Tri-M Systems FV-25 Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 158 Seiten
- 0.69 mb
Zur Seite of
Ähnliche Gebrauchsanleitungen
-
Computer Hardware
Tri-M Systems REB-12R
6 Seiten 0.2 mb -
Power Supply
Tri-M Systems HE104
32 Seiten 0.65 mb -
Computer Hardware
Tri-M Systems MOPS/586
35 Seiten 0.21 mb -
GPS Receiver
Tri-M Systems FV-25
158 Seiten 0.69 mb -
Automobile Parts
Tri-M Systems V104
28 Seiten 0.2 mb -
Computer Hardware
Tri-M Systems REB 2000
6 Seiten 0.2 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung Tri-M Systems FV-25 an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von Tri-M Systems FV-25, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung Tri-M Systems FV-25 die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung Tri-M Systems FV-25. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung Tri-M Systems FV-25 sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts Tri-M Systems FV-25
- Den Namen des Produzenten und das Produktionsjahr des Geräts Tri-M Systems FV-25
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts Tri-M Systems FV-25
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von Tri-M Systems FV-25 zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von Tri-M Systems FV-25 und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service Tri-M Systems finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von Tri-M Systems FV-25 zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts Tri-M Systems FV-25, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von Tri-M Systems FV-25 widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
1 Tri-M Systems, Inc. Unit 100, 1407 Kebet way Port Coquitlam, BC V3C 6L3 Canada ww w.tri-m.com Phone: 604.945.9565 Fax: 604.945.9566 info @ tri-m. com FV – 25 USER’S GUIDE This docum ent features the s pecification of FV -25 and des cribes the detai ls on using the eval uation kit to evaluate the perfo rmance of FV -25 and select the desired f[...]
-
Seite 2
2 Contents Pr eface………………………………………………………… Chapter 1 Introduction……………………………………….. 1.1 Supports……………………………………………………….. Chapter 2 S tart……………………………………………….. 2.1 Pin Definitions and Reference Layout…[...]
-
Seite 3
3 4.5 Navigation Data……………………………………………………. 4.5.1 Position Format……………………………………………… 4.5.2 Datums………………………………………………………. 4.5.3 Update Rate………………………………………………….. 4.5.4 Kinematic Mode……………?[...]
-
Seite 4
4 List of Figur es Figure 2.1 FV -25 Pin definitions (T op V iew)………………………………….. Figure 2.2 A reference layout for FV -25……………………………………….. Figure 2.3 Setting of comm. port num ber and the value of baud rate………….. Figure 2.4 Setting of comm. port num ber……………………………[...]
-
Seite 5
5 List of T a bles T able 1.1 Specification of FV -25…………………………………………….. T able 2.1 Description of pin definition for FV -25…………………………… T able 4.1 Conditions for S tart-Up modes……………………………………. T able 4.2 A vailable sensitivity modes……………………………?[...]
-
Seite 6
6 Pr eface The objective of The FV -25 User ’ s Guide is to help user s to understand the properties of FV -25 thoroughly and, therefore, obtai n the maximum performance from the module easily . This document describes and provides the useful inform ation the FV -25 module, which includes the functions of pins on the module, configuration setting[...]
-
Seite 7
7 Chapter 7 A vailable NMEA and UBX 1 Messages This chapter lists the available NMEA and u-blox proprietary (UBX) messages for the module. Chapter 8 T roubleshooting This chapter provides good helps when the module isn’ t running properly . Appendix A Geodetic ID: Coordinate Datum Appendix B Acronyms In addition to the above brief description for[...]
-
Seite 8
8 Chapter 1 Introduction In this chapter , the m ain goal of FV -25 will be described and then the features of the FV -25 module will be specified in order th at a user can make correct decis ion about module selection before proceeding furthe r development. Understanding thoroughly the pro and con of FV -25 will clear the compatibility of the m od[...]
-
Seite 9
9 sensitivity for weak signals without sacrificing accuracy , AGPS function, DGPS function which is supporte d by R TCM, W AAS, and EGNO S, and flexibility for system integrations. Because of 8192 frequency search bins at the same time, it accelerates the start-up times of the module. In addition to the above excellent advantag es, FV -25 has the c[...]
-
Seite 10
10 Specification Performance Characteristics Receiver T ype L1 frequency , C/A code, 16 Channels P o s i t i o n A c c u r a c y w / o a i d 3 . 3 m C E P D G P S (W AAS, EGNOS,RTCM) 2 . 6 m AGPS Support Y es S t a r t - u p T i m e H o t s t a r t < 3 s W a r m s t a r t 3 5 s C o l d s t a r t 4 1 s R e a c q u i s i t i o n T i m e < 1 s A[...]
-
Seite 11
11 D i m e n s i o n 3 7 . 1 m m x 2 5 . 6 m m Thickness 3.9 mm W e i g h t 9 . 5 g (include an SMA jack and 5 cm RG-316) Antenna T ype External Active or Passive Antenna Input V oltage (V ANT ) 1 . 8 V ~ 8 V D C Input Power limit (Active) < -17 dBm G a i n ( A c t i v e ) u p t o 2 5 d B S u p e r v i s i o n B u i l d - i n s h o r t c i r c u[...]
-
Seite 12
12 Chapter 2 S tart 2.1 Pin Definitions and Reference Layout Figure 2.1 shows the pin definitions of FV -25. T able 2.1 describes the corresponding definitions for pins. Note tha t only either use V IN-1 (DC 5 ~ 12V) or V IN-2 (DC 3.3V) for voltage input. Also, if the Pins 1 ~ 10 are used, please leave Pins a ~ n being opened. There are two comm. p[...]
-
Seite 13
13 Pin Definitions Pin No. Tit l e I/O Note a V IN-1 I V oltage input 5~12V DC (MUST leave open if V IN-2 is used) b V ANT I Antenna bias voltage input DC 1.8~ 8.0V (connect to ground if not used) c V IN-2 I V oltage input 3.3V DC (MUST leave open if V IN-1 is used) d V BAK I Backup voltage input 1.95 ~ 3.3V DC (connect to ground if not used) e S t[...]
-
Seite 14
14 2.2 Sanav_Demo Sanav_Demo is required to run on a PC with at least 4 MB RAM and W indows 98 that has at least one available serial comm. port (from 1 to 24). 2.2.1 Port Number & Baud Rate When users implement Sanav_Demo , the first window appeared on the screen is the setting of comm. port number and the corresponding value of baud rate, as [...]
-
Seite 15
15 Figure 2.4 Setting of com m. port number . For setting the value of baud rate, pull th e scroll-down window for the “Baud rate” item and the desired window shows that the available range of ba ud rate is from 2400 bps to 1 15200 bps, as shown in Figure 2.5. Th e users select the right one that will communicate the m odule with the host PC. F[...]
-
Seite 16
16 subsequent window will be th e one shown in Figure 2.6, i.e ., the navigation data from the module are displayed in the corresponding sub-windows. If the setting values are not correct or the connecti on hasn’ t established yet, Sanav_Demo will prompt a warning sentence “Comm port couldn’ t be open, please check the device”. When a new p[...]
-
Seite 17
17 Figure 2.7 Co n stellation Map of GPS satellites. 2.2.4 Message V iew for NMEA Messages Figure 2.8 is the window for showing the desired (user -selected) output NMEA messages. There are two ways to show the “Message V iew” window . Click the item “W indows/T erminal V iew” or the shortcut button ?. The default window for “Message V iew[...]
