2. Pr es s b . T his turns on the " ยพ " editing c ursor , but does not delete a nything in the equa tion . 3. Pre ss b as r equir ed to delete the functi on or number y ou w ant to change, then enter th e desir ed corr ections. 4. Pr es s ๎ to end the equ ation . P ro g ra m M e m o r y V i ewi n g P ro g ra[...]
-
Seite 178
12โ20 Simple Programming Memory Usage If during program entry you encounter th e message ๎๎๎๎๎& ๎"๎๎ , then there is not enough room in program memory for the li ne you just tri ed to enter. You c an make more room available by c learing programs or other data. See "Clearing One or More Programs" below, or "[...]
-
Seite 179
Simple Progra mming 12โ21 To clear all programs from memory: 1. Pre ss {e to displa y progr am lines ( PRGM annunciator on ) . 2. Pr es s {c { ๎๎๎ } to clear pr ogr am memory . 3. The messag e ๎๎๎ ๎๎๎ @ & ๎ prom pts y ou for confir mation. Pre ss { & }. 4. Pr es s {e to cancel pr ogr am entry . Clearing all of memory ([...]
-
Seite 180
12โ2 2 Simple Programming Nonprogr ammable F unc tions The following functions of the HP 33s are not programmable: {c { ๎๎๎ } {V๎๎ {c { ๎๎๎ } {V๎ label nnnn b{ Y ๎ , ๎ , ๎๎ , ๎| ๎ {e |H {h , {๎j { ๎ P ro g ra m m i n g w i t h BA S E You can program i nstructions to ch ange the base mode using {x . These settings[...]
-
Seite 181
Simple Progra mming 12โ23 N u m b e r s E n t e re d i n Pro g ra m Li n e s Before starting program entry, set the base mode. The current setting for the base mode determines the base of the numbers that are en tered into program lin es. The display of these num bers changes when you ch ange the base mode. Program lin e numbers always appear in [...]
-
Seite 182
12โ24 Simple Pro gramming K e ys : ( In A L G m o d e) D is p l a y : De s c r i pt i on : {e{ V๎๎ ๎ ๎๎๎๎ !๎๎๎ {๎ A ๎๎๎ ๎๎ ๎๎๎ ๎ ๎ {๎ X ๎ ๎๎๎๎๎ ๎๎๎ ๎"!๎ % ๎ 5 ๎๎๎๎๎๎๎ ๎ 5 z ๎๎๎๎๎๎ยบ ๎ L X ๎๎๎๎๎๎๎๎๎๎ % ๎ 5 x . ๎ ๎๎๎?[...]
-
Seite 183
Simple Progra mming 12โ25 A more general f orm of this program for any equation Ax 4 + Bx 3 + Cx 2 + Dx + E would be: ๎๎๎๎๎๎๎๎๎๎๎๎๎ ๎๎๎๎๎ ๎๎๎๎"!๎๎ ๎ ๎๎๎๎๎๎๎๎๎"!๎๎ ๎ ๎๎๎๎๎๎๎๎๎"!๎๎ ๎ ๎๎๎๎๎๎๎๎๎"!๎๎ ๎ ๎๎๎?[...]
-
Seite 184
[...]
-
Seite 185
Programming Techniques 13โ1 1 3 Programming Techniques Chapter 12 covered the b asics of program ming. Thi s chapter explores more sophisticated but useful techniq ues: ๎๎ Using subr outines to simplif y pr ograms b y separating and labeling por tions of the progr am that ar e dedicated to p articular tasks. T he use of subr outines also shor[...]
-
Seite 186
13โ2 Programming Techniques C a l l i n g S u b ro u t i n e s ( X E Q , R T N ) A subroutine is a routine tha t is called from (executed by) another routine and returns to that same routine when the subroutine is finished. The subroutine must start with a LBL and end with a RTN. A subr outine is it self a routine, an d it can call other subrouti[...]
-
Seite 187
Programming Techniques 13โ3 N e s t e d S u b ro u t i n e s A subroutine c an call another subroutine, and that subro utine can call yet an other subroutine. This "n esting" of subroutin es โ the calling of a subroutine within another subroutine โ i s limited to a stack of su broutines seven levels deep ( not counting the topmost p[...]
-
Seite 188
13โ4 Programming Techniques In RPN mode, ๎๎๎๎ ๎๎๎ Starts subroutine here. ๎๎๎๎ ๎๎๎"! ๎ Enters A . ๎๎๎๎ ๎๎๎"! ๎ Enters B . ๎๎๎๎ ๎๎๎"! ๎ Enters C. ๎๎๎๎ ๎๎๎"! ๎ Enters D. ๎๎๎๎ ๎๎๎ ๎ Recalls the data. ๎๎๎๎ ๎๎๎ ๎ ๎๎๎?[...]
-
Seite 189
Programming Techniques 13โ5 A P ro g ra m m e d GTO In s t ru c t i o n The GTO label instruction (press {V label ) transfers the execution of a running program to the program line containing that label, wh erever it may be. The program co ntinues running fro m the new location, and never automatically returns to its point o f origination, so GTO[...]
-
Seite 190
13โ6 Programming Techniques ๎๎ To ๎๎๎๎ !๎๎ : {V๎๎ . ๎๎ To a l i n e n u m b e r : {V๎ label nnnn ( nnnn < 10000). For e x ample , {V๎ A0005 . ๎๎ T o a label: {V label โbut only if program entry is not active (no progr am lines displa y ed; PRGM off) . For e x ample , {V A. Conditional Instructions Another way [...]
-
Seite 191
Programming Techniques 13โ7 ๎๎ Flag test s. These ch eck the stat us of fl ags, wh ich can be ei the r set o r cle ar . ๎๎ Loop counter s. T hes e ar e usually u sed to loop a specif ied n umber of time s. Tes t s o f C o m p a r i s o n ( x ? y , x ? 0) There are 12 comparison s available for programmi ng. Pressing {n or |o displays a me[...]
-
Seite 192
13โ8 Programming Techniques Example: The "Normal and InverseโNormal Distri butions" program in chapter 16 uses the x < y ? conditio nal in routine T : P ro g r a m L in e s : ( In R P N mo d e ) Des crip tion . . . !๎๎๎๎ ยช Calculates th e correction for X guess . !๎๎๎๎ !๎- % Adds the c orrection to yield a new X [...]
-
Seite 193
Programming Techniques 13โ9 ๎๎ Fl ag s 0, 1 , 2, 3, an d 4 have no preas signed me anings. T hat is, their states w ill mean whate v er y ou def ine them to mean in a giv e n pr ogr am. (See the ex am ple below .) ๎๎ Flag 5, wh en s et, wi l l in t e rrup t a pro g ram whe n a n over fl ow oc cu rs wi t hi n the progr am , displa y ing ?[...]
-
Seite 194
13โ10 Programming Techniques ๎๎ Flag 1 0 c o nt ro ls p ro g ram exe cu t io n of e qu at i o ns : When flag 10 is clear (th e default s tate) , equations in running progr ams ar e ev aluated and the result put on the stack . When flag 10 is set, eq uations in running progr ams are displa y ed as messag es, c ausin g t hem to b ehave like a V[...]
-
Seite 195
Programming Techniques 13โ11 Annunciat ors for Set Flag s Flags 0, 1, 2, 3 and 4 have annunc iators in the display that turn on when the corresponding flag is set. The presence or absence of 0 , 1 , 2 , 3 or 4 lets you know at any time whether any of these five flags is set or not. However, there is no such indi cation for the status of f lags 5 [...]
-
Seite 196
13โ12 Programming Techniques Example: Using Flags. The "Curve Fittin g" program in chapter 16 uses flags 0 and 1 to determ ine whether to take the natural logarithm of the Xโ and Yโinputs: ๎๎ Lines S000 3 and S0004 clear both of thes e flags so that lines W000 7 and W0011 (in the i nput loop r outine) do not take the natural log[...]
-
Seite 197
Programming Techniques 13โ13 P ro g r a m L in e s : (In RPN mode) Description: . . . ๎๎๎๎ ๎๎ ๎ Clears flag 0, the i ndicator for In X . ๎๎๎๎ ๎๎ ๎ Clears flag 1, the i ndicator for In Y . . . . ๎ ๎๎๎๎๎ ๎ ๎ Sets flag 0, the indicator for In X . ๎๎๎๎๎ ๎๎ ๎ Clears flag 1, the in dicator for[...]
-
Seite 198
13โ14 Programming Techniques Example: Cont rolling the Fraction Display. The following program lets you exercise the calc ulator's frac tionโdisplay capability. The prog ram prompts f or and uses your inputs f or a fracti onal number and a denomi nator (the /c value). The program also contain s examples of how the three fracti onโdisplay[...]
-
Seite 199
Programming Techniques 13โ15 P ro g r a m L in e s : ( In A L G m o d e) Description: ๎๎๎๎๎ ๎๎๎ ๎ Beg ins the fraction program. ๎๎๎๎๎ ๎๎ ๎ Clears three fraction fla gs. ๎๎๎๎๎ ๎๎ ๎ ๎๎๎๎๎ ๎๎ ๎๎ ๎๎๎๎๎ ๎ ๎๎ Disp lays messages. ๎๎๎๎๎ ๎๎๎๎ Selects deci[...]
-
Seite 200
13โ16 Programming Techniques Use the above program to see the diff erent forms of fraction display: K e ys : ( In A L G m o d e) Display: Description: X F #@๎ value ๎ Executes label F ; prompts for a fractional n umber ( V ). 2.53 g ๎@๎ value ๎ Stores 2.53 in V; prompts for denomina tor (D ). 16 g ๎๎๎๎๎๎๎๎ ๎ )๎๎๎?[...]
-
Seite 201
Programming Techniques 13โ17 This routin e (taken from the "Coordinate Transform ations" program on page 15โ32 in c hapter 15) is an exam ple of an inf inite loop . I t i s u s e d t o c o l l e c t t h e initial data prior to the coordinate tran sformation. After enterin g the three values, it is up to the user to manually interrupt [...]
-
Seite 202
13โ18 Programming Techniques Lo o p s wi t h C o u n t e r s (D S E , I S G ) When you want to execute a loop a specific number of times, use the {l ( increment ; skip if greater than ) or |m ( decrement ; skip if less than or equal to ) conditiona l function k eys. Each time a loop fu nction is execut ed in a p rogram, it automatically decrement[...]
-
Seite 203
Programming Techniques 13โ19 Given the loop โcontrol number ccccc cc. fffi i, ISG increme nts cccccc c to ccccccc + ii , compares the new ccccccc wi th fff, and makes program execution skip th e next progra m line if this c cccccc > fff. M ๎ $๎๎๎๎ ๎๎๎ $ . . . $๎๎๎๎ ๎ ๎ ๎ ๎ N M ๎ฟ $๎๎๎๎ ๎!๎ $ $๎?[...]
-
Seite 204
13โ20 Programming Techniques I n d i r e c t ly A d d re s s i n g V a r i a b l e s a n d La b e l s Indirect addressin g is a techn ique used in adv anced pr ogramming to specify a variable or label without sp ecifying beforehand exactly wh ich one . This is determined when the program runs, so it depends on the intermediate results (or input) [...]
