Victor V34 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Victor V34, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Victor V34 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Victor V34. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Victor V34 should contain:
- informations concerning technical data of Victor V34
- name of the manufacturer and a year of construction of the Victor V34 item
- rules of operation, control and maintenance of the Victor V34 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Victor V34 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Victor V34, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Victor service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Victor V34.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Victor V34 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Owner's G uide V34 Scient ific Calc ulator[...]

  • Page 2

    Preface Congratulations on your purchase of the V34 scientific calculator from Victor T echnology . Victor has been serving customers since 1918. T oday , Victor offers a complete line of printing, handheld, desktop, scientific, and financial calculators. For more information please see our website at or call us at 1-800-628-2420. Victor: The Choic[...]

  • Page 3

    L i m i t e dWa r r a n t y Thank you for purchasing a product from Victor T echnology. This product has been electronically tested. If you have problems using this product, please carefully refer to the instruction manual. This product, except the battery , is warranted by Victor to the original purchaser to be free from defects in material and[...]

  • Page 4

    1 H a n d l i n gP r e c a u t i o n s B es u r etop r e s st h eb u t to no nt h eb a c ko ft h e calculator  before using  it for the  first time. Even  if the  calculator is operating  normally , replace the  battery at  least [...]

  • Page 5

    2 Never  drop the  calculator or otherwise  subject it  to strong  impact. Never  twist or  bend the calculator . Avoid  carrying the calculator  in the  pocket of your  trousers or  other tight-fitting clothing where  it might be  subjected to twisting or [...]

  • Page 6

    3 Tw o - l i n eD i s p l a y The  two-line display  makes it possible  to view  both the calculation formula and  its result at  the same  time. The  upper line  shows the calculation  formula. The  lower line  shows the result. P r e s s[...]

  • Page 7

    4 L a s t A n s w e r The most recently calculated result is stored to the variable Ans. Ans is retained in memory , even after the unit is turned off. T o recall the value of Ans: P r e s s(A n sd i s p l a y so nth es c r e e n ) ,o r P r e s san yo p e r a t i o n ske [...]

  • Page 8

    5 C l e a r i n ga n dC o r r e c t i n g Clears an error message. Clears characters on entry line. Moves the cursor to last entry in history once display is clear . Delete 1 character to the left of the cursor each time you press . Inserts a character at the cursor . Clears all memory variables. Clears all data points without exiting ST A T [...]

  • Page 9

    6 P i = 3.141592653590 for calculations. = 3.141592654 for display . A n g l eM o d e s displays a menu to specify the Angle mode as degrees, radians, or gradients. displays a menu to specify the Angle unit modifier- degress ( ), radians ( ), gradients ( ), or DMS ( ). It also lets you convert an angle to DMS Notation ( DMS). T o set the Angle m[...]

  • Page 10

    7 H y p e r b o l i c s displays the HYP indicator and accesses the hyperbolic function of the next trigonometry key that you press. Angle modes do not affect hyperbolic calculations. L o g a r i t h m s yields the common logarithm of a number . yields the logarithm of a number to the base e (e=2.819291929). raises 10 to the power you specify . rai[...]

  • Page 11

    8 Memory The unit has 5 memory variables - A, B, C, D, and E. Y ou can store a real number or an expression that results in a real number to a memory variable. acce sses th e menu o f varia bles. lets y ou stor e valu es to var iable s. recalls the values of variables. clears all variable values. N o t a t i o n displays the Decimal Notation mode m[...]

  • Page 12

    9 2. Press . 3 . Enter a value for X1. 4. Press . In 1-V AR stat mode. enter the frequency of occurrence (F RQ ) of t he d a ta p oi nt . FR Q de fa ul t= 1, I f FR Q= 0, t he data point is ignored. In 2-V AR stat mode, enter the value for Y1 and press . 5. Repeat steps 3 and 4 unitl all data points are entered. Y ou must press or to save the last [...]