-
Seite 18
18 accumulatively with in the sub-window until the sub-window is filled up, i.e., the “Message V iew” window contains NMEA mess ages from several epochs, as shown in Figure 2.9, and the oldest data will be “squeezed” out in the top of the sub-window while the new data will be displayed in the bottom of the sub-window . After clicking the ?[...]
-
Seite 19
19 Figure 2.10 A vailable NMEA messages. NOTE: The output NMEA messages will be discar ded or not transmitted if the values of the baud rate is not sufficient to transmit the desir ed messages. Also, the discar ded part won’ t be output in the next epoch. NOTE: The maximum update rate is 4 Hz. 2.2.6 GPS Satellite Information Figure 2.1 1 shows th[...]
-
Seite 20
20 Figure 2.11 GPS satellite information. 2.2.7 Receiver Information Figure 2.12 describes the receiver information. They are: UTC Date : day/month/year; UTC Time : hour:minute:second; Lat : latitude xxyy .yyyy xx: degree, yy .yyyy: minute, -: southern hemisphere; Lon : longitude xxxyy .yyyy xxx: degree, yy .yyyy: minute, -: western hemisphere; Alt[...]
-
Seite 21
21 Figure 2.12 Receiver Information. NOTE: Data displayed in the sub-windows (F igur es 2.7, 2.9, 2.1 1, and 2.12) depend on the user-selected output NMEA messages, i.e., if, for example, the module doesn’ t output GSV message, the associated information, such as eleva tion, azimuth, SNR, etc., will not be displayed in the corr esponding sub-wind[...]
-
Seite 22
22 Figure 2.13 Tracki ng V iew . 2.2.9 User Setting Clicking “W indows/User Setting” or the shortcut button ?, the “User Setting” window is activated, as shown in Figure 2.14. Click “ ” to move among the tags. 2.2.9.1 Position This function sets the initial latitude and long itude, as shown in Figure 2.14. For the initial values [...]
-
Seite 23
23 The output position will be updated as the position is fixed. 2.2.9.2 T ime and day This function sets the initial UTC date and time, as show n in Figure 2.15. The format for UTC date is “YYYY (year), MM (mont h), DD (day)” and the format for UTC time is “hh (hour), mm (m inute), ss (second)” . If a setting value is less than 10, the emp[...]
-
Seite 24
24 Figure 2.16 Local tim e zone. 2.2.9.4 Restart This function sets the initial s tart-up mode, such as cold-start, warm -start, and hot-start, for the module, as shown in Figure 2.17. Figure 2.17 Restart. NOTE: For implementing the hot and warm starts, the module need a backed-up battery to run RTC and support BBR, whic h is used to sa ve updated [...]
-
Seite 25
25 2.2.9.5 DGPS This function activates the di f ferential GPS functions of the module, such as R TCM and W AAS/EGNOS, or only GPS function w ithout aids, as shown in Figure 2.18. Figure 2.18 DGPS. 2.2.9.6 Interval Referred to Section 2.2.5. 2.2.9.7 Geodetic ID This function sets coordinate datum that users prefer , as shown in Figure 2.19. A list [...]
-
Seite 26
26 Chapter 3 Alternative S tart This chapter introduces an alternative ut ility , HyperT erminal (from W indows), to display the NMEA information. And, Using the utility , users can send a request to poll the desired NMEA information or implement other configurations from the module without the aid of Sanav_Demo . The following information only des[...]
-
Seite 27
27 the mode of connection. Figure 3.2 Connection setti ngs. After setting all th e necessary data, click the connection button, which is the fifth shortcut button from r ight . If the setting is correct, the HyperT erminal window will show desired output (NMEA messages), as shown in Figure 3.3, and if not, the window will show random characters or [...]
-
Seite 28
28 will ask users to input the file name and folder . 3.3 Setting Configuration or Polling Information fr om Module For setting or polling the desired inform ation, click “T ransfer/Send T ext File…” button to send a “.txt” file, which contains command sentences, to activ ate the module. The file is created by users before click the butto[...]
-
Seite 29
29 Chapter 4 Navigation 4.1 Operating Modes 4.1.1 Continuous T racking Mode (CTM) CTM is the default setting of the module. While the CTM is on, the module tracks GPS signals and estimates position continuously , i.e., satellite acquisition, reacquisition, and tracking are th e states in the CTM. This is the standard operating mode for the general [...]
-
Seite 30
30 Conditions Modes T ime Position Almanac Ephemeris Cold S tart None None None None Wa r m S t a r t Ye s Ye s Ye s N o n e H o t S t a r t Ye s Ye s Ye s Ye s T able 4.1 Conditions for S tart-Up modes. For the cold-start mode, the module assigns all the available SVs to 16 channels in a defaulted order . As a sate llite is acquired, GPS time, ass[...]
-
Seite 31
31 will improve on TTFF depends on the accu racy of position and tim e from a near base station (service center) as well as hardware synchronization. The AGPS function of the module is activat ed by sending u-blox binary protocol UBX-AID-REQ. If there is no data availabl e from a near base station, the module is back to its normal start-up modes. 4[...]
-
Seite 32
32 dB is used, the “High Sensitivity” mode is not r ecommended. 4.5 Navigation Data 4.5.1 Position Format The navigation data can be output in the format of local geodetic frame (latitude, longitude, and altitude), ECEF (Earth-Cen tered Earth-Fixed) frame, or Universal T ransverse Mercator (UTM) frame. T o poll the navigation information from t[...]
-
Seite 33
33 initial/assumed value of the altitude is 500 m. If the 2D position fix occurs after the 3D position fix (number of observable satellites drops from at least 4 to 3), the value of the altitude will keep the last k nown va lue of the altitude from the previous 3D position fix. 4.6.2 Dead Reckoning As the module loses the tracks for all obser vable[...]
-
Seite 34
34 R TCM protocol, please refer to the web site http://www .rtcm.or g/ . The DGPS parameters can be changed in the UBX-CFG-NA V m essage, like DGPS T imetag Rounding. Do not change them under no specific reasons becau se the default values are based on real tests with DGPS function. NOTE: The corr ection data fr om the RTCM messages can be monitor [...]
-
Seite 35
35 Chapter 5 Evaluation Kit The evaluation kit is an optional accessory while purchasing the m odule. It will provide an easy way to estimate the perfor mance of our module. The users can also follow the reference circuit design in Chapter 2 to test the performance of the module. In this chapter , all the information about th e evaluation kit, whic[...]
-
Seite 36
36 re-start up the GPS module in the either Continuous T racking Mode or FixNow mode. Figure 5.2 Front panel of the evaluati on kit. Figure 5.3 shows the back panel of the evaluati on kit. It includes (f rom left to right) the Antenna Input, Comm. Port 1, 1PPS Out put, and Power Input. The Antenna Input is a SMA female connecter which is fo r 3.0 V[...]
-
Seite 37
37 Both Comm. ports are the bi-directional ports, i.e., the ports also accep ts user software commands. For receiving R TCM message, either port can be used to accept the data through software command.[...]
-
Seite 38
38 Chapter 6 Antennas T o get the maximum performance from the module, in addition to the own properties of the module, one of the important factors is how to select fitted antennas for the module because the quality of the received signals is determined as soon as the signals enter the RF section and can not be impr oved much by the subsequent fil[...]
-
Seite 39
39 For using passive antennas, the pin V ANT (DC bias voltage) on the module is connected to ground, and the antenna is direct ly connected to the GPS signal input pin ANT . Sometimes, a passive matching connecti on is required to match the elec trical circuit to 50 Ohms impedance. 6.2 Active Antennas For FV -25, the active antenna is integrated wi[...]