-
Seite 205
Programming Techniques 13โ21 Th e I n d i r ec t A d d re ss , ( i ) Many functi ons that use A through Z (as variables or labels) can use ๎ to refer to A through Z (v ariables or label s) or statistics regi sters indirectly . The function ๎ uses the value in variable i to determine wh ich variable, label, or register to address. The followin[...]
-
Seite 206
13โ2 2 Pro gramming Techniq ues STO ( i ) RCL ( i ) STO +, โ, ร , รท , ( i ) RCL +, โ, ร , รท , ( i ) XEQ ( i ) GTO ( i ) X<> ( i ) INPUT ( i ) VIEW ( i ) DSE ( i ) ISG ( i ) SOLVE ( i ) ยณ FN d ( i ) FN= ( i ) P ro g ra m C o n t ro l w i t h ( i ) Since the contents of i can c hange each time a prog ram runs โ or even in different[...]
-
Seite 207
Programming Techniques 13โ23 &๎๎๎๎ ๎ &๎๎๎๎ !๎- L &๎๎๎๎ %๎๎1 1 L2 2 If i h o l ds : Th e n X EQ ( i ) c a l l s: T o : 1 LBL A Compute y ห for straig htโline model. 2 LBL B Compute y ห for logari thmic model. 3 LBL C Compute y ห for exponential mode l. 4 LBL D Compute y ห for power model. 7 LBL G C[...]
-
Seite 208
13โ24 Programming Techniq ues P ro g r a m L in e s : (In RPN mode) Description: ๎๎๎๎๎ ๎๎๎ ๎ This routine collects all known values in three equations. ๎๎๎๎๎ ๎๎๎"!1 1 L2 2 Prompts f or and stores a number in to the variable addressed by i . ๎๎๎๎๎ ๎ ๎ L Adds 1 to i and repeats the loo p until i [...]
-
Seite 209
Programming Techniques 13โ25 P ro g r a m L in e s : ( In R P N mo d e ) Description: ๎๎๎๎๎ ๎๎๎ ๎ Begi ns the program. ๎๎๎๎๎ ๎๎ ๎๎ Sets equations for execution. ๎๎๎๎๎ ๎๎ ๎๎ Disables equation prompti ng. ๎๎๎๎๎ ๎)๎๎ ๎ Sets counter for 1 to 26. ๎๎๎๎๎ !๎ L Stores count[...]
-
Seite 210
[...]
-
Seite 211
Solving and Integrating Progr ams 14โ1 1 4 Solving and Integrating Programs S o l vi n g a P r o g r a m In chapter 7 you saw how you c an enter an equation โ i t's added to the equation list โ and then solve it f or any variable. You can al so enter a program that calculates a function, and then solve it for any variable. This is especi[...]
-
Seite 212
14โ2 Solving and Integrating Programs 2. Incl ude an I NPUT inst ruction for ea ch varia ble, incl uding the unkn ow n . IN PUT instr uctio ns ena ble y ou to s olv e fo r any var iable in a multiโv ar ia ble f unction . INPU T fo r the unknown is ignor e d b y the calculator , so you need to w rite only one progr am that contains a separate IN[...]
-
Seite 213
Solving and Integrating Progr ams 14โ3 R = The univ ersal gas constant (0.0821 literโ atm/moleโK or 8.314 J/moleโK) . T = Temperature (kelvi ns; K = ยฐC + 273.1). To begin, put th e calculator in Program mode; if nec essary, position the program pointer to the top of program memory. K e ys : ( In A L G m o d e) Display: Description: {e{ V?[...]
-
Seite 214
14โ4 Solving and Integrating Programs K e ys : ( In A L G m o d e) D is p l a y : D e sc r i p t i o n: |W ๎ G ๎ Selects "G" โ the program. SOLVE evaluates to find the value of the unknown variable. ๎ P #@๎ value ๎ Selects P ; prompts for V . 2 g ๎@๎ value ๎ Stores 2 in V; prompts for N. .005 g ๎@๎ value ๎ Stores[...]
-
Seite 215
Solving and Integrating Progr ams 14โ5 |๎ ๎๎๎๎๎ ๎!๎๎ Ends the prog ram. ๎ ๎)๎๎๎๎๎ Cancels Programโentry mode. Checksum and len gth of program: 36FF 2 1 Now calculate the change in pressure of the carbon dioxid e if its te mperature drops by 10 ยฐC from th e previous example. K e ys : ( In R P N mo d e ) Display: [...]
-
Seite 216
14โ6 Solving and Integrating Programs U s i n g S O L VE i n a P ro g ra m You can use the SOLVE operati on as part of a prog ram. If appropriate, i nclude or p rompt for init ial guesses (into th e unknown variable an d into the Xโregister) be fore executing the S OLVE variable instruct ion. Th e two instruction s for solving an equation f or [...]
-
Seite 217
Solving and Integrating Progr ams 14โ7 P ro g r a m L in e s : ( In R P N mo d e ) Description: %๎๎๎๎ ๎๎๎ % Setup for X . %๎๎๎๎ ๎ ๎ Index for X . %๎๎๎๎ ๎!๎ ๎ Branches to main routine. Checksum and len gth: 4800 21 &๎๎๎๎ ๎๎๎ & Setup for Y . &๎๎๎๎ ๎ ๎ Index for Y . &๎[...]
-
Seite 218
14โ8 Solving and Integrating Programs 2. Select the pr ogr am that def ines the fu ncti on to integr ate: pr es s |W label . (Y ou can skip this s tep if y ou're r e integr at ing the s ame pr ogram .) 3. Enter the limits o f integr ati on: k e y in the lo w er limit and pre ss ๎ , then key i n t h e upper limit . 4. Select the var i able [...]
-
Seite 219
Solving and Integrating Progr ams 14โ9 Example: Pro gram Using Equation. The sine in tegral function in the example in chapter 8 i s ยณ = t 0 dx ( Si(t) ) x x sin This fun ction can be evaluated by in tegrating a prog ram that defin es the integran d: ๎๎๎๎ ๎๎๎ Defines the function. ๎๎๎๎ ๎๎1%2ยช % The f unction as an expr[...]
-
Seite 220
14โ10 Solving and Integrating Progr ams ยณ ๎๎ G vari able The programmed ยณ FN instruction does not produce a labeled display ( ยณ = value ) since this might not be the sign ificant output for your program (that is, you might w a n t t o d o f u r t h e r c a l c u l a t i o n s w i t h t h i s n u m b e r b e f o r e d i s p l a y i n g i t [...]
-
Seite 221
Solving and Integrating Progr ams 14โ11 Restrictions on Solv ing and Integrating The SOLVE variable an d ยณ FN d variable instructions cannot call a routine that contains anot her SOLVE o r ยณ FN instruction. That is, ne ither o f these instructio ns can be used recursively. For example, attemptin g to calculate a multiple integral will result in[...]
-
Seite 222
[...]
-
Seite 223
Mathematics Programs 15โ1 1 5 Mathematics Programs Vec t o r O p e r a t i o n s This program performs the basic vec tor operations of additi on, subtraction, cross product, and dot (or scalar) product. The prog ram uses threeโdime nsional vectors and provides in put and output in rectangular or polar for m. Angles between vectors can also be f[...]
-
Seite 224
15โ2 Mathematics Programs Vector addition and subtraction : v 1 + v 2 = ( X + U ) i + ( Y + V ) j + ( Z + W ) k v 2 โ v 1 = ( U โ X ) i + ( V โ Y ) j + ( W โ Z ) k Cross product: v 1 ร v 2 = ( YW โ ZV ) i + ( ZU โ XW ) j + ( XV โ YU ) k Dot Product: D = XU + YV + ZW Angle between vectors ( ฮณ ): G = arccos 2 1 R R D ร where v 1 = [...]
-
Seite 225
Mathematics Programs 15โ3 Program Listing: P ro g r a m L in e s : ( In A L G m o d e) Description ๎๎๎๎๎ ๎๎๎ ๎ ๎ Defines the beginning of the rectangular in put/display routine. ๎๎๎๎๎ ๎๎๎"! % ๎ Displays or accepts input of X . ๎๎๎๎๎ ๎๎๎"! & ๎ Displays or accepts input of Y . ?[...]
-
Seite 226
15โ4 Mathematics Programs P ro g r a m L in e s : ( In A L G m o d e) Description ๎๎๎๎๎ !๎ ' ๎ Stores Z = R cos( P ). ๎๎๎๎๎ ๎๎๎๎! ๎ ๎๎๎๎๎๎ยบ65ยธ ๎ ๎๎๎๎๎ ฮธ 8T ยด ยธ8ยบ ๎ Calculates R sin( P ) cos( T ) and R sin( P ) sin( T ). ๎๎๎๎๎ !๎ % ๎ Saves X = R sin( P ) cos( T ).[...]
-
Seite 227
Mathematics Programs 15โ5 P ro g r a m L in e s : ( In A L G m o d e) Description ๎๎๎๎๎ ๎๎๎ % ๎ ๎๎๎๎๎ ๎๎๎ - "๎ ๎๎๎๎๎ !๎ %๎ Saves X + U in X . ๎๎๎๎๎ ๎๎๎ # ๎ ๎๎๎๎๎ ๎๎๎ - &๎ ๎๎๎๎๎ !๎ &๎ Saves V + Y in Y. ๎๎๎๎๎ ๎๎๎ ' ?[...]
-
Seite 228
15โ6 Mathematics Programs P ro g r a m L in e s : ( In A L G m o d e) Description ๎๎๎๎๎ ๎๎!๎๎๎ Calculates (ZU โ WX ), whic h is the Y comp onent. ๎๎๎๎๎๎ !๎ ๎ ๎ ๎๎๎๎๎ ๎๎๎ % ๎ ๎๎๎๎๎ ๎๎๎ยบ # ๎ ๎๎๎๎๎ .๎ ๎๎๎๎๎ ๎๎๎ & ๎ ๎๎๎๎ ๎๎๎๎?[...]
-
Seite 229
Mathematics Programs 15โ7 P ro g r a m L in e s : ( In A L G m o d e) Description ๎๎๎๎๎ ๎๎๎ $ ๎ ๎๎๎๎๎ ยธ8ยบ ยด ฮธ 8T ๎ Calculates the magnitude of the U , V, W vector. ๎๎๎๎ ๎๎ !๎๎๎ ๎ ๎๎๎๎ ๎๎1๎ ๎๎๎๎ ๎ ๎๎๎๎๎๎ ๎ ๎๎๎๎ ๎ ๎๎๎ยช ๎ ๎ Divi des the dot pr[...]
-
Seite 230
15โ8 Mathematics Programs 3. Ke y i n R and pre ss g , k ey in T and pres s g , then ke y in P and press g . Contin ue at step 5 . 4. Key i n X and press g , k e y in Y and pres s g , and ke y in Z and pres s g . 5. T o ke y in a second vec tor , pre ss X E (for enter ), then go to step 2 . 6. P erfor m desired v ector oper atio n: a. Add vector [...]
-
Seite 231
Mathematics Programs 15โ9 N (y) S W E (x) An ten n a Tra n s m i t t e r 7. 3 15. 7 K e ys : ( In A L G m o d e) Display: Description: ๎ { ๎๎๎ } ๎ Sets Degrees mode. X R ๎ %@๎ value ๎ Starts rectangular in pu t /d i sp lay routine . 7.3 g ๎ &@๎ value ๎ Sets X equal to 7.3. 15.7 g๎ '@๎ value ๎ Sets Y equal to 1[...]