  • Page 13

    1 0 Correlation coefficient. Uses a and b to calculate predicted x value when you input a y value. Uses a and b to calculate predicted y value when you input an x value. x (2-V AR) r y (2-V AR) Probability Calc ulate s the nu mber o f poss ible p ermu tati ons of items taken at a time, given and . The order of objects is important, as in a race. n [...]

  • Page 14

    11 3+4 7 . DEG 3 7+8 15. DEG 7 8 5+3 8 . DEG 5 3 9+2 11. DEG 9 2 7+8 DEG 7+8+2 17. DEG 2 ANS 6 8 48. DEG 6 8 A n s 5 240. DEG 5 (Ans 15.49193338 DEG 4[...]

  • Page 15

    1 2 4+3 20 64. DEG 4 3 7 + - 2+9 14. DEG (16) 4 . DEG 1 6 7 (7+10) 119 . DEG 7(7+10) 119 . DEG 2 0 7 2 9 7 7 1 0 7 7 10 8 %1 2 0 9 . 6 DEG 8 120[...]

  • Page 16

    1 3 213 + 4 61 / 3 DEG 2 3 2 3 1 + 4 = 6 3 1 1 4 1 3 1.047197551 DEG 1 3 1 x =1.047197551 3 1 9 3 DEG 1 9 3 1 9 3 3 1 6 61 / 3 3 DEG 3 3 3 . 7 5 3 . 7 5 4 3 3 4 3 4[...]

  • Page 17

    1 4 3( 14 ) 12. DEG 3 4 1 3+ 4 13. DEG 3 4 (64) 8 . DEG 6 4 67 279936. DEG 7 6 31 2 5 5 . DEG 1 2 5 3[...]

  • Page 18

    1 5 log(100) 2 . DEG 100 In(30) 3.401 197382 DEG 3 0 1 0( 3 ) 1000. DEG 3 e( . 6 ) 1.8221 188 DEG . 6 e=2.71828182846 4 12.56637061 DEG 4[...]

  • Page 19

    1 6 DEG DEG GRD RAD DEG RAD r g RAD 9 0 sin(90  ) RAD 1 . RAD DEG DEG DMS DEG D E G R ADG R D 3 r g 3 r 540. 3 0 . 2 DEG 3 01 20 3 0 . 2 DMS[...]

  • Page 20

    1 7 tan(0) 0 . DEG 0 t a n(0 ) 0 . DEG 0 8 cos(60) 4 . DEG 8 6 0 sinh(3) 10.01787493 DEG s i n h(3 ) 1.818446459 DEG 3 RP rRP DEG 25.96150997 DEG 7 2 5 RP r (7 , 2 5 ) DEG 74.35775354 DEG RP ( 7 ,2 5 ) RP rRP[...]

  • Page 21

    K = DEG K = 3 5 D E GK 3 6 3 5 90. D E GK 6 9 3 5 135. D E GK 9 K = D E GK 8 64. D E GK 5 8 1 8 DEG[...]

  • Page 22

    DEG A BCDE DEG 2 1 2 1 A 21. DEG DEG A BCDE DEG 65.97344573 DEG 21. 2 1 1 9 DEG 65.97344573 DEG A n sB 65.97344573 DEG 791.6813487 DEG B 1 2 A BCDE A BCDE 1 2[...]

  • Page 23

    2 0 DEG F0123456789 3.1416 DEG DEG 976825 DEG DEG FLO ENG SCI DEG F L OS CI E N G 976.825 DEG 35.86 DEG 3 . 5 86 E- 2 3 976825 976825 3.586 3.141592654 4 FIX 3.141592654 976825 9.76825 SCI ENG 2 3 ENG[...]

  • Page 24

    2 1 3.586 DEG 23 3.586  E-23[...]

  • Page 25

    2 2 DEG X = 1 2 1 DEG DEG F R Q =4 DEG DEG nxS xx DEG CLRDA T A DEG x 8 1-V AR 2-V AR S TA T 6 . 4 1 - VAR :{ 1 2 ,1 4 ,1 4 ,14 ,1 4 } 1 2 D E G S TA T F R Q =1 1 4 X = 1 4 2 S TA T 4 . S TA T 0 . 8 S TA T 8 S TA T D E G S TA T S TA T 4[...]

