Agilent Technologies 1660AS Bedienungsanleitung

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

Zur Seite of

Richtige Gebrauchsanleitung

Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung Agilent Technologies 1660AS an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von Agilent Technologies 1660AS, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.

Was ist eine Gebrauchsanleitung?

Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung Agilent Technologies 1660AS die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.

Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung Agilent Technologies 1660AS. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.

Was sollte also eine ideale Gebrauchsanleitung beinhalten?

Die Gebrauchsanleitung Agilent Technologies 1660AS sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts Agilent Technologies 1660AS
- Den Namen des Produzenten und das Produktionsjahr des Geräts Agilent Technologies 1660AS
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts Agilent Technologies 1660AS
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen

Warum lesen wir keine Gebrauchsanleitungen?

Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von Agilent Technologies 1660AS zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von Agilent Technologies 1660AS und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service Agilent Technologies finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von Agilent Technologies 1660AS zu überspringen, wie es bei der Papierform passiert.

Warum sollte man Gebrauchsanleitungen lesen?

In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts Agilent Technologies 1660AS, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.

Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von Agilent Technologies 1660AS widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.

Inhaltsverzeichnis der Gebrauchsanleitungen

  • Seite 1

    Programmer’s Guide Publicati on n umber 01 660-9 7 03 3 Secon d ed ition , Janu ary 2 000 For Safe ty inform ation, W arranties, and Regulato ry informati on, see the pages behind t he inde x  Copyright Agi lent Technol ogies 1 992- 2000 All Rights Reserved Agi lent Techno logie s 1660A/ A S -Series Lo gic Analyzers[...]

  • Seite 2

    ii[...]

  • Seite 3

    In This Book This programm er’s gui de co ntains gene ral informati on, mainframe leve l commands, logic anal yzer co mmands, oscillo sco pe module co mmands, and pro gramming example s for prog ramming the 1660 -series logic analy zers. This gui de focuses o n ho w to pro gram the instrument over t he GPIB and the RS-232 C interfaces. Instru me [...]

  • Seite 4

    If you are already famili ar wit h IEEE 488.2 pro gramming and GPIB o r RS-232 C, you may want to just scan these chapt ers. If yo u are new t o programmiung the system , you sho uld read part 1. Chapter 1 is di vided into two se ctio ns. The firs t secti on, "Talki ng to t he Instrument ," co ncentrates on program syntax , and the s econ[...]

  • Seite 5

    The commands explained in this part give you access to all the com mands used t o operate the oscilloscope port ion of the 1660 -series system. This part i s des igned to pro vide a concis e descripti on of each command. Part 5 Part 5, chapte r 36 co ntains program ex ampl es of act ual tasks that show yo u how t o get starte d in programming the 1[...]

  • Seite 6

    vi[...]

  • Seite 7

    CHAN nel Subs ystem 29 DI SPlay Su bsys tem 30 MARKer Subsyste m 31 MEA Sure Subsyst em 32 TIMeba se Subs ystem 33 TRIGge r Subs ystem 34 WAVefor m Subsyste m 35 Programmin g Exa mples 36 Ind ex vii[...]

  • Seite 8

    viii[...]

  • Seite 9

    Cont ents Part 1 Genera l Information 1 Introduct ion to Programming Talk ing to th e Instru ment 1–3 Initializ at ion 1–4 Instructio n Syntax 1–5 Output Command 1–5 Device Address 1–6 Instructio ns 1–6 Instructio n Terminato r 1–7 Header Type s 1–8 Duplicat e Keywords 1–9 Query U sage 1–10 Program Header Opt ions 1–11 Paramet[...]

  • Seite 10

    3 Prog ramming Over RS-232C Interface O perat ion 3–3 RS-2 32C Cables 3 –3 Minimum Three- Wire Interface wi th So ftware Prot ocol 3– 4 Extended Int erface with H ardware Hands hake 3–4 Cable Examples 3–6 Configuring the Log ic Anal zer Interface 3–8 Interface Capab ilities 3–9 RS-232 C Bus Addressi ng 3– 10 Lockout Co mmand 3–11 [...]

  • Seite 11

    7 E rror Messag es Device Dependent Erro rs 7–3 Command Erro rs 7–3 Execut ion Errors 7–4 Internal Erro rs 7–4 Query E rrors 7–5 Part 2 Mainframe Commands 8 Common Comma nds *CLS (Clear Stat us) 8–5 *ESE (Eve nt St atus Enab le) 8–6 *ESR (Event St atus Regis ter) 8– 7 *IDN ( Identificat ion N umber) 8–9 *IST (Indi vidual Status ) [...]

  • Seite 12

    MESE<N> ( Module E vent Stat us Enable ) 9–14 MESR<N> ( Module Eve nt Status Registe r) 9–16 RMODe 9–18 RTC (R eal-time Clock) 9–19 SELect 9–20 SETColor 9– 22 STARt 9–23 STOP 9– 24 10 SYS Tem Subsy s tem DATA 10–5 DSP (Display) 10–6 ERRor 10–7 HEAD er 10–8 LON Gfo rm 10 –9 PRINt 10 –10 SETup 10–1 1 11 MM EM[...]

  • Seite 13

    12 IN T ermodule Subsy st em :INTermodule 12 –5 DELet e 12–5 HTIMe 12–6 IN Port 1 2–6 INSert 1 2– 7 SKEW<N> 12 –8 TREE 12–9 TTIMe 12–10 Part 3 Log i c Analyzer C ommands 13 MACHine Subsystem MACHine 13– 4 ARM 13–5 ASSign 13–5 LEVelarm 13–6 NAME 13–7 REName 1 3–8 RESource 13–9 TYPE 13–10 14 WLISt Subsy stem WLIS[...]

  • Seite 14

    15 S FORma t Subsy st e m SF ORmat 1 5–6 CLO Ck 15– 6 LABel 15–7 MASTer 15–9 MO DE 15– 10 MOPQual 1 5–11 MQ Ual 15–1 2 REMo ve 1 5–1 3 SETHold 1 5–13 SLAVe 15–15 SOPQ ual 15–16 SQ Ual 15–1 7 THReshol d 15–18 16 ST Rigger (S TRace) Subsy stem Qualifie r 16– 7 STRigger ( ST Race) 16–9 ACQ uisition 16 –9 BRANch 16 –10[...]

  • Seite 15

    CLRPatt ern 1 7–8 DATA 17–9 LIN E 17–9 MMODe 17–10 OPATtern 1 7–11 OSEarch 17–12 OS Tate 1 7–13 OTA G 1 7–13 OVE Rlay 17–1 4 REMo ve 1 7–1 5 RUNTil 17–15 TAVerage 17–17 TMAXimum 17–1 7 TMINimum 1 7– 1 8 VRUN s 17–1 8 XOTag 17–1 9 XOTime 17–19 XPATte rn 1 7 –2 0 XSEarch 17–21 XSTate 17–22 XTAG 17–22 18 SW AV[...]

  • Seite 16

    19 SCHart Subsy st e m SCHart 19 –4 ACCumulate 1 9–4 HAXis 19– 5 VAXis 19– 7 20 COMPare Subsystem COMPare 20–4 CLEar 20–5 CMASk 20–5 CO PY 20–6 DATA 20–7 FIND 20 –9 LIN E 20–1 0 MEN U 20–1 0 RAN Ge 20– 11 RUNTil 2 0–12 SET 20–13 21 TFORmat Subsystem TFORmat 2 1–4 ACQMode 21–5 LABel 21–6 REMove 21–7 THRe shold 2[...]

  • Seite 17

    SEQuence 22– 17 SPERio d 22– 18 TCON trol 22– 19 TERM 22–20 TIMER 22–21 TPO Sitio n 22–22 23 T WAVeform Subsyst em TWAVe form 23–7 ACCumulate 23– 7 ACQ uisitio n 23–8 CENTer 23–8 CLRPatt ern 2 3–9 CLRStat 23–9 DELay 23– 9 INSert 23– 10 MMODe 23–11 OCON di tio n 23 –12 OPATtern 23–13 OSEarch 23–14 OTIMe 2 3–15 R[...]

  • Seite 18

    24 TLISt Subsy stem TLISt 24–7 COLumn 24– 7 CLRPatt ern 2 4–8 DATA 2 4–9 LIN E 24–9 MMODe 24–10 OCON di tio n 24 –11 OPATtern 24–11 OSEarch 24–12 OS Tate 24–1 3 OTA G 2 4–14 REMo ve 2 4–1 4 RUNTil 24–15 TAVerage 24–16 TMAXimum 2 4–1 6 TMINimum 24–17 VRUN s 24–1 7 XCO Nditi on 24–1 8 XOTag 2 4–1 8 XOTime 24–19[...]

  • Seite 19

    26 DAT A and SET up Commands Data F ormat 26–3 :SYSTem:DATA 26–4 Section Header D escriptio n 26–6 Section Data 2 6–6 Data P reamble D escriptio n 26–6 Acquisi tion D ata D e scription 26–10 Time Tag Data D escripti on 26–12 Glitch Data D escri ption 26–14 SYSTem:SETup 26–15 RTC_IN F O Se ction D escri ption 2 6–17 Part 4 Oscill[...]

  • Seite 20

    LABel 3 0–7 MINus 30–8 OVERlay 30–8 PLUS 30–9 REMove 3 0 –9 31 MARKer S ubsystem AVO Lt 31–6 ABVolt? 3 1–7 BVOLt 3 1–7 CENTer 31–8 MSTats 31–8 OAUTo 31– 9 OTIMe 31–10 RUNTil 31–11 S HO W 3 1– 12 TAVerage? 3 1–1 2 TMAXimum? 31–13 TMINimum? 31–13 TMOD e 31–1 4 VMOD e 31–1 5 VOTime? 31–16 VRUN s? 31–16 VXTime?[...]

  • Seite 21

    PWID t h? 32–9 RISet ime? 32–9 SOURce 32–1 0 VAMPlitude? 32– 1 1 VBASe? 3 2–11 VMAX? 3 2–12 VMIN? 3 2 –12 VPP ? 3 2 –13 VT OP ? 32 –1 3 33 TI M eb ase Subsy stem DELay 33–4 MO DE 33– 5 RAN Ge 33– 6 34 TRIGger Subsyst em CO NDit io n 34– 5 DELay 34–7 LEVel 34–8 LO Gic 34– 10 MO DE 34– 11 PATH 34–1 2 SLOP e 34–12[...]

  • Seite 22

    SP ERiod? 35–1 3 TYPE? 35–13 VALid? 3 5 –14 XINCrement? 3 5–15 XORigi n? 35–1 6 XREFere nce? 35– 16 YINCrement ? 35–17 YOR igin? 35–1 7 YREFerence ? 35–18 Part 5 Prog ramming Examples 36 Prog ramming Examples Making a Tim ing analyz er measureme nt 36–3 Making a St ate analyz er measurement 36–5 Making a St ate Com pare me asu[...]

  • Seite 23

    Pa rt 1 Gener al Information[...]

  • Seite 24

    [...]

  • Seite 25

    1 Introdu ct ion t o Pro gramming[...]

  • Seite 26

    Introd uction This chap ter intro duces you to th e b asics o f remote programming and is org anized i n two secti ons. The firs t se ction, "Talk ing to th e Ins trument," con centrates on in itializi ng the bus, pr ogram syn tax and the eleme nts of a s yntax instuctio n. The secon d sectio n, " Recei ving Informatio n from the Ins[...]

  • Seite 27

    Talki ng to the Instrume nt In general, comput ers acting as contro llers co mmunicate wi th the i nstrum ent by se nding and receivi ng message s over a re mote i nterface, such as GPIB or RS-232 C. Instruct ions for programming the 16 60-seri es logi c analyzers will normally appear as ASCII charact er st rings emb edded insi de the o utput state[...]

  • Seite 28

    Initialization To make sure t he bus and all appropriat e interface s are in a k nown state, begin every program with an ini tializ ation st atement . BASIC provi des a CLEAR com mand that clears t he interface b uffer. If yo u are using G PIB, CLEAR will also reset the parser i n the logic anal yzer. The parser is the program res ident in the l og[...]

  • Seite 29

    Instruct ion Syntax To program the logic analy zer remote ly, you must have an understanding o f the com mand format and st ructure. The IEE E 4 8 8.2 standard gove rns syntax rules pert aining t o how individual element s, such as he aders, separat ors, parameters and te rminators, may be gro uped toge ther t o form com plete instructi ons. Syntax[...]

  • Seite 30

    Device A d dr ess The locati on whe re the devi ce address must be specifi ed also de pends on t he host l anguage that yo u are using. In some language s, this could be speci fied outside the output command. In BASIC, this is always s pecifie d after the keyword OUTPUT. The examples in this manual use a g eneric address of XXX. When writing pro gr[...]

  • Seite 31

    When yo u look up a que ry in this programmer’ s reference , you’ ll find a paragraph labe led "Returne d Format " unde r the one lab ele d "Query. " The syntax definitio n by "R eturned form at" will always show the inst ruction header in sq uare brack ets, l ike [:SYSTem:ME NU], which means the te xt betwe en the[...]

  • Seite 32

    Header T ypes There are thre e types of headers: Simple Co mmand, Compo und Command, and Commo n Command. Simple Comm and H eader Simple co mmand headers co ntain a si ngle key word. START and STO P are example s of simple co mmand headers typi cally used i n thi s lo gic analyz er. The syntax is: <function><terminator> When parame ters[...]

  • Seite 33

    Co mmo n Com man d H ead er Common command headers cont rol IEEE 4 88. 2 functio ns within t he logic analyzer, such as , clear st atus. The s yntax i s: *<command header><terminator> No whi te space o r separato r is allowed b etween t he asteri sk and the command heade r. *CLS is an example of a comm on command header. Comb ined Comm [...]

  • Seite 34

    Query Usage Logic anal yzer ins tructions that are imme diately fo llowed b y a q uestion mark (?) are queries . After receiving a q uery, t he logic analyzer pars er places t he response in t he output b uffer. The out put message re mains in t he buffer until it is read or unt il anothe r logic anal yzer ins truct ion is i ssued. Wh en read, the [...]

  • Seite 35

    Program Header Options Program headers can b e sent using any co mbinati on of uppercas e or lowercase ASCII characters. Logic anal yzer res ponses, ho wever, are al ways returned in uppercase. Both pro gram co mmand and q uery headers m ay be s ent in ei ther long form (compl ete spel ling) , short form ( abbre viated spel ling) , or any combinati[...]

  • Seite 36

    Parameter Data Types There are thre e main ty pes o f data which are used in parame ters. They are numeric, st ring, and keywo rd. A fourt h type, b lock data, is us ed only fo r a fe w instructi ons: the DATA and SE Tup inst ructions i n the SYSTem s ubsyst em (see chapter 10 ); the CATalo g, UPLo ad, and DO WNload i nstructio ns in the MMEMory su[...]

  • Seite 37

    When a s yntax de finition specifi es that a number i s an integ er, that means that t he number should b e who le. Any fractional part would b e ignore d, truncating the numb er. Numeric param eters t hat accept fract ional value s are called real numb ers. All numb ers are expect ed to be strings of A SCII characte rs. Thus , when sending t he nu[...]

  • Seite 38

    Select ing M ultip le Su bsystems You can send multiple program com mands and program queries for different subsys tem s o n the same line by se parating each command with a sem icolon. The colon foll owing the semicol on e nables y ou to enter a new subsyst em. <instruction header><data>;:<instruction header><data> <term[...]

  • Seite 39

    Rece i vi ng Inform ation fr om the Instrume nt After rece iving a query ( logic analyzer i nstructio n followe d by a q ues tion mark), the logic anal yzer int errogate s the req uested function and pl aces the answer in it s output queue. The ans wer remains i n the output queue unt il it is read, o r, unt il anot her command i s issued. When rea[...]

  • Seite 40

    Response Header Options The format of the re turned ASCII string depends on t he current s ettings of the SYSTEM H EADER and LONGFO RM commands. The general fo rmat is <instruction_header><space><data><terminator> The header ident ifie s the dat a that follows ( the paramet ers) and is co ntrolle d by is suing a :SYSTEM:HEAD[...]

  • Seite 41

    Response Data Formats Both numb ers and strings are returned as a series of ASCII charact ers, as describe d in the fo llowing sections . Keywo rds in the data are ret urned i n the same form at as the header, as specifie d by t he LONGfo rm co mmand. Li ke the headers , the k eywords wil l always be in uppercase . Example s The fo llowing are pos [...]

  • Seite 42

    String Variables Because the re are so many ways to co de numbe rs, the 1 660-serie s lo gic analyzers handle almost all data as ASCII string s. Depending on y our host language, y ou m ay be ab le to use other t ypes when re ading in respo nses. Someti mes it is helpful t o use s tring variab les in pl ace of cons tant s to send instructi ons t o [...]

  • Seite 43

    Example The fo llowing e xample s hows log ic analyzer data being re turned to a st ring variable with headers off: 10 OUT PU T XX X; ": SYST EM :H EA DE R OFF" 2 0 DI M Ra ng $[ 30 ] 30 O UTPU T XX X; ":MA CH IN E1 :T WAVE FO RM :R AN GE?" 4 0 EN TE R XX X; Ra ng $ 5 0 PR IN T Ra ng $ 60 E ND After running thi s program, the co[...]

  • Seite 44

    This time the format o f the numb er (s uch as, whethe r or not exponential notati on i s used) is dependant upon your ho st languag e. In Basic, the output will look like: 1.E-5 Defin ite-Length Block Response Data Definit e-lengt h b lock res ponse data, also refe red t o as block dat a, allows any type o f device-depende nt data t o be transm it[...]

  • Seite 45

    Multiple Queries You can send mult iple que ries to the logic anal yzer within a singl e program message, but y ou must also read t hem back wit hin a singl e program m essag e. This can be accomplishe d by ei ther reading them b ack into a string variable or into mul tiple nume ric variable s. Example You can read t he result of the que ry :SYSTEM[...]

  • Seite 46

    Instrument Stat us Status re gist ers track the current status of the l ogic analyz er. By checki ng the inst rument s tatus , yo u can find out whether an operatio n has bee n complet ed, whe ther the instrument is receivi ng trigge rs, and more . Chapter 6, "St atus Report ing," ex plains ho w to check the st atus of the instrument . In[...]

  • Seite 47

    2 Programming Over GPIB[...]

  • Seite 48

    Introd uction This secti on describ es the interface fu nctions and some gener al con cepts of th e GPIB. In gene ral, these fu nctio n s are defin ed by IEEE 488 .1 (GPIB bus s tandard). The y deal wi th gene ral b u s management issu es, as well as messag es which can be sent o ver th e bus as bu s commands. 2– 2[...]

  • Seite 49

    Interface Capabilities The interface capabi lities of the 1 660- series lo gic analyzers, as defined b y IEEE 48 8.1 are SH1, AH1, T5 , TE0, L 3, LE0 , SR1, RL1 , PP 0, DC1, DT1 , C0, and E2. Com mand and Data Concept s The GPIB has two m odes of operat ion: command m ode and data mode . The bus is in command mode when t he ATN l ine is true. The c[...]

  • Seite 50

    If the co ntro ller addresse s the instrume nt t o talk, i t will re main configure d to talk unt il it receives: • an interface clear m essage (IF C) • another i nstrum ent’s talk addres s (O TA) • its own lis ten address (ML A) • a universal unt alk (UNT) command. If the co ntro ller addresse s the instrume nt t o listen, it will remain[...]

  • Seite 51

    Example F or exam ple, if the ins trument addre ss is 4 and the int erface sele ct code i s 7, the inst ructi on will caus e an actio n in the i nstrument at device addre ss 704 . D EV IC E AD DR ES S = (I nt er fa ce S el ec t Co de ) X 10 0 + (I ns tr um en t Ad dr ess) Local, Remote, and Local Lockou t The local, remote, and remot e with lo cal [...]

  • Seite 52

    Bus Commands The follo wing commands are IEEE 488.1 bus co mmands (A T N t rue). IEEE 488.2 de fines many of t he actions which are tak en when the se commands are received b y the l ogic analyz er. Device Clear The device cle ar (DCL ) or s elected de vice clear ( SD C) comm ands clear the input and o utput b uffers, reset t he parser, cle ar any [...]

  • Seite 53

    3 Pro gramm ing Over R S-232C[...]

  • Seite 54

    Introd uction This chap ter des cribes the interface fun ction s and some general con cepts of the RS-23 2C. The RS-23 2C inte rface on this ins trume nt i s Agilen t Te chnolog ies’ impleme ntation o f EIA Reco mmen ded Stand ard RS-232C , "Interf ace Between Data Termi nal Equipm ent and D a t a Communications Equipmen t Emplo y ing Serial[...]

  • Seite 55

    Interface Operation The 166 0-series lo gic analyzers can be prog rammed with a control ler over RS-232 C using either a minimum t hree-wire o r exte nded hardwire int erface. The operati on and e x act connect ions for these int erfaces are de scribed i n more det ail in the fo llowing secti ons. When yo u are programming a 1660-se ries lo g ic an[...]

  • Seite 56

    Minimu m Three-Wire Interface with Software Protocol With a three-wire interface, the soft ware ( as compare d to int erface hardware) co ntro ls the dat a flow b etween t he logi c analyzer and the control ler. The t hree-wi re interface provides no hardware means t o cont rol data flow betwee n the cont roller and the log ic analyze r. Therefore,[...]

  • Seite 57

    • Pin 7 SGND ( Signal G round) • Pin 2 TD (Transmi t Dat a from logic anal yzer) • Pin 3 RD (Re ceive Dat a int o log ic analyze r) The additio nal lines y ou use depe nds on yo ur cont roller’ s implementat ion of the exte nded hardwire int erface. • Pin 4 RTS (Reque st To Send) is an o utput fro m the lo gic analyzer whi ch can be used [...]

  • Seite 58

    Cable Examples HP 900 0 Series 300 Figure 3-1 is an exampl e of how to conne ct t he 1660- series lo gic analyzer t o the H P 9862 8A Interface card of an H P 90 00 series 300 co ntro ller. F or mo re informati on o n cabling , refer to the reference m anual fo r your speci fic control ler. Because thi s ex ample do es not have the co rrect connect[...]

  • Seite 59

    Figu re 3 -2 25- pin (F) to 25-pi n (M) Cable Figure 3-3 sho ws the s chematic o f a 2 5-pin male to 25-pi n male cab le 5 meters in le ngth. The fo llowing cabl e suppo rts thi s configurat ion: • HP 13 242G , D B-2 5(M) t o D B-2 5(M) , 5 m ete r Figu re 3-3 25-p in (M ) to 2 5-pin (M ) Cable Pr ogramming O ver RS-23 2C Cable Ex ampl es 3–7[...]

  • Seite 60

    Figure 3-4 sho ws the s chematic o f a 9 -pin female to 25-pin male cabl e. The followi ng cab les suppo rt this configuratio n: • HP 24 542G , DB -9( F) t o DB-25 (M) , 3 me te r • HP 2454 2 H , DB- 9(F ) to D B-25( M), 3 met er, shiel ded • HP 4591 1-600 09, DB- 9(F ) to DB-25 (M), 1.5 met er Figu re 3-4 9 -p in (F ) t o 25 -p in (M ) Ca bl[...]

  • Seite 61

    Interface Capabilities The baud rat e, stopbi ts, parity, pro tocol , and databits must be co nfigured exactl y the sam e for b oth the control ler and the log ic analyze r to pro perly communicat e o ver the RS-2 32C bus. The RS-232 C interface capabilit ies of the 16 60-se ries log ic analy zers are listed b elow: • Baud Rate: 1 10, 300 , 6 00,[...]

  • Seite 62

    The contro ller and the 1660 -series logic analyze r must b e in the same bit mode t o pro perly com municate over t he RS-2 3 2 C. This me ans that t he control ler m ust have t he capability to send and recei ve 8 bit data. See Al so For m ore inform ation o n the RS-232C int erface, refer t o the Agilent Technolo gies 1660-Seri es Lo gic Analyze[...]

  • Seite 63

    Lo ckout Com mand To lock out the front -panel cont rols, us e the SYSTem command LO CKout. When t his functio n is on, all contro ls (e xcept t he power s witch) are ent irely locked out. L ocal control can only be re stored b y sending the :LO CKout O FF command. Hint Cycli ng t he power wil l also re store l ocal cont rol, b ut this will also re[...]

  • Seite 64

    3– 12[...]

  • Seite 65

    4 Pro gramm ing an d Docu mentation Co nven tions[...]

  • Seite 66

    Introd uction This chap ter covers the programmin g conven tion s u sed i n programmin g th e instr ument, as well as the docu mentation con ventions used in th is man ual. Th is chap ter also con tains a d etailed descri ptio n of the comm and tree and command tree traver sal. 4– 2[...]