-
Seite 232
15โ10 Mathematics Programs Z X Y 12 5 o 63 o F = 1 7 T = P = 1 7 1 215 o o F = 23 T = 80 P = 7 4 2 o o 1. 0 7m First, add the force vectors. K e ys : ( In A L G m o d e) D is p l a y : De sc r i p t i on : X P ๎@๎ value ๎ Starts polar input routi ne. 17 g !@๎ value ๎ Sets radius equal to 17. 215 g ๎@๎ value Sets T equal to 215. 17 g[...]
-
Seite 233
Mathematics Programs 15โ11 g ๎@๎ ๎๎)๎๎๎๎๎ Displays P of resultant vector. X E ๎@๎ ๎ ๎)๎๎๎๎๎ Enters resultant vector. Since the moment equals the cross product of the radius vector and th e force vector ( r ร F ), key in the vector representing the lever and take the cross product. K e ys : ( In A L G m o d e) D[...]
-
Seite 234
15โ12 Mathematics Programs 125 g ๎@๎ ๎๎ ๎)๎๎๎๎ ๎ Sets T equal to 125. 63 g ๎@๎ ๎)๎๎๎๎๎ Sets P equal to 63. X D ๎/๎ ๎ ๎)๎๎๎๎ ๎ Calculates dot product. g ๎/๎ ๎๎)๎๎๎๎๎ Calculates angle between resultant force vector an d lever. g ๎@๎ ๎)๎๎๎๎๎ Gets back to input routin[...]
-
Seite 235
Mathematics Programs 15โ13 Program Listing: P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ ๎ ๎ Starting point for input of coefficients. ๎๎๎๎๎ ๎)๎๎๎ ๎ Loopโcontrol value: loops from 1 to 12, one at a time. ๎๎๎๎๎ !๎ L๎ Stores control value in index variable. Checksum and len gth:[...]
-
Seite 236
15โ14 Mathematics Programs P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎ ๎ .๎ ๎๎๎๎ ๎ !๎ '๎ Calculates H' ร determinant = BG โ AH . ๎๎๎๎ ๎ ๎๎๎ ๎ ๎ ๎๎๎๎ ๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎ ๎ ๎๎๎ ๎ ๎ ๎๎๎๎ ๎ ๎๎๎ยบ ๎[...]
-
Seite 237
Mathematics Programs 15โ15 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ ๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎๎ ๎๎๎ ๎ ๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎๎ .๎ ๎๎๎๎๎ !๎ ๎๎ Calculates G' ร determinant = DH โ EG. ๎๎๎๎๎ ๎ ยถ ๎ ๎๎๎๎[...]
-
Seite 238
15โ16 Mathematics Programs P ro g r a m L in e s : (In RPN mode) Description row. ๎๎๎๎๎ %๎๎ ๎ ๎ ๎๎๎๎๎ ๎๎ Sets index valu e to point to last element in third row. Checksum and len gth: DA21 54 ๎๎๎๎๎ ๎๎๎ ๎ ๎ This routin e calculates product of column vect or and row pointed to by in dex value. ๎[...]
-
Seite 239
Mathematics Programs 15โ17 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ Calculates A ร E ร I . ๎๎๎๎๎ ๎๎๎ ๎ ๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ ๎๎๎๎๎ -๎ Calcu lates ( A ร E ร I ) + ( D ร H ร C ). [...]
-
Seite 240
15โ18 Mathematics Programs Program Instructions : 1. Key i n t h e p ro g ram ro u ti n es ; p ress ๎ when done. 2. Pr es s X A to input coe ffi c ie nts of matr i x and column v ec tor . 3. K ey in coeffic ient or vector va lue (A through L) at each prompt and pr es s g . 4. Optional: pr ess X D to com pute deter mina nt of 3 ร 3 s y stem . 5[...]
-
Seite 241
Mathematics Programs 15โ19 K e ys : ( In R P N mo d e ) Display: Descript ion: X A ๎@๎ value ๎ Starts input routine. 23 g ๎@๎ value ๎ Sets first coefficient, A , equal to 23. 8 g ๎@๎ value ๎ Sets B equal to 8. 4 g ๎@๎ value ๎ Sets C equal to 4. 15 g ๎@๎ value ๎ Sets D equal to 15. . . . . . . Continues entry for E th[...]
-
Seite 242
15โ20 Mathematics Programs g ๎@๎ .๎)๎๎๎๎ ๎ Displays next valu e. g ๎@๎ ๎)๎๎๎๎๎ Displays next valu e. g ๎@๎ ๎)๎๎ ๎๎๎ Displays next valu e. X I ๎)๎๎๎๎ ๎ Inverts inverse to produce ori g inal matrix. X A ๎@๎ ๎ ๎)๎๎๎๎๎ Begins review of inverted matrix. g ๎@๎ ๎)๎๎๎?[...]
-
Seite 243
Mathematics Programs 15โ21 b 0 = a 0 (4 a 2 โ a 3 2 ) โ a 1 2 . Let y 0 be the largest real root of th e above cubic. Th en the fourt hโorder polynomi al is reduced to two quadr atic polynomi als: x 2 + ( J + L ) x + ( K + M ) = 0 x 2 + ( J โ L ) x + ( K โ M ) = 0 where J = a 3 /2 K = y 0 /2 L = 0 2 2 y a J + โ ร (the sign of JK โ [...]
-
Seite 244
15โ2 2 Mathematics Programs Program Listing: P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ ๎ ๎ Defines the begi nning o f the poly nomial root finder routine. ๎๎๎๎๎ ๎๎๎"! ๎ ๎ Prompts for and stores the order of the polynom ial. ๎๎๎๎๎ !๎ L๎ Uses order as loop c ounter. Checks[...]
-
Seite 245
Mathematics Programs 15โ23 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎ ๎ ๎๎ ๎ ๎๎๎๎ !๎ %๎ First initial guess. ๎๎๎๎ -+. ๎ Second initial guess. ๎๎๎๎ ๎๎/ ๎๎ Specifies routine to solve. ๎๎๎๎ ๎๎ #๎ % ๎ Solves for a real root. ๎๎๎๎ ๎!๎ ๎๎ Gets synth etic di[...]
-
Seite 246
15โ24 Mathematics Programs P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎ ๎ ๎!๎๎ Checksum and len gth: B9A7 81 ๎๎๎๎๎ ๎๎๎ ๎ ๎ Starts secondโorder solution routine. ๎๎๎๎๎ ๎๎๎ ๎ ๎ Gets L . ๎๎๎๎๎ ๎๎๎ ๎ ๎ Gets M . ๎๎๎๎๎ ๎!๎ ! ๎ Calculates and displays [...]
-
Seite 247
Mathematics Programs 15โ25 P ro g r a m L in e s : (In RPN mode) Description Checksum and len gth: C7A6 51 ๎๎๎๎๎ ๎๎๎ ๎ ๎ Starts fourthโorder solution routine. ๎๎๎๎๎ ๎๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎ 4 a 2 . ๎๎๎๎๎ ๎๎๎ ๎ ๎ a 3 . ๎๎๎๎๎ ยบ ๎ ๎ a 3 2 . ๎๎๎๎๎ .๎ 4 a [...]
-
Seite 248
15โ2 6 Mathematics Programs P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎ @ ๎๎ Complex roots ? ๎๎๎๎๎ ๎!๎ ๎ ๎ Calculate four roots of remai ning f ourthโorder polynomial. ๎๎๎๎๎ ๎๎๎ ๎ ๎ If not complex roots, determine largest real root ( y 0 ) ๎๎๎๎๎ ยบ6ยธ@ ๎ ๎๎๎?[...]
-
Seite 249
Mathematics Programs 15โ2 7 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎ ๎ !๎ ๎๎ Stores 1 or JK โ a 1 /2. ๎๎๎๎ ๎ ๎๎ ๎ ๎๎๎๎ ๎ !๎ ยช ๎ ๎ Calculates sign of C . ๎๎๎๎ ๎ ๎๎๎ ๎ ๎ J . ๎๎๎๎ ๎ ยบ ๎ ๎ J 2 ๎๎๎๎ ๎ ๎๎๎. ๎ ๎ J 2 -โ a 2 . ๎๎๎๎ ?[...]
-
Seite 250
15โ28 Mathematics Programs P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎!๎ " ๎ Displays complex roots if any. ๎๎๎๎๎ !๎ %๎ Stores second real root. ๎๎๎๎๎ #๎๎$ % ๎ Displays second real root. ๎๎๎๎๎ ๎!๎๎ Returns to calling routine. Checksum and len gth: 96DA 30 "๎?[...]
-
Seite 251
Mathematics Programs 15โ2 9 Because of roun dโoff error in numerical computation s, the program may prod uce values that are not true roots of t he polynomial. The only way to conf irm the roots is to evaluate the polynomial manually to see if it is zero at the roots. For a thirdโ or higherโ order polynomial, i f SOLVE cannot fi nd a real r[...]
-
Seite 252
15โ30 Mathematics Programs A through E Coef ficients of polynomial; scratch. F Order of polynomial; sc ratch. G Scratch. H Pointer to polynomial coefficients. X The value of a real root , or the real part of com plex root i The imag inary part of a compl ex root; also used as an index variable. Example 1: Find the roots of x 5 โ x 4 โ 101 x 3[...]
-
Seite 253
Mathematics Programs 15โ31 Example 2: Find the roots of 4 x 4 โ 8 x 3 โ 13 x 2 โ 1 0 x + 22 = 0. Because th e coeffici ent of the highestโorder term must be 1, divide that coefficient into each of the other coefficie nts. K e ys : ( In R P N mo d e ) Display: Descript ion: X P ๎@๎ value ๎ Starts the polynomial root fi nder; prompts [...]
-
Seite 254
15โ3 2 Mathematics Programs Example 3: Find the roots of th e following quadratic polyn omial: x 2 + x โ 6 = 0 K e ys : ( In R P N mo d e ) Display: Descript ion: X P ๎@๎ value ๎ Starts the polynomial root fi nder; prompts for order. 2 g ๎@๎ value ๎ Stores 2 in F ; prompts for B . 1 g ๎@๎ value ๎ Stores 1 in B ; prompts for A [...]
-
Seite 255
Mathematics Programs 15โ33 y y' x x' [] m, n New coordina te syst em Ol d c oor dina te syst em [0, 0 ] x P u y v ฮธ[...]
-
Seite 256
15โ34 Mathematics Progr ams Program Listing: P ro g r a m L in e s : ( In R P N mo d e ) D es c r i pt i on ๎๎๎๎๎ ๎๎๎ ๎ ๎ This routine d efines the new coordinate sy stem. ๎๎๎๎๎ ๎๎๎"! ๎ ๎ Prompts for and sto res M , the new origin's x โcoordinate. ๎๎๎๎๎ ๎๎๎"! ๎ ๎ Prompts[...]
-
Seite 257
Mathematics Programs 15โ35 P ro g r a m L in e s : ( In R P N mo d e ) D es c r i pt i on ๎๎๎๎๎ ๎๎๎"! # ๎ Prompts for and stores V . ๎๎๎๎๎ ๎๎๎ " ๎ Pushes V up and recalls U . ๎๎๎๎๎ ๎๎๎ ! ๎ Pushes U and V up and recalls T . ๎๎๎๎๎ ๎๎ Sets radius to 1 for the computation o[...]