-
Seite 40
40 6.3 Active Antenna Supervisor - Short Circuit Pr otection This is a built-in function that is mon itored by the BaseBand processor . If an abnormal current occurs and is detected, the voltage supply at pin V ANT (from the external or internal pow er supply) will be turned of f by the BaseBand processor . The way to reset the operation of the mod[...]
-
Seite 41
41 Chapter 7 A vailable NMEA and UBX Messages 7.1 NMEA Protocol The NMEA protocol expresses the data in th e format of ASCII. This is a standard format for GPS applications. The modul e (FV - 25) outputs two types of NMEA messages. One is the standard NMEA message s, that are widely accepted by plotters and GPS related devices, and the other is u-b[...]
-
Seite 42
42 the “PDOP Accuracy Mask”.[...]
-
Seite 43
43 GGA – GPS Fix Data Position fix related data, such as position, time, number of satellites in use, etc.. $GPGGA,gga1,gga2,gga3,gga4,gga5,gga6,gga7,gga8,gga9,gga10,gga1 1,gga12,gga 13,gga14*hh<CR><LF> Parameters Descriptions Notes gga1 UTC time as position is fixed hhmmss.ss: hh – hour; mm – minute; ss.ss – second gga2 Latitud[...]
-
Seite 44
44 GLL – Geographic Position – Latitude/Longitude Navigation data and status. $GPGLL,gll1,gll2,gll3,gll4,gll5,gll6,gll7*hh<CR><LF> Parameters Descriptions Notes gll1 Latitude ddmm.mmmmm: dd – degree; mm.mmmmm – mi nut e ( 0 o ~ 90 o ) gll2 Latitude sector N – North; S – South gll3 Longitude dddmm.mmmmm: ddd – degree; mm.mm[...]
-
Seite 45
45 GRS – GNSS Range Residual This message is used to monitor and support RAIM. $GPGRS,grs1,grs2,(grs3*12)*hh<CR><LF> Parameters Descriptions Notes grs1 UTC time from the GGA hhmmss.ss: hh – hour; mm – minute; ss.ss – second grs2 Mode to indicate the way to calc ulate the range residuals. 0 – calculate the range residuals while[...]
-
Seite 46
46 GSA – GNSS DOP and Active Satellites Receiver operating mode, the valu es of DOPs , and PRN numbers for satellites used in the GGA position solution. $GPGSA,gsa1,gsa2,(gsa3*12),gsa4,gsa5,gsa6*hh<CR><LF> Parameters Descriptions Notes gsa1 gsa2 Mode for position fix 1 – fix not available; 2 – 2D; 3 – 3D; gsa3*12 PRN numbers for[...]
-
Seite 47
47 GST – GNSS Pseudorange Error S tatistics This message is used to monitor and support RAIM. $GPGST ,gst1,gst2,gst3,gst4,gst 5,gst6,gst7,gst8*hh<CR><LF> Parameters Descriptions Notes gst1 UTC time from the GGA hhmmss.ss: hh – hour; mm – minute; ss.ss – second gst2 RMS value of the standard deviation of the range gst3 S tandard [...]
-
Seite 48
48 GSV – GNSS Satellites in V i ew This message indicates the observable satel lites’ information, such as PRN num bers, elevation, azimuth, SNR, and number of satellites in view . $GPGSV ,gsv1,gsv2,gsv3,((gsv4,gsv5,gsv6,gsv7)*n)*hh<CR><LF> Parameters Descriptions Notes gsv1 T otal number of m essages 1 ~ 9 gsv2 Message number 1 ~ 9[...]
-
Seite 49
49 RMC – Recommended Minimum Specific GNSS Data This message transmits the neces sary navigation data, such as time, position, speed, course, and so on. $GPRMC,rmc1,rmc2,rmc3,rmc4,rmc5,r mc6,rmc7,rmc8,rmc9,rmc10,rmc1 1,rmc 12*hh<CR><LF> Parameters Descriptions Notes rmc1 UTC tim e as position is fixed hhmmss.ss: hh – hour; mm – mi[...]
-
Seite 50
50 TXT – T ext T ransmission The message is used to transm it short text messages. T r ansmitting a longer m essage needs multi-TXT messages. $GPTXT ,txt1,txt2,txt3,txt4*hh<CR><LF> Parameters Descriptions Notes txt1 T otal number of messages 01 ~ 99 txt2 Message number 01 ~ 99 txt3 T ext identifier 00 – error 01 – warning 02 – n[...]
-
Seite 51
51 VTG – Course Over Gr ound and Gr ound Speed This message transmits the speed and course relative to ground. $GPVTG ,vtg1,vtg2,vtg3,vtg4,vtg5,vtg6,vtg7,vtg8,vtg9*hh<CR><LF> Parameters Descriptions Notes vtg1 Course over ground (degrees) Referenced to true north (000.00 o ~ 359.99 o ) vtg2 Indicator of course reference T – true nor[...]
-
Seite 52
52 ZDA – Time & Date This message transmits UTC tim e and date, and local time zone. $GPZDA,zd a1,z da2,zda3,zda4,zda5,z da6*hh<CR><LF> Parameters Descriptions Notes zda1 UTC time hhmmss.ss: hh – hour; mm – minute; ss.ss – second zda2 UTC day 01 ~ 31 zda3 UTC month 01 ~ 12 zda4 UTC year xxxx (4 digits) zda5 Local zone hours [...]
-
Seite 53
53 7.1.2 Pr oprietary NMEA Messages The non-standard NMEA messages is proposed by u-blox. The proprietary (non-standard) NMEA messages are grouped into two categories: Proprietary NMEA (PUBX) PUBX,00 – Latitude/Longitude Position Data PUBX,01 – UTM Position Data PUBX,03 – Satellite S tatus PUBX,04 – T ime of Day and Clock Information PUBX,4[...]
-
Seite 54
54 PUBX, 00 – Latitude/Longitude Position Data Output message. This message transmits na vigation data defined in the local geodetic frame. $PUBX,00,p00x1,p00x2,p00x3,p00x4,p00x5,p00x6,p00x7,p00x8,p00x9,p00x10,p0 0x1 1,p00x12,p00x13,p00x14,p00x15,p00x16,p00x17,p00x18,p00x19*hh<CR><LF > Parameters Descriptions Notes p00x1 UTC time hhmm[...]
-
Seite 55
55 the position calculation p00x18 Number of GLONASS satellites used in the position calculation Always 0 p00x19 Dead reckoning used 0 – No; 1 – Y es hh Checksum hex number (2 – character) <CR><LF> End of message[...]
-
Seite 56
56 PUBX, 01 – UTM Position Data Output message. This message transm its na vigation data defined in the Universal T ransverse Mercator (UTM) frame. $PUBX,01,p01x1,p01x2,p01x3,p01x4,p01x5,p01x6,p01x7,p01x8,p01x9,p01x10,p0 1x1 1,p01x12,p01x13,p01x14,p01x15,p01x16,p01x17,p01x18,p01x19*hh<CR><LF > Parameters Descriptions Notes p01x1 UTC t[...]
-
Seite 57
57 used in the position calculation p01x19 Dead reckoning used 0 – No; 1 – Y es hh Checksum hex number (2 – character) <CR><LF> End of message[...]