  • Page 26

    2 3 DEG X = 3 2 1 DEG DEG Y = 3 3 2 DEG DEG x y ’ DEG E X I T ST: Y N DEG x ’ (31) 1-V AR 2-V AR S TA T 2 9 2 - VAR :( 3 2 ,2 8 ) ;( 27 ,3 3 ) ;x ’ (31) 3 2 D E G S TA T Y = 2 8 1 2 7 X = 2 7 2 S TA T S TA T S TA T 3 1 S TA T D E G S TA T 2 8 3 3 ’[...]

  • Page 27

    2 4 DEG n P r n C r! DEG DEG DEG DEG 1 0 1 0 DEG 1 0n P r7 1 0 1 0 120. 1 0 DEG nPr 1 0 7 604800. nCr nPr ! nCr 7 1 0n C r7 ! n P rn Cr ! DEG 10! 3628800.[...]

  • Page 28

    2 5 DEG rand 2981212593. 6 S TA T DEG S TOr an d rand 6 6 . DEG RAND RANDI DEG R AN D RAND 0.002728484 DEG RAND RANDI DEG RANDI RANDI(10, 12) 11. 1 0 1 2 Base-N Calculations: Binary , octal, decimal and hexadecimal calculations, conversions and logical operations are performed in the BASE-N mode. Press + , , , to change the number system to b[...]

  • Page 29

    Number  system Binary V alid values  in each number  system: V alid values O c t al Decimal Hexadecimal 0, 1 0, 1 , 2 , 3, 4 , 5 , 6, 7 0, 1 , 2 , 3, 4 , 5 , 6, 7 , 8 , 9 0, 1 , 2 , 3, 4 , 5 , 6, 7 , 8 , 9, A, B , C, D, E , F Number  system Binary Calculation  range Calculation  range O c t al Decimal Hexadecimal Po si[...]

  • Page 30

    2 7 Example How  22 will be 10 (1)  Binary , Octal,  Decimal, Hexadecimal conversions: Operation Display(lower) expressed  in hexadecimal binary , octal number  system? 2 2 2 2 1 6 101 10 2 6 Example 0 0 11+11 0 1 0 (2)  Basic arithmetic  operations using binary , octal, decimal  and hexad[...]

  • Page 31

    2 8 Example (3)  Logical operations: Operation Display(lower) A b A BO R2 3 16 1 6 A B 2 2 3X OR6 8 8 223 225 110X N O R 1111 2 1 1 0 1 1 1 1 111 11 1 0 110 N O T 3 4 8 7777777743 2 B A N D 5OR 4 16 5 2 3 2 16 1 6 2 B 4 5 N E G 6XO R1 2 7777777760 8 8 6 3 4 1 2 6[...]

  • Page 32

    Input Range DEG RAD GRA DEG RAD GRA DEG RAD GRA sam e as si nx , exc ept w he n 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ ≤ 4.499999999E10 ≤ 785398163.3 ≤ 4.499999999E10 ≤ E 4.500000008 10 ≤ 49 78539816 . ≤ E 5.000000009 10 =(2n-1)x90 =(2n-1)x 2 π / =(2n-1)x100 ≤ 1 <1x10 100 2 9 I n p utR a n g e s : [...]

  • Page 33

    Input Range 0 1x10 100 ≤ < (DEG)||<9x10 9 :-1E100<<1E100 :0 1E100 ≤ < :0 1E100 ≤ < 3 0 Functions >0: - 1x1 0 < log <100 100 =0: > 0 However ,fortan. ||90(2n+1):DEG (RAD)||<5x10 7 ||?[...]

  • Page 34

    Guide d'u tilisat ion Calculat rice scien tifiqu e V34[...]