-
Seite 258
15โ36 Mathematics Programs 7. Pre ss X N to start the oldโtoโne w tr ansfor mati on r outin e. 8. Key i n X and pre ss g . 9. Ke y i n Y , pre ss g , and s ee the x โc oor dinate, U , in the ne w s y stem . 10 . Pr es s g and see the y โcoor dinate, V , i n the new s y st em. 11 . F or another oldโtoโnew tr ansfo rmation, pr ess g a n[...]
-
Seite 259
Mathematics Programs 15โ3 7 y y' x P 3 (6, 8) P 1 ( _ 9, 7 ) P 2 ( _ 5, _ 4) P' 4 (2 .7 , _ 3.6 ) (, ) = ( 7 , _ 4) T = 27 MN o (M , N) T K e ys : ( In R P N mo d e ) Display: Description: ๎ { ๎๎๎ } ๎ Sets Degrees mode since T is given in de grees. X D ๎@๎ value ๎ Starts the routine that defines the transformation. 7 g ?[...]
-
Seite 260
15โ38 Mathematics Progr ams g %@๎ .๎)๎๎๎๎๎ Resumes the oldโtoโnew routine for next p roblem. 5 ^g &@๎ ๎)๎๎๎๎๎ Stores โ5 in X . 4 ^g "/๎ .๎๎)๎๎๎ ๎๎ Stores โ4 in Y . g #/๎ ๎)๎๎๎๎๎ Calculates V . g %@๎ .๎)๎๎๎๎๎ Resumes the oldโtoโnew routine for next p roblem[...]
-
Seite 261
Statistics Programs 16โ1 1 6 Statistics Programs C u r ve Fi t t i n g This program can be used to fit one of four m odels of equations to your data. These models are the straight line, the logarithmic curve, the exponential cu rve and the power curve. The program acc epts two or more ( x , y ) data pairs and then calculates the correla tion coef[...]
-
Seite 262
16โ2 Statistics Programs y x y B M x =+ Straight Line Fit S y x y B e Mx = Exp onenti al C urv e Fit E y x y B M I n x =+ Logarithmic Cu rve Fit L y x y B x M = Pow e r C u r v e Fi t P To fit logarit hmic curves, values of x must be positive. To fit exponential curves, values of y must be positive. To fit power curves, both x and y must be posit[...]
-
Seite 263
Statistics Programs 16โ3 Program Listing: P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎ ๎๎๎ ๎ This rou tine sets, the status for the stra ightโline mo del. ๎๎๎๎ ๎ ๎ Enters i ndex value for later storage i n i (for indirect addressing). ๎๎๎๎ ๎๎ ๎๎ Clears flag 0, the i ndicator for ln X . ๎?[...]
-
Seite 264
16โ4 Statistics Programs P ro g r a m L in e s : (In RPN mode) Description '๎๎๎๎ ๎๎ Sets the loop counter to zero f or the first input. Checksum and len gth: 5AB9 24 $๎๎๎๎ ๎๎๎ $ ๎ Def ines the beginn ing of the input loop. $๎๎๎๎ ๎๎ Adjusts the loop counter by one to prompt f or input. $๎๎๎๎ -?[...]
-
Seite 265
Statistics Programs 16โ5 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ !๎ ๎๎ Stores b in B . ๎๎๎๎๎ #๎๎$ ๎ Displays value. ๎๎๎๎๎ P๎ Calculates coeff icient m . ๎๎๎๎๎ !๎ ๎๎ Stores m in M . ๎๎๎๎๎ #๎๎$ ๎ Displays value. Checksum and lengt h: 9CC9 36 &๎๎๎?[...]
-
Seite 266
16โ6 Statistics Programs P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ๎๎๎ % ๎ ๎๎๎๎๎ ๎๎๎ ๎๎๎๎๎ ๎๎๎ยบ ๎ ๎๎๎๎๎ ๎๎๎- ๎ Calculates y ห = M In X + B . ๎๎๎๎๎ ๎!๎๎ Returns to the calling routine. Checksum and len gth: A5BB 18 ๎๎๎๎๎ ๎๎๎ ๎ ?[...]
-
Seite 267
Statistics Programs 16โ7 P ro g r a m L in e s : (In RPN mode) Description ๎๎๎๎๎ ! ๎๎๎ ! ๎๎ ๎๎๎๎๎ ! ยธ % ๎ ๎๎๎๎๎ ! ๎๎๎ยบ ! ๎ Calculates Y = B (X M ). ๎๎๎๎๎ ! ๎!๎ ๎ Returns to the calling rou tine. Checksum and len gth: 018C 18 ๎๎๎๎๎ ๎๎๎ ๎ ๎ Th is subroutine calc[...]
-
Seite 268
16โ8 Statistics Programs 5. Repeat step s 3 and 4 for each data pair . If you disco ver that y ou h av e made an err or after you hav e pr ess ed g in step 3 (w ith the &@ valu e prom pt still visible), press g again (displa ying the %@ val ue prompt) and pr es s X U to undo (remov e ) the last data pair . If you disco v er that you made an e[...]
-
Seite 269
Statistics Programs 16โ9 Example 1: Fit a straight lin e to the data below. Make an intenti onal error when keying in the third data pair and c orrect it with the un do routine. Also, estimate y for an x value of 37. Estimate x for a y value of 101. X 40.5 38.6 37.9 36.2 35.1 34.6 Y 104.5 102 100 97.5 95.5 94 K e ys : ( In R P N mo d e ) D is p l[...]
-
Seite 270
16โ10 Statistics Programs 100 g %@๎ ๎)๎๎๎๎๎ Enters y โvalue of data pai r. 36.2 g &@๎ ๎๎๎)๎๎๎๎๎ Enters x โvalue of data pai r. 97.5 g %@๎ ๎)๎๎๎๎๎ Enters y โvalue of data pai r. 35.1 g &@๎ ๎๎)๎๎๎๎๎ Enters x โvalue of data pai r. 95.5 g %@๎ ๎)๎๎๎๎๎ Enters y [...]
-
Seite 271
Statistics Programs 16โ11 L ogarithmic Exponential Power To start: X L X E X P R 0.9965 0.9945 0.9959 M โ139.0088 51.1312 8.9730 B 65.8446 0.0177 0.6640 Y ( y ห when X =37) 98.7508 98.5870 98.6845 X ( x ห when Y =101) 38.2857 38.3628 38.3151 Normal and In v erseโNormal Distr ibut ions Normal distributi on is frequently used to model the beh[...]
-
Seite 272
16โ12 Statistics Programs Program Listing: P ro g r a m L in e s : ( In R P N mo d e ) D es c r i pt i on ๎๎๎๎ ๎๎๎ ๎ This routine initializes t he normal d istribution pro gram. ๎๎๎๎ ๎ ๎ Stores def ault value for mean. ๎๎๎๎ !๎ ๎๎ ๎๎๎๎ ๎๎๎" ! ๎ Prompts for and stores m ean, M . ๎๎?[...]
-
Seite 273
Statistics Programs 16โ13 P ro g r a m L in e s : ( In R P N mo d e ) D es c r i pt i on !๎๎๎๎ !๎ - % ๎ Adds the correction to yield a new X guess . !๎๎๎๎ ๎๎ ๎ !๎๎๎๎ ๎)๎๎๎๎ !๎๎๎๎ ยบ6ยธ@ ๎ Tests to see if the correction is s ignifica nt. !๎๎๎๎ ๎!๎ ! ๎ Goes back to start o f loop i[...]
-
Seite 274
16โ14 Statistics Programs P ro g r a m L in e s : ( In R P N mo d e ) D es c r i pt i on ๎๎๎๎๎ ๎๎๎ ยช ๎ ๎๎๎๎๎ ยบ ๎ ๎ ๎๎๎๎๎ ๎ ๎ ๎๎๎๎๎ ยช๎ ๎๎๎๎๎ -+.๎ ๎๎๎๎๎ H % ๎ ๎๎๎๎๎ ๎!๎๎ Returns to the calling routine. Checksum and len gth: 1981 42 Flags Us ed: None.[...]
-
Seite 275
Statistics Programs 16โ15 6. To c a l c u l a t e Q ( X ) giv e n X , X D. 7. Af ter the pr ompt , k e y in the v alu e of X and pres s g . T he re sult, Q ( X ), i s display ed . 8. To c a l c u l a t e Q ( X ) for a new X with the same mean an d standard dev iation , pre ss g and go to step 7 . 9. To c a l c u l a t e X giv en Q ( X ), p r e s [...]
-
Seite 276
16โ16 Statistics Programs X D %@๎ value ๎ Starts the distribution program and prompts for X . 3 g ๎/๎ ๎)๎๎๎๎๎ Enters 3 for X and starts com putation of Q ( X ). Displays the ratio of the population smarter than everyone within three standard deviations of the mean. 10000 z ๎๎)๎๎๎๎๎ Mu ltiplies by the population. [...]
-
Seite 277
Statistics Programs 16โ17 55 g @๎ ๎)๎๎๎๎๎ Stores 55 for the mean. 15.3 g ๎๎)๎๎๎๎๎ Stores 15.3 for the standard deviation. X D %@๎ value ๎ Starts the distribution program and prompts for X . 90 g ๎/๎ ๎)๎๎๎๎๎ Enters 90 for X and calculates Q ( X ). Thus, we would expect that on ly about 1 percent of t[...]
-
Seite 278
16โ18 Statistics Programs Program Listing: P ro g r a m L in e s : ( In A L G m o d e) D es c r i pt i on ๎๎๎๎๎๎๎๎๎ ๎ Start grouped standard dev iation prog ram. ๎๎๎๎ ๎๎๎;๎ Clears statistics registers (28 through 33). ๎๎๎๎๎๎๎ ๎๎๎๎๎ !๎๎๎ ๎ Clears the count N . Checksum and len gth:[...]
-
Seite 279
Statistics Programs 16โ19 P ro g r a m L in e s : ( In A L G m o d e) D es c r i pt i on ๎๎๎๎๎๎ !๎-1L2 ๎ Updates ยฆ i i f x 2 in reg ister 31. ๎๎๎๎ ๎๎๎๎๎๎๎ ๎ ๎๎๎๎ ๎๎ !๎-๎๎ ๎ Increments (or decreme nts) N . ๎๎๎๎ ๎ ๎๎๎๎๎๎ ๎ ๎๎๎๎ ๎๎๎๎๎๎๎ ๎ ๎๎?[...]
-
Seite 280
16โ20 Statistics Programs Program Instructions : 1. Key i n t h e p ro g ram ro u ti n es ; p ress ๎ when done. 2. Pr es s X S to start enter ing new data . 3. Ke y i n x i โvalue (data point) and pres s g . 4. Key i n f i โvalue (fr equenc y) and pre ss g . 5. Pre ss g after VIEW ing the n umber o f points e nter ed . 6. Repeat steps 3 thr[...]
-
Seite 281
Statistics Programs 16โ21 Group 1 2 3 4 5 6 x i 5 8 13 15 22 37 f i 17 26 37 43 73 115 K e ys : ( In A L G m o d e) D is p l a y : D e s c ri p t i o n : X S %@๎ value ๎ Prompts for the first x i . 5 g ๎@๎ value ๎ Stores 5 in X ; prompts for first f i . 17 g ๎/๎ ๎)๎๎๎๎๎ Stores 17 in F ; displays the counter. g %@๎ ๎)[...]