-
Seite 58
58 PUBX,03 – Satellite S tatus Output message. $PUBX,03,p03x1,((p03x2,p03x3,p03x4,p03x5,p03x6,p03x7)*n)*hh<CR><LF> Parameters Descriptions Notes p03x1 Number of GPS satellites tracked p03x2 PRN number 01 ~ 32 p03x3 Satellite status - – not used U – used e – available for navigation, but no ephemeris p03x4 Azimuth (degrees) 000 ~[...]
-
Seite 59
59 PUBX,04 – T ime of Day and Clock Information Output message. This message transmits UTC time, week num ber , and clock of fset. $PUBX,04,p04x1,p04x2,p04x3,p04x4,p04x5,p04x6,p04x7,p04x8*hh<CR><LF> Parameters Descriptions Notes p04x1 UTC time hhmmss.ss: hh – hour; mm – minute; ss.ss – second p04x2 UTC date ddmmyy: dd – day; m[...]
-
Seite 60
60 GPQ – Poll Message Input message. Poll a standard NMEA message. $xxGPQ,gpq1*hh<CR><LF> Parameters Descriptions Notes $xxGPQ NMEA message header xx: talker device identifier gpq1 NMEA message ids String format: GGA, GLL, GRS, GSA, GST , GSV , RMC, TXT , VTG , and ZDA hh Checksum hex number (2 – character) <CR><LF> End [...]
-
Seite 61
61 PUBX – Poll a PUBX Message Input message. Poll the proprietary PUBX messages. $PUBX,p1*hh<CR><LF> Parameters Descriptions Notes p1 Proprietary message ids xx: 00, 01, 03, and 04 hh Checksum hex number (2 – character) <CR><LF> End of message[...]
-
Seite 62
62 PUBX,40 – Set NMEA Message Output Rate Input message. $PUBX,40,p40x1,p40x2,p40x3,p40x4,p40x5*hh<CR><LF> Parameters Descriptions Notes p40x1 NMEA message ids String format: GGA, GLL, GRS, GSA, GST , GSV , RMC, TXT , VTG , and ZDA p40x2 Number of cycles USAR T 0 output rate 0 – disabled 1 - enabled p40x3 Number of cycles USAR T 1 o[...]
-
Seite 63
63 PUBX,41 – Set Protocols and Baudrate Input message. $PUBX,41,p41x1,p41x2,p41x3,p41x4,p41x5*hh<CR><LF> Parameters Descriptions Notes p41x1 USAR T id 0, 1, 0r 2 p41x1 Input protocol mask 0 – UBX 1 – NMEA 2 – R TCM 12 – 15: USER0 ~ USER3 p41x1 Output protocol mask 0 – UBX 1 – NMEA 2 – RA W 12 – 15: USER0 ~ USER3 p41x1 [...]
-
Seite 64
64 7.2 UBX Binary Protocol T o obtain the maximum performance from GPS chips, which mainly consists of FV -25, u-blox proposed a proprietary binary pr otocol. The binary protocol can set and poll all the available actions and messa ges from the module. Using asynchronous RS232 ports, the module communicates with a host platform in terms of the alte[...]
-
Seite 65
65 For the calculation of the checksum, u- blox utilizes the low-overhead checksum algorithm, which is the TCP standard (R FC 1 145). The calculation of the checksum covers the range from the CLASS ID byte (inc luded) to DA T A bytes (included). It can be described as CK_A=0; CK_B=0; for(i = 0;i < N;i ++) { CK_A += buffer[i]; CK_B += CK_A; } whe[...]
-
Seite 66
66 R8 IEEE754 Double Precision 8 -1*2 1023 ~ 2 1023 ~V alue*2 -53 CH ASCII / ISO 8859.1 Encoding 1 T able 7.1 The types of dat a. 7.2.2 Classification of UBX Messages The u-blox proprietary message s are classified into 9 gr oups. Based on a specific topic, each group contains the associated information. They are summarized in T able 7.2. Class ID [...]
-
Seite 67
67 7.2.4 UBX Messages UBX Class ACK This class is used for responding a CFG message. ACK – ACK (0x05 0x01) Message acknowledged. Header ID Data Length Data Checksum 0xB5 0x62 0x05 0x01 2 See bel ow CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 Class ID for the desired acknowledged message 1 U1 Message ID for the desired acknowledged [...]
-
Seite 68
68 ACK – NAK (0x05 0x00) Message not-acknowledged. Header ID Data Length Data Checksum 0xB5 0x62 0x05 0x00 2 See bel ow CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 Class ID for the desired not-acknowledged me ssage 1 U1 Message ID for the desired not-acknowledged me ssage[...]
-
Seite 69
69 UBX Class AID This class is used to support AGPS function or send aiding data, su ch as time, position, almanac, and ephemeris, to the GPS receiver . AID – REQ (0x0B 0x00) It’ s a virtual request to poll all GPS ai ding data (AID-DA T A). The character of AID-REQ is determined by CFG-MSG . If AI D-REQ is set as the output message and the int[...]
-
Seite 70
70 AID – DA T A (0x0B 0x10) It’ s a request to poll all the GPS initial aiding data. This message will activate th e sending of AID-INI, AID-HUI , AID-EPH, and AID-ALM as it is received by the module. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x10 0 None C K_A CK_B[...]
-
Seite 71
71 AID – INI (0x0B 0x01) It’ s a poll request when “data length” is equal to 0. Poll GPS initial aiding data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x01 0 None C K_A CK_B AID – INI (0x0B 0x01) This is an I/O message. It contains the in formation of position and tim e. As an output message, the value of the clock drift is alwa[...]
-
Seite 72
72 AID – HUI (0x0B 0x02) It’ s a poll request when “data length” is equal to 0. Poll GPS health, UTC, and Ionosphere data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x02 0 None C K_A CK_B AID – HUI (0x0B 0x02) It’ s an I/O message. It transmits GPS health, UTC, and Ionosphere (Klobuchar parameters) data. Header ID Data Length D[...]
-
Seite 73
73 48 R4 Alpha3 Klobuchar parameters 52 R4 Beta0 Klobuchar parameters 56 R4 Beta1 Klobuchar parameters 60 R4 Beta2 Klobuchar parameters 64 R4 Beta3 Klobuchar parameters 68 U4 Flag3 0x1 – valid health bit mask fi el ds 0x2 – val id UCT parameter fields 0x4 – valid Klob uchar parameter fields[...]
-
Seite 74
74 AID – ALM (0x0B 0x30) It’ s a poll request when “data length” is equal to 0. Poll all available aiding alm anac data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x30 0 None C K_A CK_B AID – ALM (0x0B 0x30) It’ s also a poll request. Poll a specific aiding almanac data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x30 1[...]
-
Seite 75
75 28 U4 Almanac – WORD5 32 U4 Almanac – WORD6 36 U4 Almanac – WORD7 NOTE: 1. WORD0 ~ WORD7 contain the dat a following the Hand-Over W or d (HOW) in the navigation message. The data ar e fr om the sub-frame 4 of Pages 1 ~ 24 and the sub-frame 5 of Pages 2 ~ 10. Mor e information about almanac data structur e is r eferr ed to ICD-GPS-200. 2. [...]
-
Seite 76
76 AID – EPH (0x0B 0x31) It’ s a poll request when “data length” is eq ual to 0. Poll all available aiding ephemeris data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x31 0 None C K_A CK_B AID – EPH (0x0B 0x31) It’ s also a poll request. Poll a specific aiding ephemeris data. Header ID Data Length Data Checksum 0xB5 0x62 0x0B 0x[...]