  • Seite 67

    Truncation Rule The truncatio n rule for the key words used i n headers and parame ters is: • If the lo ngfo rm has four o r fewer characte rs, there is no change in th e shortfo rm. Whe n the l ongform has m ore than fo ur characters t he shortfo rm is jus t the fi rst four charact ers, unles s the fo urth character i s a vowel. In t hat case o [...]

  • Seite 68

    Infinity Representation The represent atio n of infini ty is 9.9 E+37 fo r real numb ers and 32767 for integers . This is also the value returned when a measurement cannot b e made. Sequ ential and Over lapp ed Comman ds IEEE 48 8.2 m akes the distinct ion be tween seq uential and overlapped commands. Seq uential co mmands finish their tas k b efor[...]

  • Seite 69

    Not ation Conventions an d Definition s The follo wing convent ions are us ed in this manual when des cribing programming rules and ex ample. < > Angular b racket s enclos e words o r characters t hat are used to sym bolize a program co de parameter or a bus command ::= "is define d as." For ex ample, A : := B indicate s that A can [...]

  • Seite 70

    Comm and Types As shown in chapt er 1, "H eader Types, " there are three t ypes of headers. Each header has a correspondi ng co mmand type. This secti on shows how they rel ate to the com mand t ree. System Com man ds The syst em commands reside at the to p level o f the com mand t ree. These co mmands are al ways pars ab l e if they occu[...]

  • Seite 71

    The follo wing exam ples are writ ten using HP BASIC 6 .2 on a HP 900 0 Series 200/30 0 Cont roller. The quote d string i s place d on the bus, fo llowed b y a carriage ret urn and li nefeed (CRL F ). The three X s (XXX) shown in t his manual after an ENTER or O UTPUT st atement represents the device address required by your cont rol ler. Example 1[...]

  • Seite 72

    Figu re 4 -1 1660-S er ies Log i c A nalyzer Command Tree Programming and Doc umentat ion Conve ntions Tree Tra vers al Rules 4– 8[...]

  • Seite 73

    Figu re 4 -1 (c ontinu ed) 1660 -Series Log ic A nalyz er C ommand T ree ( cont inued) Programming and Doc umentat ion Conve ntions Tree T raversal Rules 4–9[...]

  • Seite 74

    Figu re 4 -1 (c ontinu ed) 1660 -Series Log ic A nalyz er C ommand T ree ( cont inued) Programming and Doc umentat ion Conve ntions Tree Tra vers al Rules 4– 10[...]

  • Seite 75

    Tab le 4-2 Alph abetic Command Cros s-Ref erence Command Sub system ABVOLt MARKe r ACC umulate SCH art, SW AVefor m, TWA Vefor m, DISPlay ACQ Mode TFORmat ACQuisit ion STRigger , SWA Veform, TTR i gger , TWAVe form ALL M EASure ARM MACHine ASSign M ACHine AUToload M MEMory AUTosc ale MODUL E LEVEL AVOLt MARKe r BASE SYMBo l BEEPer M ainframe BRA Nc[...]

  • Seite 76

    Tab le 4-2 (cont inued) Alph abetic Command Cros s-Ref eren ce (cont inued) Command Subs yste m INITialize MMEMory INPort INTermo dule INSert INTermo dule, SW AVeform , TWAVef orm , WLISt , DISP lay LABe l SFORmat , T FOR mat, DI SPla y LER Main f ra me LEVe l TRIGge r LEVelarm MACHine LINE COM Pare, SLISt , TLISt, WLI St LOA D MMEM or y LOC Kout M[...]

  • Seite 77

    Tab le 4-2 (cont inued) Alph abetic Command Cros s-Ref eren ce (cont inued) Command Sub system REMov e SFORmat , SLI St, SW AVefor m, SYM Bol, TFORmat , TLI St, TWAVef orm , D ISPlay RENam e MACHine RENam e MMEMory RESource M ACHine RISeti me MEASu re RMOD e Mainf rame RTC Mainf rame RUNTil COMPa re, SLIS t, TLISt, TW AVe f orm, MARKe r SELect M ai[...]

  • Seite 78

    Tab le 4-2 (cont inued) Alph abetic Command Cros s-Ref eren ce (cont inued) Com mand Set Organization The command s et for t he 166 0-serie s logic analyzers is di vided into 28 separate g roups: com mon comm ands, m ainframe comm ands, system commands and 23 set s of sub syste m commands. Each of t he 2 8 groups of commands i s des cribed in a sep[...]

  • Seite 79

    Subsystems There are 23 subsy stems i n this ins trument. In the co mmand tree (figure 4-1) t hey are sho wn as branches , wit h the no de above showing t he name o f the sub sys tem. O nly one subsyst em may be selected at a time. A t power o n, the com mand parse r is set t o the root of the command tre e; therefo re, no subsys tem is sele cted. [...]

  • Seite 80

    • TRIGge r - allows access to the o scill oscope’ s trigger funct ions . • WAVeform - used t o transfer waveform data from the oscilloscope to a contro ller. Program Examples The program e xamples in the fo llowing chapt ers and chapte r 36, "Prog ramming Example s," were wri tten o n an HP 9000 Seri es 200/3 00 control ler us ing t[...]

  • Seite 81

    5 Message Commun ication and System Functions[...]

  • Seite 82

    Introd uction This chap ter des cribes the operation of i nstrumen ts that o per ate in compl iance with the IEE E 4 88.2 (syn tax) s tandard . It is inten ded to give you en ough bas ic information ab out the IEEE 488.2 Stan dard to succes sfully p rog ram the log ic analyzer. Y ou can fin d addition al detailed in formation ab out the IE E E 488.[...]

  • Seite 83

    Protocols The proto cols of IEEE 48 8.2 define t he o verall scheme used by the cont roller and the ins trument t o comm unicate. This includes defi ning whe n it is appropriate for devices to tal k or liste n, and what happens when the pro tocol is not fol lowed . Fun ctional Elem en ts Before pro ceeding with the descriptio n of the protoco l, a [...]

  • Seite 84

    Protoco l Ov erview The instrume nt and cont roll er communicat e using <pro gram mess age>s an d <response mess age>s. These messages serve as t he contai ners i nto which sets of pro gram commands or inst rument respo nses are pl aced. <program message>s are s ent by the control ler t o the instrument , and <respons e message[...]

  • Seite 85

    Protoco l Ex ceptio ns If an error o ccurs during t he info rmation e xchange, the e xchange m ay no t be complet ed in a normal manne r. Some of the pro tocol e x ceptions are show n belo w. Comm and Erro r A com mand error wil l be re ported if the inst rument detects a sy ntax erro r or an unreco gnized command header. Execu tio n E r ro r An ex[...]

  • Seite 86

    Figu re 5 -1 Exampl e sy ntax di agram Messag e Commun ication an d System F unction s Sy ntax D iagrams 5– 6[...]

  • Seite 87

    Syntax Overview This overvie w is intended t o give a quick g lance at t he syntax defined b y IEEE 48 8.2. It will help y ou understand many o f the t hings about the syntax you need to kno w. IEEE 48 8.2 de fines the blocks use d to b uild mess ages which are sent to the instrument . A who le string of comm ands can t herefore b e bro ken up int [...]

  • Seite 88

    Figu re 5 -2 <pr ogram mes sage > Parse Tree Messag e Commun ication an d System F unction s Syn t ax Ov er vi e w 5– 8[...]

  • Seite 89

    Upper/Low er Case Equ i valen ce Upper and lo wer case le tters are equivalent. The mnemoni c SINGLE has the same sem antic meaning as the m nemonic single . <white spac e> <white space > is defined to be o ne or mo re characters fro m the A SCII set o f 0 - 3 2 decimal, e x cluding 10 deci mal (N L). <whi te space> is use d b y s[...]

  • Seite 90

    Suffix Unit The suffi x units that the ins trument wi ll accept are sho wn in t able 5 -2 . Tab le 5-2 <suf fix unit> Suf fix Ref erence d Unit V Volt S Second Messag e Commun ication an d System F unction s Syn t ax Ov er vi e w 5– 10[...]

  • Seite 91

    6 Status R eporting[...]

  • Seite 92

    Introd uction Statu s rep orting al lows you to use in formation ab out the ins trume nt in you r p rograms, so that y ou have better con trol of the meas ureme nt proces s. For examp le, you can use s tatus rep orti ng to d etermin e whe n a me as u rement is compl ete, thu s contro lling y our pr ogram, so that it does no t get ahead of the i nst[...]

  • Seite 93

    Figu re 6 -1 Stat us B yte Stru cture s and Conce pts Stat us Repor ting 6–3[...]

  • Seite 94

    Event Status Register The Event St atus Registe r is an IEEE 488. 2 defined re gist er. The b its in this registe r are "latche d." That is , once an event happens which set s a b it, that bit will only b e cleared if the regis ter is re ad. Service Request Enable Register The Service Reques t Enable Register is an 8-b it register. Each b[...]

  • Seite 95

    MSG - m essag e Indicates whe ther there is a message in the me ssage q ueue (N o t implement ed i n the 1660 -series logic analy zers). PO N - po we r on Indicates po wer has b een turned o n. URQ - user requ est Always ret urns a 0 from t he 166 0-serie s logic analyz er. CME - co mman d err or Indicates whe ther the parser de tected an error. Th[...]

  • Seite 96

    LCL - remot e to lo cal Indicates whe ther a remo te to lo cal transit ion has occurred. MSB - m o dule su mma ry bit Indicates t hat an enable event in o ne of t he mo dules Stat us regist ers h as occurred. Key Features A few of the mos t import ant feature s of Stat us Re porting are listed in the followi ng paragraphs. Operatio n Co m p lete Th[...]

  • Seite 97

    Fi g ur e 6- 2. Servi ce R eque s t Enabli ng Serial P oll The 166 0-series l ogic anal yzer suppo rts the IEEE 4 88. 1 serial poll feat ure. When a s erial poll of the inst rument is request ed, t he RQS b it is returned o n bit 6 of the st atus byte . Stat us Repor ting Serial Po ll 6–7[...]

  • Seite 98

    Using Ser ial Po ll (GPI B) This exam ple wi ll show ho w to us e the se rvice re quest by conduct ing a seri al poll o f all inst ruments o n the GPIB b us. In t his ex ample, assum e that t here are two inst ruments on the bus: a Log ic Anal yzer at address 7 and a print er at address 1. The program co mmand for serial poll using HP BASIC 6 .2 is[...]

  • Seite 99

    7 Error M essages[...]

  • Seite 100

    Introd uction This chap ter lists th e error messages that relate to th e 1 660-serie s log ic analyzers . 7– 2[...]

  • Seite 101

    Device Dependent Er r ors 200 Labe l no t fou nd 201 Pat tern stri ng inval id 202 Quali fier i nvalid 203 Dat a not availabl e 300 RS-232C e rror Comma nd Errors –100 Co mmand error ( unknown co mmand) (generic erro r) –101 Invali d character recei ved –110 Co mmand header erro r –111 Header delimite r error –120 Numeri c argument e rror[...]

  • Seite 102

    Execution Errors –200 Can No t Do ( generic ex ecution error) –201 Not ex ecutab le in Lo cal Mode –202 Settings l ost due to ret urn-to-local o r po wer on –203 Trigg er ig nored –211 Legal co mmand, but s ettings conflict –212 Arg ument out of range –221 Busy doi ng somet hing else –222 Insufficient capabilit y o r configurat ion [...]

  • Seite 103

    –321 RO M checksum –322 Hardware and F irmware i ncompatible –330 Power on tes t failed –340 Self Test failed –350 Too Many Errors (Error queue o verflo w) Query Er r ors –400 Query Error (g eneric) –410 Query INTERRU PTED –420 Query UNTERMINATED –421 Q uery receive d. Indefinit e blo ck respons e in progre ss –422 Addressed to [...]

  • Seite 104

    7– 6[...]

  • Seite 105

    Pa rt 2 Mainframe C ommands[...]

  • Seite 106

    [...]

  • Seite 107

    8 Com mon Command s[...]

  • Seite 108

    Introd uction The common command s are d efined by th e IE EE 488 .2 stand ard . These command s must b e s u p ported by all instru ments that comply with this s tandard . Refer to figure 8-1 and table 8-1 for the comm on commands s yntax d iagra m . The common command s contro l some of th e b asic in stru ment fun ctions; such as , ins trument i[...]

  • Seite 109

    Example I f the program mes sage in this e xampl e is re ceived b y th e logic anal yzer, it wil l initial ize th e disk and store the fi le and clear the status information . T hi s i s not b e the cas e if some o ther type of co mmand is received with in the pr o gram message . ": MM EMOR Y: IN IT IALI ZE ;* CL S; STO RE ’ FI LE ’ , ’ [...]

  • Seite 110

    Figu re 8 -1 Common C ommands Sy n tax Di agram Common Command s 8– 4[...]

  • Seite 111

    Tab le 8-1 Common Command Parameter Valu es Par ameter Val ues mask An intege r, 0 thro ugh 255 . pre_mas k An integer, 0 t hrough 6 5535. *CLS ( Clear Status) Command *C LS The *CLS commo n co mmand clears al l event s tatus reg isters, queues, and data struct ures, includi ng t he device defi ned error q ueue and st atus by te . If the *CLS co mm[...]

  • Seite 112

    *ESE ( Event S tatus E n able) Command *ES E <m as k> The *ESE command set s the Standard Event St atus Enab le Regis ter bits. The Standard Event St atus Enab le Regist er co ntains a b it to e nabl e the status indicat ors detai led in tab le 8-2. A 1 in any b it pos it i on of t he St andard Event St atus Enable Re gister e nabl es the co [...]

  • Seite 113

    Tab le 8-2 Standar d Ev ent Sta tus En able Regi ster B it Po s iti o n B it W e ight En ab le s 7 128 PON - Power O n 6 64 URQ - Use r Req ues t 5 32 CME - Co mmand Error 4 16 EXE - Exe cu t ion Error 3 8 DDE - Dev ice Depe ndent Erro r 2 4 QYE - Quer y Er ror 1 2 RQC - Request Control 0 1 OPC - Operat ion Complete *ESR ( E ven t Status R egister)[...]

  • Seite 114

    Table 8 -3 shows the Standard Event Status Re gister. The tabl e det ails the meaning o f each b it po si tion in t he Standard Event Status Regis ter and the bit weight . When you read St andard Event St atus Register, the value returned is the t otal bit weight of all the bi ts that are hi gh at the time y ou read the b yte. Tab le 8-3 The Stan d[...]

  • Seite 115

    *IDN (I d entificat ion Numbe r) Query *I DN ? The *IDN? q uery allo ws the i nstrum ent to ident ify its elf. It returns the string: "H EW LETT -P AC KA RD,1 66 0A ,0 ,R EV < re vi si on _cod e> " An *IDN ? que ry must be the last query i n a message . Any q uerie s after t he *IDN? in the program mes sage are ignored. Returne d F [...]

  • Seite 116

    Example OUT PU T XX X; "* IS T? " Figu re 8 -2 *IST Dat a Struc ture Common Command s *IST ( Indivi dual Sta tus) 8– 10[...]

  • Seite 117

    *OPC (Operation Complete) Command *O PC The *OPC command will cause the instrument to se t the operat ion compl ete bit in t he St andard Event St atus Regis ter when all pending device ope rations have finished. The commands which affe ct this b it are the overlapped commands. An o verlapped com mand is a co mmand that allows ex ecutio n of subseq[...]

  • Seite 118

    *OPT (Option I dentif ication) Query *O PT ? The *OPT q uery identifie s the so ftware inst alled in t he 166 0-serie s logic analyzer. This que ry ret urns nine parame ters. The first paramet er indicate s whether yo u are in the sy stem. The nex t two parameters indicate any software options installe d, and the ne xt parame ter indicat es whether[...]

  • Seite 119

    *PRE (Parallel Poll E n able Register Enable) Command *PR E <m as k> The *PRE co mmand s ets the parallel po ll regist er enabl e bit s. The P arallel Poll Enable Regis ter cont ains a mask value that is ANDed wit h the bits in the Status Bi t Re gister t o enab le an "ist " duri ng a parallel poll. Refer t o table 8 -4 for the bits[...]

  • Seite 120

    Tab le 8-4 1660 -Series L ogic Anal yzer Par al lel Poll Ena ble Regist er B it Po s iti o n B it We ig ht E n ab le s 15 -8 Not use d 7 12 8 Not use d 6 64 MSS - M aster Summa ry Status 5 3 2 ES B - Eve n t St at us 4 16 MAV - M essag e Available 3 8 LCL - L ocal 2 4 Not used 1 2 Not used 0 1 MSB - M odule S ummary *RST ( Reset) The *RST command i[...]

  • Seite 121

    *SRE (Service Request Enable) Command *SR E <m as k> The *SRE command sets t he Service Req uest E nable Reg ister b its. The Service Request Enable Registe r contains a mask value for the bi ts to b e enabled in t he Status Byte Regi ster. A one in the Se rvice Reque st Enab le Registe r will enab le the corres ponding bit in the St atus Byt[...]

  • Seite 122

    Tab le 8-5 1660 -Series L ogi c Anal yzer Ser v ice Re ques t Enable Re gist er B it Po s iti o n B it We ig ht E n ab le s 15 -8 not us ed 7 12 8 not us ed 6 64 MSS - Mas t er Summa ry Sta t us ( always 0) 5 3 2 ES B - Ev en t St at us 4 16 MAV - Mes sage Ava ilable 3 8 LCL- L ocal 2 4 not u sed 1 2 not u sed 0 1 MSB - Modu le Summar y *ST B (Stat[...]

  • Seite 123

    Tab le 8-6 The Stat us B yte Reg i ste r Bit Pos ition B it Weight Bit Name Cond it ion 7 128 0 = not Us ed 6 64 MSS 0 = instrumen t has no r eason f or service 1 = instrumen t is reque sting se r vic e 5 32 ESB 0 = no even t statu s condition s have occ ur red 1 = an e nabled e vent sta t u s condition h as occur red 4 16 MAV 0 = no o utput mess a[...]

  • Seite 124

    *TS T (Te st) Query *T ST ? The *TST que ry returns t he re sults of the power-up se lf-test . The result of that t est is a 9-bi t mapped value which is place d in the o utput q ueue. A one in the co rrespo nding bit m eans that the test failed and a z ero in t he correspondi ng b it means that the t est passed. Re fer to tab le 8-7 for the meanin[...]

  • Seite 125

    *WA I (W a it) Command *W AI The *WAI co mmand caus es the de vice to wait until complet ing all of the overlapped co mmands b efore execut ing any furthe r commands o r queries. An overlappe d com mand is a co mmand that allows ex ecutio n of sub sequent commands whi le t he device o perations initiat ed by t he o verlapped com mand are stil l in [...]

  • Seite 126

    8– 20[...]

  • Seite 127

    9 Mainframe C ommands[...]

  • Seite 128

    Introd uction Mai nframe comman d s con trol the bas ic op eration of the in strument for th e 1660-s eries l ogic analyze rs. Th e 1660-se ries logic an alyzer s are simi lar to a 16 500A logic an alysis sy stem with e ither a s ingle logi c anal yzer modul e (1660A) o r on e logic analy z e r and o ne oscillos cop e modu le (1 660AS) installe d. [...]

  • Seite 129

    Figu re 9 -1 Mainf rame C ommands Syntax Diagr am Mainframe Comman ds 9–3[...]

  • Seite 130

    Figu re 9 -1 (c ontinu ed) Mai n f rame C ommands Synt ax Di agram ( cont inued) Mainfr ame Commands 9– 4[...]

  • Seite 131

    Tab le 9-1 Mainframe Parameter Values Par ameter Val ues value An intege r from 0 t o 65535. module An int eger 0 t hrough 2 (3 t hroug h 10 u nus ed). menu An intege r. enable_v alue An intege r from 0 t o 255. index An intege r from 0 t o 5. day An intege r from 1 throug h 31 month An intege r from 1 throug h 12 year An intege r from 1 990 thro u[...]

  • Seite 132

    BEE Per Command :B EE Pe r [{ ON|1 }| {O FF |0}] The BEEPe r command se ts the be eper mode, which turns t he bee per sound of the instrument on and off. When BE EPer is sent with no argume nt, the beeper will be so unded without affecting the current mode. Example OUT PU T XX X; ": BE EP ER "O UT PU T XX X; ": BE EP O N" Query [...]

  • Seite 133

    CAPabilit y Query :C AP ab il ity? The CAPab ility que ry returns t he HP-SL ( H P System Language) and lo wer level capab il ity sets im plemented in the devi ce. Table 9 -2 list s the capab ility sets i mplemente d in the 1 660- series lo gic analyzers . Returne d Format [:CA Pabi lity ] IE EE 488, 1987 ,SH1 ,AH1 ,T5, L4,S R1,R L1,P P1,D C1,D T1,[...]

  • Seite 134

    CARDcage Query :C AR Dc ag e? The CARDcage query re turns a seri es of int egers which identify t he module s that are installed in t he mainframe. The ret urned string is in two parts. The first five two-digit numbers i dentify t he card type. The identificati on numbe r for the logic analy zer is 32 . The ident ification number fo r the oscillo s[...]

  • Seite 135

    CESE (Co mbin ed Event Status Enable) Command :C ES E <v al ue> The CESE com mand sets the Combine d Event St atus Enab le register. This registe r is the enab le re gister fo r the CESR register and contains the combi ned status of all o f the MESE (Module Event St atus Enable) registers of the 1 6 60-seri es logi c analyzer. Table 9 -3 lis [...]

  • Seite 136

    CESR ( Combined Event Status Register) Query :C ES R? The CESR que ry ret urns the conte nts of the Co mbined Event Stat us regist er. This regist er contai ns the co mbined s tatus o f all of the ME SRs (Modul e Event Stat us Regist ers) o f the 1 660-s eries lo gic analyzer. Table 9-4 l ists t he bit values for the CESR reg i ster. Returne d Form[...]

  • Seite 137

    EOI ( End Or Identify) Command :EO I {{ ON |1 }| {O FF |0 }} The EOI co mmand specifies whe ther or not the last byte of a reply from the instrument is to be s ent with the EOI b us contro l line se t true o r not. If EO I is turned off, the logic analy zer will no long er be s ending IEEE 4 88.2 compliant responses. Example OUT PU T XX X; ": [...]

  • Seite 138

    LOCKout Command :LO CK ou t {{ ON |1 }| {O FF |0 }} The LOCK out command lo cks out o r restore s front panel o peration. When this funct ion is o n, all co ntrols ( except the po wer switch) are enti rely lock ed out. Example OUT PU T XX X; ": LO CK OU T ON " Query :L OC Ko ut ? The LOCK out query re turns the current status o f the LOCK[...]

  • Seite 139

    Example OUT PU T XX X; ": ME NU 0 ,1 " Tab le 9-5 Menu Par ameter Val ues Paramet ers Menu 0,0 System RS-23 2 /GP I B 0,2 Sy stem Disk 0,3 System Ut ilities 0,4 Sy s tem Tes t 1,0 Analyzer Con figuration 1,1 Format 1 1,2 Format 2 1,3 T rig ge r 1 1,4 T rig ge r 2 1,5 Wavefo rm 1 1,6 Wavefo rm 2 1,7 Listing 1 1,8 Listing 2 1,9 Mixed 1,10 C[...]

  • Seite 140

    Query :M EN U? The MENU query returns the current menu s election. Returne d Format [:ME NU] <m odul e>,< menu ><NL > Example OUT PU T XX X; ": ME NU ?" MESE<N> ( Module Event Status Enable) Command :ME SE <N > <e na bl e_ va lu e> The MESE com mand sets the Module Event Status Enable re gister. This re[...]

  • Seite 141

    Tab le 9-6 1660 -Series Main frame (I ntermod ule) M odule Ev ent St atus E nable Reg i ste r B it Po s iti o n B it We ig ht E n ab le s 7 12 8 not us ed 6 84 not us ed 5 32 not us ed 4 16 not us ed 3 8 not u sed 2 4 not u sed 1 2 RNT - I n t e r module R un Unt il S atisfied 0 1 MC - Int ermodule M easurement Complete Tab le 9-7 1660 -Series Logi[...]

  • Seite 142

    Tab le 9-8 1660 -Series O scillo scope M odule E vent St atus Enab le Regist er B it Po s iti o n B it We ig ht E n ab le s 7 12 8 not us ed 6 84 not us ed 5 32 not us ed 4 16 Number of ave rages met 3 8 Auto t riggere d 2 4 Tr igg er r ece ive d 1 2 RNT - Run Unt il Satis fied 0 1 MC - Meas urement Complete MESR<N> ( Module Event Status Regi[...]

  • Seite 143

    Tab le 9-9 1660 -Series L ogic Anal yzer Main fr a me Module Ev ent Status Reg i ster B it Bit W e ig ht B it N ame C ond it io n 7 128 0 = not us ed 6 64 0 = not us ed 5 32 0 = not us ed 4 16 0 = not us ed 3 8 0 = not us ed 2 4 0 = not us ed 1 2 RNT 0 = Intermodule Ru n until not sat i sf i ed 1 = Int ermodule Run unt il sat i sf i ed 0 1 MC 0 = I[...]