-
Seite 282
16โ2 2 Statistics Programs g %@๎ ๎๎)๎๎๎๎๎ Prompts for the f ourth x i . 15 g ๎@๎ ๎๎)๎๎๎๎๎ Prompts for the f ourth f i . 43 g ๎/๎ ๎)๎๎๎๎๎ Displays the c ounter. g %@๎ ๎๎)๎๎๎๎๎ Prompts for the fifth x i . 22 g ๎@๎ ๎๎)๎๎๎๎๎ Prompts for the fifth f i . 73 g ๎/๎ ?[...]
-
Seite 283
Miscellaneo us Programs and Equations 17โ1 1 7 Miscellaneous Programs and Equations Ti m e V a lu e o f M o n ey Given any four of the five values in the "TimeโValueโofโMon ey equation" (TVM), you can solve for the fifth value. This eq uation is useful in a wide va riety of financi al applications suc h as consumer and hom e loans[...]
-
Seite 284
17โ2 Miscellaneous Programs and E quations Equation Entry: Key in this equa tion: ๎ยบ๎๎๎ยบ1๎.1๎-๎ยช๎๎๎2:.๎2ยช๎ -๎ยบ1๎-๎ยช๎๎๎2:.๎-๎ ๎ K e ys : ( In R P N mo d e ) Display: Description: |H ๎๎๎ ๎๎ ! !๎๎ or current e quation ๎ Selects Equation mode. L P z 100 ๎ยบ ๎๎๎ _ ๎ Starts enter[...]
-
Seite 285
Miscellaneo us Programs and Equations 17โ3 SOLVE instru ctions: 1. If y our fi rst TV M calc ulation is to sol ve f or inter es t r ate , I, pr es s 1 I I. 2. Pr es s |H . If neces sary , pres s ๎ or ๎ to s cr oll throug h the equation list until y ou come to the T VM equation . 3. Do one of the follo w ing f iv e oper ations: a. Pr es s ๎ [...]
-
Seite 286
17โ4 Miscellaneous Programs and E quations B = 7 , 2 5 0 _ 1,5 0 0 I = 10 . 5 % p e r y e a r N = 3 6 m o n t h s F = 0 P = ? K e ys : ( In R P N mo d e ) D is p l a y : D es c r i pt i on : ๎ { ๎๎% } 2 ๎ Selects FIX 2 display format. |H ( ๎ as needed ) ๎ยบ๎๎๎ยบ1๎. 1๎-๎ยช Displays the leftmost part of the TVM equation. ๎[...]
-
Seite 287
Miscellaneo us Programs and Equations 17โ5 Part 2. What interest rate would reduce the m onthly payment by $10 ? K e ys : ( In R P N mo d e ) Display: Description: |H ๎ยบ๎๎๎ยบ1๎. 1๎-๎ยช Displa ys the leftmost hart of the TVM equation. ๎ I ๎@๎ .๎๎๎)๎๎๎ Selects I ; prompts for P . {J ๎@๎ .๎๎๎)๎๎๎ Roun[...]
-
Seite 288
17โ6 Miscellaneous Programs and E quations g ๎@๎ ๎)๎๎๎ Retains P ; prompts for I . g ๎@๎ ๎๎)๎๎๎ Retains 0.56 i n I ; prompts for N. 24 g ๎@๎ ๎8๎๎๎)๎๎๎ Stores 24 in N ; prompts f or B . g ๎๎#๎๎๎๎ ๎/๎ .๎ 8๎๎๎)๎๎๎ Retains 5750 i n B ; calculates F , the future balance. Ag ain, [...]
-
Seite 289
Miscellaneo us Programs and Equations 17โ7 LB L Y V IEW Pri m e LBL Z P + 2 x โ LBL P x P 3 D โ โ LB L X x = 0 ? ye s no Start no ye s Note: x is t he v a l u e i n t h e X - r e g i s t e r.[...]
-
Seite 290
17โ8 Miscellaneous Programs and E quations Program Listing: P ro g r a m L in e s : ( In A L G m o d e) D es c r i pt i on &๎๎๎๎ ๎๎๎ & ๎ This routine displays prime number P . &๎๎๎๎ #๎๎$ ๎ ๎ Chec ksum and len gth: AA7A 6 '๎๎๎๎ ๎๎๎ ' ๎ This routi ne adds 2 to P . '๎๎๎[...]
-
Seite 291
Miscellaneo us Programs and Equations 17โ9 P ro g r a m L in e s : ( In A L G m o d e) D es c r i pt i on %๎๎๎๎ ๎๎๎ ๎ ๎ %๎๎๎๎ ยบ > ยธ@ ๎ Tests to see whether all possible factors have been tried. %๎๎๎๎ ๎!๎ & ๎ If all fact ors have been tried, branches to th e display routine. %๎๎๎๎ ๎ ๎ C[...]
-
Seite 292
17โ10 Miscellaneous Programs and E quations K e ys : ( In A L G m o d e) D is p l a y : De s c ri p t i o n : 789 X P ๎/๎ ๎๎๎)๎๎๎๎๎ Calculates next prime number after 789. g ๎/๎ ๎๎๎)๎๎๎๎๎ Calculates next prime number after 797.[...]
-
Seite 293
Part 3 Appendixes and Referen ce[...]
-
Seite 294
[...]
-
Seite 295
Support, Batteries, and Service Aโ1 A Support, Batteries , and Servic e Calculator Support You can obtain answers to ques tions about usi ng your c alculator from our Calculator Support Departmen t. Our experience shows that m any customers have similar question s about our products, so we h ave provided the followi ng section, "Answers to C[...]
-
Seite 296
Aโ2 Support, Batter ies, and Service A: You must clear a portion of m emory before proceedin g. (See appendix B.) Q: Why does calculating the sine (or tangent) of ฯ radians di splay a very small number instead of 0 ? A: ฯ cannot be represented ex actly with the 12โdigit precisio n of the calculator. Q: Why do I get incorrect answers when I us[...]
-
Seite 297
Support, Batteries, and Service Aโ3 Once you've removed the batteries, replace them within 2 minutes to avoid losing stored information. (Have the new batteries readily at hand before you open the battery compartment.) To install batteries: 1. Have two fr esh buttonโcell batteries at hand . A v oid tou ching the battery terminals โ handl[...]
-
Seite 298
Aโ4 Support, Batter ies, and Service Warning Do not mu til ate, punc tu re, or dis pose o f bat te ries in fi re . The bat teries can b urst or e xplode , re leasi ng haz ard ous chem icals . 5. Insert a new CR20 3 2 lithium battery , making sur e that the positi ve si gn (+) is facing ou twar d . Replace the plate and push it in to its or iginal[...]
-
Seite 299
Support, Batteries, and Service Aโ5 ๎๎ If t he c alc ula tor res ponds to ke ys trok es bu t you sus pect th at it is mal functionin g: 1. Do the selfโtest des cr ibed in the next sec tion . If the calcu lator fails the s elf tes t, it r equir es s ervi ce . 2. If the c alc ulator passe s the selfโtes t , y ou may ha ve made a mistak e op[...]
-
Seite 300
Aโ6 Support, Batter ies, and Service War ra n t y HP 33s Scientif ic Calculato r; Warranty perio d: 12 months 1. HP warrants to you, the end-user customer, that HP hardware, accessories and supplies will be free from defects in materials and workm anship after the date of purchase, for th e period specified above. If HP receives notic e of such d[...]
-
Seite 301
Support, Batteries, and Service Aโ7 7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOV E, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DI RECT, SPECIAL, INCIDE NTAL, CONSEQUENTIAL (I NCLUDI NG LOST PROFIT OR DAT A), OR OTHE R DAMAG[...]
-
Seite 302
Aโ8 Support, Batter ies, and Service Norway +47-63849309 Portugal +351-229570200 Spain +34-915-64209 5 Sweden +46-851992065 Switzerland +41-1- 4395358 (German ) +41-22-827878 0 (French ) +39-02-754197 82 (Italian) Turkey +420-5- 41422523 UK +44- 207-4580161 Czech Republic +420-5-41422523 South Africa +27-11-2376200 Luxembourg +32-2-7126219 Oth er[...]
-
Seite 303
Support, Batteries, and Service Aโ9 N.Amer ica Country : Telephone numbers USA 1800- HP INVENT Canada (905) 206-4663 or 800-HP INVENT ROTC = Rest of th e country Please logon to http://www.hp.com for the latest service and support informat ion. Re g u l a to r y I n f o rm a t i o n This section contai ns informatio n that shows how the HP 33 s s[...]
-
Seite 304
Aโ10 Support, Batteries, and Service F ile name 33s-English-Manual-05 04 2 7 -Pu blication(E ditio n 3) P age : 3 8 7 Print ed Date : 2005/4/2 7 Si z e : 13.7 x 21.2 cm Japan ใใฎ่ฃ ็ฝฎใฏใๆ ๅ ฑๅฆ็่ฃ ็ฝฎ็ญ้ปๆณข ้ๅฎณ่ชไธป่ฆๅถๅ่ญฐไผ (VCCI) ใฎๅบๆบ ใซๅบใฅใ็ฌฌไบๆ ๅ ฑๆ่ก่ฃ ็ฝฎใงใใ ใใฎ่ฃ ็ฝฎใฏใ ๅฎถๅบญ็ฐๅขใง?[...]
-
Seite 305
User Memory and the Stack Bโ1 B User Memory and the St ack This appen dix covers ๎๎ T he allocation and r equir ements of us er memory , ๎๎ Ho w to re set the calc ulator w ith out affect ing memory , ๎๎ How to c lear (purge) all o f user memory and reset the s y stem d efa ults, and ๎๎ Which oper ations affect stack lift. M anagi[...]
-
Seite 306
Bโ2 User Memory and the Stack 2. If n ec essar y , scroll through th e equatio n l ist ( press ๎ or ๎ ) until you see the desired eq uation. 3. Pre ss |๎ to see the chec ksum (he x adec imal) and length (in b ytes) of the equation . F or ex ample , ๎๎/๎๎๎ ๎ ๎๎ / ๎๎ . To see the total memory requirements of specific progra[...]
-
Seite 307
User Memory and the Stack Bโ3 C l e a r i n g M e m or y The usual way to clear user memory is to press {c { ๎๎๎ }. However, there is also a more powerful clearin g procedure that resets addi tional informati on and is usefu l if the keyboa rd is not functionin g prop erly. If the calculator fails to respon d to keystrokes, and you are unab[...]
-
Seite 308
Bโ4 User Memory and the Stack Memory may inadv ertently be c leared if the c alculator is dro pped or if power i s interrupted. Th e S t a t u s of S t a c k Li f t The four stack regi sters are always present, and the stack al ways has a stackโlift status . T h a t i s t o s a y , t h e s t a c k l i f t i s a l w a y s enabled or disabled reg[...]
-
Seite 309
User Memory and the Stack Bโ5 DEG, RAD, GRAD FIX, SCI, ENG, ALL DEC, HEX, OCT, BIN CLVARS PSE SHOW RADIX . RADIX , CL ฮฃ ๎g and STOP ๎ an d ๎๎ * and b * Y { #๎๎ }** Y { ๎๎๎ }** V๎๎ V ๎ label nnnn EQN ๎ FDISP ๎ Errors ๎e and program entry ๎ Switching binary windows Digit entry ยผ Ex cept w hen used lik e CL x . ยผยผ[...]