  • Page 35

    Préface Victor T echnology vous félicite pour l'acquisition de votre calculatrice scientifique V34. Nous offrons nos produits à notre clientèle depuis 1918. Aujourd'hui, Victor est fier d'offrir une gamme complète de calculatrices scientifiques et financières imprimantes, portables ou de bureau. Pour obtenir davantage d'in[...]

  • Page 36

    G a r a n t i el i m i t é e Merci d'avoir acheté un produit Victor T echnology. Ce produit a été testé électroniquement. En cas de problèmes liés à l'utilisation de votre calculatrice, veuillez vous reporter au Guide d'utilisation. L'acheteur original de cet article bénéficie d'une garantie contre tout défau[...]

  • Page 37

    1 P r é c a u t i o n sàp r e n d r e A p p u ye zs u rl eb o u t o n( ré i n i t i a l i s a ti o n )s i t u éà l'arrière de la calculatrice avant la première utilisation de  l'appareil. Même si la calculatrice fonctionne normalement, la pile doit être remplacée au moi[...]

  • Page 38

    2 Évitez d'échapper la calculatrice et la préserver contre les impacts. Ne jamais tordre ou plier le boîtier de la calculatrice. Évitez de transporter la calculatrice dans la poche d'un pantalon ou autre vêtement ajusté, ceci risquant d'exposer l'appareil à des torsions ou des déformations. Ne  pas tenter  de?[...]

  • Page 39

    3 A f f i c h a g es u rd e u xl i g n e s L'affichage sur deux lignes permet de visualiser simultanément la formule utilisée pour le calcul et le résultat obtenu. La  ligne supérieure  affiche  la formule  de calcul. La  ligne inférieure  affiche  le résultat. Appuyez sur les touches et pour [...]

  • Page 40

    4 D e r n i è r er é p o n s e Le plus récent résultat d'un calcul est stocké comme variable Ans. La variable Ans est conservée dans la mémoire, même après la mise hors tension de l'appareil. Pour récupérer la valeur Ans: A p p u ye zs u rl e st o u c h es( l a?[...]

  • Page 41

    5 Effacer et  corriger Efface les messages d'erreur Déplace le curseur vers la dernière entrée effectuée avant l'effacement Efface les caractères de la ligne d'affichage E f fa c e l e c a r a c t è r e s i t u é à ga uc he d u cu rs eu r c h a q u e f o i s q u e l a to uc he e s t e n f o nc é e In sè re u n ca ra c[...]

  • Page 42

    6 P i = 3, 14159265359 0 po u r l e s c a l c u l s = 3, 141592654 p o u r l ' a f f i c h a ge M o d e sd ec a l c u ld e sa n g l e s affiche un menu permettant de spécifier le mode de calcul d'angles sous forme de degrés, de radians ou de gradients. affiche un menu permettant de spécifier le modificateur d'unités d[...]

  • Page 43

    7 H y p e r b o l e s La touche permet d'afficher l'indicateur HYP et d'accéder à la fonction hyperbolique de la touche de trigonométrie que vous actionnez. Les modes de calcul d'angles n'affectent pas les calculs hyperboliques. L o g a r i t h m e s La touche LOG produit le logarithme naturel d'un nombre. La touche[...]

  • Page 44

    8 Mémoire La calculatrice possède 5 variables de mémoire : A, B, C, D et E. V ous pouvez stocker des nombres réels ou des expressions résultant en nombres réels dans une variable de mémoire. donne accès au menu des variables perm et de st ocke r des v aleu rs ver s les va riab les rappelle les valeurs variables efface les valeurs variables [...]

  • Page 45

    9 2. Appuyez sur la touche . 3. Entrez une valeur pour X1. 4. Appuyez sur la touche . En mode statistique 1-V AR, entrez la fréquence de l'occurrence (FRQ) du point de donnée. La valeur de En mode statistique 2-V AR, entrez la valeur pour Y1 et appuyez sur la touche . 5. Répétez les étapes 3 et 4 jusqu'à ce que tous les points de do[...]