  • Seite 144

    Ta bl e 9- 11 1660 -Series O sci l loscope M odule E v ent St a tus Register B it Bit W e ig ht B it N ame C ond it io n 7 128 0 = not us ed 6 64 0 = not us ed 5 32 0 = not us ed 4 1 6 1 = Numb er o f av erages satisfied 0= N umber of av erages not sat isfie d 3 8 1 = Auto trigger received 0= A uto tr igger not received 2 4 1= Trigger received 0= T[...]

  • Seite 145

    Query :R MO De ? The query returns the current setti ng. Returne d Format [ :R MO De ] {S IN Gl e| RE Pe ti ti ve }< NL > Example OUT PU T XX X; ": RM OD E? " RTC ( Real-tim e Clock) Command :RT C {< da y> ,< mo nt h> ,< ye ar >, <h ou r> ,< mi nu te >, <s econ d> |D EF ault } The real-ti me clock[...]

  • Seite 146

    Query :R TC ? The RTC query returns the real-time clo ck setting . Returne d Format [ :R TC ] <d ay >, <m on th >, <y ea r> ,< ho ur >, <m in ut e> ,< se co nd > Example OUT PU T XX X; ": RT C? " SELect Command :S EL ec t <m odul e> The SELect command selects which module ( or system) will have pa[...]

  • Seite 147

    Query :S EL ec t? The SELect? query returns t he current mo dule selectio n. Returne d Format [:SE Lect ] <mod ule> <NL> Example OUT PU T XX X; ": SE LE CT ?" Figu re 9-2 Selec t Command Tr ee No t Us ed Mainframe Comman d s SEL ect 9– 21[...]

  • Seite 148

    SET Color Command :S ET Co lo r {<co lo r> ,< hue> ,< sa t> ,<lu m> |D EF ault } The SETColor command is used t o change one of t he selections on the CRT, or to return to the defaul t screen co l ors. F our parame ters are s ent with the command t o change a colo r: • Color N umber (first parameter) • Hue ( second param[...]

  • Seite 149

    ST A Rt Command :S TA Rt The STARt com mand starts the sel ected mo dule (or Inte rmodule) running in the specified run mode ( see RMOD e). If the spe cified module is in th e Intermodul e configuration, then the Inte rmodule run wi l l be started. The STARt command is an overlapp ed command. A n ove rlapped co mmand is a command th at allows ex ec[...]

  • Seite 150

    ST OP Command :S TO P The STOP command st ops the selected module ( or Interm odule). If t he specified m odule is in t he Intermodule co nfiguratio n, then t he Intermo dule run will be stopped. The STOP c ommand is an ov erlapped command. A n overla pped comman d is a command th at allows ex ecution of s ubseq uent comma nds while the d evice ope[...]

  • Seite 151

    10 SYSTem Su bsyst em[...]

  • Seite 152

    Introd uction SYSTem su b sys tem commands co ntrol fun ctions that ar e common to the en tire 1660 - Seri es logi c analysi s s ystem, in cluding for m atting query res ponses a nd enabli ng reading and wri ting to th e advis ory lin e of th e instr ument. T he command parser in the 1660 -seri es logi c anal yzer is des igned to accept p rogra ms [...]

  • Seite 153

    Figu re 10 -1 System Subsystem Commands S yn tax Diagram SYSTem Sub s ys tem 10 –3[...]

  • Seite 154

    System Subsystem Commands S yn tax Diagram (Contin ued) Tab le 10 -1 SYSTem Paramet er Values Par ameter Val ues block_da t a Data in I EEE 488.2 format . strin g A str ing of u p to 68 alph anumeric cha racters . SYSTem Subs ystem 10 –4[...]

  • Seite 155

    DATA Command :S YS Te m: DATA < bl oc k_da ta > The DATA command allows you t o send and re ceive acqui red dat a to and from a co ntroller in block fo rm. This helps s aving block data for: • Reloading t o the logic anal y zer or os cillosco pe • Proces sing data l ater in t he logic analyzer o r oscill oscope • Proces sing data i n th[...]

  • Seite 156

    Query :S YS Te m: DATA ? The SYSTem:DA TA query re turns the block data. The dat a sent b y the SYSTem:DATA query reflects the configurati on of the machi nes when the last run was performed. Any changes made s ince then throug h either front-panel operations o r programmi ng commands do no t affect the sto red configurati on. Returne d Format [ :S[...]

  • Seite 157

    ERR or Query :SY ST em :E RR or ? [N UM er ic |S TR in g] The ERRor query returns the oldest error from the error q ueue. The optio nal parameter de termines whethe r the erro r string should be ret urned along wi th the erro r number. If no parameter is rece ived, or if the parameter is NUMeri c, then o nly the e rror numbe r is returne d. If the [...]

  • Seite 158

    HEADer Command :SY ST em :H EA De r {{ ON |1 }| {O FF |0 }} The HEAD er comm and tells the inst rument whet her or not t o output a header for q uery responses . W hen HEAD er is set to ON , query responses will include the command heade r. Example OUT PU T XX X; ": SY ST EM :H EA DE R ON " Query :S YS Te m: HEAD er ? The HEAD er que ry r[...]

  • Seite 159

    LONGform Command :S YS Te m: LONG fo rm { {ON| 1} |{ OF F|0} } The LON Gform command s ets the lo ngform variable , which tel ls t he instrument how to fo rmat que ry response s. If the LONGfo rm command i s set to OF F , com mand headers and alpha argume nts are se nt from the i nstrument in the ab breviated fo rm. If t he the LON Gform co mmand i[...]

  • Seite 160

    PR INt Command :S YS Te m: PRIN t {A LL |P ARTi al ,< st art> ,< en d> }, DI SK,< pa th na me> :S YSTe m: PR IN t SCRe en {B TI F|CT IF |P CX |EPS }, DI SK,< pa th na me> The PRIN t command initiate s a print o f the scre en or lis ting buffer o ver th e current P RINTER comm unication i nterface to t he printer o r to a fil[...]

  • Seite 161

    The print q uery shoul d NOT b e sent with any othe r command or q uery on t he same com mand line. The print query never ret urns a header. Also , since response data from a print query may b e sent di rectly t o a printe r without modificat ion, the data is not returne d in blo ck mode . Example O UTPU T 707; ":SY STEM :PRI NT ? SCRE EN"[...]

  • Seite 162

    The tot al length of a section is 16 (fo r the sectio n header) plus the l ength of the sect i on data. So when calculati ng the value for <length> , don’t forget to incl ude the le ngth of t he section he aders. Example OUT PU T XX X US IN G "# ,K "; ": SY ST EM :S ET UP " <blo ck _d at a> Query :S YS te m: SETu p[...]

  • Seite 163

    11 MMEMory S u bs ystem[...]

  • Seite 164

    Introd uction The M MEMory (mass memory) sub system co m man d s pr ovide acces s to d isk drive. The 16 00-series lo gic analyzer s suppo rt both LIF (Logical Information For mat) and DOS (Dis k Operati n g System) formats. The 16 60-series logic an alyzers h ave only one d is k d r ive; howe ver, programs written for the 165 00A log ic analys is [...]

  • Seite 165

    <msus > refers t o the mass stora ge unit s pecifier ; however, it is not nee ded for the 166 0-series logic ana lyzers since t hey have o nly one driv e. The <msus > paramete r is shown in t he command sy ntax ex amples as a reminder that for the the 165 00A log ic analysis system can be used on the 16 60-ser ies logic a nalyzers . If [...]

  • Seite 166

    Figu re 11 -1 Mmemor y Sub s yst em Commands Syntax Diagram MMEM o ry Subs ystem 11 –4[...]

  • Seite 167

    Figu re 11 -1 Mmemor y Subsy s tem Commands Syntax Diagram (Contin ued) MMEM o ry Sub s ys t em 11 –5[...]

  • Seite 168

    Figu re 11 -1 Mmemor y Sub s yst em Commands Syntax Diagram (Contin ued) MMEM o ry Subs ystem 11 –6[...]

  • Seite 169

    Tab le 11 -1 MMEM o ry Para meter Val u es Par ameter Values auto_ file A st ring of u p to 1 0 alphanume ric cha racters f or LI F in the following form: "NNNNNNNNNN" or A st ring of up to 12 alphanume ric cha ra cte rs for DOS in the following form: "NNNNNNNN.NNN" msus Mass St o rage Unit specifier (not neede d by 166 0-series[...]

  • Seite 170

    AUTo load Command :M ME Mo ry :AUT ol oa d {{ OFF| 0} |{ <a uto_ fi le >} }[,< ms us >] The AUTolo ad command contro l s the autoload feature which designat es a set of config uration files t o b e l o aded automat ically t he next time t he instrum ent is turned on. The O FF paramet er (or 0) dis ables t he autol oad feature. A string [...]

  • Seite 171

    <auto_file> A string of up to 1 0 alphanumeric characters for LIF in the fo l lowing form: NNNNNNNNNN or A string of up to 1 2 alphanumeric characters for D OS i n the fol lowing fo rm: NNNNNNNN.NNN Example OUT PU T XX X; ": MM EM OR Y: AU TO LO AD ?" CATalog Query :M ME Mo ry :CAT al og ? [[ All, ][ <m su s>]] The CATalog q u[...]

  • Seite 172

    <msus> Mass Sto rage Unit Specifier ( not nee ded by 166 0-serie s. 1650 0A <msus> is accepted b ut no act ion is taken) . Returne d Format [:MM EMor y:CA Talo g] < bloc k_da ta> <block_data> ASCII blo ck cont aining < filename> <file_type> <file_description> Example 1 This exam ple is fo r sending t he CAT[...]

  • Seite 173

    <name> A string of up to 1 0 alphanumeric characters for LIF in the fo l lowing form: NNNNNNNNNN or A string of up to 1 2 alphanumeric characters for D OS i n the fol lowing fo rm: NNNNNNNN.NNN <new_name> A string of up to 1 0 alphanumeric characters for LIF in the fo l lowing form: NNNNNNNNNN or A string of up to 1 2 alphanumeric chara[...]

  • Seite 174

    <name> A string of up to 1 0 alphanumeric characters for LIF in the fo l lowing form: NNNNNNNNNN or A string of up to 1 2 alphanumeric characters for D OS i n the fol lowing fo rm: NNNNNNNN.NNN <msus> Mass Sto rage Unit Specifier ( not ne eded by 1 660 -series. 1650 0A <msus> is accepted b ut no act ion is taken) . <description[...]

  • Seite 175

    INI Tialize Command :M ME Mo ry :INI Ti al iz e [{LI F| DO S} [,<m su s> ]] The INITializ e command form ats the disk in eithe r LIF (Lo gical Informat i on Format ) or D OS ( Disk Operat ing System) . The <msus> is no t needed b y 1660 -series. 165 00A <msus> is accept ed but no action is taken. If no format i s specified, then t[...]

  • Seite 176

    LOAD [: CONF ig] Command :MM EM or y: LO AD [: CO Nf ig ] <n am e> [, <m su s> ][ ,< mo du le >] The LOAD command loads a co nfiguration file from the disk int o the l ogic analyzer, o scillo scope, s oftware o ptions, or the syst em. The <name> parameter s pecifies the fil ename from the disk . The opt ional <module> [...]

  • Seite 177

    LOAD :IASSembler Command :M ME Mo ry :LOA D: IA SS embl er < IA _nam e> [, <m sus> ], {1 |2 } [, <mod ul e> ] This variatio n of the LO AD co mmand allows inverse ass embler files to be loaded int o a mo dule that performs st ate analys is. The <IA_name> parameter s pecifies the inve rse assemb ler file name from t he desire[...]

  • Seite 178

    MSI (Mass Storage I s) Command :M ME Mo ry :MSI [ <m su s>] The MSI command selects a default mas s storag e device; ho wever, it is not needed b y 1660-s eries lo gic analyz ers becaus e they have only o ne disk dri ve. If the 1 6 5 00A <msus> is se nt to the 16 60-seri es logi c analyzer, it is accepte d but no action is take n. <m[...]

  • Seite 179

    PA CK Command :M ME Mo ry :PAC K [< ms us >] The PACK command packs t he files o n the LIF disk the disk in t he drive. If a DOS disk is in the drive when t he PACK command i s sent, no action is taken. <msus> Mass Sto rage Unit Specifier ( not nee ded by 1 6 6 0-serie s. 16 500A <msus> is accepted b ut no act ion is taken) . Exam[...]

  • Seite 180

    Example s O UT PU T XX X; ": MM EM OR Y: PU RG E ’ FI LE 1 ’ " O UT PU T XX X; ": MM EM :P UR G ’ FILE 1 ’ ,I NTER NAL0 " Once ex ecute d, the pur ge command p ermanent ly erases all the ex istin g informat ion about the specif ied file. A fter that , there is no way to re trieve the original inf ormation. REName Command[...]

  • Seite 181

    Example s O UT PU T XX X; ": MM EM OR Y: RE NA ME ’ OL DF IL E ’ , ’ NEWF IL E ’ " O UT PU T XX X; ": MM EM :R EN ’ OL DF IL E ’ [, IN TE RN AL 1] , ’ NE WF IL E ’ " STORe [:CONFig] Command :MM EM or y: ST OR e [: CO Nf ig ]< na me >[ ,< ms us >] , <d escr ip ti on >[,< mo du le >] The STO[...]

  • Seite 182

    Example s O UT PU T XX X; ": MM EM :S TO R ’ DE FA UL TS ’ , ’ SET UPS FO R ALL MO DULE S ’ " O UT PU T XX X; ": MM EM OR Y: ST OR E: CO NF IG ’ ST AT EDAT A ’ ,I NTER NAL0 , ’ AN AL YZ ER 1 C ON FI G ’ ,1 " The appro priate module de signator " _X" is added to all files wh en they are store d. "X&[...]

  • Seite 183

    Example 1 0 DI M Bl oc k$ [3 20 00 ] ! al lo ca te e no ug h me mo ry f or b lo ck d ata 2 0 DI M Sp ec if ie r$ [2 ] 30 OUT PUT XX X;": EOI ON " 40 O UTPU T XX X;": SYST EM H EAD OFF" 50 O UTPU T XX X;": MMEM ORY: UPLO AD? ’ FI LE 1 ’ " ! se nd u pl oa d qu er y 6 0 EN TE R XX X US IN G "# ,2 A" ;S pe ci[...]

  • Seite 184

    11 –22[...]

  • Seite 185

    12 INTermodule S u bs ys tem[...]

  • Seite 186

    Introd uction The INTer module s ubsystem co mmands specify intermodule arming from th e re ar-panel input BNC (ARMI N) or to the rear - pane l ou tput BNC (ARMOU T). Refer to figure 12-1 and table 12-1 for the INTermodul e Subsystem command s syntax diag ram. The INTermodul e commands are: • DELete • HTIMe • INPort • INSert • SK EW • T[...]

  • Seite 187

    Figu re 12 -1 Intermo dule Sub system Commands Syntax D i agra m INTermod ule Subsyste m 12 –3[...]

  • Seite 188

    Figu re 12 -1 Intermo dule Sub system Commands Syntax D i agra m (Co n tin ued) INTermo dule Subsyst em 12 –4[...]

  • Seite 189

    Tab le 12 -1 INTermo dule Para meter Val ues Par ameter Val ue module An intege r, 1 to 10 (3 thr ough 10 u nused) index An int eger, 1 t o 10 (3 t hroug h 10 u nused) setting A numeric, – 1.0 t o 1.0 in seconds. :INTermo dule Selector :I NTer mo dule The INTermo dule selector specifies IN Termodule as the sub syste m the commands o r queries fo [...]

  • Seite 190

    HT IMe Query :H TI Me ? The HTIMe q uery returns a value repres enting t he internal hardware skew i n the Inte rmodule configurat ion. If there is no internal s kew, o r if intermodule bus is not co nfigured, 9. 9E 3 7 is returned. The inter nal hardwar e ske w is only a display adjus tment f or time-co rrelated wavefo rms. The v alue ret urned is[...]

  • Seite 191

    Query :I NP or t? The INP ort query r eturns the current setting . Returne d Format [:IN Term odul e:IN Port ] {1|0 }<NL > Example OUT PU T XX X; ": IN TE RM OD UL E: IN PO RT ?" INS ert Command :I NS er t {< modu le >| OU T},{ GR OU P| <mod ul e> } The INSert command adds PO RT OUT t o the Interm odule configurati on. T[...]

  • Seite 192

    SKEW<N> Command :S KE W< N> <se tt in g> The SKEW command se ts the sk e w value for a module. The <N> index valu e is the module numb er (1 co rresponds to t he logic analyz er, 2 corresponds to the os cillosco pe, and 3 throug h 10 unused). The <setting> parameter is the skew se tting ( – 1.0 to 1.0 ) in se conds. [...]

  • Seite 193

    TR EE Command :T RE E <m od ule> ,< mo du le> The TREE comm and allo ws an inte rmodule se tup to be specified in one command. T he first parameter is t he intermodule arm value for mo dule A (logic analy z er). The second parameter co rresponds to the i ntermodule arm value for P ORT OUT. A –1 me ans the module is not in t he intermo[...]

  • Seite 194

    T TIM e Query :T TI Me ? The TTIMe query returns values representi ng the ab solute intermo dule trigger time for all of the m odules in the Interm odule confi guration. The first value is t he trigg er time for the m odule in s l ot A, the second value is for t he module i n slot B, t he third value is for slot C, etc. The value 9.9E3 7 is returne[...]

  • Seite 195

    Pa rt 3 Logic A nalyzer Command s[...]

  • Seite 196

    [...]

  • Seite 197

    13 MACHine S u bs ystem[...]

  • Seite 198

    Introd uction The M ACHine s ubs ystem contains the command s that co ntrol th e machin e level of operatio n of the logi c analyzer. The fun ctions of thr ee of these co mmands res i d e in th e S tate/Timi ng Con figuration menu. These commands are: • AS Si gn • NAM E • TY PE Eve n thou gh the functi on s of the fol lowin g comman d s resid[...]

  • Seite 199

    Figu re 13 -1 Machi ne S ubsys tem Synt ax D iagra m MACH ine Subsyste m 13 –3[...]

  • Seite 200

    Tab le 13 -1 Machi ne Paramet er Values Par ameter Val ues arm_so urce {R UN |INT ermo dule |MAC Hine {1|2 }} pod_ list {N ON E|<p od n um>[ ,<po d nu m>]. ..} pod_num {1 |2|3 |4|5 |6|7 |8} arm_leve l An int eger f rom 1 to 11 re p resen ting sequ ence lev el machin e_name A str ing of u p to 10 alph anumeric cha racters res_id <s ta[...]

  • Seite 201

    ARM Command :M AC Hi ne {1|2 }: AR M <a rm_s ou rc e> The ARM comm and specifies the arming source of the specifi ed analyze r (machine) . The RU N option disables the arm source. F or example, if you do not want to use ei t her the i ntermodule bus or the other m achine to arm t he current machine , you specify t he RUN opt ion. <arm_sour[...]

  • Seite 202

    Example OUT PU T XX X; ": MA CH IN E1 :A SS IG N 5, 2, 1" Query :M AC Hi ne {1|2 }: AS Si gn? The ASSign q uery returns which po ds are assi gned to the current analyzer (machine) . Returne d Format [:MA CHin e{1| 2}:A SSig n] < pod_ list ><NL > <pod_list> {NONE|<pod >#[, <pod >#]...} <pod># {1|2|3|4|5|[...]

  • Seite 203

    Returne d Format : [:MA CHin e{1| 2}:L EVel arm] <ar m_le vel> <NL> <arm_level> An integ er from 1 to 11 represent ing sequence level Example OUT PU T XX X; ": MA CH IN E1 :L EV EL AR M? " NAME Command :M AC Hi ne {1|2 }: NA ME <ma ch in e_ name > The NAME command allows y ou to assig n a name of up to 1 0 characte[...]

  • Seite 204

    REName Command :M AC Hi ne {1|2 }: RE Na me { <r es _i d>, <n ew _t ext> | DE Faul t} The REName command allows you to assi gn a specific name of up t o eight characters t o terms A throug h J, Range 1 and 2, and Timer 1 and 2 in t he state analyzer. In the timing analyzer, GLEDge ( glitch/ edge) 1 and 2 can be renamed in addi t ion t o[...]

  • Seite 205

    RESource Command :M AC Hi ne {1|2 }: RE So urce < re s_ term s> The RESource co mmand allows yo u to as sign reso urce terms A through J , Range 1 and 2, and Timer 1 and 2 to a parti cular analyze r (machine 1 or 2 ) . In the t iming analy zer only , two addit ional resourc e terms are a v ailable. T hese terms a re GL EDge (Glit c h/Edg e) 1[...]

  • Seite 206

    TY PE Command :M AC Hi ne {1|2 }: TY PE <an al yz er _typ e> The TYPE co mmand specifie s what type a s pecified analyz er (m achine) wil l be. The analyzer t ypes are s tate or ti ming. The TYP E command also allows you to turn off a particular machi ne. Only o ne timing an alyzer ca n be spe cified at a time. <analyzer_type> {OFF|STAT[...]

  • Seite 207

    14 WLISt Su bsyst em[...]

  • Seite 208

    Introd uction The WLISt subsyste m contai n s the command s availabl e for the Timin g/ S tate mixed mode di s play. The X and O m ar kers can only b e placed on the waveforms in the waveform portion o f the Timin g /State mixe d mode d isplay . The X STate an d OSTate queri es retu rn what state s the X an d O mar kers are on. B ecau se the marker[...]

  • Seite 209

    Figu re 14 -1 WLISt Subsyst em Syntax Di agram WLI St Subsys tem 14 –3[...]

  • Seite 210

    Tab le 14 -1 WLISt Parameter Valu es Par ameter Val ue delay_v alue Real number between − 2500 s and +2 500 s module _spec {1 |2 |3|4 |5|6 |7|8 |9|1 0} (slot where t iming car d is installed, 2 t h rough 10 un used) bit_id An intege r from 0 to 31 label_name S tring of up to 6 alp hanumeric ch a ract er s line_nu m_mid_screen An int eger from −[...]

  • Seite 211

    DELay Command :M AC Hi ne {1|2 }: WL IS t:DE La y <d el ay_v al ue > The DELay command specifies the amount o f t ime betwee n the ti ming trigger and the horizo ntal cent er of the the ti ming waveform display. The allowab le values fo r delay are − 2500 s to +2500 s. <delay_value> Real numb er between − 2500 s and +25 00 s Example[...]

  • Seite 212

    INS ert Command :M AC Hi ne {1|2 }: WL IS t:IN Se rt [ <mod ul e_ sp ec>, ] <l abel _n am e> [,{< bi t_ id >|OV ER la y| ALL} ] The INSert command inserts waveforms in the timing waveform displ ay. The waveforms are added from top to botto m up to a maximum of 96 wavefo rms. Once 9 6 waveforms are present , each tim e you insert a[...]

  • Seite 213

    LI N E Command :M AC Hi ne {1|2 }: WL IS t:LI NE < li ne_n um _m id _scr ee n> The LINE comman d allows y ou to scroll t he state analyzer listing vertically. The command s pecifies the st ate line number re lative to t he trigg er that t he analyzer highlights at the cente r of the screen. <line_num_mid_ screen> An integ er from − 81[...]

  • Seite 214

    OSTate Query :W LI St :O STat e? The OSTate query ret urns the s tate where the O Marker is positioned. If data is not valid, the query returns 3 276 7. Returne d Format [:WL ISt: OSTa te] <s tate _num ><NL > <state_num> An integ er from − 819 1 to +81 91 Example OUT PU T XX X; ": WL IS T: OS TA TE ?" OT IMe Command :W[...]

  • Seite 215

    Query :W LI St :O TIMe ? The OTIMe q uery returns the O Marke r positi on in ti me. If dat a is not valid, the q uery returns 9. 9E3 7. Returne d Format [ :W LI St :O TI Me ] <t im e_ va lu e> <N L> <time_value> A real numb er Example OUT PU T XX X; ": WL IS T: OT IM E? " RANGe Command :M AC Hi ne {1|2 }: WL IS t:RA NG e[...]

  • Seite 216

    REMove Command :M AC Hi ne {1|2 }: WL IS t:RE Mo ve The REMove co mmand delet es all wave forms from the displ ay. Example OUT PU T XX X; ": MA CH IN E1 :W LI ST :R EM OV E" XOTim e Query :M AC Hi ne {1|2 }: WL IS t:XO Ti me ? The XOTime query re turns the time from t he X marker to the O marker. If data is no t valid, the query ret urns [...]

  • Seite 217

    XSTate Query :W LI St :X STat e? The XSTate q uery returns the state where the X Marker is positioned. If dat a is not valid, the query returns 3 276 7. Returne d Format [:WL ISt: XSTa te] <s tate _num ><NL > <state_num> An integ er Example OUT PU T XX X; ": WL IS T: XS TA TE ?" XTI Me Command :W LI St :X TIMe < ti me[...]