-
Seite 310
Bโ6 User Memory and the Stack F ile name 33s-English-Manual-04112 9-Pu blication(Edition 3) P age : 38 8 Printed Date : 2004/12/8 Si z e : 13 .7 x 21.2 cm The S tatus o f the LAS T X R egister The following operations save x in the LAST X register: +, โ, ร , รท x , x 2 , 3 x , x 3 e x , 10 x LN, LOG y x , X y I/x, INTรท, Rmdr SIN, COS, TAN ASI[...]
-
Seite 311
ALG: Summary Cโ1 C ALG: Summary About AL G This appendi x summarizes some features uni que to ALG mode, i ncluding , ๎๎ T woโnumber ar ithmeti c ๎๎ Chain calculation ๎๎ Reviewi ng t he st ack ๎๎ Coor dinate con ver sions ๎๎ Oper ations w ith com ple x nu mbers ๎๎ Integr ating an eq uati on ๎๎ Ar ithmetic in bases 2 ,[...]
-
Seite 312
Cโ2 ALG: Summary Doing T woโnu mber Arithmetic in AL G This disc ussion of arithmetic using ALG replaces the following parts that are affect ed by ALG mode. One-n umber functions (such as # ) work the sa me in ALG and RPN m odes. Twoโnumber arith metic operations are aff ected by ALG mode: ๎๎ Simple ar ithmeti c ๎๎ Po w e r f u n c t [...]
-
Seite 313
ALG: Summary Cโ3 T o C a l cu l a te : Pr e s s : D is p l a y : 12 3 12 ๎ 3 ๎ ๎๎ :๎/๎ ๎8๎๎ ๎)๎๎๎ ๎๎ 64 1/3 (cube root ) 3 ๎ 64 ๎ ๎ ยบ ๎๎/๎ ๎)๎๎๎๎๎ P ercentage Calculations The Pe rcent Funct ion. Th e Q key divides a number by 100. Combin ed with ๎ or ๎ , it adds or subtracts percentages. T[...]
-
Seite 314
Cโ4 ALG: Summary Example: Suppose that the $1 5.76 item c ost $16.12 last year. What is the perc entage change from last year' s price to this year's ? Keys: Display: Description: 16.12 |T 15.76 ๎ ๎ ๎๎)๎๎ 0๎๎๎ ๎๎)๎๎ /๎ .๎ )๎ ๎๎๎๎ This year's pri ce dropped about 2.2% from last year's price.[...]
-
Seite 315
ALG: Summary Cโ5 File na me h p 3 3s_ user 's ma nual _Eng lis h_E_H DPM20PI E30. doc P a ge : 409 Printe d Date : 2005/10/17 Siz e : 13.7 x 21.2 cm P arentheses Calculations In ALG mode, you can use p arentheses up to 13 levels. Fo r example, suppose you want to calculate: 9 12 85 30 ร โ If you were to key in 30 ยฏ 85 ร , the calculator[...]
-
Seite 316
Cโ6 ALG: Summary 750 z 12 ๎q 360 ๎ or 750 z 12 q 360 ๎ In the second case, the q key acts like the ๎ key by displaying the result of 750 ร 12. Hereโs a long er chain calculation: 9 . 1 68 5 . 18 75 456 ร โ This calculatio n can be written as: 456 ๎ 75 ๎q 18.5 z 68 q 1.9 ๎ . Watch what happen s in the display as you key i t in:[...]
-
Seite 317
ALG: Summary Cโ7 You ca n press ๎ or ๎ (o r ๎ and |๎ ) t o r e vi e w the entir e con tents of the stack and recall them. Ho wev er, in normal operation in ALG mode, the stack in ALG mode di ffers from the one in RPN mode. (Because when you press ๎ , the result is not placed into X1, X2 etc.) Only after evaluating equations, prog rams, [...]
-
Seite 318
Cโ8 ALG: Summary ๎ ๎๎8๎ ๎ ยด ยธ8ยบ๎ &/๎ ๎)๎๎ ๎๎๎ Displays y . If you want to perform a coordin ate conversion as part of a chain calc ulation, you need to use parentheses to impose the required order of operati ons. Example: If r = 4.5, ฮธ = ฯ 3 2 , what are x, y ? Keys: Display: Description: ๎ { ๎๎๎ } ๎ Sets[...]
-
Seite 319
ALG: Summary Cโ9 O p e ra t i o n s w i t h C o m p l ex N u m be r s To enter a complex numb er ์ x + iy . 1. T ype the real part , x , then the func tion k e y . 2. T ype the imagin ary part, y , then pre ss { ๎ G . Fox example, to do 2 + i 4 , press 2 ๎ 4 { ๎ G . To view the res ult of com plex opera tions ์ After keying in the compl[...]
-
Seite 320
Cโ10 ALG: Summary Examples: Evaluate sin (2 ์ 3 i ) Keys: Display: Description: |๎] ๎ 2 ๎ ๎ 3 { G๎|๎` ๎ 1๎ ์ ๎L2๎ ๎๎/๎ )๎๎๎๎๎ O๎ ๎๎1๎ ์ ๎L2๎ ๎๎/๎)๎๎๎๎๎ ๎๎ ๎๎1๎ ์ ๎L2๎ ๎๎/.๎)๎๎๎ ๎๎ Result is 9.1545 โ i 4.1689 Examples: Evaluate the expression z 1[...]
-
Seite 321
ALG: Summary Cโ11 File na me h p 3 3s_ user 's ma nual _Eng lis h_E_H DPM20PI E30. doc P a ge : 409 Printe d Date : 2005/10/18 Siz e : 13.7 x 21.2 cm Examples: Evaluate (4 ๏ผ i 2/5)(3 ๏ผ i 2/3) Keys: Dis play: Desc ription: ยบ y 4 ร ร 2 ร 5 ยน c ยบ | ยบ y 3 ร ร 2 ร 3 ยน c ยบ | ร ๏ ๏ ๏ ๏ ๏จ๏ด๏ญ๏ฐ ๏ฒ๏ฏ๏ต๏ฉ๏ฉ๏ธ๏จ๏ณ?[...]
-
Seite 322
Cโ12 ALG: Summary F ile name hp 3 3s_user's m anual_ English_E_ HDP M20 PIE3 0.doc P age: 40 9 Printe d Date : 2005/10/18 Siz e : 13.7 x 21.2 cm 100 8 รท 5 8 = ? 100 ยฏ 5 ร ๏ฏ๏ฑ๏ฐ๏ฐ๏ท๏ฏ๏ต๏ฝ๏ ๏ฑ๏ด Integer part of result. 5A0 16 + 10011000 2 = ? ยน ยถ { ๏๏ ๏ } 5A0 ร ๏ ๏จ๏ต๏๏ฐ๏ซ๏ ๏ต๏๏ฐ๏ Set base 16; HEX annunc[...]
-
Seite 323
ALG: Summary Cโ13 K ey s : D i s p l a y : D es c r i pt i on : {c { ยด } ๎ Clears existing stati stical data. 4 [ 20 ๎ ๎ ๎8๎๎ Q/๎)๎๎๎๎๎ Enters the first new data pair. 6 [ 400 ๎ ๎๎๎8๎๎ Q/๎ )๎๎๎๎๎ Display shows n , the number of data pairs you entered. {๎ ๎๎ !ยบ๎ ๎๎๎)๎๎๎๎๎ Brin[...]
-
Seite 324
[...]
-
Seite 325
More ab out Solv ing Dโ1 D More about Solving This appendi x provides inform ation about the SOLVE oper ation beyond that g iven in chapter 7. H ow S O L VE Fi n d s a Ro o t SOLVE first attempts to solve th e equation directly for the unknown variable. If the attempt fails, SOLVE changes to an iterative(repetitive) procedure. The iterative opera[...]
-
Seite 326
Dโ2 More ab out Solv ing f ( x ) x a f ( x ) b x f ( x ) x c f ( x ) x d Functio n Wh ose Roots C an Be Found In most situations, the calculat ed root is an accurate estimate of the t heoretical, infin itely precise root of the equation . An "ideal" solution i s one for which f(x) = 0. However, a very small nonโzero value for f(x) is [...]
-
Seite 327
More ab out Solv ing Dโ3 I n t e r p r e t i n g Re s u l t s The SOLVE operation will produce a solution under either of the following conditions: ๎๎ If it finds an estimate for which f(x) equals zero. (See figure a, below.) ๎๎ If it finds an es timate w her e f(x) is not eq ual to z ero , but the calcu lated r oot is a 12โdigi t numbe[...]
-
Seite 328
Dโ4 More ab out Solv ing Keys: Display: Descript ion: |H ๎ Select Equation mode. 2 ^๎z๎ L X ๎ 3 ๎๎ 4 z๎ L X ๎๎ 2 ๎ 6 z๎L๎ X ๎ ๎ 8 ๎ ๎ ๎ ๎ ๎ ๎ .๎ ยบ%:๎-๎ยบ %:๎ .๎ ยบ๎ Enters the equation. |๎ ๎๎/๎๎๎๎๎ ๎๎/๎๎๎ Checksum and len gth. ๎ ๎ Cancels Equation mode. Now, solve th[...]
-
Seite 329
More ab out Solv ing Dโ5 |๎ ๎๎/๎๎๎๎๎ ๎๎/๎๎ Checksum and len gth. ๎ ๎ Cancels Equation mode. Now, solve the equation to find its positive and n egative roots: K ey s : D is p l a y : D e sc r i p t i o n: 0 I X 10 ๎๎ _ Your initial guesses for the positive root. |H %:๎ -%.๎๎ Selects Equ ation mode; displays the[...]
-
Seite 330
Dโ6 More ab out Solv ing f ( x ) x a f ( x ) x b Sp eci al Case: A Di s co nti n ui ty a nd a P ole Example: Disc ont inu ous Fu nc tion . Find the root of the equati on: IP( x ) = 1.5 Enter the equation: Keys: Display: Descript ion: |H ๎ Selects Equation mode. |"L X | `|๎ 1.5 ๎ ๎ ๎ ๎๎1%2/๎)๎๎ Enter the equation. |๎ ๎[...]
-
Seite 331
More ab out Solv ing Dโ7 ๎ X ๎๎#๎๎๎๎ %/๎ ๎ )๎๎๎๎๎ Finds a root with g uesses 0 and 5. |๎ ๎)๎๎๎๎๎๎๎ ๎๎๎๎๎ Shows root, to 11 decimal places. |๎ ๎ )๎๎๎๎๎๎๎๎๎ ๎๎๎ The previous estimate is slightly bigger. .๎)๎๎๎๎๎ f(x ) is relatively large. Note the differen[...]
-
Seite 332
Dโ8 More ab out Solv ing Now, solve to find the root. Keys: Display: Descript ion: 2.3 I X 2.7 ๎ ๎ )๎ _ ๎ Your initia l guesses for the root. |H %ยช1%:๎ .๎2 .๎๎ Selects Equation mode; displays the equation. ๎ X ๎๎๎๎๎๎!๎๎๎๎๎ No root fo und for f(x) . ๎๎8 ๎๎๎8๎๎ ๎8๎๎๎ )๎ f(x) is relative[...]