  • Page 46

    1 0 Coefficient de corrélation Utilise a et b pour calculer la valeur prédite x lorsque vous ajoutez une valeur y . Utilise a et b pour calculer la valeur prédite y lorsque vous ajoutez une valeur x. x (2-V AR) r y (2-V AR) Probabilité Calcule le nombre de permutations possibles de n éléments groupés en r à la fois, étant donné les valeur[...]

  • Page 47

    11 3+4 7 . DEG 3 7+8 15. DEG 7 8 5+3 8 . DEG 5 3 9+2 11. DEG 9 2 7+8 DEG 7+8+2 17. DEG 2 ANS 6 8 48. DEG 6 8 A n s 5 240. DEG 5 (Ans 15.49193338 DEG 4[...]

  • Page 48

    1 2 4+3 20 64. DEG 4 3 7 + - 2+9 14. DEG (16) 4 . DEG 1 6 7 (7+10) 119 . DEG 7(7+10) 119 . DEG 2 0 7 2 9 7 7 1 0 7 7 10 8 %1 2 0 9 . 6 DEG 8 120[...]

  • Page 49

    1 3 213 + 4 61 / 3 DEG 2 3 2 3 1 + 4 = 6 3 1 1 4 1 3 1.047197551 DEG 1 3 1 x =1.047197551 3 1 9 3 DEG 1 9 3 1 9 3 3 1 6 61 / 3 3 DEG 3 3 3 . 7 5 3 . 7 5 4 3 3 4 3 4[...]

  • Page 50

    1 4 3( 14 ) 12. DEG 3 4 1 3+ 4 13. DEG 3 4 (64) 8 . DEG 6 4 67 279936. DEG 7 6 31 2 5 5 . DEG 1 2 5 3[...]

  • Page 51

    1 5 log(100) 2 . DEG 100 In(30) 3.401 197382 DEG 3 0 1 0( 3 ) 1000. DEG 3 e( . 6 ) 1.8221 188 DEG . 6 e=2.71828182846 4 12.56637061 DEG 4[...]

  • Page 52

    1 6 DEG DEG GRD RAD DEG RAD r g RAD 9 0 sin(90  ) RAD 1 . RAD DEG DEG DMS DEG D E G R ADG R D 3 r g 3 r 540. 3 0 . 2 DEG 3 01 20 3 0 . 2 DMS[...]

  • Page 53

    1 7 tan(0) 0 . DEG 0 t a n(0 ) 0 . DEG 0 8 cos(60) 4 . DEG 8 6 0 sinh(3) 10.01787493 DEG s i n h(3 ) 1.818446459 DEG 3 RP rRP DEG 25.96150997 DEG 7 2 5 RP r (7 , 2 5 ) DEG 74.35775354 DEG RP ( 7 ,2 5 ) RP rRP[...]

  • Page 54

    K = DEG K = 3 5 D E GK 3 6 3 5 90. D E GK 6 9 3 5 135. D E GK 9 K = D E GK 8 64. D E GK 5 8 1 8 DEG[...]

  • Page 55

    DEG A BCDE DEG 2 1 2 1 A 21. DEG DEG A BCDE DEG 65.97344573 DEG 21. 2 1 1 9 DEG 65.97344573 DEG A n sB 65.97344573 DEG 791.6813487 DEG B 1 2 A BCDE A BCDE 1 2[...]

  • Page 56

    2 0 DEG F0123456789 3.1416 DEG DEG 976825 DEG DEG FLO ENG SCI DEG F L OS CI E N G 976.825 DEG 35.86 DEG 3 . 5 86 E- 2 3 976825 976825 3.586 3.141592654 4 FIX 3.141592654 976825 9.76825 SCI ENG 2 3 ENG[...]

  • Page 57

    2 1 3.586 DEG 23 3.586  E-23[...]

  • Page 58

    2 2 DEG X = 1 2 1 DEG DEG F R Q =4 DEG DEG nxS xx DEG CLRDA T A DEG x 8 1-V AR 2-V AR S TA T 6 . 4 1 - VAR :{ 1 2 ,1 4 ,1 4 ,14 ,1 4 } 1 2 D E G S TA T F R Q =1 1 4 X = 1 4 2 S TA T 4 . S TA T 0 . 8 S TA T 8 S TA T D E G S TA T S TA T 4[...]