  • Seite 218

    Query :W LI St :X TIMe ? The XTIMe que ry returns t he X Marke r positi on in ti me. If dat a is not valid, the q uery returns 9. 9E3 7. Returne d Format [ :W LI St :X TI Me ] <t im e_ va lu e> <N L> <time_value> A real numb er Example OUT PU T XX X; ": WL IS T: XT IM E? " WLISt Subsy s t em XTIMe 14 –12[...]

  • Seite 219

    15 SFORmat Subs ystem[...]

  • Seite 220

    Introd uction The S FORmat sub sy s tem contain s the co mmands availab le fo r the State Format menu in the 1660 A-series logic an alyzers. These commands ar e: • CLOCk • LAB el • MA ST er • MODE • MOPQual • MQU al • R EM ov e • SETHol d • SLA Ve • SOPQual • SQU al • THReshold 15 –2[...]

  • Seite 221

    Figu re 15 -1 SFORmat Subsystem Sy ntax Diagr am SFORma t Subsyste m 15 –3[...]

  • Seite 222

    Figu re 15 -1 SFORmat Subsy stem Sy ntax Di agram ( continue d) SFORma t Subsyste m 15 –4[...]

  • Seite 223

    Tab le 15 -1 SFORma t Parameter Val u es Par ameter Val ues <N> {{ 1| 2}|{ 3|4| 5|6} |{7| 8}} label_name S tring of up to 6 alp hanumeric ch a ract er s polarity {P OSit ive| NE Gati ve} clock_bit s Fo rmat (inte ger f rom 0 to 63) f o r a clock ( clocks ar e as signed in decreas ing order) upper_ bits Fo rmat ( i nte ger fr om 0 to 65 535) f[...]

  • Seite 224

    SFORmat Selector :M ACHi ne {1|2 }: SF OR mat The SFO Rmat (St ate F ormat) sel ector is used as a part o f a compound header to access the setti ngs in the State F ormat menu. It always foll ows the MACHine selecto r because it sele cts a branch direct ly below the MACH ine level in the command tre e. Example OUT PU T XX X; ": MA CH IN E2 :S [...]

  • Seite 225

    Query :M AC Hi ne {1|2 }: SF OR mat: CL OC k< N>? The CLOCk query re turns the current clock ing mode for a given pod. Returne d Format [:MA CHin e{1| 2}:S FORm at:C LOCK <N>] <cl ock_ mode ><NL > Example OU TPUT XXX ; ":MA CHIN E1:S FORM AT:C LOCK 2?" LABel Command :M AC Hi ne {1|2 }: SF OR mat: LA Be l <n ame&[...]

  • Seite 226

    <polarity> {POSitive|NEGative} <clock_bits> Format (int eger from 0 to 63) for a clock (clo cks are ass igned in decre asing order) <upper_bits> Format (int eger from 0 t o 65535) for a po d (pods are assigned in decreasing order) <lower_bits> Format (int eger from 0 t o 65535) for a po d (pods are assigned in decreasing ord[...]

  • Seite 227

    MASTer Command Sy ntax: :MAC Hi ne {1|2 }: SF OR mat: MA ST er <cl oc k_ id>, <c lock _s pe c> The MASTer clock command allows you to specify a mast er clock for a given machine. The master clock is used in all cl ocking modes (Maste r, Slave, and Demult iplexe d). Each command deals with onl y one clo ck (J,K ,L,M,N ,P); therefore , a [...]

  • Seite 228

    MODE Command :M AC Hi ne {1|2 }: SF OR mat: MO DE < acq_ mo de > The MOD E command al lows yo u to se lect the acquist ion mode of the state analyzer. The modes are e ither full- channel with 4 K bit of memory depth per channel or hal f-channel with 8 Kbit of m emory depth per channel. <acq_mode> {FULL|DEEPmemory} Example OUT PU T XX X;[...]

  • Seite 229

    MOPQual Command :M AC Hi ne {1|2 }: SF OR mat: MO PQ ua l <clo ck _p ai r_id >, <q ual_ op er at ion> The MOP Qual ( master o peration q ualifier) command al lows yo u to spe cify either t he AND o r the OR o peration b etween master clo ck qual ifier pair 1 and 2, or betwee n master cl ock qualifie r pair 3 and 4. For exampl e, you can[...]

  • Seite 230

    MQUal Command :M AC Hi ne {1|2 }: SF OR mat: MQ Ua l <q ual_ nu m> ,< cloc k_ id >, <qua l_ le ve l> The MQUal (mast er qualifier) command all ows you to specify t he level qualifie r for the master clo ck. <qual_num> {{1|2}|{3|4}} 1 thro ugh 4 fo r HP 16 60A, H P 1 661A, HP 1662A; o r, 1 or 2 for HP 1 663A. <clock_id>[...]

  • Seite 231

    REMove Command :M AC Hi ne {1|2 }: SF OR mat: RE Mo ve {<n am e> |A LL} The REMove co mmand allows yo u to de lete all labels or any one lab el for a given machine . <name> String o f up to 6 alphanum eric characters Example s O UT PU T XX X; ": MA CH IN E2 :S FO RM AT :R EM OV E ’ A ’ " O UT PU T XX X; ": MA CH IN E2[...]

  • Seite 232

    <pod_num> {{1|2}|{3|4}|{5|6}|{7|8}} 1 thro ugh 8 fo r the HP 1660A, 1 through 6 for t he HP 1661A, 1 thro ugh 4 for the HP 1 662A, and 1 through 2 for t he HP 16 63 A. <set_hold_ value> An integ er {0|1|2|3|4|5|6|7|8|9} represent ing the setup and hold values in t able 1 5-2. Tab le 15 -2 Setup an d hold v alues For one c lock and one e[...]

  • Seite 233

    SL AV e Command :M AC Hi ne {1|2 }: SF OR mat: SL AV e <c lock _i d> ,< cloc k_ sp ec > The SLAVe clock co mmand allo ws you t o specify a slave clo ck for a given machine. The slave clock is only use d in the Sl ave and Demulti plexed clocking modes. Each command deals with only one clock (J ,K,L,M, N,P); therefore , a complete clock s[...]

  • Seite 234

    SOP Qual Command :M AC Hi ne {1|2 }: SF OR mat: SO PQ ua l <clo ck _p ai r_id >, <q ual op er at io n> The SOP Qual ( slave operat ion q ualifier) command allo ws you t o specify either the A N D o r the OR o peration b etween slave clock qualifi er pair 1 and 2, or betwee n slave clo ck quali fier pair 3 and 4. For example you can spec[...]

  • Seite 235

    SQUal Command :M AC Hi ne {1|2 }: SF OR mat: SQ Ua l <q ual_ nu m> ,< cloc k_ id >, <q ual_ le ve l> The SQUal (slave qualifier) co mmand allo ws you t o specify the level qualifie r for the slave clock . <qual_num> {{1|2}|{3|4}} 1 thro ugh 4 fo r HP 16 60A, H P 1 661A, HP 1662A; o r, 1 or 2 for HP 1 663A. <clock_id> {[...]

  • Seite 236

    TH Reshold Command :M AC Hi ne {1|2 }: SF OR mat: TH Re sh old< N> {T TL|E CL |< va lue> } The THResho ld command allows you to set the vo l tage t hreshold for a g iven pod to ECL, T T L, o r a specific vo ltage fro m − 6. 00 V to +6.00 V in 0.0 5 volt increments . <N> {{1|2}|{3|4}|{5|6}|{7|8}} 1 thro ugh 8 fo r the HP 1660A, 1[...]

  • Seite 237

    16 STR igger (STR ace) Subsystem[...]

  • Seite 238

    Introd uction The S TR i gger subs ystem con tains th e commands availab le for the State Trigger menu in the 16 6 0A-s eries logic anal yzers. Th e State Tri gger subs ystem will also accep t the S TRace Comman d as used in previou s 1650 -seri es logi c analyzers to elimin ate the n eed to r ewrite programs containi ng STRace as the Co mmand keyw[...]

  • Seite 239

    Figu re 16 -1 STR i g ger S ubsys tem Synt ax D iagra m STRigger ( STRace) Sub s yste m 16 –3[...]

  • Seite 240

    Figu re 1 6-1 (co n tinue d ) STR igger Subs ys tem Synt ax Dia gra m (co ntin ued) STRigger ( STRace) Sub s yste m 16 –4[...]

  • Seite 241

    Figu re 1 6-1 (co n tinue d ) STRig ger S ubsys tem S untax Di agram (con t inu ed) STRigger ( STRace) Sub s yste m 16 –5[...]

  • Seite 242

    Tab le 16 -1 STRigger Parameter Valu es Par ameter Values branch _qualif ier <qua lifi er> to_lev _num integer from 1 t o last leve l procee d_qua lifier <qua lifi er> occurr ence number f rom 1 to 10485 75 label_name str i n g of u p to 6 alphan umeric c ha r ac ter s star t_pat tern "{ #B {0|1 } . . . | #Q {0 |1|2 |3|4 |5|6 |7} .[...]

  • Seite 243

    Qualif ier The qualifi er for the s t ate trig ger subs ystem can b e te rms A through J , T im er 1 and 2, and Range 1 and 2. In addition, q ualifiers can be t he NO T bo olean function o f terms, ti mers, and range s. The qualifier can als o be an express ion or comb ination of expressi ons as sho wn belo w and figure 1 6-2, "Com plex Qualif[...]

  • Seite 244

    <term3b> {B |N OTB} <term3c> {C |N OTC} <term3d> {D |N OTD} <term3e> {E |N OTE} <term3f> {F |N OTF} <term3g> {G |N OTG} <term3h> {H |N OTH} <term3i> {I |N OTI} <term3j> {J |N OTJ} <range3a> {I N_ RANG E1|O UT_R ANGE 1} <range3b> {I N_ RANG E2|O UT_R ANGE 2} <timer3a> {T IM ER1&[...]

  • Seite 245

    STRigger ( STRace) Selector :M ACHi ne {1|2 }: ST Ri gger The STRigger ( STRace) ( State Trigg er) Com mand is used as a part of a compound he ader to access t he settings found in t he State T race menu. It always fol lows the MACH ine Comm and because it selects a branch dire ctly below the MACHine level in the co mmand tree . Example OUT PU T XX[...]

  • Seite 246

    BRA Nch Command :M AC Hi ne {1|2 }: ST Ri gger :B RA Nc h<N> <b ranc h_ qu al ifie r> ,< to _lev el _n um ber> The BRANch co mmand defines the branch qualifie r for a given seq uence level. When thi s branch q ualifier is mat ched, it wi ll cause t he seque ncer to jump to the speci fied seq uence level. The terms used by the bran[...]

  • Seite 247

    Example s O UT PU T XX X; ": MA CH IN E1 :S TR IG GE R: BR AN CH 1 ’ AN YSTA TE ’ , 3" O UT PU T XX X; ": MA CH IN E2 :S TR IG GE R: BR AN CH 2 ’ A ’ , 7" O UT PU T XX X; ": MA CH IN E1 :S TR IG GE R: BR AN CH 3 ’ (( A OR B) OR NOT G) ’ , 1" Query :M AC Hi ne {1|2 }: ST Ri gger :B RA Nc h<N> ? The BRA[...]

  • Seite 248

    Example This e xample wo uld be used to specify thi s complex quali fier. O UT PU T XX X; ": MA CH IN E1 :S TR IG GE R: BR AN CH 1 ’ (( A OR B) AN D (G O R H) ) ’ , 2" Terms A through E, RA N GE 1 , and TIMER 1 must b e grouped togeth er and terms F throu gh J, RANG E 2, an d TIMER 2 must be groupe d toget her. In t he first level, te[...]

  • Seite 249

    FIND Command :M AC Hi ne {1|2 }: ST Ri gger :F IN D< N> <p roce ed _q ua lifi er >, <o ccur re nc e> The FIN D comm and defines t he proceed q ualifier fo r a given s equence l evel. The qualifi er tells the state analyzer when to proceed to the nex t seq uence level. When thi s proceed q ualifier i s matched t he specifie d numbe[...]

  • Seite 250

    Query :M AC Hi ne {1|2 }: ST Ri gger :F IN D4 ? The FIN D que ry returns t he current pro ceed qual ifier specifi cation for a given seq uence level. Returne d Format [:MA CHin e{1| 2}:S TRig ger: FIND <N>] <pr ocee d_qu alif ier> , <o cc urre nce> <NL> Example OUT PU T XX X; ": MA CH IN E1 :S TR IG GE R: FI ND <N &g[...]

  • Seite 251

    <label_name> String o f up to 6 alphanum eric characters <start_pattern> "{ #B {0|1 } . . . | #Q {0 |1|2 |3|4 |5|6 |7} . . . | #H {0 |1|2 |3|4 |5|6 |7|8 |9|A |B|C |D|E |F} . . . | {0 |1 |2|3 |4|5 |6|7 |8|9 } . . . }" <stop_pattern> "{ #B {0|1 } . . . | #Q {0 |1|2 |3|4 |5|6 |7} . . . | #H {0 |1|2 |3|4 |5|6 |7|8 |9|A [...]

  • Seite 252

    SEQuen ce Command :M AC Hi ne {1|2 }: ST Ri gger :S EQ ue nce <n umbe r_ of _l evel s> , <l evel _o f_ tr igge r> The SEQuence command redefines the stat e analyzer t race seque nce. First, it dele tes the current trace seq uence. Then it inserts the num ber of level s specified, with default settings, and assigns t he trigg er to be at[...]

  • Seite 253

    STORe Command :M AC Hi ne {1|2 }: ST Ri gger :S TO Re <N> <s to re _q uali fi er > The STORe co mmand defines the store q ualifier fo r a g iven sequence l evel. Any data m atching the STORe qualifie r will act ually be s tored in memory as part of t he current trace dat a. The qualifie r may be a si ngle term or a complex expres si o n[...]

  • Seite 254

    TA G Command :M AC Hi ne {1|2 }: ST Ri gger :T AG {O FF|T IM E| <s tate _t ag _q uali fi er >} The TAG com mand se lect s the t ype of co unt taggi ng (st ate or t ime) to be performed duri ng data acquisit i on. St ate tagging is indicated when t he parameter i s the st ate tag qualifie r, which will be count ed in the qualifie d state mode.[...]

  • Seite 255

    TAKenb ranch Command :M AC Hi ne {1|2 }: ST Ri gger :T AK en bran ch { ST ORe| NO ST or e} The TAKenbranch com mand allows you to speci fy whether t he state causi ng a seque nce level change is stored or not stored for t he specified machine. Both a s tate t hat causes t he seq uencer to procee d or a st ate that causes the sequence r to branch is[...]

  • Seite 256

    TCONtrol Command :M AC Hi ne {1|2 }: ST Ri gger :T CO Nt rol< N> < ti mer_ nu m> , {O FF|S TA Rt |P AUSe |C ON Ti nue} The TCONt rol (tim er control) command all ows you to turn off, start , pause, or cont inue the t imer for the specifi ed level. The time value o f the timer i s defined b y the TIMER co mmand. There are two t imers and[...]

  • Seite 257

    TERM Command :M AC Hi ne {1|2 }: ST Ri gger :T ER M <t erm_ id >, <l abel _n am e> , <p atte rn > The TERM command allows yo u to specify a patt ern recogni z e r term in the specified m achine. Each command deals with only one label in the gi ven term; t herefore, a complet e specification could require s everal commands. Since a[...]

  • Seite 258

    Query :M AC Hi ne {1|2 }: ST Ri gger :T ER M? <t erm_ id >, <l abel _n am e> The TERM query ret urns the spe cification of the t erm specifi ed by te rm identificat i on and lab el name. Returne d Format [:MA CHin e{1| 2}:S TRAc e:TE RM] <t er m_id >,<l abel _nam e>,< patt ern> <NL> Example OUT PU T XX X; ":[...]

  • Seite 259

    Query :M AC Hi ne {1|2 }: ST Ri gger :T IM ER {1|2 }? The TIMER query ret urns the current t ime value fo r the spe cified tim er. Returne d Format [:MA CHin e{1| 2}:S TRig ger: TIME R{1| 2}] <t ime_ valu e><N L> <time_value> A real numb er from 40 0 ns to 5 0 0 seconds i n increments which vary from 16 ns to 5 00 µ s. Example OU[...]

  • Seite 260

    Query :M AC Hi ne {1|2 }: ST Ri gger :T PO Si tion ? The TPOSi t ion q uery returns the current trigger position se t t ing. Returne d Format [:MA CHin e{1| 2}:S TRig ger: TPOS itio n] { STAR t|CE NTer |END | PO ST stor e,<p osts tore >}<N L> Example OUT PU T XX X; ": MA CH IN E1 :S TR IG GE R: TP OS IT IO N? " STRigger ( STRa[...]

  • Seite 261

    17 SLISt Su bsystem[...]

  • Seite 262

    Introd uction The S LISt su bsys tem contains the command s availab le for the State Listi ng me n u in the 1660A logic anal yzer. Th ese command s are: • COLumn • RUNTi l • CLRPattern • TA Verage • DATA • TM A Ximum • LI N E • TM INi m u m • M MODe • VR UNs • OPATtern • XOT ag • OSE arch • XOTime • OSTate • XPA Tter[...]

  • Seite 263

    Figu re 17 -1 SLIS t Subsyst em Syntax Di agram SLI St Subsys tem 17 –3[...]

  • Seite 264

    Figu re 1 7-1 (co n tinue d ) SLIS t Subsy s te m Synt ax Diag ram (con t inu ed) SLISt Subsy s t em 17 –4[...]

  • Seite 265

    Figu re 1 7-1 (co n tinue d ) SLIS t Subsy s te m Synt ax Diag ram (con t inu ed) SLI St Subsys tem 17 –5[...]

  • Seite 266

    Tab le 17 -1 SLISt Parameter Valu es Par ameter Val ues module_num {1 |2|3 |4|5 |6 |7|8 } (2 t hrough 10 no t used) mach_num {1 |2} col_nu m Int eger from 1 t o 61 line_nu mber Integer fr om − 8191 to + 81 91 label_name A str i ng of u p to 6 alphanumer i c c h aracter s bas e { BI Nary |HEX adec imal |OCT al|D ECim al|T WOS| ASCi i| SY MBol |IAS[...]

  • Seite 267

    SLISt Selector :M ACHi ne {1|2 }: SL IS t The SLISt se lector is use d as part o f a compound header to access tho se setti ngs normall y found in the St ate Lis ting menu. It always follows the MACHine selecto r because it sele cts a branch direct ly below the MACH ine level in the command tre e. Example OUT PU T XX X; ": MA CH IN E1 :S LI ST[...]

  • Seite 268

    <col_num> integer from 1 to 61 <module_num> {1|2|3|4|5|6|7|8|9|10} (2 thro ugh 10 no t used) <label_name> string o f up to 6 al phanumeric characters <base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol| IASSemble r} for labels or {ABSolute|RELative } for tags Example OUT PU T XX X; ": MA CH IN E1 :S LI ST :C OL U[...]

  • Seite 269

    DATA Query :M AC Hi ne {1|2 }: SL IS t:DA TA ? <l ine_ nu mb er >,<l ab el _n ame> The DATA q uery returns t he value at a speci fied line numbe r for a give n label. The format will b e the sam e as the one shown in the li s ting dis play. Returne d Format [:MA CHin e{1| 2}:S LISt :DAT A] < line _num ber> ,<la bel_ name >, [...]

  • Seite 270

    Query :M AC Hi ne {1|2 }: SL IS t:LI NE ? The LINE query ret urns the l ine numbe r for the state curre ntly in t he box at the cent er of the scree n. Returne d Format [:MA CHin e{1| 2}:S LISt :LIN E] < line _num _mid _scr een> <NL> Example OUT PU T XX X; ": MA CH IN E1 :S LI ST :L IN E? " MMODe Command :M AC Hi ne {1|2 }: SL[...]

  • Seite 271

    OPATtern Command :M AC Hi ne {1|2 }: SL IS t:OP AT te rn <l abel _n am e> ,<la be l_ pa tter n> The OP ATtern comm and allo ws you t o const ruct a pattern re cognizer te rm for the O Marker which is the n used with the OSE arch criteria when mo ving the mark er on patterns. Because t his command deals with only one label at a time, a c[...]

  • Seite 272

    OSEarch Command :M AC Hi ne {1|2 }: SL IS t:OS Ea rc h <o ccur re nc e> ,<or ig in > The OSEarch co mmand defines the search crite ria for the O mark er, which is then used with associate d OPATtern re cognize r specificati on when mo ving the mark ers on patterns . The origin parame ter tells t he marker t o begin a search with the tri[...]

  • Seite 273

    OSTate Query :M AC Hi ne {1|2 }: SL IS t:OS Ta te ? The OSTate query ret urns the l ine number in t he listing whe re the O marke r resides ( − 8191 to +81 91). If data is no t valid, the q uery ret urns 32767 . Returne d Format [:MA CHin e{1| 2}:S LISt :OST ate] <st ate_ num> <NL> <state_num> an intege r from − 819 1 t o +81 [...]

  • Seite 274

    Query :M AC Hi ne {1|2 }: SL IS t:OT AG ? The OTAG query ret urns the O Marker po sition in t ime when time tagging is on or i n states when stat e tagging is on, regardless of whet her the marker was posit ioned in time o r through a pattern se arch. If data i s not valid, t he query re turns 9.9 E37 fo r time tagging, or returns 3 276 7 for st at[...]

  • Seite 275

    REMove Command :M AC Hi ne {1|2 }: SL IS t:RE Mo ve The REMove co mmand removes all labe ls, ex cept the leftmos t labe l, from the lis ting menu. Example OUT PU T XX X; ": MA CH IN E1 :S LI ST :R EM OV E" RUNTil Command :M AC Hi ne {1|2 }: SL IS t:RU NT il < run_ un ti l_ spec > The RUNTil (run unti l) com mand all ows you t o defi[...]

  • Seite 276

    There are two conditions which are based o n a compariso n of the acquired state data and the compare data image. The analyzer can run until one o f the followi ng conditi ons is t rue: • Every channel of every l abel has the same value (EQ Ual) . • Any channel o f any label has a different value (N E Q ual). The RUNT il instructio n (for s tat[...]

  • Seite 277

    TAVerage Query :M AC Hi ne {1|2 }: SL IS t:TA Ve ra ge ? The TAVerage q uery returns the value o f the averag e time be tween the X and O Mark ers. If t he number of valid runs is zero , the q uery ret urns 9.9E37 . Valid runs are t hose where the pattern s earch for bot h the X and O markers was successful , resulting in valid delta-tim e measurem[...]

  • Seite 278

    TMINim um Query :M AC Hi ne {1|2 }: SL IS t:TM IN im um ? The TMINimum query ret urns the val ue of the minimum t ime b etween t he X and O Mark ers. If data is not valid, the query re turns 9.9 E37. Returne d Format [:MA CHin e{1| 2}:S LISt :TMI Nimu m] < time _val ue>< NL> <time_value> real numb er Example : O UT PU T XX X; &quo[...]

  • Seite 279

    XOTag Query :M AC Hi ne {1|2 }: SL IS t:XO Ta g? The XOTag q uery returns t he time from the X t o O m arkers when the m arker mode is time o r number of states fro m the X to O markers when the marke r mode is state. If there is no data in t he time mode t he query returns 9.9E37. If there i s no data in the st ate mo de, the q uery returns 3 2 76[...]

  • Seite 280

    XPATtern Command :M AC Hi ne {1|2 }: SL IS t:XP AT te rn <la be l_ na me>, <l abel _p at te rn> The XPATt ern command allows you to construct a pattern reco gnizer term for the X Marker which is t hen used wit h the XSEarch crit eria when moving the mark er on patterns. Since thi s command de als with o nly one label at a time, a comple[...]

  • Seite 281

    XSEar ch Command :M AC Hi ne {1|2 }: SL IS t:XS Ea rc h <o ccur re nc e> ,<or ig in > The XSEarch com mand defines the s earch criteria for the X Marker, which is then wit h associated XP ATtern recogniz er specificatio n when movi ng the markers o n patterns. The origin parameter tells the Mark er to begin a search with the trigger or [...]

  • Seite 282

    XSTate Query :M AC Hi ne {1|2 }: SL IS t:XS Ta te ? The XSTate q uery returns the line number i n the lis ting where the X mark er resides ( − 8191 to +81 91). If data is no t valid, the q uery ret urns 32767 . Returne d Format [:MA CHin e{1| 2}:S LISt :XST ate] <st ate_ num> <NL> <state_num> integer from − 8191 to +8 1 91, or[...]

  • Seite 283

    Query :M AC Hi ne {1|2 }: SL IS t:XT AG ? The XTAG q uery returns the X Mark er positio n in time when time tagging is on or i n states when stat e tagging is on, regardless of whet her the marker was posit ioned in tim e or thro ugh a pattern se arch. If data is no t valid tagged data, the query re turns 9.9 E37 fo r time tagging, or retruns 32 76[...]