-
Seite 77
77 32+n*96 U4 Sub-frame 1 – WORD6 36+n*96 U4 Sub-frame 1 – WORD7 40+n*96 U4 Sub-frame 2 – WORD0 44+n*96 U4 Sub-frame 2 – WORD1 48+n*96 U4 Sub-frame 2 – WORD2 52+n*96 U4 Sub-frame 2 – WORD3 56+n*96 U4 Sub-frame 2 – WORD4 60+n*96 U4 Sub-frame 2 – WORD5 64+n*96 U4 Sub-frame 2 – WORD6 68+n*96 U4 Sub-frame 2 – WORD7 72+n*96 U4 Sub-fr[...]
-
Seite 78
78 UBX Class CFG This class is used to configure the GPS module and output the current configuration of the GPS module. The modul e will respond the ACK-ACK me ssage if the request is proceeded correctly and ACK-NAK message if the request is failed. CFG – PR T (0x06 0x00) It’ s a poll request. Poll the current configuration for a specific comm.[...]
-
Seite 79
79 10 – 2 stop bit ; 1 1 – reserved Bit[16] 0 – LSB first bit order 1 – MSB first bi t order Bit[19] 0 – 16x oversampling 1 – 8x oversampling 8+N*20 U4 Baud rate (bps) 12+N*20 U2 Input protocol for a sin gle port. Multi- p rotocols ca n be selected for a single port. Bit mask 0x0001 – UBX protocol 0x0002 – NMEA protocol 0x0004 – R[...]
-
Seite 80
80 CFG – MSG (0x06 0x01) It’ s a poll request. Poll a message configuration. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x01 2 See below C K_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 Class ID 1 U1 Message ID CFG – MSG (0x06 0x01) It’ s an I/O message. As an input message, th e message rate confi gurations for several t[...]
-
Seite 81
81 Data Offset bytes Format Descriptions Notes 0 U1 Class ID 1 U1 Message ID 2 U1 Message rate on t he current target[...]
-
Seite 82
82 CFG – NMEA (0x06 0x17) It’ s a poll request. Poll the NMEA protocol configuration. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x17 0 None CK_A CK_B CFG – NMEA (0x06 0x17) It’ s an input message. Set the desired NMEA protocol. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x17 4 See below CK_A CK_B Data Offset bytes Format De[...]
-
Seite 83
83 CFG – RA TE (0x06 0x08) It’ s a poll request. Poll the current navi gation/measurement rate setting. The m odule will respond the same message defined below (I/O m essage). Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x08 0 None CK_A CK_B CFG – RA TE (0x06 0x08) It’ s an I/O message. It polls or sets the navigation/measurement rat[...]
-
Seite 84
84 CFG – CFG (0x06 0x09) It’ s a command message. The me ssage will clear , save, an d load configurations. The command consists of the three m asks (clear , save, and load) in each individual bit. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x09 12 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 Clear configurations[...]
-
Seite 85
85 UBX-CFG-ANT) 11 R e s er v e d 12 ~ 15 Reserved for user applications 16 ~ 31 Reserved[...]
-
Seite 86
86 CFG – TP (0x06 0x07) It’ s a poll request. Poll time pulse inform ation. The module will respond the same message defined below (I/O message). Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x07 0 None CK_A CK_B CFG – TP (0x06 0x07) It’ s an I/O message. Poll and set time pulse information. Header ID Data Length Data Checksum 0xB5 0x[...]
-
Seite 87
87 CFG – NA V (0x06 0x03) It’ s a poll request. Poll e ngine settings for navigati on. The module will respond the same message defined below (I/O m essage). Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x03 0 None CK_A CK_B CFG – NA V (0x06 0x03) It’ s an I/O message. Poll and set engine settings for navigation. Header ID Data Length[...]
-
Seite 88
88 used in the navigation solut ion 6 U1 DGPS tim etag rounding 1 – enable 0 – disable 7 U1 T imeout f or diffe rential correction data (s) 8 U1 T imeout for pse udorange correction data (s) 9 U1 T imeout for carrier phase correction data (s) 10 U2 Carrier Lock T ime (CL T): conditional lower limit (ms) 12 U2 CL T : absolute lower limit (m s) 1[...]
-
Seite 89
89 CFG – DA T (0x06 0x06) It’ s a poll request. Poll datum setting. The module will respond the same message defined below (I/O message). Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x06 0 None CK_A CK_B CFG – DA T (0x06 0x06) It’ s an input message. Set the standard datum. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x06 2 Se[...]
-
Seite 90
90 seconds) 40 R4 Scale change (ppm) 0.0 ~ 50.0 CFG – DA T (0x06 0x06) It’ s an output message. Poll the current datu m. If the datum number is –1, the module is using the user-defin ed datum and only the value for se mi-m ajor axis is valid and the rest of them are not valid. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x06 52 See bel[...]
-
Seite 91
91 CFG – INF (0x06 0x02) It’ s a poll request. It’ s used to identify the output protocol. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x02 1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 Protocol ID 0 – UBX protocol 1 – NMEA protocol 2 – R TCM prot ocol (used for input only) 3 – RA W protocol 4 ~ 1 1 –[...]
-
Seite 92
92 13 – User1-defined protocol 14 – User2-defined protocol 15 – User3-defined protocol 16 ~ 255 – reserved 1+N*8 U1 Reserved 2+N*8 U2 Reserved 4+N*8 U1 Informat ion message ena bled (INF class) at I/O target 0 (USAR T 0) Bit mask. Referred to INF class, such as INF-ERROR and INF-W ARNING 5+N*8 U1 Informat ion message ena bled (INF class) at[...]
-
Seite 93
93 CFG – RST (0x06 0x04) It’ s an input message. It’ s used to reset receiver or clear backup data structure. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x04 4 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U2 Clear backup data in BBR 0x0001 – ephemeris 0x0002 – almanac 0x0004 – health 0x0008 – Klobuchar 0x0[...]
-
Seite 94
94 CFG – RXM (0x06 0x1 1) It’ s a poll request. It’ s used to poll RXM configura tion. The m odule responds the same message defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x1 1 0 None CK_A CK_B CFG – RXM (0x06 0x1 1) It’ s an I/O message. It’ s used to set/get RXM configuration. Header ID Data Length Data Checksum 0[...]
-
Seite 95
95 CFG – ANT (0x06 0x13) It’ s a poll request. It’ s used to poll ante nna control settings. The module responds the same message defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x13 0 None CK_A CK_B CFG – ANT (0x06 0x13) It’ s an I/O message. It’ s used to set/get antenna control settings. Header ID Data Length Data [...]
-
Seite 96
96 CFG – FXN (0x06 0x0E) It’ s a poll request. It’ s used to poll power saving (FixNow) mode configuration. The module responds the same m essage defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x0E 0 None CK_A CK_B CFG – FXN (0x06 0x0E) It’ s a command message. It’ s used to configure the FixNow mode. It is enabled b[...]
-
Seite 97
97 CFG – SBAS (0x06 0x16) It’ s a command message. It’ s used to configure SBAS systems, su ch as W AAS, EGNOS, and MSAS. More information about SB AS services is referred to document R TCA/DO-229C (www .rtca.org). Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x16 8 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 SB[...]
-
Seite 98
98 CFG – TM (0x06 0x10) It’ s a poll request. It’ s used to poll time m ark configuration. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x10 0 None CK_A CK_B CFG – TM (0x06 0x10) It’ s an I/O message. It’ s used to set/get time mark configuration. Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x10 12 See below CK_A CK_B Data [...]