  • Page 59

    2 3 DEG X = 3 2 1 DEG DEG Y = 3 3 2 DEG DEG x y ’ DEG E X I T ST: Y N DEG x ’ (31) 1-V AR 2-V AR S TA T 2 9 2 - VAR :( 3 2 ,2 8 ) ;( 27 ,3 3 ) ;x ’ (31) 3 2 D E G S TA T Y = 2 8 1 2 7 X = 2 7 2 S TA T S TA T S TA T 3 1 S TA T D E G S TA T 2 8 3 3 ’[...]

  • Page 60

    2 4 DEG n P r n C r! DEG DEG DEG DEG 1 0 1 0 DEG 1 0n P r7 1 0 1 0 120. 1 0 DEG nPr 1 0 7 604800. nCr nPr ! nCr 7 1 0n C r7 ! n P rn Cr ! DEG 10! 3628800.[...]

  • Page 61

    2 5 DEG rand 2981212593. 6 S TA T DEG S TOr an d rand 6 6 . DEG RAND RANDI DEG R AN D RAND 0.002728484 DEG RAND RANDI DEG RANDI RANDI(10, 12) 11. 1 0 1 2 C a l c u l se nm o d eB A S E - N Les calculs binaires, octaux, décimaux et hexadécimaux, les conversions et les opérations logiques sont effectuées en mode BASE-N. Appuyez sur le[...]

  • Page 62

    Sy st èm e n um ér iq ue Binaire V aleurs valides  dans chaque système  numérique: V al eu rs v a li de s O c t al Décimal Hexadécimal 0, 1 0, 1 , 2 , 3, 4 , 5 , 6, 7 0, 1 , 2 , 3, 4 , 5 , 6, 7 , 8 , 9 0, 1 , 2 , 3, 4 , 5 , 6, 7 , 8 , 9, A, B , C, D, E , F Sy st èm e n um ér iq ue Binaire Étendue  de calcul Ét en du e[...]

  • Page 63

    2 7 Exemple Co mme nt 22 à l a pui ssa nce 1 0 (1)  Conversions de  nombres binaires, octaux,  décimaux et  hexadécimaux: Opération Affichage (ligne  inférieure) sera-t-il  exprimé en nombre  hexadécimal binaire,  octal système  numérique? 2 2 2 2 1 6 101 10 2 6 Exemple 0 0 11+11 0 1 0 (2 ) O[...]

  • Page 64

    2 8 Exemple (3)  Opérations logiques: Opération Affichage (ligne inférieure) A b A BO R2 3 16 1 6 A B 2 2 3X OR6 8 8 223 225 110X N O R 1111 2 1 1 0 1 1 1 1 111 11 1 0 110 N O T 3 4 8 7777777743 2 B A N D 5OR 4 16 5 2 3 2 16 1 6 2 B 4 5 N E G 6XO R1 2 7777777760 8 8 6 3 4 1 2 6[...]

  • Page 65

    Entrées DEG RAD GRA DEG RAD GRA DEG RAD GRA mêm e que p ou r sin x, sa uf l ors que 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ ≤ 4.499999999E10 ≤ 785398163.3 ≤ 4.499999999E10 ≤ E 4.500000008 10 ≤ 49 78539816 . ≤ E 5.000000009 10 =(2n-1)x90 =(2n-1)x 2 π/ =(2n-1)x100 ≤ 1 <1x10 100 2 9 Entrées: Fonctions [...]

  • Page 66

    3 0 Étendue des entrées 0 1x10 100 ≤ < (DEG)||<9x10 9 :-1E100<<1E100 :0 1E100 ≤ < :0 1E100 ≤ < Fonctions >0: - 1x1 0 < log <100 100 =0: > 0 T outefois,pourtan. ||90(2n+1):DEG (RAD)||<5x10 7[...]