  • Seite 284

    17 –24[...]

  • Seite 285

    18 SWAVefor m Subsystem[...]

  • Seite 286

    Introd uction The command s in the State Waveform s u bsy stem allow y ou to confi gure th e display so that y ou can vi ew state d ata as waveforms on up to 96 chann els id e n tified by label n ame and b it numb er. Th e 11 command s are an alogous to their counter parts in the Ti ming Wavefor m s ubs ystem. However, in this s u b sy stem th e x-[...]

  • Seite 287

    Figu re 18 -1 SWAVe form Subsy stem Syntax Di a gram SWAVef orm Subsys tem 18 –3[...]

  • Seite 288

    Tab le 18 -1 SWAVefo rm Parameter Val ues Par ameter Val ue number_of _samples integer from − 81 91 to + 81 91 label_name string of u p to 6 alphan umeric char acters bit_ id {O VERl ay|< bit_ num> |ALL } bit_num integer represent ing a label bit from 0 t o 31 range_ values int eger fr om 10 to 5 000 (re presen ting (1 0 × states/Divis ion[...]

  • Seite 289

    AC Cumulat e Command :M AC Hi ne {1|2 }: SW AV efor m: AC Cu mula te {{ ON|1 }| {O FF |0}} The ACCumulate command all ows you t o cont rol whet her the wavefor m display ge t s erased between indivi dual runs or whether subsequent waveforms are allowed to be displayed o ver the previous waveforms. Example OUT PU T XX X; ": MA CH IN E1 :S WA VE[...]

  • Seite 290

    Query :M AC Hi ne {1|2 }: SW AV efor m: AC Qu isit io n? The ACQusi t ion q uery returns the current acquisitio n mode. Returne d Format [:MA CHin e{1| 2}:S WAVe form :ACQ uisi tion ] {AUT Omat ic|M ANua l}<N L> Example OUT PU T XX X; ": MA CH IN E2 :S WA VE FO RM :A CQ UI SI TI ON ?" CENTer Command :M AC Hi ne {1|2 }: SW AV efor m:[...]

  • Seite 291

    CLRStat Command :M AC Hi ne {1|2 }: SW AV efor m: CL RS tat The CLRStat command allows y ou to clear the wave form stat is t ics witho ut having to stop and rest art the acquis i tion. Example OUT PU T XX X; ": MA CH IN E1 :S WA VE FO RM :C LR ST AT " DELay Command :M AC Hi ne {1|2 }: SW AV efor m: DE La y <num be r_ of _sam pl es >[...]

  • Seite 292

    INS ert Command :M AC Hi ne {1|2 }: SW AV efor m: IN Se rt <l abel _n am e> ,<bi t_ id > The INSert command allows you to add waveforms to the s tate waveform display. Waveforms are adde d from top t o bo ttom on the s creen. When 9 6 waveforms are present, insert ing additional waveforms replaces t he last waveform. Bit numb ers are ze[...]

  • Seite 293

    Query :M AC Hi ne {1|2 }: SW AV efor m: RA NG e? The RANG e query returns the current range value. Returne d Format [:MA CHin e{1| 2}:S WAVe form :RAN Ge] <n umbe r_of _sam ples ><NL > <number_of_ samples> integer from 10 to 5 000 Example OUT PU T XX X; ": MA CH IN E2 :S WA VE FO RM :R AN GE ?" REMove Command :M AC Hi ne[...]

  • Seite 294

    Query :M AC Hi ne {1|2 }: SW AV efor m: TA Ke nbra nc h? The TAKenb ranch query returns the current set ting. Returne d Format [:MA CHin e{1| 2}:S WAVe form :TAK enbr anch ] {STO Re|N OSTo re}< NL> Example OUT PU T XX X; ": MA CH IN E2 :S WA VE FO RM :T AK EN BR AN CH ?" TPOSit ion Command :M AC Hi ne {1|2 }: SW AV efor m: TP OS iti[...]

  • Seite 295

    Query :M AC Hi ne {1|2 }: SW AV efor m: TP OS itio n? The TPOSi t ion q uery returns the current trigger s etting . Returne d Format [:MA CHin e{1| 2}:S WAVe form :TPO Siti on] {S TA Rt|C ENTe r|EN D|PO STst ore, <p er cent >}<N L> <percent> integer from 1 to 10 0 Example OUT PU T XX X; ": MA CH IN E2 :S WA VE FO RM :T PO Si [...]

  • Seite 296

    18 –12[...]

  • Seite 297

    19 SCHart Su bsystem[...]

  • Seite 298

    Introd uction The S tate Chart s u bsyste m pro vides th e co mmands ne cess ary fo r programmin g th e Chart display of 1 660A-ser ies log ic analyzers . The command s allow y ou to b uild ch arts of lab el activity, usin g dat a normally f oun d in th e Lis ting d isplay. The ch art’s Y-axi s is u sed to show d ata values for the l abel of yo u[...]

  • Seite 299

    Figu re 19 -1 SCHart Sub system Sy n tax Di agram SCHar t Subsyste m 19 –3[...]

  • Seite 300

    Tab le 19 -1 SCHart Parameter Valu es Par ameter Val ues state_ l ow_va l ue int eger fr om – 819 1 to +8 19 1 state_ high_value int eger fr om <s tate _low _val ue> to +81 91 label_name string of u p to 6 alphan umeric c ha ract ers label_low_value str ing from 0 to 2 32 − 1 (# HF FF F) label_high_v alue string from <label_low_va lue&[...]

  • Seite 301

    Example OUT PU T XX X; ": MA CH IN E1 :S CH AR T: AC CU MU LA TE O FF " Query :M AC Hi ne {1|2 }: SC Ha rt:A CC um ul ate? The ACCumulate query re turns the current setting . The que ry always sho ws the set t i ng as the character "0" (off) or "1 " (on). Returne d Format [:MA CHin e{1| 2}:S CHar t:AC Cumu late ] {0|1 [...]

  • Seite 302

    <state_low_ value> integer from − 8191 to +8 1 9 1 <state_high_ value> integer from <state_low_value> to +8 191 <label_name> string o f up to 6 al phanumeric characters <label_low_ value> string fro m 0 t o 2 32 − − 1 (# H F FF F ) <label_high_ value> string fro m <label_low_value> t o 2 32 –1 ( #HF[...]

  • Seite 303

    VAXis Command :M AC Hi ne {1|2 }: SC Ha rt:V AX is <l abel _n am e> ,<lo w_ va lu e>,< hi gh _v alue > The VAXis co mmand allows y o u to cho ose which l abel wil l be plot ted on t he vertical ax i s of the chart and scale the verti cal axis by speci fying the high value and lo w value. <label_name> string o f up to 6 al ph[...]

  • Seite 304

    19 –8[...]

  • Seite 305

    20 COMPare Subsystem[...]

  • Seite 306

    Introd uction Comman ds in the state COMPare s ubs ystem provide the abi lity to d o a bit - by-bi t comparison b etween th e acqui red state data lis ting and a compare d ata image. Th e comman d s are: • CLEar • CM AS k • COPY • DATA • FIND • LI N E • ME NU • R AN Ge • RUNTil • SE T 20 –2[...]

  • Seite 307

    Figu re 20 -1 COMPa re Subsyst em Syntax Di agram COMPa re Subsystem 20 –3[...]

  • Seite 308

    Tab le 20 -1 Compare Par ameter Values Par ameter Val ues label_name strin g of up to 6 charact ers car e_spec st ring of char ac t ers "{ *|.} ..." * car e . don ’ t care lin e_num integer from – 81 91 to + 8 19 1 dat a_pat tern "{ B{ 0|1| X} . . . | #Q {0 |1|2 |3|4 |5|6 |7|X } . . . | #H {0 |1|2 |3|4 |5|6 |7|8 |9|A |B|C |D|E |F[...]

  • Seite 309

    CLEar Command :M AC Hi ne {1|2 }: CO MP are: CL Ea r The CLEar com mand clears all "do n’t cares" in the reference lis ting and replaces t hem with z eros e xcept whe n the CLEar command immediat ely follows the SET command ( see SET command) . Example OUT PU T XX X; ": MA CH IN E2 :C OM PA RE :C LE AR " CMASk Command :M AC Hi[...]

  • Seite 310

    Query :M AC Hi ne {1|2 }: CO MP are: CM AS k <l abel _n am e> ? The CMASk q uery returns the state of the bit s in the channel mask for a given lab el in t he compare l isting i mage. Returne d Format [:MA CHin e{1| 2}:C OMPa re:C MASk ] <lab el_n ame> ,<ca re_s pec> <label name> A string of up to 6 alphanumeric charact ers [...]

  • Seite 311

    DATA Command :M AC Hi ne {1|2 }: CO MP are: DA TA { <lab el _n am e>, <l ine_ nu m> ,< data _p at te rn>| <l in e_ num> , < da ta _p at te rn >[ , <d at a_ pa tt er n> ]. .. } The DATA co mmand allo ws you t o edit the compare listing imag e for a giv en label and state row. W hen DATA i s sent t o an inst rument[...]

  • Seite 312

    Query :M AC Hi ne {1|2 }: CO MP are: DA TA ? <l abel _n am e> ,<li ne _n um > The DATA q uery returns t he value of the compare listing image fo r a giv en label and state row. Returne d Format [:MA CHin e{1| 2}:C OMPa re:D ATA] <la bel_ name >,<l ine_ num> , <d at a_pa tter n><N L> <label_name> A string of[...]

  • Seite 313

    FIND Query :M AC Hi ne {1|2 }: CO MP are: FI ND ? <d iffe re nc e_ occu rr en ce > The FIN D que ry is used to get t he line numb er of a specified diffe rence occurence ( first, second, third, et c) wit hin the current compare rang e, as dictated b y the RAN Ge com mand (see page 20-11 ). A difference is counted for each li ne where at least[...]

  • Seite 314

    LI N E Command :M AC Hi ne {1|2 }: CO MP are: LI NE < line _n um > The LINE command allows y ou to cente r the com pare listing dat a about a specified l ine number. <line_num> An integ er from –81 91 to +8 191 Example OUT PU T XX X; ": MA CH IN E2 :C OM PA RE :L IN E – 51 1" Query :M AC Hi ne {1|2 }: CO MP are: LI NE ? Th[...]

  • Seite 315

    RANGe Command :M AC Hi ne {1|2 }: CO MP are: RA NG e {F ULL| PA RT ia l,<s ta rt _l ine> ,< st op _lin e> } The RANG e command al lows you to define t he boundari es for t he compariso n. The range entere d must be a subset of the lines in t he acquire mem ory. <start_line> integer from –819 1 t o +8191 <stop_line> integer[...]

  • Seite 316

    RUNTil Command :M AC Hi ne {1|2 }: CO MP are: RU NT il {OF F| L T, <val ue >| GT , <v alue >| IN Ra nge, <v al ue >,<v al ue >| OUTR an ge ,< valu e> ,< v al ue>| EQ Ua l| NEQu al } The RUNTil (run unti l) com mand all ows you t o define a stop condition when the trace mode is repetitive. Specifying OF F causes t[...]

  • Seite 317

    Example OUT PU T XX X; ": MA CH IN E2 :C OM PA RE :R UN TI L EQ UA L" Query :M AC Hi ne {1|2 }: CO MP are: RU NT il ? The RUNTil query re turns the current stop crit eria for the co mparison whe n running in repe t itive trace mode . Returne d Format [:MA CHin e{1| 2}:C OMPa re:R UNTi l] { OFF| LT, <val ue>| GT,< valu e>l IN R[...]

  • Seite 318

    20 –14[...]

  • Seite 319

    21 TFORmat Subsystem[...]

  • Seite 320

    Introd uction The TFORmat subsys tem con tains the commands available for the Timin g Format menu in th e 1660-se ries lo gic analyzer s. These commands ar e: • ACQMo de • LAB el • R EM ov e • THReshold 21 –2[...]

  • Seite 321

    Figu re 21 -1 TFORmat Subsy s tem Sy ntax Di ag ra m TFORma t Subsys tem 21 –3[...]

  • Seite 322

    Tab le 21 -1 TFORmat Pa ramter Values Par ameter Val ues size {F ULL| HALF } <N> {1 |2 |3|4 |5|6 |7|8 } name str i n g of u p to 6 alphanumer ic char ac t ers polarity {P OSit ive| NE Gati ve} pod_sp ecificat ion forma t (int eger fr om 0 to 65 535) f or a pod (p ods are assigne d i n decr easing ord er ) va lue voltag e (real number) − 6.0[...]

  • Seite 323

    ACQMode Command :M AC Hi ne {1|2 }: TF OR mat: AC QM od e {TRA NS it io nal <s ize> |C ON Ve ntio na l <s iz e>|G LI Tc h} The ACQM ode ( acquisit ion mo de) com mand all ows you to sel ect the acquisit i on mo de for the ti ming analyz er. The o ptions are: • conventio nal mode at ful l-channel 250 MHz • conventio nal mode at hal f[...]

  • Seite 324

    LABel Command :M AC Hi ne {1|2 }: Tf or mat: LA Be l <n ame> ,[ <p ol arit y> , <c lock _b it s> , <upp er _b it s>, <l ow er _b its> [, <upp er _b it s>,< lo we r_ bits >] .. .] The LABel co mmand allows yo u to s pecify polari ty and to ass ign channe ls t o new or ex i s ting lab els. If the specifi ed l[...]

  • Seite 325

    Example s O UT PU T XX X; ": MA CH IN E2 :T FO RM AT :L AB EL ’ ST AT ’ , PO SI TIVE , 0, 12 7,40 312" O UT PU T XX X; ": MA CH IN E2 :T FO RM AT :L AB EL ’ SIG 1 ’ , #B 11 ,#B0 0000 0001 1111 111, #B 00 0000 0000 0000 00 " Query :M AC Hi ne {1|2 }: Tf or mat: LA Be l? <na me > The LABel q uery returns t he current[...]

  • Seite 326

    THResho ld Command :M ACHi ne{1 |2}: TFOR mat: THRe shol d<N> {TT L|EC L|<v alue >} The THResho ld command allows you to set the vo l tage t hreshold for a g iven pod to ECL, T T L, o r a specific vo ltage from − 6 .00 V to +6.00 V in 0.0 5 volt increments . <N> pod numb er {1| 2|3|4|5|6|7|8} <value> voltage (real num ber)[...]

  • Seite 327

    22 TTRigger (TTR ace) Subsystem[...]

  • Seite 328

    Introd uction The TT R ig ger subs ystem contains the commands avai lable for the Timin g Trigg er menu in the 1660-seri es logi c analyzers . The T iming Tri gger subs ystem will also accep t the TT Race selector as use d in previou s 1650 -seri es logi c analyzers to elimin ate the n eed to r ewrite programs containi ng TTRace as the selector key[...]

  • Seite 329

    Figu re 22 -1 TTR igger Subs ys tem Synt ax Dia gra m TTRigge r (TTRace) Sub s yste m 22 –3[...]

  • Seite 330

    Figu re 2 2-1 (co n tinue d ) TTR igger Subs ys tem Synt ax D iagra m ( cont i n ued) TTRigger ( TTRace) Subs ystem 22 –4[...]

  • Seite 331

    Tab le 22 -1 TTRigge r Parameter Val u es Par ameter Val ues branch _qualif ier <qua lifi er> to_lev _num integer f r om 1 to last level procee d_qua lifier <qua lifi er> occurr ence number f rom 1 to 10485 75 label_name s tr ing of up to 6 alphan umeric c h aracter s glitch_ed ge_spec str i ng cons isting of {R |F |E |G |. } R, F, and [...]

  • Seite 332

    Qualif ier The qualifi er for the ti ming trig ger subs ystem can be terms A through J , Timer 1 and 2, and Range 1 and 2. In additio n, qualifi ers can be the NOT boolean funct i on of terms, time rs, and ranges. The q ualifier can also be an express ion or co mbination of expre ssions as shown b elow and fig ure 22-2 , "Complex Quali fier,&q[...]

  • Seite 333

    <boolean_op> {AND|NAND|OR|NOR|XOR|NXOR} <term3a> {A|NOTA} <term3b> {B|NOTB} <term3c> {C|NOTC} <term3d> {D|NOTD} <term3e> {E|NOTE} <term3f> {F|NOTF} <term3g> {G|NOTG} <term3h> {H|NOTH} <term3i> {I|NOTI} <term3j> {J|NOTJ} <range3a> {IN_RANGE1|OUT_RANGE1} <range3b> {IN_RANGE[...]

  • Seite 334

    Qual ifier Ru les The follo wing rules appl y to q ualifiers: • Qualifie rs are quo ted st rings and, t herefore, need q uotes. • Express ions are e valuated from left to ri ght. • Parenthe sis are use d to change the order evaluat ion and, t herefore, are optio nal. • An expre ssion mus t map int o the comb ination logic presente d in the [...]

  • Seite 335

    ACQuisition Command :M AC Hi ne {1|2 }: TT Ri gger :A CQ ui siti on {A UTOm at ic |M ANua l} The ACQuis i tion co mmand allo ws you to s pecify the acquisit ion mode for the Timing analyz er. Example OUT PU T XX X; ": MA CH IN E1 :T TR IG GE R: AC QU IS IT IO N AU TO MA TI C" Query :M AC Hi ne {1|2 }: TT Ri gger :A CQ ui siti on ? The ACQ[...]

  • Seite 336

    express ion is no t changed. Figure 2 2 -2 , on page 2 2-11 sho ws a complex express ion as se en in the Timing T ri gger menu. Example The fo l lowing s tatement s are all correct and have the same meaning. Noti ce that t he conventi onal rules for precedence are not follo wed. The ex pressions are evaluate d from left t o right. O UT PU T XX X; &[...]

  • Seite 337

    Query Synt ax :M ACHi ne {1 |2 }:TT Ri gg er :BRA Nc h< N> ? The BRANch q uery returns t he current b ranch qualifi er specificat ion for a given seq uence level. Returne d Format [:MA CHin e{1| 2}:T TRig ger: BRAN ch<N >] < bran ch_q uali fier >, <t o_ leve l_nu m><N L> Example OUT PU T XX X; ": MA CH IN E1 :T TR[...]

  • Seite 338

    Terms A through E, RA N GE 1 , GLITCH /EDGE1, an d TIMER 1 must be groupe d together an d terms F t hrough J, RANGE 2, G LITCH/ED GE2, and T IMER 2 must be grouped t ogether. In the firs t lev el, terms from one g roup may not be mixed with terms from the ot her. Fo r example , the ex press ion ((A O R IN_RANG E2) AND ( C OR H) ) is no t allowed be[...]

  • Seite 339

    FIND Command :M AC Hi ne {1|2 }: TT Ri gger :F IN D< N> <t ime_ qu al if ier> ,< co nd itio n_ mo de > The FIN D comm and define s the t ime qualifier for a given seq uence level . The qualifi er tells the timing analyzer whe n to proceed t o the next sequence level. When thi s proceed q ualifier i s matched t he specifie d number[...]

  • Seite 340

    Query :M AC Hi ne {1|2 }: TT Ri gger :F IN D4 ? The FIN D que ry returns t he current t ime q ualifier speci fication fo r a given sequence level. Returne d Format [:MA CHin e{1| 2}:T TRig ger: FIND <N>] <co ndit ion_ mode >, <o cc urre nce> <NL> Example OUT PU T XX X; ": MA CH IN E1 :T TR IG GE R: FI ND <N >? &qu[...]

  • Seite 341

    Example F or 8 b its ass igned and no glitch: O UT PU T XX X; ": MA CH IN E1 :T TR IG GE R: GL ED GE 1 ’ DA TA ’ , ’ .. ..F. .E ’ " For 1 6 bits assigned wit h glitch: O UT PU T XX X; ": MA CH IN E1 :T TR IG GE R: GL ED GE 1 ’ DA TA ’ , ’ .. .. GG G. .. .. F. .R ’ " Query :M AC Hi ne {1|2 }: TT Ri gger :G LE De &[...]

  • Seite 342

    <label_name> string o f up to 6 al phanumeric characters <start_pattern> "{#B{0|1} . . . | #Q{0|1|2|3|4|5|6|7} . . . | #H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . | {0|1|2|3|4|5|6|7|8|9} . . . }" <stop_pattern> "{#B{0|1} . . . | #Q{0|1|2|3|4|5|6|7} . . . | #H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . | {0|1|2|3|4|5|6|7|8[...]

  • Seite 343

    SEQuen ce Command :M AC Hi ne {1|2 }: TT Ri gger :S EQ ue nce <n um be r_ of_l ev el s> The SEQuence command defines t he timi ng analyzer trace seq uence . F irs t, it dele tes the current trace seq uence. Then, it inserts the number o f levels specified, with default set t ings. The number of l evels can be b etween 1 and 10 when the analyz[...]

  • Seite 344

    SP E Rio d Command :M AC Hi ne {1|2 }: TT Ri gger :S PE Ri od < sa mp le _per io d> The SPERio d command al lows you to set t he sample period of the tim ing analyzer in the Conventi onal and Glitch modes. The sample peri od range depends on the mode sel ected and is as fo l lows: • 2 ns t o 8 ms for Conventional H alf Channel 5 0 0 MHz •[...]

  • Seite 345

    TCONtrol Command :M AC Hi ne {1|2 }: TT Ri gger :T CO Nt rol< N> < ti mer_ nu m> , {O FF|S TA Rt |P AUSe |C ON Ti nue} The TCONt rol (tim er control) command all ows you to turn off, start , pause, or cont inue the t imer for the specifi ed level. The time value o f the timer i s defined b y the TIMER co mmand. <N> integer from 1 [...]

  • Seite 346

    TERM Command :M AC Hi ne {1|2 }: TT Ri gger :T ER M <t erm_ id >, <l abel _n am e> ,<pa tt er n> The TERM command allows yo u to a specify a pat tern recog nizer t erm in the specified m achine. Each command deals with only one label in the gi ven term; t herefore, a complet e specification could require s everal commands. Since a[...]

  • Seite 347

    Query :M AC Hi ne {1|2 }: TT Ri gger :T ER M? <t erm_ id >, <l abel _n am e> The TERM query ret urns the spe cification of the t erm specifi ed by te rm identificat i on and lab el name. Returne d Format [:MA CHin e{1| 2}:S TRAc e:TE RM] <t erm_ id>, <lab el_n ame> , <p at tern ><NL > Example OUT PU T XX X; "[...]

  • Seite 348

    TPOSit ion Command :M AC Hi ne {1|2 }: TT Ri gger :T PO Si tion {S TARt |C EN Te r|EN D| DE La y, < ti me _v al>| PO STst or e, <p osts to re >} The TPOSi ti o n (trigger position) com mand allows you to set t he trigge r at the st art, cente r, end or at any positio n in the trace (po ststore) . Po ststore i s defined as 0 to 1 00 perc[...]

  • Seite 349

    23 TWAVeform Su bsystem[...]

  • Seite 350

    Introd uction The TW AVefo rm subs ystem con tains th e commands available for the Timin g Waveforms menu in the 166 0-series logic an alyzer. Th ese commands ar e: • ACCumulate • REM ove • ACQui sition • R UNTi l • CENter • SPE Ri od • CLRPattern • TA Verage • CLRStat • TM A Ximum • DELay • TM INi mum • INSert • TPOS it[...]

  • Seite 351

    Figu re 23 -1 TWAVe form Subsy s tem Sy n tax Di agram TWAVef orm Subsyste m 23 –3[...]

  • Seite 352

    Figu re 2 3-1 (co n tinue d ) TWAVef o rm Subs ystem Syn t ax Di agram (c ontinued ) TWAVef orm Subsyste m 23 –4[...]

  • Seite 353

    Figu re 2 3-1 (co n tinue d ) TWAVef o rm Subs ystem Syn t ax Di agram (c ontinued ) TWAVef orm Subsyste m 23 –5[...]

  • Seite 354

    Tab le 23 -1 TWAVef orm Parameter Val u es Par ameter Val ue delay_v alue real number bet ween − 2500 s and +25 00 s module _spec {1 |2 |3|4 |5|6 |7|8 |9|1 0} 2 t h rough 1 0 unused bit _id integer from 0 to 31 wavef orm s t ring containing <a cq ui si ti on _s pe c> {1 |2 } acquisit i on_s pec {A|B |C|D |E|F |G|H |I|J } (slot where acquisi[...]

  • Seite 355

    TWAV eform Selector :M ACHi ne {1|2 }: TW AV efor m The TWAVeform selector is used as part of a compound header t o access th e setti ngs found in the Timing Waveforms menu. It always follows the MACHine selecto r because it sele cts a b ranch belo w the MACH ine level in t he command t ree. Example OUT PU T XX X; ": MA CH IN E1 :T WA VE FO RM[...]