-
Seite 99
99 CFG – EKF (0x06 0x12) It’ s a poll request. It’ s used to poll E KF configuration. The module responds the same message defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x06 0x12 0 None CK_A CK_B CFG – EKF (0x06 0x12) It’ s an I/O message. It’ s used to set/get EKF configuration. Header ID Data Length Data Checksum 0xB5 [...]
-
Seite 100
100 2 U1 Reserved 3 U1 Inverse_flags Bit 0 – invert m eaning of direction pi n; 0: High=Forw ards; 1: High=Backwards Bit 1 – invert meaning of gyro rotation se nse; 0: clockwis e p ositive; 1: counterclockwise positive 4 U4 Reserved Always 0 8 U2 Nomi nal pulses per kilome ter 1100 ~ 45000 10 U2 N ominal gyro zero point output (mV) 2000 ~ 3000 [...]
-
Seite 101
101 UBX Class INF Basically , the INF class is an output class. It outputs strings with a printf-style call. INF – ERROR (0x04 0x00) It outputs an ASCII string to indicate error message. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x00 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N[...]
-
Seite 102
102 INF – W ARNING (0x04 0x01) It outputs an ASCII string to indicate warning message. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x01 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N times (variable length). 0+N*1 U1 ASCII character[...]
-
Seite 103
103 INF – NOTICE (0x04 0x02) It outputs an ASCII string to transmit informational contents. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x02 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N times (variable length). 0+N*1 U1 ASCII character[...]
-
Seite 104
104 INF – TEST (0x04 0x03) It outputs an ASCII string to indicate test message. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x03 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N times (variable length). 0+N*1 U1 ASCII character[...]
-
Seite 105
105 INF – DEBUG (0x04 0x04) It outputs an ASCII string to indicate debug message. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x04 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N times (variable length). 0+N*1 U1 ASCII character[...]
-
Seite 106
106 INF – USER (0x04 0x07) It outputs an ASCII string to indicate user output message. Header ID Data Length Data Checksum 0xB5 0x62 0x04 0x07 N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated N times (variable length). 0+N*1 U1 ASCII character[...]
-
Seite 107
107 UBX Class MON This message is used to transmit GPS receiv er status, such as CPU statu s, I/O status, etc.. MON – SCHD (0x0A 0x01) It periodically polls the status of system scheduler . Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x01 24 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 Status: indi cating which ta s[...]
-
Seite 108
108 MON – IO (0x0A 0x02) It periodically polls the I/O status. Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x02 80 See below CK_A CK_B Data Offset bytes Format Descriptions Notes The following data will be repeated fo ur times (N = 4). 0+N*20 U4 Number of bytes which are received (bytes) 4+N*20 U4 Number of bytes which are se nt (bytes) 8+[...]
-
Seite 109
109 MON – MAGPP (0x0A 0x06) It periodically polls message parse and process status. Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x06 144 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U2[16] Number of successful parsed message for each protocol on Ta r g e t 0 32 U2[16] Number of successful parsed message for each protoc[...]
-
Seite 110
11 0 MON – RXBUF (0x0A 0x07) It periodically polls the status of receiver buf fer . Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x07 16 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U2[4] Number of pending byt es in receiver buffer on each target (bytes) 8 U1[4] Maximum usage receiver buffer for the last system-monitori[...]
-
Seite 111
111 MON – TXBUF (0x0A 0x08) It periodically polls the status of transmitter buf fer . Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x08 20 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U2[4] Number of pending byt es in receiver buffer on each target (bytes) 8 U1[4] Maximum usage receiver buffer for the last system-monito[...]
-
Seite 112
11 2 MON – VER (0x0A 0x04) It is used to poll the hardware/software version. Header ID Data Length Data Checksum 0xB5 0x62 0x0A 0x04 40+N*30 See bel ow CK_A CK_B Data Offset bytes Format Descriptions Notes 0 CH[30] Software version 30 CH[10] Hardware version The following data will be repeated N times. 40+N*30 CH[30] Extension package version[...]
-
Seite 113
11 3 UBX Class NA V The messages in this class transm it navi gation data, status flags, and accuracy information. NA V – POSECEF (0x01 0x01) It periodically polls the receiver ’ s position in the ECEF frame. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x01 20 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time [...]
-
Seite 114
11 4 NA V – POSLLH (0x01 0x02) It periodically polls the receiver ’ s position in the local geodetic frame. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x02 28 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Longitude (degrees) In the local geodetic fram e Scaling: 1E-07 8 I4 Latitude (deg[...]
-
Seite 115
11 5 NA V – POSUTM (0x01 0x08) It periodically polls the receiver ’ s position in the UTM frame. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x08 18 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Easting component (cm ) In the UTM frame 8 I4 Northing component (cm ) In the UTM frame 12 I4[...]
-
Seite 116
11 6 NA V – DOP (0x01 0x04) It periodically polls the values of DOPs. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x04 18 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 U2 GDOP Geometric DOP 6 U2 PDOP Positional DOP 8 U2 TDOP Tim e DOP 10 U2 VDOP V ertical DOP 12 U2 HDOP Horizontal DOP 14 U2 N[...]
-
Seite 117
11 7 NA V – ST A TUS (0x01 0x03) It periodically polls navigation status. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x03 16 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 U1 Navigati on modes 0x00 – no fix 0x01 – dead reckoning 0x02 – 2D fix 0x03 – 3D fix 0x04 – GPS + dead reckonin[...]
-
Seite 118
11 8 NA V – SOL (0x01 0x06) It periodically polls the information about navigation solution. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x06 52 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Remainder o f rounded GPS ti me of week relative to GPS millisecond time of week (ns) -500000 ~ 500[...]
-
Seite 119
11 9 NA V – VELECEF (0x01 0x1 1) It periodically polls velocity solution in the ECEF frame. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x1 1 20 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 X velocity (cm/s) In the ECEF frame 8 I4 Y velocity (cm/s) In the ECEF fram e 12 I4 Z velocity (cm/[...]
-
Seite 120
120 NA V – VELNED (0x01 0x12) It periodically polls velocity solution in the NED frame. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x12 36 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 North velocity (cm/s) In the NED frame 8 I4 East velocity (cm/s) In the NED frame 12 I4 Down velocity (c[...]
-
Seite 121
121 NA V – TIMEGPS (0x01 0x20) It periodically polls the information about GPS time. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x20 16 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Remainder o f rounded GPS ti me of week relative to GPS millisecond time of week (ns) -500000 ~ 500000 8 I2[...]
-
Seite 122
122 NA V – TIMEUTC (0x01 0x21) It periodically polls the information about UTC time. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x21 20 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 U4 T ime accuracy (ns) 8 I4 Nanoseconds of second (UTC) -500000000 ~ 500000000 12 U2 Y ear (UTC) 1999 ~ 2099 1[...]
-
Seite 123
123 NA V – CLOCK (0x01 0x22) It periodically polls receiver clock information. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x22 20 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Clock bias (ns) 8 I4 Clock drift (ns/s) 12 U4 T ime accuracy (ns) 16 U4 Frequency accuracy (ps/s)[...]
-
Seite 124
124 NA V – SVINFO (0x01 0x30) It periodically polls the information about UTC time. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x30 8+N*12 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 U1 Number of channel s 1 ~ 16 5 U1 Reserved 6 U2 Reserved The following data will be repeated N times (numb[...]
-
Seite 125
125 NA V – DGPS (0x01 0x31) It periodically polls DGPS correction data that are used in the navigation solution. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x31 16+N*12 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 I4 Age of newest correction data (ms) 8 I2 DGPS reference station ID 10 I2 He[...]