-
Seite 333
More ab out Solv ing Dโ9 f ( x ) x a f ( x ) x b f ( x ) x c Case Wher e No R oot Is Fou nd Example: A Rela tive M inimum. Calculate the root of thi s parabolic equation : x 2 โ 6 x + 13 = 0. It has a minimu m at x = 3. Enter the equation as an expression : K ey s : D is p l a y : D e sc r i p t i o n: |H ๎ Selects Equation mode. L X ๎ 2 ?[...]
-
Seite 334
Dโ10 More ab out Solv ing ๎ ๎ Cancels Equation mode. Now, solve to find the root: K ey s : D is p l a y : D e sc r i p t i o n: 0 I X 10 ๎ ๎๎ _ ๎ Your initia l guesses for the root. |H %:๎ .๎ยบ%-๎ ๎๎ Selects Equation mode; displays the equation. ๎ X ๎๎ ๎๎๎! ๎๎๎๎ Search fails with g uesses 0 and 10 b|๎ ?[...]
-
Seite 335
More ab out Solvin g Dโ11 ๎)๎๎๎๎๎ Previous estimate is t he same. |๎ ๎)๎๎๎๎๎๎๎๎๎ ๎๎๎ f (x) = 0 Watch what happens wh en you use negative values for guesses: K ey s : D is p l a y : D e sc r i p t i o n: 1 ^I X .๎)๎๎๎๎๎ Your negative guesses for the root. 2 ^|H ๎๎.๎๎#1%2๎ Selects Equ at[...]
-
Seite 336
Dโ12 More ab out Solv ing Now attempt to find a negative root by entering guesses 0 a nd โ10. Notice that the function is und efined fo r values o f x between 0 an d โ0.3 since those values produce a positive den ominator but a negati ve numerator, causin g a negative square root. Keys: Display : Descript ion: 0 I X 10 ^ ๎ .๎๎ _ ๎ |H [...]
-
Seite 337
More ab out Solv ing Dโ13 ๎๎๎๎๎ ๎ ยถ ๎ ๎๎๎๎๎ ๎!๎๎ Checksum and len gth: B956 75 You can subsequen tly delete line J0003 to save m emory. Solve for X using in itial guesses of 10 โ8 and โ10 โ8 . K e ys : ( In R P N mo d e ) Display: Description: a 8 ^I X 1 ^a 8 ^ ๎ .๎ ๎ .๎ _ ๎ Enters guesses. |W J .๎[...]
-
Seite 338
Dโ14 More ab out Solv ing U n d e r f l ow Underflow occurs when the magnitude of a number is smaller than the calculator can represent, so it substi tutes zero. This can af fect SOLVE results. For example, consider the equation 2 1 x whose root is inf inite in value. Because of underflow, SOLVE returns a very large value as a root. (The calculat[...]
-
Seite 339
More about Integration Eโ1 E More about Integration This appen dix provides in formation about i ntegration beyon d that g iven in c hapter 8. H ow t h e I n t e g ra l I s E va l u a t e d The algorithm used by the inte gration operation, ยณ ๎๎ Gยบ , calculates the inte gral of a functi on f(x) by computing a weighted average of the function[...]
-
Seite 340
Eโ2 More about Integration As explained in chapter 8, the uncertai nty of the final approxi mation i s a number derived from the display form at, whic h specifies the un certainty for the fun ction. At the end of each iteration , the algorithm compares the approximati on calculated during th at iteration with the approximations calculated d uring[...]
-
Seite 341
More about Integration Eโ3 f ( x ) x With this number of sample points, the algorithm will c alculate the same approximation f or the integral of an y of the functions shown . The actual integrals of the functi ons shown with solid blue and bl ack lines are abo ut the same, so the approximation wi ll be fairly accurate if f(x) is o ne of these fu[...]
-
Seite 342
Eโ4 More about Integration Keys: Display : Descript ion: |H ๎ Select equation mode. L X z๎ %ยบ๎%๎1 ยพ ๎ Enter the equation. ๎ L X |` ๎ ๎ %ยบ๎%๎1.%2๎ End of the equation. |๎ ๎๎/๎๎๎๎๎ ๎๎/๎๎ Checksum and len gth. ๎ ๎ Cancels Equation mode. Set the display format to SCI 3, specif y the lower and upper [...]
-
Seite 343
More about Integration Eโ5 f ( x ) x The graph i s a spike very close to the orig in. Because no sample point h appened to discover the spike, the algorithm assumed that f(x) was identically equal to zero throughout the interval of integration. Even if you increased the number of sample points by calculati ng the integral in SCI 11 or ALL format,[...]
-
Seite 344
Eโ6 More about Integration Note that the rapidity of variation in the function (or its lowโorder derivatives) must be determined with respect to the width of the interval of integration. Wi th a given number of samp le points, a fu nction f(x ) that has three fluctuations can be better characterized by its samples when these variation s are spr[...]
-
Seite 345
More about Integration Eโ7 In many cases yo u will be familiar enough with the function you want to integrate that you will know wheth er the function has any quick wi ggles relative to the interval of inte gration. If yo u're not familiar with t he function, a nd you su spect that it may cause problems, yo u can quic kly plot a f ew points [...]
-
Seite 346
Eโ8 More about Integration [ ๎)๎๎๎ ๎ .๎๎ Uncertaint y of approximation . This is the correct answer, but it took a very long ti me. To understand why, compare the graph of the function between x = 0 and x = 10 3 , which looks abou t the same as that shown in the previous example, with the g raph of the function between x = 0 and x =[...]
-
Seite 347
More about Integration Eโ9 Because the calculati on time depends on h ow soon a certain densi ty of sample points is achiev ed in the re gion where the function is interesting, the calculation of the integral of any f unction will be prolonged if the interval of integratio n includes mostly regions where the function is not interesting. Fortunate[...]
-
Seite 348
[...]
-
Seite 349
Messages Fโ1 F Messages The calculator responds to c ertain con ditions or keystroke s by displayin g a message. The ยค symbol com es on to call your attention to the message. For significa nt conditio ns, the message remains until yo u clear it. Pressing ๎ or b clears the message; pressing any other key clears the message and execu tes that ke[...]
-
Seite 350
Fโ2 Messages F ile name 33s-English-Manual-04112 9-Pu blication(Edition 3) P age : 38 8 Printed Date : 2004/12/8 Si z e : 13 .7 x 21.2 cm ๏๏๏๏ ๏๏๏๏๏๏๏๏ The calculator is calcu lating t he integra l of a n equation or program. This m ight take a while . ๏๏๏๏ ๏๏๏๏๏๏ ๏๏ A running SOLVE or โซ FN operation[...]
-
Seite 351
Messages Fโ3 ๎๎๎๎%๎ !๎๎!๎ Attempted to refer to a nonexistent program label (or line number) wit h V , V๎ , X , or { ๎๎ }. Note that the error ๎๎๎๎%๎ !๎๎! can mean ๎๎ y ou e xplic itly (fro m the k e y boar d) called a pro g ram label tha t does not e x ist; or ๎๎ the progr am t hat y ou called r efer r[...]
-
Seite 352
Fโ4 Messages ๎๎#๎๎๎๎ The calculator is solving an equation or program for its root. This might take a while. ๎๎!1๎๎๎2๎ Attempted to calculate the sq uare root of a negative number. !๎! ๎๎๎๎ ๎๎ Statisti cs error: ๎๎ Attempted to do a statistic s calculation w ith n = 0. ๎๎ Attempted to calc ulate s x s[...]
-
Seite 353
Operation Index Gโ1 G Operation Index This secti on is a quick referenc e for all functions an d operations and thei r formulas, where appropriate. Th e listing is in alphabetical order by the fu nction's n ame. This name is the one used in program lines. For example, the function named FIX n is executed as ๎ { ๎๎% } n . Nonprogrammab [...]
-
Seite 354
Gโ2 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ๎ Displays previous entry in cata log; moves to previous equation in equation list; moves program pointer to previous step. 1โ24 6โ3 12โ9 12โ18 ๎ Di splays next entry in catalog ; moves to next equation in equation list; moves program pointer to next line (du ring p[...]
-
Seite 355
Operation Index Gโ3 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ฮฃ + ๎ Accumu lates ( y , x ) into statistics registers. 11โ2 ฮฃ โ {๎ Removes ( y , x ) from statistics registers. 11โ2 ฮฃ x |๎ { ;ยบ } Returns the sum of x โvalues. 11โ10 1 ฮฃ x 2 |๎ { ;ยบ ๎ } Returns the sum of squares of x โvalues. 11โ10 1 ฮฃ xy |๎ [...]
-
Seite 356
Gโ4 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ยณ FN d variable |๎ { ยณ ๎๎ G _} variable Integrates the displayed equati on or the program selected by FN=, using lower limit of the variable of integration in th e Yโregister an d upper limit of the variable of integration in th e Xโregister. 8โ2 14โ7 ( |] Open [...]
-
Seite 357
Operation Index Gโ5 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ASINH {๎{M ๎ Hyperbolic arc sin e. Returns sinh โ1 x . 4โ6 1 ATAN {S Arc tangen t . Returns tan โ1 x . 4โ4 1 ATANH {๎{ S Hyperbolic arc tang ent . Returns tanh โ1 x . 4โ6 1 b |๎ { E } Returns the yโinterc ept of the regression line: y โ m x . 11โ10 1 {[...]
-
Seite 358
Gโ6 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ {c Displays menu to clear numbers or parts of memory; clears indicated variable or program f rom a MEM catalog; clears displayed equation. 1โ6 1โ24 {c { ๎๎๎ } Clears all stored d ata, equations, and programs. 1โ24 {c { ๎๎๎ } Clears all prog rams (calculator in[...]
-
Seite 359
Operation Index Gโ7 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ CMPLX ร {Gz Complex multiplication . Returns ( z 1x + i z 1y ) ร ( z 2x + i z 2y ). 9โ2 CMPLX รท {Gq Complex division . Returns ( z 1x + i z 1y ) รท ( z 2x + i z 2y ). 9โ2 CMPLX1/ x {G๎ Complex reciprocal . Return s 1/(z x + i z y ). 9โ2 CMPLXCOS {GR Complex cosine . [...]
-
Seite 360
Gโ8 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ COSH {๎R Hyper bolic cosine . Returns cosh x . 4โ6 1 |๎ Functions to use 40 physics constants. ๎ 4โ8 DEC {x { ๎๎๎ } Selects Decimal mode. 10โ1 DEG ๎ { ๎๎๎ } Selects Degrees angular mode. 4โ4 ๎ DEG {v Radians to degrees . Returns (360/2 ฯ ) x . 4?[...]
-
Seite 361
Operation Index Gโ9 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ๎ Separates two numbers ke yed in sequentially; completes equation entry; evaluates the displayed equation (and stores result if appropriate). 1โ17 6โ4 6โ11 ENTER ๎ Copies x into the Yโregister, lifts y into the Zโregister, lifts z into the Tโregister, and loses[...]
-
Seite 362
Gโ10 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ FS ? n |y { ๎ @ } n If flag n (n = 0 through 11) is set, executes the next program line; if flag n is cl ear, skips the nex t program lin e. 13โ11 ๎ GAL |๎ Converts liters to gallons. 4โ13 1 GRAD ๎ { ๎๎๎๎ } Sets Grads angular mode. 4โ4 GTO label {V label [...]