  • Seite 356

    ACQuisition Command :M AC Hi ne {1|2 }: TW AV efor m: AC Qu isit io n {A UTOm at ic |M ANua l} The ACQuis i tion co mmand allo ws you to s pecify the acquisit ion mode for the state analyzer. The acquisi tion mo des are aut omatic and manual. Example OUT PU T XX X; ": MA CH IN E2 :T WA VE FO RM :A CQ UI SI TI ON A UT OM AT IC " Query MA C[...]

  • Seite 357

    CLRPattern Command :M AC Hi ne {1|2 }: TW AV efor m: CL RP atte rn { X| O|AL L} The CLRPat tern command allo ws you t o clear t he patte rns in the selected Specify P at terns m enu. Example OUT PU T XX X; ": MA CH IN E1 :T WA VE FO RM :C LR PA TT ER N AL L" CLRStat Command :M AC Hi ne {1|2 }: Tw av efor m: CL RS tat The CLRStat command a[...]

  • Seite 358

    <delay_value> real numb er between − 2500 s and +2500 s Example OUT PU T XX X; ": MA CH IN E1 :T WA VE FO RM :D EL AY 1 00 E − 6" Query :M AC Hi ne {1|2 }: TW AV efor m: DE La y? The DELay query re turns the current tim e offset (delay) value fro m the trigger. Returne d Format [:MA CHin e{1| 2}:T WAVe form :DEL ay] <d elay _[...]

  • Seite 359

    MMODe Command :M AC Hi ne {1|2 }: TW AV efor m: MM OD e {O FF|P AT Te rn |TIM E| MS Ta ts} The MMOD e (Marker Mode ) comm and sel ects the mode co ntrolling mark er movement and the display of the marker readouts. W hen PATTern is selecte d, the mark ers will be placed on patte rns. Whe n TIME is sel ected, t he markers m ove on time . In MS T ats,[...]

  • Seite 360

    OCONditio n Command :M AC Hi ne {1|2 }: TW AV efor m: OC ON diti on {E NTer in g| EX ITin g} The OCO Ndition co mmand specifie s where the O marker is placed. The O marker can b e placed on t he entry o r exit po int of the O PATtern when i n the PAT T ern mark er mode. Example OU TPUT XXX ; ":MA CHIN E1:T WAVE FORM :OCO NDIT ION EN TERI NG &q[...]

  • Seite 361

    OPATtern Command :M AC Hi ne {1|2 }: TW AV efor m: OP AT tern <l abel _n am e> ,<la be l_ pa tter n> The OP ATtern comm and allo ws you t o const ruct a pattern re cognizer te rm for the O marke r which is then use d with the OSEarch crit eria an d OCONdit ion when m oving the marker o n patterns. Since thi s command deals with onl y on[...]

  • Seite 362

    OSEarch Command :M AC Hi ne {1|2 }: TW AV efor m: OS Ea rch <o ccur re nc e> ,<or ig in > The OSEarch co mmand defines the search crite ria for the O marker which i s then used with the asso ciated OPA Ttern recogni z er speci fication and the OCONdit ion when m oving mark ers on pat terns. The origin parame ter tel ls the mark er to be[...]

  • Seite 363

    OT IMe Command :M AC Hi ne {1|2 }: TW AV efor m: OT IM e <tim e_ va lu e> The OTIMe co mmand positions t he O mark er in time whe n the marker mo de is TIME . If data i s not val id, the command performs no acti on. <time_value> real numb er − 2 .5 ks to +2 .5 ks Example OU TPUT XXX ; ":MA CHIN E1:T WAVE FORM :OTI ME 3 0.0E − 6[...]

  • Seite 364

    RANGe Command :M AC Hi ne {1|2 }: TW AV efor m: RA NG e <tim e_ va lu e> The RANG e command s pecifies the full -screen time i n the timing waveform menu. It is equivalent to ten t imes t he seconds- per-division set t ing o n the display. T he allowab le values fo r RANGe are from 10 ns to 10 ks. <time_range> real numb er between 1 0 n[...]

  • Seite 365

    RUNTil Command :M AC Hi ne {1|2 }: TW AV efor m: RU NT il < ru n_ un til_ sp ec > The RUNTil (run unti l) com mand defi nes stop crit eria base d on the t ime betwe en the X and O mark ers when the trace mo de is in re petitive . When OFF i s select ed, the anal y zer wil l run until either the STO P to uch screen fiel d is touched, o r, the [...]

  • Seite 366

    SP E Rio d Command :M AC Hi ne {1|2 }: TW AV efor m: SP ER iod <s am pl e_ peri od > The SPERio d command al lows you to set t he sample period of the tim ing analyzer in the Conventi onal and Glitch modes. The sample peri od range depends on the mode sel ected and is as fo l lows: • 2 ns t o 8 ms for Conventional H alf Channel 5 0 0 MHz ?[...]

  • Seite 367

    TAVerage Query :M AC Hi ne {1|2 }: TW AV efor m: TA Ve rage ? The TAVerage q uery returns the value o f the averag e time be tween the X and O markers. If there is no valid dat a, the query returns 9.9E 37. Returne d Format [:MA CHin e{1| 2}:T WAVe form :TAV erag e] < time _val ue>< NL> <time_value> real numb er Example OUT PU T X[...]

  • Seite 368

    TMINim um Query :M AC Hi ne {1|2 }: TW AV efor m: TM IN imum ? The TMINimum query ret urns the val ue of the minimum t ime b etween t he X and O mark ers. If there is no valid data, the query re turns 9.9E3 7. Returne d Format [:MA CHin e{1| 2}:T WAVe form :TMI Nimu m] < time _val ue>< NL> <time_value> real numb er Example OUT PU [...]

  • Seite 369

    Query :M AC Hi ne {1|2 }: TW AV efor m: TP OS itio n? The TPOSi t ion q uery returns the current trigger s etting . Returne d Format [:MA CHin e{1| 2}:T WAVe form :TPO Siti on] {S TARt |CEN Ter| END| DELa y, <t im e_va l>|P OSTs tore ,<pe rcen t>}< NL> <time_val> real numb er from 0 to 500 seco nds Example OUT PU T XX X; &qu[...]

  • Seite 370

    XCONdition Command :M AC Hi ne {1|2 }: TW AV efor m: XC ON diti on {E NTer in g| EX ITin g} The XCON dition comma nd specifies where the X marker is placed. The X marker can b e placed on t he entry o r exit po int of the X P ATt ern when in t he PAT T ern mark er mode. Example OU TPUT XXX ; ":MA CHIN E1:T WAVE FORM :XCO NDIT ION EN TERI NG &q[...]

  • Seite 371

    XPATtern Command :M AC Hi ne {1|2 }: TW AV efor m: XP AT tern < la be l_na me >, <l abel _p at te rn> The XPATt ern command allows you to construct a pattern reco gnizer t erm for the X marker which is then used with t he XSEarch crit eria and XCON dition whe n moving t he marker on patterns. Since this command deals with onl y one lab [...]

  • Seite 372

    XSEar ch Command :M AC Hi ne {1|2 }: TW AV efor m: XS Ea rch <o ccur re nc e> ,<or ig in > The XSEarch com mand defines the s earch criteria for the X marker which is then used with the asso ciated XPATte rn recognizer s pecification and t he XCON dition whe n moving m arkers on patt erns. The origin parameter tells the mark er to begin[...]

  • Seite 373

    XTI Me Command :M AC Hi ne {1|2 }: TW AV efor m: XT IM e <tim e_ va lu e> The XTIMe comm and positions the X marker i n time when the marker mo de is TIME . If data i s not val id, the command performs no acti on. <time_value> real numb er from − 2.5 ks to +2 .5 ks Example OU TPUT XXX ; ":MA CHIN E1:T WAVE FORM :XTI ME 4 0.0E −[...]

  • Seite 374

    23 –26[...]

  • Seite 375

    24 TLISt Subs ys tem[...]

  • Seite 376

    Introd uction The TLISt subsyste m contai n s the command s availabl e for the Timin g Listi ng me n u in the 166 0-series log ic analyzers an d is th e same as the SLISt s ubs ystem with the exceptio n o f the OCONd ition an d XCONdi tion command s. The TLISt s ubsyste m comma nds are : • COLumn • CLRPattern • DATA • LI N E • M MODe • [...]

  • Seite 377

    Figu re 24 -1 TLIS t Subsy stem Sy n tax Di agram TLISt Sub s yste m 24 –3[...]

  • Seite 378

    Figu re 2 4-1 (co n tinue d ) TLIS t Subsy s te m Synt ax Diag ram (conti nued) TLISt Subsys tem 24 –4[...]

  • Seite 379

    Figu re 2 4-1 (co n tinue d ) TLIS t Subsy s te m Synt ax Diag ram (conti nued) TLISt Sub s yste m 24 –5[...]

  • Seite 380

    Tab le 24 -1 TLISt Para meter Values Par ameter Val ues module_num {1 |2|3 |4|5 |6 |7|8 |9|1 0} 2 t h rough 1 0 not us ed mach_num {1 |2} col_nu m integer fr om 1 to 61 line_nu mber integer fro m − 8191 to + 81 91 label_name strin g of u p to 6 alphanumer i c c h aracter s bas e {BIN ary| HEXa deci mal| OCTa l|DE Cima l|TW OS| AS Ci i|SY MBol |IA[...]

  • Seite 381

    TLISt Selector :M ACHi ne {1|2 }: TL IS t The TLISt sel ector is used as part of a com pound header t o access thos e settings no rmally found in t he Timing List ing menu. It always fo llows t he MACHine selecto r because it sele cts a branch direct ly below the MACH ine level in the command tre e. Example OUT PU T XX X; ": MA CH IN E1 :T LI [...]

  • Seite 382

    <col_num> integer from 1 to 61 <module_num> {1|2|3|4|5|6|7|8|9|10 } 2 thro ugh 10 unus ed <label_name> a string of up to 6 alphanumeri c characters <base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol| IASSembler } for labels or {ABSolute|RELative } for tags Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :C OL UM [...]

  • Seite 383

    DATA Query :M AC Hi ne {1|2 }: TL IS t:DA TA ? <l in e_nu mb er >, <l abel _n am e> The DATA q uery returns t he value at a speci fied line numbe r for a give n label. The format will b e the sam e as the one shown in the Li sting dis play. Returne d Format [:MA CHin e{1| 2}:T LISt :DAT A] < line _num ber> ,<la bel_ name >, [...]

  • Seite 384

    Query :M AC Hi ne {1|2 }: TL IS t:LI NE ? The LINE query ret urns the l ine numbe r for the state curre ntly in t he box at the cent er of the scree n. Returne d Format [:MA CHin e{1| 2}:T LISt :LIN E] < line _num _mid _scr een> <NL> Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :L IN E? " MMODe Command :M AC Hi ne {1|2 }: TL[...]

  • Seite 385

    OCONditio n Command :M AC Hi ne {1|2 }: TL IS t:OC ON di ti on { EN Te ri ng|E XI Ti ng } The OCO Ndition co mmand specifie s where the O marker is placed. The O marker can b e placed on t he entry o r exit po int of the O PATtern when i n the PAT T ern mark er mode. Example OU TPUT XXX ; ":MA CHIN E1:T LIST :OCO NDIT ION EN TERI NG" Quer[...]

  • Seite 386

    <label_name> string o f up to 6 al phanumeric characters <label_ pattern> "{#B{0|1|X} . . . | #Q{0|1|2|3|4|5|6|7|X} . . . | #H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . | {0|1|2|3|4|5|6|7|8|9} . . . }" Example s O UT PU T XX X; ": MA CH IN E1 :T LI ST :O PA TT ER N ’ DA TA ’ , ’ 25 5 ’ " O UT PU T XX X; "[...]

  • Seite 387

    Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :O SE AR CH + 10 ,T RI GG ER " Query :M AC Hi ne {1|2 }: TL IS t:OS Ea rc h? The OSEarch q uery returns t he search criteria fo r the O mark er. Returne d Format [:MA CHin e{1| 2}:T LISt :OSE arch ] <occ urre nce> ,<or igin ><NL > Example OUT PU T XX X; ": MA CH IN E1 :[...]

  • Seite 388

    OT AG Command :M AC Hi ne {1|2 }: TL IS t:OT AG < ti me_v al ue > The OTAG command speci fies the tag value on which the O Marker should b e placed. The t ag value is t i me. If t he data is not valid tagged dat a, no acti on is performed. <time_value> real numb er Example :O UTPU T XXX; ": MACH INE1 :TLI ST:O TAG 40 .0E − 6"[...]

  • Seite 389

    RUNTil Command :M AC Hi ne {1|2 }: TL IS t:RU NT il < run_ un ti l_ spec > The RUNTil (run unti l) com mand all ows you t o define a stop condition when the trace mode is repetitive. Specifying OF F causes the analyz er to make runs until either t he display’ s STOP fiel d is touched, o r, until the S T OP command is issued. There are four [...]

  • Seite 390

    TAVerage Query :M AC Hi ne {1|2 }: TL IS t:TA Ve ra ge ? The TAVerage q uery returns the value o f the averag e time be tween the X and O Mark ers. If t he number of valid runs is zero , the q uery ret urns 9.9E37 . Valid runs are t hose where the pattern s earch for bot h the X and O markers was successful , resulting in valid delta-tim e measurem[...]

  • Seite 391

    TMINim um Query :M AC Hi ne {1|2 }: TL IS t:TM IN im um ? The TMINimum query ret urns the val ue of the minimum t ime b etween t he X and O Mark ers. If data is not valid, the query re turns 9.9 E37. Returne d Format [:MA CHin e{1| 2}:T LISt :TMI Nimu m] < time _val ue>< NL> <time_value> real numb er Example OUT PU T XX X; ":[...]

  • Seite 392

    XCONdition Command :M AC Hi ne {1|2 }: TL IS t:XC ON di ti on { EN Te ri ng|E XI Ti ng } The XCON dition comma nd specifies where the X marker is placed. The X marker can b e placed on t he entry o r exit po int of the X P ATt ern when in t he PAT T ern mark er mode. Example OU TPUT XXX ; ":MA CHIN E1:T LIST :XCO NDIT ION EN TERI NG" Quer[...]

  • Seite 393

    XOTim e Query :M AC Hi ne {1|2 }: TL IS t:XO Ti me ? The XOTime query re turns the time from t he X to O mark ers. If t here is no data in t he time mode the query re turns 9.9E3 7. Returne d Format [:MA CHin e{1| 2}:T LISt :XOT ime] <XO _tim e><N L> <XO_time> real numb er Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :X OT [...]

  • Seite 394

    Example s O UT PU T XX X; ": MA CH IN E1 :T LI ST :X PA TT ER N ’ DA TA ’ , ’ 25 5 ’ " O UT PU T XX X; ": MA CH IN E1 :T LI ST :X PA TT ER N ’ AB C ’ , ’ #BXX XX11 01 ’ " Query :M AC Hi ne {1|2 }: TL IS t:XP AT te rn ? <lab el _n am e> The XPATt ern query returns the patt ern specificatio n for a give n lab[...]

  • Seite 395

    Query :M AC Hi ne {1|2 }: TL IS t:XS Ea rc h? The XSEarch q uery returns the search criteri a for the X mark er. Returne d Format [:MA CHin e{1| 2}:T LISt :XSE arch ] <occ urre nce> ,<or igin ><NL > Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :X SE AR CH ?" XSTate Query :M AC Hi ne {1|2 }: TL IS t:XS Ta te ? The XSTat[...]

  • Seite 396

    XTAG Command :M AC Hi ne {1|2 }: TL IS t:XT AG < ti me_v al ue > The XTAG co mmand specifie s the t ag value on which t he X Marker shoul d be placed. The t ag value is t i me. If t he data is not valid tagged dat a, no acti on is performed. <time_value> real numb er Example OUT PU T XX X; ": MA CH IN E1 :T LI ST :X TA G 40 .0 E ?[...]

  • Seite 397

    25 SYMB ol Sub syste m[...]

  • Seite 398

    Introd uction The S YMBol s u b s ystem con tains th e commands that allow y o u to defi ne symb ols on the con troller an d down load th em to the 166 0-series logic an alyzers. The command s in th is subsys tem are: • BA SE • PAT Tern • R AN Ge • R EM ov e • WIDTh 25 –2[...]

  • Seite 399

    Figu re 25 -1 SYMBo l Subsy s tem Sy ntax Di agram SYMBol Sub system 25 –3[...]

  • Seite 400

    Tab le 25 -1 SYMBol Paramete r Values Par ameter Val ues label_name string of u p to 6 alphan umeric c ha ract ers symbol_n ame string of up to 16 alph anumeric cha r acters pattern_v alue "{ #B{0 |1|X } . . . | #Q {0 |1|2 |3|4 |5|6 |7|X } . . . | #H {0 |1|2 |3|4 |5|6 |7|8 |9|A |B|C |D|E |F|X } . . . | {0 |1 |2|3 |4|5 |6|7 |8|9 } . . . }"[...]

  • Seite 401

    BASE Command :M AC Hi ne {1|2 }: SY MB ol:B AS E <l abel _n am e> ,<ba se _v al ue> The BASE com mand sets the base in which symb ols for the specifi ed label will b e displayed in the sy m b ol menu. It also speci fies the base in which the symbo l offset s are displayed whe n symbo ls are use d. BINar y is no t a v ailable f or labels[...]

  • Seite 402

    PATTern Command :M AC Hi ne {1|2 }: SY MB ol:P AT Te rn <la be l_ na me>, <s ymbo l_ na me >,<p at te rn _val ue > The PATTern co mmand allows yo u to creat e a patt ern symb ol for t he specified l abel. Because don’ t cares ( X) are allo wed in the pattern val ue, it must alway s be e xpressed as a string. Yo u may still use d[...]

  • Seite 403

    <label_name> string o f up to 6 al phanumeric characters <symbol_name> string o f up to 16 alphanumeric charact ers <start_value> "{#B{0|1} . . . | #Q{0|1|2|3|4|5|6|7} . . . | #H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . | {0|1|2|3|4|5|6|7|8|9} . . . }" <stop_value> "{#B{0|1} . . . | #Q{0|1|2|3|4|5|6|7} . . . | #[...]

  • Seite 404

    WIDT h Command :M AC Hi ne {1|2 }: SY MB ol:W ID Th < labe l_ na me >, <w idth _v al ue > The WID Th comm and specifies the width (num ber of characters) in which the sym b ol nam es will be display ed when symbo ls are used. The WID Th command d oes not affect t he displa yed leng th of t he sy mbol offset value. <label_name> str[...]

  • Seite 405

    26 DATA and SE Tup Co mmands[...]

  • Seite 406

    Introd uction The DA TA and S E Tup co m man d s are SYST em commands th at allow you to send and rece ive block data betwe en the 1660-seri es logi c anal yzer and a controll er. U se the DATA instr uction to transfer acqu ired ti ming and state data, and the S ETup in stru ction to tr ansfe r instru ment config uration data. Th is is u seful for:[...]

  • Seite 407

    Data Fo rmat To understand the format o f the data within the block data, t here are four important things to keep in mind. • Data i s sent t o the controll er in binary fo rm. • Each byt e, as des cribed in this chapter, co ntains 8 bi ts . • The first bit of each b yte i s t he MSB (mo st sig nificant bit). • Byte des criptions are print [...]

  • Seite 408

    :SYSTem :DATA Command :S YS Te m: DATA < bl oc k_da ta > The SYSTem:DA T A com mand transmit s the acquis i tion m emory dat a from the cont roller t o the 1660-seri es logi c analyzer. The blo ck data co nsists o f a variabl e number of byt es cont aining inform ation captured b y the acq uisitio n chips. The i nformatio n will be in one of [...]

  • Seite 409

    <section_ header> 16 byt es, describ ed in chapt er 26, "Sect ion He ader Descri ption". <section_data> Format depends o n the specific se ction. Example OUT PU T XX X; ": SY ST EM :D AT A" <bl oc k_ da ta > The tot al length o f a sec tion is 16 (for t he sec tion head e r) plus the length o f t he sectio n da[...]

  • Seite 410

    Section Header Descr iption The sectio n header uses b ytes 1 thro ugh 16 (this manual begins co unting at 1; the re is no b yte 0 ). T he 16 byt es of t he secti on header are as follows: Byte Position 1 10 byt es - Sect ion name ("DATA space space s pace space space space" in ASCII for t he DATA instruct i on). 11 1 byte - Reserved 12 1[...]

  • Seite 411

    The next 40 byt es are for Analyzer 1 D ata Inform ation. Byte Position 21 1 byte - Machine data mode, o ne of the followi ng decimal val ues: − 1 = off 0 = st ate data wi thout t ags 1 = st ate data wi th each chip as signed to a m achine (2kB mem ory) and either t ime or s tate t ags 2 = st ate data wi th unassigne d pod used to store tag dat a[...]

  • Seite 412

    Byte Position 26 1 byte - Master chi p for this analyzer. This decimal value returns which chip’s t ime tag data is val id in a non- transitional m ode; for example, s t ate with ti me tags. 5 - pods 1 and 2 2 - p ods 7 and 8 3 4 - pods 3 and 4 1 1 - un u sed 3 - pods 5 and 6 2 0 - un u sed – 1 - n o chip 1 – a l so un u s ed in th e 166 3A 2[...]

  • Seite 413

    Byte Position 61 40 byt es - The nex t 40 b ytes are for Analyz er 2 Dat a Informatio n. T he y are organiz ed in the same manner as Analy zer 1 abo ve, but t hey occupy b ytes 61 through 1 0 0. 101 26 byt es - N umber o f valid rows of data (st arting at b yte 177) fo r each pod. The 26 b ytes of this group are o rganized as follows: Bytes 1 and 2[...]

  • Seite 414

    Byte Position 127 26 byt es - Row of data co ntaining t he trigge r point. This byte g roup is organiz ed in the same way as the data ro ws (st arting at byte 101 abo ve). These bi nary numbers are base z ero numb ers which st art from the first sample st ored for a specific po d. Fo r example , if by tes 15 1 and 152 contained a binary num ber wit[...]

  • Seite 415

    Byte Position clock li ne s Pod 8 1 Pod 7 1 pod 6 2 po d 5 2 pod 4 3 pod 3 3 p od 2 pod 1 4 177 2 byt es 2 byt es 2 by tes 2 byt es 2 bytes 2 by tes 2 bytes 2 byt es 2 b y t es 195 2 byt es 2 byt es 2 bytes 2 byt es 2 b y t es 2 by tes 2 byte s 2 byt es 2 bytes .. .. .... .. .. .. .... .. .. .. .... .. (x ) 2 byt es 2 byt es 2 by tes 2 bytes 2 b y [...]

  • Seite 416

    Time Tag Data Description The time tag data start s at the end o f the acquired data. Each dat a row has an 8-b yte ti me tag fo r each chip ( 2-pod s et). The start ing locat ion of t he time t ag data is immediately after the last row of val id data ( maximum data byte + 1). If an analyz er is in a non-transi t ional m ode, the master chip ( b yt[...]

  • Seite 417

    Byte ( x + 8 ) thro ugh (x + 1 5 ) ( 64 bit s start ing with t he MSB) - F irst sampl e tag for pods 5 and 6. Byte ( x + 16 ) through ( x + 23 ) (64 bits starting with the MSB) - Second sample t ag for pods 5 and 6. . . . Byte ( y) through ( y+ 7) (6 4 bits s tarting with t he MSB) - Last sam ple tag fo r pods 5 and 6. Byte ( y + 8 ) t hrough ( y +[...]

  • Seite 418

    Glitch Data Descrip t ion In the gl itch mode, each pod has two b ytes as signed to indicate where glitches occur in the acq uired data. F or each row of acquire d data there will be a co rresponding row of gl itch data. The gl itch data is o rganized i n the same way as the acquired dat a. The gli tch data is gro uped in 18-byte rows for the 1 6 6[...]

  • Seite 419

    SYSTem:SETup Command :S YS te m: SETu p <b lo ck _dat a> The SYSt em:SETup comm and confi gures the logic analy z e r module as defined b y the b lock dat a sent b y the controll er. The length o f th e configurati on data blo ck can be up t o 350 ,784 byte s in the 16 60A. There are four data sections which are always returned. These are the[...]

  • Seite 420

    <block_data> <b lo ck_l engt h_sp ecif ier> <sec tion > <block_length_ specifier> #8 <l engt h> <length> The tot al length of all sectio ns in b yte form at (mu st be represented with 8 digits) <section> <s ec tion _hea der> <sec tion _dat a>[< sect ion_ data >... ] <section_ header>[...]

  • Seite 421

    RTC_INF O Section Descrip t ion The RTC_INF O section contains t he real t ime of t he acquire d data. Becaus e the ti me of t he acquired data is im portant to certain meas urements, this sectio n describe s how to find the real-time clo ck data. Because the number of se ctions in the SETup data block depends o n the logic anal yzer co nfiguration[...]

  • Seite 422

    26 –18[...]