-
Seite 126
126 NA V – SBAS (0x01 0x32) It periodically polls the status of SBAS. Header ID Data Length Data Checksum 0xB5 0x62 0x01 0x32 12+N*12 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week (m s) 4 U1 PRN number for SBAS, e.g. W AAS, EGNOS. 5 U1 SBAS m ode 0 – disabled 1 – enabled in tegrity 2 – enabled test m [...]
-
Seite 127
127 17+N*12 U1 Reserved 18+N*12 I2 Pseudo range correction (cm) 20+N*12 I2 Reserved 22+N*12 I2 Ionosphere correction (cm)[...]
-
Seite 128
128 UBX Class RXM This class transmits the status of receiver m anager and received raw data, e.g. pseudorange and carrier phase measurements, ephem eris, and almanac data. RXM – RA W (0x02 0x10) It periodically outputs raw m easurement data . It defines all the necessary data for a RINEX file. Header ID Data Length Data Checksum 0xB5 0x62 0x02 0[...]
-
Seite 129
129 RXM – SFRB (0x02 0x1 1) It periodically outputs the data in the subframe of navigation message. Header ID Data Length Data Checksum 0xB5 0x62 0x02 0x1 1 42 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U1 Channel number 1 U1 PRN number 2 I4 WORD0 6 I4 WORD1 10 I4 WORD2 14 I4 WORD3 18 I4 WORD4 22 I4 WORD5 26 I4 WORD6 30 I4 [...]
-
Seite 130
130 RXM – SVSI (0x02 0x20) It periodically polls the information of SV status. Header ID Data Length Data Checksum 0xB5 0x62 0x02 0x20 8+N*6 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 I4 GPS time of week (ms) 4 I2 GPS week number 6 U1 Number of observable satellites 7 U1 Number of satellite data following The following data[...]
-
Seite 131
131 RXM – ALM (0x02 0x30) It’ s an input request for polling almanac data . The receiver responds with all available (32) RXM-ALM messages defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x02 0x30 0 None C K_A CK_B RXM – ALM (0x02 0x30) It’ s an input request for polling almanac data of one specific SV . The receiver responds [...]
-
Seite 132
132 not valid. 2. WORD0 ~ WORD7 contain th e data following the Hand-Over W ord (HOW) in the navigation message. The data ar e fr om th e sub-frame 4 of Pages 1 ~ 24 and the sub-frame 5 of Pages 2 ~ 10. Mor e info rmation about almanac data structur e is r eferr ed to ICD-GPS-200. 3. WORD0 ~ WORD7 don’ t include the data of the parity bits. Hence[...]
-
Seite 133
133 RXM – EPH (0x02 0x31) It’ s an input request for polling epheme ris data. The receiver responds with all available RXM-EPH messages defined below . Header ID Data Length Data Checksum 0xB5 0x62 0x02 0x31 0 None C K_A CK_B RXM – EPH (0x02 0x31) It’ s an input request for polling ephemeri s data of one specific SV . The receiver responds [...]
-
Seite 134
134 36+n*96 U4 Sub-frame 1 – WORD7 40+n*96 U4 Sub-frame 2 – WORD0 44+n*96 U4 Sub-frame 2 – WORD1 48+n*96 U4 Sub-frame 2 – WORD2 52+n*96 U4 Sub-frame 2 – WORD3 56+n*96 U4 Sub-frame 2 – WORD4 60+n*96 U4 Sub-frame 2 – WORD5 64+n*96 U4 Sub-frame 2 – WORD6 68+n*96 U4 Sub-frame 2 – WORD7 72+n*96 U4 Sub-frame 3 – WORD0 76+n*96 U4 Sub-f[...]
-
Seite 135
135 RXM – POSREQ (0x02 0x40) It’ s an input message for requesting a positi on fix in the FixNow mode (power saving mode). Header ID Data Length Data Checksum 0xB5 0x62 0x02 0x40 0 None C K_A CK_B[...]
-
Seite 136
136 UBX Class TIM This class transmits the inform ation of time pulse and time mark. TIM – TM (0x0D 0x02) It periodically polls the time mark data. Header ID Data Length Data Checksum 0xB5 0x62 0x0D 0x02 28 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 Counter difference since last polled time 4 U4 Time difference si nce la[...]
-
Seite 137
137 TIM – TP (0x0D 0x01) It periodically polls the time pulse data. Header ID Data Length Data Checksum 0xB5 0x62 0x0D 0x01 16 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 GPS time of week: tim e pulse (ms) 4 U4 Sub-millisecond pa rt of “GPS time of week” (ms/2^32) 8 I4 Quant ization error of ti me pulse (ps) 12 U2 GPS[...]
-
Seite 138
138 UBX Class UPD This class is used to update the firmware. UPD – DOWNL (0x09 0x01) It is an I/O message. It is used to download data to mem ory . Header ID Data Length Data Checksum 0xB5 0x62 0x09 0x01 8+N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 Download starti ng address 4 U4 Flags 0 – download 1 – download A[...]
-
Seite 139
139 UPD – UPLOAD (0x09 0x02) It is an I/O message. It is used to upload data from m emory . Header ID Data Length Data Checksum 0xB5 0x62 0x09 0x02 12+N*1 See below CK_A CK_B Data Offset bytes Format Descriptions Notes 0 U4 Upload starti ng address 4 U4 Data size 8 U4 Flags 0 – upload 1 – upload ACK 2 – upload NACK The following data will b[...]
-
Seite 140
140 Chapter 8 T roubleshooting The following table lists questions/problem s that you m ight encounter for operating the module and possible suggested resolutions for the questions/problems. If you have further questions/problems that cannot be reso lved in this table, please feel free to contact us. Questions/Problems Suggestions 1. Nothing is out[...]
-
Seite 141
141 6. The estimated positions have steadily expressed about a few meters or up to a few hundred meters of f the reference position. Make sure the estimated positio n and reference position are expressed in the same coordinate frame. The default datum of the module is WGS 84. 7. The estimated position has a few kilometer away from the ref erence po[...]
-
Seite 142
142 Appendix A Geodetic ID: Coordinate Datum Index Name Acron y m DX (m) DY(m) DZ (m) Ellipsoid Index (See below) Rotation and Scale (See below) 0 W orld Geodetic System - 84 WGS 84 0.0 0.0 0.0 0 0 1 W orld Geodetic System - 72 WGS 72 0.0 0.0 4.5 23 1 2 Earth-90 - GLONASS Coordinate system ETH 90 0.0 0.0 4.0 8 0 3 Adindan - Mean Soluti on (Ethiopia[...]
-
Seite 143
143 18 ARC 1950 - Zambi a ARF-F -147.0 -74.0 -283.0 7 0 19 ARC 1950 - Zim babwe ARF-G -142.0 -96.0 -293.0 7 0 20 ARC 1960 - Mean (Kenya, T anzania) ARS -160.0 -6.0 -302.0 7 0 21 A yabelle Lighthouse - Djibouti PHA -79.0 -129.0 145.0 7 0 22 Bissau - Guinea-Bissau BID -173.0 253.0 27.0 20 0 23 Cape - South Africa CAP -136.0 -108.0 -292.0 7 0 24 Carth[...]
-
Seite 144
144 41 Djakarta (Batavia)- Sumatra (Indonesia) BA T -377.0 681.0 -50.0 5 0 42 Hong Kong 1963 - Hong Kong HKD -156.0 -271.0 -189.0 20 0 43 Hu-Tzu-Shan - T aiwan HTN -637.0 -549.0 -203.0 20 0 44 Indian - Bangladesh IND-B 282.0 726.0 254.0 9 0 45 Indian - India & Nepal IND-I 295.0 736.0 257.0 11 0 46 Indian 1954 - Thai land INF-A 217.0 823.0 299.0[...]