-
Seite 363
Operation Index Gโ11 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ( i ) L๎I๎ Indirect . Value of variable whose letter corresponds to the numeric value stored in variable i. 6โ4 13โ21 2 ๎ IN |๎ Converts centimeter s to inches. 4โ13 1 IDIV {F Produces the quotient of a divisi on operation involv ing two integers. ๎ 6โ15 2 IN[...]
-
Seite 364
Gโ12 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ ๎ KG {} Converts pounds to kilograms. 4โ13 1 ๎ L {๎ Converts gallons to liters. 4โ13 1 LAST x {๎ ๎ Returns number stored in the LAST X register. 2โ7 ๎ LB |~ ๎ Converts kilogram s to pounds. 4โ13 1 LBL label {๎ label Labels a program wi th a single lette[...]
-
Seite 365
Operation Index Gโ13 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ OCT {x { ๎๎! } Selects Octal (base 8) mode. 10โ1 |๎ Turns the calculator of f. 1โ1 Pn,r {_ Permutations of n ite ms taken r at a time. Returns n ! รท ( n โ r )!. 4โ14 2 {e Activates or cancels (toggles) Programโentry mode. 12โ5 PSE |f Pause . Halts program ex[...]
-
Seite 366
Gโ14 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ RCL variable L variable Recall. Copies variable into the Xโregister. 3โ5 RCL+ variable L๎ variable Returns x + variable. 3โ5 RCLโ variable L๎ variable . Returns x โ variable. 3โ5 RCLx variable Lz variable . Returns x ร variable. 3โ5 RCL รท variable Lq ๎ va[...]
-
Seite 367
Operation Index Gโ15 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ R ยต |๎ Roll up . Moves t to the Xโregister, z to the Tโregister, y to the Zโregister, and x to the Yโregister in RPN mode. Displays the X1~X4 menu to review the stack in ALG mode. 2โ3 Cโ6 |๎ Displays the standardโdeviation Menu. 11โ4 SCI n ๎ { ๎๎ } n[...]
-
Seite 368
Gโ16 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ pg Inserts a blank space character durin g equation entry. 13โ14 2 SQ ! Square of argumen t. 6โ15 2 SQRT # Square root of x . 6โ15 2 STO variable I variable Store. Copies x into variable. 3โ2 STO + variable I๎ variable Stores variable + x into variabl e. 3โ4 STO ?[...]
-
Seite 369
Operation Index Gโ17 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ TAN U Tangent . Returns tan x . 4โ3 1 TANH {๎U Hyperb olic tangent . Returns tanh x . 4โ6 1 VIEW variable |๎ v ariable Displays the labeled contents of variable without recalling the value to the stack. 3โ3 12โ13 X Evaluates the displayed e quation . 6โ12 XEQ lab[...]
-
Seite 370
Gโ18 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ x w R eturns weighted mean of x values: ( ฮฃ y i x i ) รทฮฃ y i . 11โ4 1 |๎ Displays the mea n (arithmetic average) me nu. 11โ4 x <> variable |Z x exchan ge . Exchanges x with a vari able. 3โ6 x <> y [ x exchange y . Moves x to the Yโregister and y to the[...]
-
Seite 371
Operation Index Gโ19 N am e K e y s an d D e s cr i pt i o n Pa g e ยผ x โ 0 ? |o { โ } If x โ 0, executes next program line; if x =0, skips the next progra m line. 13โ7 x โค 0 ? |o { โค } If x โค 0, executes next program line; if x >0, skips next progra m line. 13โ7 x <0 ? |o {<} If x <0, executes next program line; if x[...]
-
Seite 372
Gโ20 Operation Index N am e K e y s an d D e s cr i pt i o n Pa g e ยผ y x ๎ Power . Returns y raised to the x th power. 4โ2 1 ๎ Notes: 1. Fu nctio n can be u sed in eq ua tions . 2. F unction a ppears only in equati ons.[...]
-
Seite 373
Indexโ 1 F ile name 33s-English-Manual-05 05 0 2 -Publicati on(Editi on 3) P age : 3 88 P r i n t e d D a t e : 2 0 0 5 / 5 / 2 Siz e : 13.7 x 21.2 cm Index Special Characters , 6โ5 โซ FN. See integr ati on % functi ons, 4โ6 ๏ . See equationโen try curs or ~ . See backspac e k e y " . See integrati on z , 1โ14 รข , 1โ2 3 ฯ , 4?[...]
-
Seite 374
Indexโ 2 asy mptotes of functions, Dโ8 B backspace k ey canceling VIE W , 3โ3 clear ing messa ges, 1โ5, Fโ1 clear ing Xโregister , 2โ2 , 2โ6 deleting pr ogram li nes , 12โ18 equation entry , 1โ5, 6โ8 leav ing menus, 1โ5, 1โ9 operation , 1โ5 progr am entry , 12โ6 starts editin g, 6โ8 , 12โ6 , 12โ18 balance (financ[...]
-
Seite 375
Indexโ 3 progr am , 1โ2 4, 12โ20 usi n g, 1 โ24 var iable , 1โ2 4, 3โ3 chain calculations, 2โ11 changeโ percentage functions, 4โ6 changing sign of number s, 1โ14 , 1โ17 , 9โ3 checks ums equations, 6โ18 , 12โ6, 12โ21 progr ams, 12โ20 CLEAR menu, 1โ6 clear ing equations, 6โ8 g en e ral i n fo rm at i o n, 1 โ 5 m[...]
-
Seite 376
Indexโ 4 adju s ting contr ast , 1โ1 annunciators , 1โ11 function names in, 4โ17 Xโregister sho w n , 2โ2 display f ormat affects integrati on, 8โ2 , 8โ5, 8โ7 affects numbers, 1โ19 affects rounding, 4โ16 default , Bโ3 peri ods and commas in, 1โ18 , Aโ1 setting, 1โ19 , Aโ1 DISPLA Y menu, 1โ19 do if true, 13โ6 , 14[...]
-
Seite 377
Indexโ 5 functions, 6โ5, 6โ15, Gโ1 in progr ams, 12โ4, 12โ6 , 12โ21, 13โ10 integrating , 8โ2 lengths, 6โ18, 12โ6 , Bโ2 list of . See equation lis t long, 6โ7 memor y in, 12โ14 multiple r oots, 7โ8 no root , 7โ6 number s in, 6โ5 numeri c value o f , 6โ9 , 6โ10, 7โ 1, 7โ5, 12โ4 oper atio n summary , 6โ3 p[...]
-
Seite 378
Indexโ 6 frac tionalโpar t function, 4โ16 F r actionโdispla y mode affects rounding, 5โ7 affects VIEW , 12โ 13 setting, 1โ2 3, 5โ1, Aโ2 fractions accur acy indicator , 5โ2 , 5โ3 and equations, 5โ8 and progr ams, 5โ8, 12โ13, 13โ9 base 10 only , 5โ2 calculating with , 5โ1 denominators, 1โ2 2 , 5โ4, 5โ5, 13โ9 [...]
-
Seite 379
Indexโ 7 imagin ary part ( complex numbers) , 9โ1, 9โ2 indirect addr essing, 13โ20, 13โ21, 13โ2 2 INPU T alw a y s prom pts, 13โ10 enteri ng progra m data, 12โ11 in in tegratio n progr ams, 14โ8 in SOL V E pr ogr ams, 14โ2 re sponding to, 12โ13 integerโpart fun ction , 4โ16 integr at io n accur acy , 8โ2 , 8โ5, 8โ6, [...]
-
Seite 380
Indexโ 8 order o f calculation , 2โ13 realโnumber , 4โ1 stack oper ation , 2โ4, 9โ1 matri x inv ersion , 15โ12 max imum o f func tion , Dโ8 mean me nu , 11โ4 means (sta tist ics) calculating, 11โ4 normal distribution , 16โ11 memory amount availa ble, 1โ2 4 clear ing, 1โ6, 1โ2 4, Aโ1, Aโ4, Bโ1, Bโ3 clear ing equat[...]
-
Seite 381
Indexโ 9 internal r epr es entati on, 1โ19 , 10โ4 large and small , 1โ14, 1โ16 limitations, 1โ14 mantissa, 1โ15 negativ e , 1โ14, 9โ3, 10โ4 order in calculations , 1โ18 peri ods and commas in, 1โ18 , Aโ1 prec ision , 1โ19 , Dโ 13 prime , 17โ6 ra nge of , 1โ16, 10โ5 real , 4โ1, 8โ1 recalling , 3โ2 re using, [...]
-
Seite 382
Indexโ 10 checksums, 12โ21 clear ing, 12โ5 duplicate , 12โ5 enteri ng, 12โ3, 12โ5 ex ecuting, 12โ9 indirect addr essing, 13โ20, 13โ21, 13โ22 mov ing to, 12โ10, 12โ19 purpose , 12โ3 typ ing name , 1โ3 vie w ing, 12โ20 progr am lines. See progr ams pr ogr am na mes . See progr am la bels progr am pointer , 12โ5, 12โ [...]
-
Seite 383
Indexโ 11 testing, 12โ9 using integration, 14โ9 using SOL V E , 14โ 6 var iable s in, 12โ11, 14โ1, 14โ7 prom pts affect stack , 6โ 13, 12โ12 clear ing, 1โ5, 6โ13, 12โ13 equations, 6โ12 INPUT , 12โ 11, 12โ13, 14โ2 , 14โ8 progr ammed equations, 13โ10, 14โ1, 14โ8 re sponding to, 6โ12 , 12โ 13 show in g hidde[...]
-
Seite 384
Indexโ 12 F ile name 33s-English-Manual-05 05 0 2 -Publicati on(Editi on 3) P age : 38 8 P r i n t e d D a t e : 2 0 0 5 / 5 / 2 Siz e : 13.7 x 21.2 cm S OL V E , Dโ13 statistics, 11โ9 tr ig func tions , 4โ4 rou t i n e s calling, 13โ2 nesting, 13โ3, 14โ11 parts of pr ogr ams, 13โ1 RPN compar ed to equations, 12โ4 in pr ogr ams, 1[...]
-
Seite 385
Indexโ 13 effe ct of ๎ , 2โ5 equation usage , 6โ11 ex changing with v ari ables , 3โ6 ex changing X an d Y , 2โ4 fillin g w ith cons tant , 2โ6 long calculations, 2โ11 operation , 2โ1, 2โ4, 9โ1 progr am calculations, 12โ12 progr am input, 12โ11 progr am output, 12โ11 purpose , 2โ1, 2โ2 register s, 2โ1 re v ie w ing[...]
-
Seite 386
Indexโ 14 time value of mone y , 17โ 1 transf orming coor dinates, 15โ3 2 Tโregister , 2โ4 trigonometr ic functions, 4โ4 , 9โ3 trou bleshooting, Aโ4 , Aโ5 turning on and off, 1โ1 TV M, 17โ1 twos comp lement, 10โ2 , 10โ4 twoโvar ia ble statistic s, 11โ2 U uncer tainty ( integrati on), 8โ 2 , 8โ 5, 8โ6 underflow , [...]
-
Seite 387
Indexโ 15 clear ing in program s, 12โ6 display ed , 2โ2 during progr ams pau se , 12โ17 ex changing with v ari ables , 3โ6 ex changing with Y , 2โ4 not clear i ng , 2โ5 part of stack , 2โ1 testing, 13โ7 unaffected b y VIEW , 12โ14[...]