  • Seite 423

    Pa rt 4 Oscillo scope Co mmands[...]

  • Seite 424

    [...]

  • Seite 425

    27 Oscillo scope Ro ot Level Co mman ds[...]

  • Seite 426

    Introd uction Osci lloscop e R oot Level command s contr ol th e basi c operatio n of the oscillo scop e. Re fer to f igur e 27-1 for th e module le vel syn tax command di agram. The Ro ot Level commands ar e: • AUTo scale • DIGitize 27 -2[...]

  • Seite 427

    F ig ur e 27 -1 Root L evel Co mmand Synt ax Diag ram AUTo scale Command :A UT os ca le The AUToscal e command caus es the oscil l oscope t o auto matically sel ect the vertical s ensitivit y, verti cal offset , trigge r source, t rigger le vel and timeb ase setti ngs for o ptimum viewing o f any input signal s. The tri gger source is the lowest ch[...]

  • Seite 428

    Example 10 OUT PUT XX X;": SELE CT 2 " 20 O UTPU T XX X;": AUTO SCAL E" 2 5 WA IT 5 3 0 DI M Me $[ 20 0] 40 OUT PUT ;" :MEA SURE :SOU RC E CHAN NEL1 ;ALL ?" 5 0 EN TE R XX X; Me $ 6 0 PR IN T Me $ 70 E ND The thre e Xs (XXX) aft er the O UTPUT an d ENTER s tatemen t s in t he above example r efer to the dev ice addre s[...]

  • Seite 429

    DIGit iz e Command :DIG it iz e The DIGi ti ze command is used to acquire wavefo rm data fo r transfer o ver GPIB. The command i nitiates the Repet itive Run for the o scillos cope an d any module s that are gro uped t ogether in Group Run thro ugh the Intermodul e Bus. If a RUNti l co ndition has been s pecified in any mo dule, the oscillo scope a[...]

  • Seite 430

    27 -6[...]

  • Seite 431

    28 ACQui re Subsystem[...]

  • Seite 432

    Introd uction The A cquire Su b syste m commands are used to set u p acqu isition con ditions for the DIGitize command. T he subsyste m contains command s to se lect the ty pe of acqu isition and th e numb er of averag es to b e take n if the average typ e is ch ose n. Re fer to Figure 28-1 f o r the A CQuire S ubs ystem Sy ntax Diagram. The A CQui[...]

  • Seite 433

    F ig ur e 28 -1 ACQ uire Su bsystem Sy ntax Di agram Tab le 28 -1 ACQu ire Parameter Values Par ameter Val ue count_ arg An int eger th a t spec ifies t he number of averag es to be t aken of each t ime point . The cho i ces are 2, 4, 8, 16, 32, 64 , 128, or 25 6. Acqu isition Type Norm al In the N ormal mo de, with the ACCumulat e command O FF, t [...]

  • Seite 434

    COUNt Command :A CQ ui re :COU Nt < co unt> The COUNt command s pecifies the numb er of acq uisiti ons for t he running weighted average. This comm and generates an error if No rmal acqui si tion mode is specified. <count> {2|4|8|16|32|64|128|256} Example OUT PU T XX X; ": AC QU IR E: CO UN T 16" Query :A CQ ui re :COU Nt ? Th[...]

  • Seite 435

    Query :A CQ ui re :T YP E? The TYPE q uery returns the last specified type. Returne d Format [:AC Quir e:TY PE] {N ORMa l|AV ERag e}<N L> Example OUT PU T XX X; ": AC QU IR E: TY PE ?" ACQu ire Subsys tem TYPE 28 -5[...]

  • Seite 436

    28 -6[...]

  • Seite 437

    29 CHA Nnel Su bsyst em[...]

  • Seite 438

    Introd uction The C hannel Subsys tem commands co ntrol th e chann el dis play and the vertical ax is of th e os cillosco pe. Each ch annel must be programmed inde pende ntly for al l offset, ran ge and pr obe function s. When ECL or TTL commands are e xecuted , the ver tical range , offset and trigger le vels are automatically set for o p timum vi[...]

  • Seite 439

    Fig ure2 9 - 1 CHA Nnel Subs ystem Syn tax Di agram CHAN nel Subsyste m 29 -3[...]

  • Seite 440

    Tab le 29 -1 CHAN nel Parameter Values Par ameter Val ue channel_nu mber An integer from 1 t o 2. offset _arg a real nu mber def i n i n g the volt age at the cen t e r of th e display. The of f set ran ge is as follows (f or a 1:1 pro be setting) : Verti ca l Sen sitivi t y Ver ti cal Range O f fs e t V oltage 4 mV - 10 0 mV/div 16 mV - 400 mV ± [...]

  • Seite 441

    Query : CHA Nn el <N>: CO UP li ng? The COUPli ng query returns the current input impedance fo r the speci fied channel. Returne d Format [:CH ANne l<N> :COU Plin g:] {D C|AC |DCF ifty }<NL > Example OUT PU T XX X; ": CH AN NE L1 :C OU PL IN G? " ECL Command :CHA Nn el <N >: EC L The ECL com mand sets the vertical [...]

  • Seite 442

    OF FSet Command :C HANn el <N >: OFFS et < va lue> The OF FSet co mmand set s the vo l t age that is represent ed at ce nter screen for the selected channel. The all owable offset vo ltage <value> is sho wn in the tab le belo w. The ta b le represe nts values for a P robe s etting of 1:1. The offset value is reco mpensated wheneve[...]

  • Seite 443

    PR OBe Command :C HANn el <N >: PROB e <a tt en > The PRO Be command specifi es t he atte nuation fact or for an external probe connected t o a channel . The comm and changes the channel voltage references s uch as range, offset , trigg er level and automat ic measurements. The actual se nsitivity is not change d at the channel input. T[...]

  • Seite 444

    RANGe Command :C HANn el <N >: RANG e <r an ge > The RANG e co mmand defines the full-s cale (4 * Vo lt s / Div) vertical a xis o f the sel ected channel. The val ues for t he RANG e command are dependent on the current probe at t e nuation fact or for t he select ed channel. T he allowab le range fo r a probe att enuation facto r of 1:[...]

  • Seite 445

    TT L Command :C HA Nn el <N>: TT L The TTL command sets the vert ical range, offset, and trigge r level fo r the selecte d input channel for opti mum viewing of TTL signals. The set TTL values are: Range: 6 .0 V ( 1.50 V per divisi on) Offset : 2.5 V Trigger Leve l: 1.62 V <N> An integ er, from 1 t o 2. Example OUT PU T XX X; ": CH[...]

  • Seite 446

    29 -10[...]

  • Seite 447

    30 DISPlay Subsystem[...]

  • Seite 448

    Introd uction The Displ ay Sub sy stem is used to control the d i s play of data. Refer to Figure 30-1 for the DISPlay Subsys tem Syntax Diagram. Th e DISPlay Subsystem command s are: • ACCumulate • CONNect • INSert • LAB el • MINus • OVERlay • PLUS • R EM ov e 30 -2[...]

  • Seite 449

    F ig ur e 30 -1 DISPlay Subsys tem Synta x Diagram DISPlay Subsys t e m 30 -3[...]

  • Seite 450

    Tab le 30 -1 DISPl ay Parame te r Valu e s Par ameter Val ue slot_# a numbe r f rom 1 or 2 iden ti f ying the oscillosc ope/analyz e r card slot . 1=ana lyzer, 2=o scilloscope. bit_id an int eger fr om 0 t o 31. channel_# an integer from 1 t o 2. label_s t r up t o five char a cters en closed in single quo tes makin g up a label name. label_id a st[...]

  • Seite 451

    CONNect Command :D IS Pl ay :CON Ne ct { {ON| 1} |{ OF F|0} } The CON N e ct command sets the Co nnect Dots mo de. W hen ON, each displayed s ample dot will be co nnected to t he adjacent do t by a straight line. The waveform i s easier to see in t his mode. W hen OFF , only t he sampling points will be displ ayed. Example OUT PU T XX X; ": DI[...]

  • Seite 452

    <module number> Always 2 <label> string o f 1 alpha and 1 numeric charact er enclosed b y single q uotes Example OUT PU T XX X; ": DI SP LA Y: IN SE RT ’ C1 ’ " To insert a waveform from a logic analy zer module t o the oscilloscope display: Command :D IS Pl ay :INS er t <s lo t no>, <l ab el >,<b it -i d>[...]

  • Seite 453

    LABel Command :DI SP la y: LA Be l CH AN ne l< N> ,< la be l_ st ri ng > The LABel co mmand is used t o assign a la b el stri ng to an oscilloscope channel. F or singl e channel trace s, the l abel st ring (up to five characters ) appears on t he left of t he waveform area of the display. Note that the lab el string canno t be used in p[...]

  • Seite 454

    MINus Command :DI SP la y: MI Nu s [< mo du le _n um be r> ,] <l ab el >, <l ab el > The MINus co mmand algebrai cally sub tracts one channel from anot her and inserts the resultant waveform to the dis play. The firs t parameter is an optio nal module specifier. The module i s identifi ed by t he slot numb er that contains the osc[...]

  • Seite 455

    PLUS Command :D IS Pl ay :PLU S [< mo du le_n um be r> ,]<l ab el >, <lab el > The PLU S command al gebraically adds two channels and inserts the resultant waveform to t he current di splay. The first paramet er is an o ptional module s pecifier and needs t o be used only if another module is displayed. The next parameters are the[...]

  • Seite 456

    DISPlay Subsys t e m REMov e 30 -10[...]

  • Seite 457

    31 MAR Ker Subs ys tem[...]

  • Seite 458

    Introd uction In ad d i tion to au tomatic parametri c measuremen ts, the oscillo scope has fou r markers f or makin g time and vol tage measurement. These measu rements may be made automatical ly or manu ally. A dditio nal featur es incl ude th e centeri ng of trig ger or mark ers in the disp lay area (CENTer) and the run until time (RUNT il) mode[...]

  • Seite 459

    F ig ur e 31 -1 MARKe r Subsy s tem Sy n tax Di agram MA RKer Subsystem 31 -3[...]

  • Seite 460

    F ig ur e 31 -1 MAR Ker Sub system Synt ax Diagr am (Cont ’d) MARKer Subsyste m 31 -4[...]

  • Seite 461

    F ig ur e 31 -1 MAR Ker Sub syst em Sy ntax Di agra m (Cont ’d) Tab le 31 -1 MARKer Parameter Valu es Par ameter Val ue channel_# An int eger fr om 1 to 2 . marker _time time in second s from t rigger mar ker to X or O mar ker lt_arg time in second s that spe cifies the l ess tha n (lt) R UNTil time gt_arg time in se conds that spe cifies the gre[...]

  • Seite 462

    AVOL t Command :M AR Ke r: AVOL t CH AN ne l<N> ,< le ve l> The AVOLt command m oves the A m arker to the specified vo ltage o n the indicated channe l. <N> An integ er from 1 to 2 <level> the desi red marker volt age level, ranging from ± (2 x max imum o ffset) Example OU TPUT XXX ;" :MAR KER: AVOL T CH ANNE L1,2 .75&[...]

  • Seite 463

    ABVolt ? Query :M AR Ke r: ABVo lt ? The ABVolt query ret urns the di fference be tween the A marker voltage and the B mark er voltage ( Vb - Va) . Returne d Format [:MA RKer :ABV olt] <lev el>< NL> <level> level in volts of t he B marker minus the A marker Example OUT PU T XX X; ": MA RK ER :A BV OL T? " BVOL t Command [...]

  • Seite 464

    Query :M AR Ke r: BVOL t? The BVOLt query ret urns the curre nt volt age and channel s electio n for the B marker. Returne d Format [:MA RKer :BVO Lt]C HANn el<N >,<l evel ><NL > Example OUT PU T XX X; ": MA RK ER :B VO LT ?" CENTer Command :M AR Ke r: CENT er { TR IGge r| X| O} The CENTer co mmand allows y ou to posi ti[...]

  • Seite 465

    Query :M AR Ke r: MSTa ts ? The MSTats query re turns the current setting . Returne d Format [:MA RKer :MST ats] {1|0 }<NL > Example OUT PU T XX X; ": MA RK ER :M ST AT S? " OAUTo Command :MA RK er :O AU To { MA Nu al |C HA Nn el <N >, <t yp e> ,< le ve l> , <s lope >, <o cc urre nc e> } The OAU To comm[...]

  • Seite 466

    Query :M AR Ke r: OAUT o? The OAUTo query returns the current set t ings. Returne d Format [:MA RKer :OAU To] CH ANne l<N> ,<ty pe> <l ev el>, <slo pe>, <occ urre nce> <NL> Example OUT PU T XX X; ": MA RK ER :O AU TO ?" If <type > is not specif ied, the mar ker type will default to PERCent . OT IM[...]

  • Seite 467

    RUNTil Command :M AR Ke r: RUNT il {O FF|L T, <t im e>|G T, <t im e>|I NR an ge ,<ti me >, <t ime> |O UT Ra nge, <t im e> , <tim e> } The RU NTil com mand allows you to set a st op conditi on base d on the time interval b e tween the X marker and the O marker. In repetitive runs, when the ti me specificat ion is [...]

  • Seite 468

    SHOW Command :MA RK er :S HO W {S AM Pl e| MA RK er } The SHO W comm and allows you to select either SAMPle rate or MARKer data (whe n markers are enab led) to appear on the oscillosco pe menus above the wavefo rm area. The SAMPle rate or MARKe r data appears o n t he channel, trigge r, display, and auto-m easure menus. Mark er data is always prese[...]

  • Seite 469

    TMAXimum ? Query :M AR Ke r: TMAX im um ? The TMAXimum q uery returns t he value of the maximum time b etween the X and O markers. If there is no valid dat a, the query returns 9.9E 37. Returne d Format [:MA RKer :TMA Ximu m] < time val ue>< NL> <time value> real numb er Example OUT PU T XX X; ": MA RK ER :T MA XI MU M? "[...]

  • Seite 470

    TMODe Command :M AR Ke r: TMOD e {O FF |O N|AU TO } The TMODe command al lows yo u to se lect the time m arker mode . The choices are : OFF, ON and AUTO. When O FF, time m arker measure ments cannot b e made. When the time markers are turned on, t he X and O mark ers can be m oved to mak e time and voltage measurement s. The AU TO mode allows y ou [...]

  • Seite 471

    VMODe Command :M AR Ke r: VMOD e {{ OF F|0} | { ON |1}} The VMODe command al lows yo u to se lect the voltage mark er mode. The choices are : OF F or ON . Whe n OFF , volt age marke r measurement s cannot be made . W hen the voltage markers are turned on, the A and B markers can be mo ved to make vol tage meas urements. When use d in conjunction wi[...]

  • Seite 472

    VOTim e ? Query :M AR Ke r: VOTi me ? CH AN NEL< N> The VOTi me query returns t he current vo l tage l evel of the s elected source at the O marker. Returne d Format [:MA RKer :VOT ime] <lev el>< NL> <N> An integ er from 1 to 2 <level> level in volts whe re the O marker cro sses t he waveform Example OUT PU T XX X; &qu[...]

  • Seite 473

    VXTime? Query :M AR Ke r: XVOL t? C HA Nnel <N > The VXTime q uery returns the current voltage level of the selected channel at the X marker. Returne d Format [:MA RKer :VXT ime] <lev el>< NL> <N> An integ er from 1 to 2 <level> level in volts where t he X marke r crosses the waveform Example OUT PU T XX X; ": MA [...]

  • Seite 474

    XAUTo Command :M AR Ke r: XAUT o{ MA Nu al|C HA Nn el <N>, <t ype> ,< le ve l>,< sl op e> ,<oc cu rr en ce>} The XAUTo command specifies the automat ic placement speci fication fo r the X m arker. The first parameter specifies if automarker placement is t o be in the Manual mode or on a specified channel. If a channel [...]

  • Seite 475

    XOTim e? Query :M AR Ke r: XOTi me ? The XOTime query returns the ti me in seco nds from t he X mark er to the O marker. If data is not valid, the query ret urns 9.9E37 . Returne d Format [:MA RKer :XOT ime] <tim e><N L> <time> real numb er Example OUT PU T XX X; ": MA RK ER :X OT IM E? " XTI Me Command :M AR Ke r: XTIM [...]

  • Seite 476

    Query :M AR Ke r: XTIM e? The XTIMe query ret urns the t ime in seconds betwe en the X marker and t he trigger marker. Returne d Format [:MA RKer :XTI Me]< xmar ker ti me>< NL> Example OUT PU T XX X; ": MA RK ER :X TI ME ?" MARKer Subsyste m XTIMe 31 -20[...]

  • Seite 477

    32 MEASu re Subsystem[...]

  • Seite 478

    Introd uction The command s/querie s in th e Meas ure Subs ystem are u s ed to make automati c para m etric meas u rements on d is p layed wave forms. Measuremen ts are made o n the disp layed wavefor m(s) specified by the SOUR ce command. If the sou rce i s not specified , the last waveform s o u rce spe cified is ass umed. Measur ements are made [...]

  • Seite 479

    Preshoot and Overshoot Presho ot and o vershoot meas ure the perturb ation on a wavefo rm above o r belo w the to p and base voltage s. Preshoot Is a perturb ation be fore a risi ng or a fall ing edge and measured as a percentage of the t op-bas e voltag e. Oversh oot Is a perturb ation after a rising or falli ng edge and is me asured as a percenta[...]

  • Seite 480

    F ig ur e 32 -1 MEASu re Subsy s tem Sy n tax Di agram Tab le 32 -1 MEASu re Paramet er Values Par ameter Val ue channel_# An int eger fr om 1 to 2 MEASu re Subsyste m 32 -4[...]

  • Seite 481

    ALL? Query :M EA Su re :[SO UR ce C HANn el <N >; ]ALL ? The ALL q uery mak es a set of measurement s on the displ ayed waveform using the selecte d source. <N> An integ er from 1 to 2 Returne d Format [:ME ASur e:AL L PERi od] <r eal nu mber >; [ RI Se ti me ] <r ea l nu mb er >; [ FA LL ti me ] <r ea l nu mb er >; [F[...]

  • Seite 482

    FAL Ltim e? Query :ME AS ur e: [S OU Rc e CH AN ne l< N> ;] FA LL ti me ? The FALL time query makes a fall time meas urement on the selecte d channel. The m easurement is m ade between t he 90% to the 1 0% vo ltage point o f the first fal ling edge displayed o n screen. Returne d Format [:ME ASur e:FA LLti me] <v alue ><NL > <N[...]

  • Seite 483

    NWIDth? Query :ME AS ur e: [S OU Rc e CH AN ne l< N> ;] NW ID th ? The NWIDt h query mak es a negative wi dth time meas urement o n the selecte d channel. The measurem ent is m ade between t he 50% po ints of the first fall ing and the nex t rising edge displayed o n screen. Returne d Format [:ME ASur e:NW IDth ] <val ue>< NL> <[...]

  • Seite 484

    PERiod ? Query :ME AS ur e: [S OU Rc e CH AN ne l< N> ;] PE Ri od ? The PERio d query makes a perio d measurement on the selecte d channel. The measureme nt is equival ent to the inverse o f the freq uency. Returne d Format [:ME ASur e:PE Riod ] <val ue>< NL> <N> An integ er from 1 to 2 <value> waveform peri od in seco[...]

  • Seite 485

    PWI Dth? Query :ME AS ur e: [S OU Rc e CH AN ne l< N> ;] PW ID th ? The PW ID th q uery makes a positive pulse width measurement on the selecte d channel. The measurem ent is made b y finding the t ime differen ce betwe en the 5 0% poi nts of t he first rising and t he next falling edg e displayed on screen. Returne d Format [:ME ASur e:PW ID[...]

  • Seite 486

    SOURce Command :M EA Su re :SOU Rc e CH AN nel< N> The SOURce command specifie s the so urce to be used for subsequent measurement s . If t he source i s not specifie d, the las t waveform source is assumed. <N> An integ er from 1 to 2 Example OUT PU T XX X; ": ME AS UR E: SO UR CE CHA N1 " Query :M EA Su re :SOU Rc e? The SOU[...]

  • Seite 487

    VAM Plit ude? Query :ME AS ur e: [S OU Rc e CH AN ne l< N> ;] VA MP li tu de ? The VAMP litude q uery mak es a vol tage meas urement on the selecte d channel. The m easurement is m ade by finding t he relative max imum (V T OP) and minimum (VBASe) points on scre en. Returne d Format [:ME ASur e:VA MPli tude ] <val ue>< NL> <N&g[...]

  • Seite 488

    VMAX? Query :M EA Su re :[SO UR ce C HANn el <N >; ]VMA X? The VMAX que ry returns the a bsolut e maxi mum volt age of t he select ed source. Returne d Format [:ME ASur e:VM AX] <v alue ><NL > <N> An integ er from 1 to 2 <value> maximum voltage of selected waveform Example OUT PU T XX X; ": ME AS UR E: SO UR CE CH[...]

  • Seite 489

    VP P? Query :M EA Su re :[SO UR ce C HANn el <N >; ]VPP ? The VPP query m akes a peak to pe ak voltage m easurement on the select ed source. The meas urement is made by finding the absolute maximum (VMA X) and minimum (VMIN) poi nts on t he displaye d waveform. Returne d Format [:ME ASur e:VP P]<v alue ><NL > <N> An integ er[...]

  • Seite 490

    32 -14[...]

  • Seite 491

    33 TIM eb ase Subsystem[...]

  • Seite 492

    Introd uction The command s of the Timebase Subsys tem control the Timeb ase, Tri gger Delay Time, and the Time base Mode . If TRIGg ered mode is to be u s ed, en s u re that th e tr igger s pecifi cations o f the Trig ger Subsys tem have be en set. Refe r to Figure 3 3-1 for the TIMeb ase Subsys tem Sy ntax Diagr am. 33 -2[...]

  • Seite 493

    F ig ur e 33 -1 TIM ebase Sub syste m Synt ax Diagr am Tab le 33 -1 TIMeb ase Para meter Val ues Par ameter Val ue delay_ar g delay time in seconds , from -2 500 se conds t hrough +250 0 secon ds. The f ull rang e is ava ilable for panning th e wave form when acquis i tion is stopped. Refer to the User ’ s Ref erence M anua l for a l is t of the [...]

  • Seite 494

    DELay Command :T IM eb as e:DE La y <d el ay tim e> The DELay command s ets the ti me between the trig ger and the center of the screen. <delay time> delay ti me in seco nds, from -2500 se conds thro ugh +2500 seconds . The full range is avai l able fo r panning the waveform when acquisition is stopped. Refer to the Oscill oscopes Use r[...]

  • Seite 495

    MODE Command :TI Me ba se :M OD E {T RI Gg er ed |A UT O} The MOD E command s et s the os cillo scope timeb ase to ei ther Auto o r Triggered mo de. When t he AUTO mode is chosen, t he oscill oscope wai ts approxim ately 5 0 ms fo r a trigge r to o ccur. If a tri gger is no t generat ed within t hat time, t hen auto t rigger is e x ecuted. If a sig[...]

  • Seite 496

    RANGe Command :T IM eb as e:RA NG e <r an ge> The RANG e command sets t he full-scale horizo ntal time in seco nds. The RANGE value is t en time s the value in the s / Div fi eld. <range> time i n secon ds Example OUT PU T XX X; ": TI ME BA SE :R AN GE 2US " Query :T IM eb as e:RA NG e? The RANG e query returns the current set[...]

  • Seite 497

    34 TRIGger Subsystem[...]

  • Seite 498

    Introd uction The command s of the Trigger Subsys tem allow you to set all the trig ger cond itions necess ary for ge nerating a trigger . M any of th e command s in the Trigger s u b s ystem may be used in eith er the EDG E or the PATTern trigger mode. If a command is a valid comm and fo r the chosen tri gger mode , then that settin g will b e acc[...]

  • Seite 499

    F ig ur e 34 -1 TRIGg er Subsy stem Sy n t ax Diag ram TRIGg er Subsys tem 34 -3[...]

  • Seite 500

    TRIG ger Su bsyst em Sy ntax Di agram ( Cont ’ d) Tab le 34 -1 TRIGg er Paramet er Values Par ameter Val ue channel_# An integer from 1 t o 2 count_ # an integer fro m 1 thr ough 320 0 0 time a real nu mber f rom 20 ns through 160 ms figure 34-1 TRIGg er Subsys tem 34 -4[...]

  • Seite 501

    CONDition Command :TR IG ge r: [M OD E PA TT er n; ]C ON Di ti on {E NTer |E XI T| GT,< ti me >| LT,< ti me >| RANG e, <t im e>,< ti me > } The CON D i ti on co mmand specifies i f a trigge r is to be ge nerated on entry (EN T er) t o a spe cific logic patt ern, when ex iting (EXIT) the specifi ed pattern, or if a spe cified[...]