-
Seite 145
145 62 T okyo - Okinawa TOY - C -158.0 507.0 676.0 5 0 63 T okyo - South Korea TOY -B -146.0 507.0 687.0 5 0 64 Australian Geodetic 1966 - Australia & T asm ania AUA -133.0 -48.0 148.0 3 0 65 Australian Geodetic 1984 - Australia & T asm ania AUG -134.0 -48.0 149.0 3 0 66 European 1950 - Mean (AU, B, DK, FN, F , G , GR, I, LUX, NL, N, P , E,[...]
-
Seite 146
146 80 European 1979 - Mean Solution (AU, FN, NL, N, E, S, CH) EUS -86.0 -98.0 -1 19.0 20 0 81 Hjorsey 1955 - Iceland HJO -73.0 46.0 -86.0 20 0 82 Ireland 1965 IRL 506.0 -122.0 61 1.0 2 0 83 Ordnance Survey of GB 1936 - Mean (E, IoM, S, ShI, W) OGB-M 375.0 - 111 . 0 431.0 1 0 84 Ordnance Survey of GB 1936 - England OGB-A 371.0 -1 12.0 434.0 1 0 85 [...]
-
Seite 147
147 Alaska (excluding Aleutian Islands) 96 N. Am erican 1927 - Aleutian Islands, East of 180W NAS-V -2.0 152.0 149.0 6 0 97 N. Am erican 1927 - Aleutian Islands, W est of 180W NAS-W 2.0 204.0 105.0 6 0 98 N. Am erican 1927 - Bahamas (excl uding San Salvador Island) NAS-Q -4.0 154.0 178.0 6 0 99 N. Am erican 1927 - San Salvador Island NAS-R 1.0 140.[...]
-
Seite 148
148 Caribbean 108 N. Am erican 1927 - Central America NAS-N 0.0 125.0 194.0 6 0 109 N. Am erican 1927 - Cuba NAS-T -9.0 152.0 178.0 6 0 1 10 N. Am erican 1927 - Greenland (Hayes Peninsula) NAS-U 11 . 0 1 14.0 195.0 6 0 111 N. American 1927 - Mexico NAS-L -12.0 130.0 190.0 6 0 1 12 N. Am erican 1983 - Alaska (excluding Aleutian Islands) NAR-A 0.0 0.[...]
-
Seite 149
149 Bolivia 124 Prov S. Am erican 1956 - Northern Chile (near 19S) PRP-B -270.0 183.0 -390.0 20 0 125 Prov S. Am erican 1956 - Southern Chile (near 43S) PRP-C -305.0 243.0 -442.0 20 0 126 Prov S. Am erican 1956 - Colombia PRP-D -282.0 169.0 -371.0 20 0 127 Prov S. Am erican 1956 - Ecuador PRP-E -278.0 171.0 -367.0 20 0 128 Prov S. Am erican 1956 - [...]
-
Seite 150
150 Galapagos Islands) 139 South American 1969 - Baltra, Galapagos Isla nds SAN-J -47.0 26.0 -42.0 22 0 140 South American 1969 - Guyana SAN-G -53.0 3.0 -47.0 22 0 141 South American 1969 - Paraguay SAN-H -61.0 2.0 -33.0 22 0 142 South American 1969 - Peru SAN-I -58.0 0.0 -44.0 22 0 143 South American 1969 - T rinidad & T obago SAN-K -45.0 12.0[...]
-
Seite 151
151 154 L.C. 5 Astro 1961 - Cayman Brac Island LCF 42.0 124.0 147.0 6 0 155 Montserrat Island Astro 1958 - Montserrat Leeward Islands ASM 174.0 359.0 365.0 7 0 156 Naparima, BWI - T rinidad & T obago NAP -10.0 375.0 165.0 20 0 157 Observatorio Meteorologi co 1939 - Corvo and Flores Islands (Azores) FLO -425.0 -169.0 81.0 20 0 158 Pico De Las Ni[...]
-
Seite 152
152 Diego Garcia 169 Kerguele n Island 1949 - Kerguele n Island KEG 145.0 -187.0 103.0 20 0 170 Mahe 1971 - Mahe Isla nd MIK 41.0 -220.0 -134.0 7 0 171 Reunion - Mascarene Islands RUE 94.0 -948.0 -1262.0 20 0 172 American Sam oa 1962 - American Samoa Islands AMA -115.0 1 18.0 426.0 6 0 173 Astro Beacon "E" 1945 - Iwo Jima AT F 145.0 75.0 [...]
-
Seite 153
153 185 Johnston Island 1961 - Johnston Island JOH 189.0 -79.0 -202.0 20 0 186 Kusaie Astro 1951 - Caroline Islands, Fed. States of Micronesia KUS 647.0 1777.0 -1 124.0 20 0 187 Luzon - Philippines (excluding Mindanao Island) LUZ-A -133.0 -77.0 -51.0 6 0 188 Luzon - Mindanao Island (Philippines) LUZ-B -133.0 -79.0 -72.0 6 0 189 Midway Astro 1961 - [...]
-
Seite 154
154 Antarctica 202 European 1950 - Iraq, Israel, Jordan, Kuwait, Lebanon, Saudi Arabia & Syria EUR-S -103.0 -106.0 -141.0 20 0 203 Gunung Segara - Kalimant an (Indonesia) GSE" -403.0 684.0 41.0 5 0 204 Herat North - Afghanistan HEN -333.0 -222.0 114.0 20 0 205 Indian - Pakistan IND-P 283.0 682.0 231.0 9 0 206 Pulkovo 1942 - Russia PUK 28.0[...]
-
Seite 155
155 Ellipsoids Index Name Semi Major Axis (m) 1/Flattening 0 WGS 84 6378137.000 298.257223563 1 Airy 1830 6377563.396 299.3249646 2 Modified Airy 6377340.189 299.3249646 3 Australian National 6378160.000 298.25 4 Bessel 1841 (Nami bia) 6377483.865 299.1528128 5 Bessel 1841 6377397.155 299.1528128 6 Clarke 1866 6378206.400 294.9786982 7 Clarke 1880 [...]
-
Seite 156
156 Rotation and Scale T able Index Name Rot. X (seconds) Rot. Y (seconds) Rot. Z (seconds) Scale (-) 0 +0.0000 +0.0000 +0.0000 0.000 1 0.0000 0.0000 -0.5540 0.220 2 European Datum 1987 IAG RET rig Subcomm ision. 0.1338 -0.0625 -0.0470 0.045[...]
-
Seite 157
157 Appendix B Acr onyms BBR Battery Backed-up RAM C L T C a r r i e r L o c k T i m e CN0 Carrier to Noise Ratio COG Course Over Ground CTM Continuous T racking Mode DGPS Dif ferential GPS DOP Dilution of Precision DR Dead Reckoning ECEF Earth-Centered Earth-Fixed EDOP Easting Dilution of Precision EGNOS the European Geostationary Navigation Overl[...]
-
Seite 158
158 Refer ences 1. ANT ARIS R Chipset – System Integration- Manual for San Jose Navigation, Doc. No. GPS.G3-DK-03014. 2. ANT ARIS R Protocol Specifications, Doc. No. GPS.G3-X-03002. 3. NMEA 0183, Standard For Interfacing Marine Electronic Devices, V ersion 2.30, March 1, 1998.[...]