  • Seite 502

    When LT ( less t han) is sele cted, the oscillo scope wil l trigge r on the first transiti on that causes the pattern spe cification to be fals e, after t he patte rn has bee n true for the number o f times specified b y the t rigger eve nt count (DELAY co mmand). The firs t event in the se quence wil l o ccur when the specified pat tern is true fo[...]

  • Seite 503

    DELay Command :T RI Gg er :DEL ay [ EV ENt, ]< co un t> The DELay command i s used to specify t he numbe r of event s at which trigger occurs. The time delay (see TIMe:D ELay) is co unted after the event s delay. The D ELay co mmand cannot be use d in the IMMe diate tri gger mode . <count> integer from 1 to 32 000 Example OUT PU T XX X;[...]

  • Seite 504

    LEV el Command Fo r EDG E trigg er mod e: :T RIGg er :[ MO DE E DG E; SO URce {C HANn el <N >; ]LEV el <v al ue> For PATTern trigger m ode: :T RIGg er :[ MO DE P AT Te rn ;PAT H {C HANn el <N >} ;]LE Ve l< va lue> The LEVe l command sets the t rigger leve l voltag e for the sel ected so urce or path. This command cannot b e [...]

  • Seite 505

    Query Fo r EDG E trigg er mod e: : TR IG ge r: [M OD E ED GE ;S OU Rc e {C HA Nn el <N >} ;] LE Ve l? For PATTern trigger m ode: :T RIGg er :[ MO DE P AT Te rn ;PAT H {C HA Nnel <N >} ;] LEVe l? The LEVel q uery returns t he trigger leve l for the current path or source. Returne d Format [:TR IGge r:LE Vel] <va lue> <NL> Exa[...]

  • Seite 506

    LOGic Command :T RI Gg er :[MO DE P AT Tern ;P AT H {CHA Nn el <N >};] L OG ic {H IGH| LO W| DO NTca re } The LOG ic command sets the logic for each tri gger path i n the PAT T er n trigger mode. The choices are HIGH , LOW and D ONT care. The trigger level set by t he LEVel co mmand dete rmines logic hi gh and low thresho ld levels . Any volt[...]

  • Seite 507

    MODE Command :T RI Gg er :MOD E {E DG E| PATT er n| IM Medi at e} The MOD E command allows yo u to s elect t he trigge r mode fo r the oscillo scope. T he E D GE mo de will trigge r the oscillo scope o n an edge whose slope i s determi ned by t he SLOPe command at a voltage set b y the L EVel command. T he P ATTern mo de will trigge r the oscillo s[...]

  • Seite 508

    PA TH Command :TR IG ge r: [M OD E PA TT er n; ]P AT H {C HA Nn el <N >} The PATH command i s used to select a trigger path for the subs e quent LOGic and LE V el co mmands. This command can only b e used i n the PAT T ern tri gger mode . <N> An integ er from 1 or 2 Example OUT PU T XX X; ": TR IG GE R: PA TH CHA NN EL 1" Quer[...]

  • Seite 509

    Query :T RI Gg er :SLO Pe ? The SLOP e query ret urns the slope of the current t rigger source. Returne d Format [ :T RI Gg er :S LO Pe ] {P OS it iv e| NE Ga ti ve }< NL > Example OUT PU T XX X; ": TR IG :S OU R CH AN 1; SL OP ?" SOURce Command :T RI Gg er :[MO DE E DG E;]S OU Rc e {CHA Nn el <N >} The SOURce command is used [...]

  • Seite 510

    34 -14[...]

  • Seite 511

    35 WAVeform Su bsystem[...]

  • Seite 512

    Introd uction The command s of the Waveform s u b syste m are u s ed to transfer waveform data from th e oscil l oscope to a controlle r. The waveform reco rd is actuall y contain ed in two portio n s; th e waveform data and preamble . The waveform data is the actual data acqu ired for each point when a DIG itize comma n d is exe cuted. T he pr eam[...]

  • Seite 513

    Average Mod e In the Ave rage mode, the oscillo scope averages t he data po ints on the waveform wit h previously acq uired data. Averaging he lps eliminate random noise fro m the displaye d waveform. In this mo de ACCumulat e is set to OF F. When Ave rage mode is select ed the numbe r of averages must als o be specified us ing the COU Nt co mmand.[...]

  • Seite 514

    Format for Data Transfer There are thre e formats for transferring wave form data over t he remot e interface. These formats are WORD, BYTE, o r ASCII. WORD and BYTE form atted wavefo rm records are transmit ted using the arbitrary block program dat a format specifi ed in IEEE-48 8.2. Whe n you use this fo rmat, the ASCII character s tring "# [...]

  • Seite 515

    WORD Format Word dat a is two byt es wide wit h the mo st sig nificant b yte of each wor d being transmitt ed first. In WO RD form at, the 15 least s ignificant b i ts represent the waveform data. The possible range of data i s divided int o 32768 vertical increment s. The WORD data structure for normal and average acquisit i on ty pes are shown in[...]

  • Seite 516

    Data Convers io n Data s ent from the osci l loscope is raw data and must be s caled for use ful interpret ation. The values used to int erpret the data are t he X and Y references, X and Y origins, and X and Y increm ents. These values are read from the waveform preambl e (see the PREamb le comm and) or by the queries of thes e values. Conversio n[...]

  • Seite 517

    WAVef orm Subs ystem Syn tax Diagr am Figu re 35 -3 WAVef orm Subsystem Data Con version 35 -7[...]

  • Seite 518

    Figu re 35 -3 WAVef orm Subs ystem Syn tax Diagr am (Cont ’ d) Tab le 35 -1 WAVefo rm Parameter Val u es Par ameter Val ue channel_# an integer from 1 t o 2 WAVefo rm Subsys tem Data Conv e rsi on 35 -8[...]

  • Seite 519

    COUNt? Query :W AV ef or m:CO UN t? The COUNt query re turns the count last specified in the ACQuire Subsystem. Returne d Format [:WA Vefo rm:C OUNt ] <cou nt>< NL> <count> {2|4|8|16|32|64|128|256} Example OUT PU T XX X; ": WA VE FO RM :C OU NT ?" DATA? Query :W AV ef or m:[S OU Rc e CH ANne l< N> ;] DATA ? The DAT[...]

  • Seite 520

    FOR Mat Command :W AV ef or m:FO RM at { BYTE |W OR D| ASCi i} The FO RMat command specifies the data t ransmi ssio n mode of wavefo rm data over the remote interface. Example OUT PU T XX X; ": WA V: FO RM W OR D" Query :W AV ef or m:FO RM at ?" The FO RMat query returns t he currently specifi ed format. Returne d Format [:WA Vefo rm[...]

  • Seite 521

    PREam ble? Query :W AV ef or m[:S OU Rc e CH ANne l< N> ;] PREa mb le ? The PREamb le query returns the preamb le of the specifi ed channel. The channel is s pecified using the SO URCE comm and. Returne d Format [:WA Vefo rm:P REam ble] <f or mat> , (0 = ASC II, 1 = BY TE, 2 = WO RD,) < ty pe >, (1 = No rm al , 2 = Av er ag e) <[...]

  • Seite 522

    REC ord Command :W AV ef or m:RE Co rd { FULL |W IN Do w} The RECord co mmand specifies t he data yo u want to rece ive over the b us. The choices are FUL L or W INdow. When F ULL is chosen, t he entire 8 0 0 0 point re cord of the spe cified channel is t ransmitte d over the bus. In W INdow mode, o nly the data di splayed on screen will be ret urn[...]

  • Seite 523

    Query :W AV ef or m:SO UR ce ? The SOURce query returns the presently selected channel. Returne d Format [:WA Vefo rm:S OURc e] C HANn el<N ><NL > Example OUT PU T XX X; ": WA VE FO RM :S OU RC E? " SP E Rio d ? Query :W AVeform:SP ERiod? The SPERio d query returns t he present sampling peri od. The sam ple period is dete rmin[...]

  • Seite 524

    VA Lid ? Query :W AV ef or m:VA Li d? The VALid q uery checks the oscillo scope fo r acquired dat a. If a measurement is com pleted, and data has b een acquire d by all channels, th en the q uery report s a 1. A 0 is reported if no data has been acq uired for the last acquisi tion. Returne d Format [:WA Vefo rm:V ALid ] {0|1 }<NL > 0 No dat a[...]

  • Seite 525

    XINCr ement? Query :W AV ef or m:XI NC re me nt? The XINCrem ent que ry returns t he X-increm ent currentl y in the preamb l e. This value is the time di fference betwee n the consecuti ve data points. X-increment is det ermined b y the RECo rd mode as follows: • In FUL L record mode, the X-increment equals the tim e period bet ween data sampl es[...]

  • Seite 526

    XORigin? Query :W AV ef or m:[S OU Rc e CH ANne l< N> ;] XORi gi n? The XORig in query returns t he X-origin value currently in the preamble. The value repres ents the ti me of t he first dat a point in memory wit h respect to t he trigge r point. Returne d Format [:WA Vefo rm:X ORig in]< valu e><N L> <N> An integ er from 1 [...]

  • Seite 527

    YINCre m ent ? Query :W AV ef or m:[S OU Rc e CH ANne l< N> ;] YINC re me nt ? The YIN Crement q uery ret urns the Y- increment value current ly in th e preamble . This value is t he voltage di fference be tween cons ecutive dat a values. Returne d Format [:WA Vefo rm:Y INCr emen t]<v alue ><NL > <N> An integ er from 1 to 2 [...]

  • Seite 528

    YREF erence? Query :W AV ef or m:YR EF er en ce? The YREFere nce query ret urns the Y-reference value currently in the preamble . This value specifi es the data value at center scree n where Y-origin occurs. Returne d Format [:WA Vefo rm:Y REFe renc e]<v alue ><NL > <value> Y-reference data value in preamb le Example OUT PU T XX X[...]

  • Seite 529

    Pa rt 5 Pro gramm ing E xamples[...]

  • Seite 530

    [...]

  • Seite 531

    36 Pro gramm ing E xamples[...]

  • Seite 532

    Introd uction This chapter co ntains short, usable , and te sted progr am examp les that cover the most as ked for examples . The examp les are written in HP B asic 6.0. • Mak ing a timin g analyzer measuremen t • Mak ing a s tate analyzer m easu rement • Making a state comp are measur ement • Tran sferring lo gic analyzer confi guration be[...]

  • Seite 533

    Making a Timing analyzer measurement This program sets up t he logi c analyzer to make a s imple timing analyzer measurement . This example can be us ed with E2 433-60 004 Logi c Analyze r Training bo ard to acq uire and dis play the o utput o f the ripple counter. It c an also b e modifi ed to m ake any t iming analyzer measurement . 1 0 ! *** ** [...]

  • Seite 534

    35 0 ! 3 60 O UT PU T 70 7; ": MA CH 1: TW AV EF OR M: REMO VE " 3 70 O UT PU T 70 7; ": MA CH 1: TW AV EF OR M: INSE RT ’ CO UN T ’ , AL L" 3 80 OUT PU T 70 7; ": MA CH 1: TW AV EF OR M: RA NG E 1E -6 " 39 0 OUTP UT 707 ;":M ENU 1, 5" 40 0 ! 41 0 ! **** **** **** **** **** ** **** **** **** **** **** ***[...]

  • Seite 535

    Making a S t ate a n alyzer measur ement This stat e analyzer prog ram se lects t he 1660-s eries lo gic analyzer, di splays the confi guration menu, de fines a st ate machine, displays t he stat e trigger menu, set s a st ate trig ger for mul tilevel triggering . This prog ram then st arts a single acquisition measurement while check ing for me as[...]

  • Seite 536

    31 0 ! 32 0 ! Disp lay th e stat e trig ger me nu . 33 0 ! 34 0 OUTP UT 707 ;":M ENU 1, 3" 35 0 ! 3 60 ! Cre at e a 5 le ve l tr ig ge r sp ec if ic at io n wi th t he tri gg er on th e 37 0 ! four th lev el. 38 0 ! 3 90 O UT PU T 70 7; ": MA CH IN E1 :S TR IG GE R:SE QU EN CE 5 ,4 " 40 0 ! 4 10 ! Def in e pa tt er n te rm s A, [...]

  • Seite 537

    7 60 O UT PU T 70 7; ": MA CH IN E1 :S TR IG GE R:ST OR E4 ’ ( C OR D OR IN_R ANGE 1) ’ " 77 0 ! 78 0 ! **** **** **** **** **** ** ** NOT E **** **** **** **** **** *** 79 0 ! The FIN D comm and se lect s the tr igge r in the 8 00 ! se qu en ce l ev el s pe ci fi ed a s th e tr ig ge r le ve l. 81 0 ! **** **** **** **** **** ** ****[...]

  • Seite 538

    12 10 ! **** **** **** **** **** **** VIE W THE RE SULT S **** **** **** **** **** **** **** * 12 20 ! Disp lay th e Stat e List ing an d sele ct a lin e numb er in th e list ing th at 12 30 ! allo ws you to se e the be ginn ing of the lis ting o n th e lo gic an alye r 12 40 ! disp lay. 12 50 ! 1 26 0 O UT PU T 70 7; ": MA CH IN E1 :S LI ST :[...]

  • Seite 539

    Making a S t ate Compare meas urement This program e xample acquires a state list ing, copie s the li sting t o th e compare li s ting, acq uires another state list ing, and com pares bo th list ings to find differences . This program is written in such a way you can run i t with t he E2433-6000 4 Logic A nalyzer Training Bo ard. This example is th[...]

  • Seite 540

    33 0 ! FF hex for the "a" ter m whic h will be th e trig ger te rm, an d stor e 34 0 ! no sta tes un til th e trig ger is fou nd. 35 0 ! 3 60 O UT PU T 70 7; ": MA CH IN E1 :S TR IG GE R:SE QU EN CE 2 ,1 " 3 70 O UT PU T 70 7; ": MA CH IN E1 :S TR IG GE R:TE RM A , ’ SC OU NT ’ , ’ #H FF ’ " 3 80 O UT PU T 70 7[...]

  • Seite 541

    78 0 ! 79 0 ! Line 409 0 of the lis ting is no w disp laye d at cen ter sc reen 80 0 ! in ord er to sh ow the las t four sta tes ac quir ed. In th is 81 0 ! exam ple, the las t four sta tes ar e stab le. How ever , in som e 8 20 ! cas es , th e en d po in ts o f th e li st in g ma y va ry t hu s ca us in g 83 0 ! a fals e fail ure in com pare . To [...]

  • Seite 542

    12 10 ! ente rs the lin e numb ers an d erro r numb ers. 12 20 ! 12 30 DIM Li ne$[ 20] 12 40 DIM Er ror$ [4] 12 50 DIM Co mma$ [1] 12 60 ! 12 70 ! **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** *** 12 80 ! Disp lay th e Diff eren ce lis ting . 12 90 ! 1 30 0 O UT PU T 70 7; ": MA CH IN E1 :C OM PA RE :M EN[...]

  • Seite 543

    16 60 Er ror_ line =IVA L(Li ne$, 10) 1 67 0 I F Er ro r_ li ne =E rr or _l in e2 THE N GO TO 1 78 0 16 80 Er ror_ line 2=Er ror_ line 16 90 ! 17 00 ! **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** 17 10 ! Prin t the er ror nu mber s and th e corr espo ndin g line num bers on th e 17 20 ! cont roll er scr [...]

  • Seite 544

    Transferr in g t h e logic analyzer conf igura t ion This program uses the SYSTem:SETup query t o transfer the config uration of the l ogic analy z er to your co ntroller. This program also use s th e SYSTem:SETup command t o transfe r a logic analyzer co nfiguratio n from the control ler back t o t he logic analyzer. The co nfiguration data wi ll [...]

  • Seite 545

    2 80 OUT PU T 70 7; ": SY ST EM :H EA DE R ON " 2 90 OUT PU T 70 7; ": SY ST EM :L ON GF OR M ON " 3 00 OUT PU T @C om m; "S EL EC T 1" 3 10 O UT PU T @C om m; ": SY ST EM :S ET UP ?" 32 0 ! 33 0 ! **** **** **** **** **** ENT ER T HE B LOCK SET UP H EADE R ** **** **** ** **** **** * 34 0 ! Ente r the bl ock[...]

  • Seite 546

    7 40 ! *** ** ** ** ** ** ** ** ** ** SEN D TH E SE TU P CO MM AN D ** ** ** ** ** ** ** ** ** ** ** ** ** 7 50 ! Sen d th e Se tu p co mm an d 76 0 ! 7 70 OUT PU T @C om m US IN G "# ,1 5A "; ": SY ST EM :S ET UP # " 78 0 PRIN T "SYS TEM: SETU P comm an d has be en sen t" 79 0 PAUS E 80 0 ! 8 10 ! *** ** ** ** ** ** *[...]

  • Seite 547

    Transferr in g t h e logic analyzer acquired data This program uses the SYSTem:DATA query t o transfer acq uired data to your cont roller. It is useful fo r getting acq uired data for sett ing up the logic analyzer b y the controller at a later tim e. This query differs from the SYSTem:SETup query b ecause it transfers only the acquired dat a. This[...]

  • Seite 548

    20 0 Numb ytes =0 21 0 ! 22 0 ! **** **** **** ** RE- INIT IA LIZE TRA NSFE R BUFF ER POI NTER S **** **** **** **** ** 23 0 ! 24 0 CONT ROL @B uff, 3;1 25 0 CONT ROL @B uff, 4;0 26 0 ! 27 0 ! **** **** **** **** **** ** * SEND THE DAT A QUER Y **** **** **** **** **** **** ** 2 80 OUT PU T 70 7; ": SY ST EM :H EA DE R ON " 2 90 OUT PU T [...]

  • Seite 549

    66 0 ! **** **** **** **** **** * SE ND THE DAT A **** **** **** **** **** **** **** **** ** 67 0 ! Make sur e buff er is no t empt y. 68 0 ! 6 90 I F Nu mb yt es =0 T HE N 70 0 PRIN T "BUF FER IS EMP TY" 71 0 GOTO 117 0 72 0 END IF 73 0 ! 74 0 ! **** **** **** **** **** * SE ND THE DAT A COMM AND ** **** **** **** **** **** **** 7 50 ! S[...]

  • Seite 550

    11 10 ! **** **** **** **** **** SEN D TERM INAT ING LI NE FEE D **** **** **** **** **** ** 1 12 0 ! S en d th e te rm in at in g li ne fe ed t o pr op er ly t er mi na te t he d at a st ri ng . 11 30 ! 11 40 OU TPUT @Co mm;" " 11 50 ! 11 60 PRIN T "*** * SENT THE DAT A **** " 11 70 EN D Programming Examples Trans ferring th e [...]

  • Seite 551

    Checkin g for measurement com pletio n This program can be appende d to o r inserted into ano ther program when you need to know when a measurement is com plete. If it is at the e nd of a program it will tell you when me asurement i s complet e. If yo u insert it into a program, i t will halt t he program until the current meas urement is complet e[...]

  • Seite 552

    Sending queries to the logic analyzer This program example contains t he steps required t o send a query t o the logic anal yzer. Sending the query alo ne only puts the req uested info rmation in an out put buffer of t he logic analyz er. Yo u must fo llow the query with an ENTER statem ent to transfer t he query response t o the controller. When t[...]

  • Seite 553

    3 10 ! Sen d th e qu er y. In t hi s ex am pl e th e ME NU ? qu er y is sen t. All 3 20 ! q ue ri es e xc ep t th e SY ST em :D ATA an d SY ST em :S ET up c an b e se nt w it h 33 0 ! this pro gram . 34 0 ! 35 0 OUTP UT 707 ;"ME NU?" 36 0 ! 37 0 ! **** **** **** **** **** ** **** **** **** **** **** **** **** **** **** **** ** 38 0 ! The [...]

  • Seite 554

    Getting ASCII Data with PRINt? ALL Query This pro gram example shows you how t o get ASCII data from a state list ing using the PRINt? ALL query. There are two things you must keep in mind: • You must select the log ic analyze r, which is al ways SELECT 1 for the 166 0-series lo gic analyz ers. • You must select the proper menu. The only m enus[...]

  • Seite 555

    Reading the disk with the CATalog? ALL query The follo wing exam ple program reads the cat alog of the disk current ly in t he logic anal yzer dis k drive. The CATALOG? ALL query returns the entire 70-charact er field. Because DOS di rectory e ntries are 7 0 characte rs long, you sho uld use the CATALOG? ALL q uery with D OS di sks. 10 ! ** **** DI[...]

  • Seite 556

    Reading the Disk with the C AT alog? Query This exam ple program uses the CATALOG? query without the ALL opt ion to read the catalo g of t he disk curre ntly in t he logi c analyzer disk drive. Howeve r, if you do not use the ALL option, the q uery only returns a 51-charact er field. Keep in m ind if you use t his program wit h a DOS disk , each fi[...]

  • Seite 557

    Printing t o the disk This program prints acquired dat a to a disk file . The file can be ei ther on a LIF o r DOS disk. If you print the file to a DO S disk, y ou will be able t o view the file on a D OS compat ible computer us ing any numb er of fil e utility programs. 1 0 ! ** ** ** ** * PR IN TI NG T O A DI SK FIL E ** ** ** ** ** 20 ! 30 ! 4 0[...]

  • Seite 558

    Transferr in g waveform data in Byte format This program sets up the o scillos cope modul e to move oscilloscope wavefor m data from the 1660 -series t o a cont roller i n Byte fo rmat. 1 0 ! Tr an sf er ri ng W av ef or m Da ta 20 ! B yte Form at 30 ! 4 0 CL EA R 70 7 5 0 !* ** ** ** ** ** ** ** S el ec t th e os ci ll os co pe *** ** *I ** ** ***[...]

  • Seite 559

    3 90 EN TE R 70 7 US IN G "# ,B "; Wa ve fo rm (* ) 4 00 EN TE R 70 7 US IN G "# ,B "; La st ch ar 41 0 ! 42 0 !** **** **** **** * Prin t th e wave form dat a **** **** **** **** **** *** 4 30 PR IN T "H ea de r = "; He ad er $ 44 0 PRI NT 45 0 PRI NT "Pr ess CO NTIN UE to di sp lay wa vefo rm dat a" 46 0 PR[...]

  • Seite 560

    Transferr ing wavefor m data in Word format This program sets up the o scillos cope modul e to move oscilloscope wavefor m data from the 1660 -series t o a cont roller i n Word fo rmat. 10 ! Tr ansf erri ng W avef orm Data 2 0 ! Wor d Fo rm at 30 ! 4 0 CL EA R 70 7 5 0 !* ** ** ** ** ** ** ** S el ec t th e Os ci ll os co pe *** ** ** ** ** **** **[...]

  • Seite 561

    3 90 EN TE R 70 7 US IN G "# ,B "; Wa ve fo rm (* ) 4 00 EN TE R 70 7 US IN G "# ,B "; La st ch ar 41 0 ! 4 20 ! ** ** ** ** ** ** ** * Pr in t th e wa ve fo rm d at a ** ** ** ** ** ** **** ** ** ** * 4 30 PR IN T "H ea de r = "; He ad er $ 44 0 PRI NT 45 0 PRI NT "Pr ess CO NTIN UE to di sp lay wa vefo rm dat a&[...]

  • Seite 562

    Using A UToscale and the ME ASur e:ALL? Query This very si mple program ex ample sho ws how to use Autoscal e to acq uire a waveform and t he MEASure:ALL? query t o read i n the measurement results. 1 0 OU TP UT 707 ; ": SY ST EM :H EA DE R ON " 2 0 OU TP UT 707 ; ": EO I ON " 3 0 OU TP UT 707 ; ": SE LE CT 2 " 4 0 OU [...]

  • Seite 563

    Using Sub-routines in a m easur em ent progr am This program e xample shows a me asurement e xample using s ub-routines in HP BASIC. The tasks perfumed i n this exa mple are: • Initializ ing the interface and the osci lloscope • Digit izing the acqui red signal dat a • Measuring and pri nting the freq uency and peak - to-peak voltag e of the [...]

  • Seite 564

    3 20 CL EA R @I sc !c le ar GPI B in te rf ac e 3 30 OU TP UT @Sc op e; ": SE LE CT 2" !sel ec t th e os cill os co pe 34 0 OUT PUT @S cope ;"*R ST" ! se t osci llos cope to de faul t conf ig 35 0 OUT PUT @S cope ;":A UTOS CA LE" ! AU TOSC ALE 3 60 OU TP UT @Sc op e; ": SY ST :H EA DE R OF F" !t ur n he ad er[...]

  • Seite 565

    Index ! *CLS comman d, 8–5 *ESE co mmand , 8–6 *ESR comman d, 8–7 *IDN comman d, 8–9 *IST comman d, 8–9 *OPC comman d, 8–11 *OPT command , 8–12 *PRE command , 8–13 *RST command, 8–14 *SRE comman d, 8–15 *STB comman d, 8–16 *TRG comman d, 8 –17 *TS T command , 8 –18 *WAI command , 8 – 1 9 .. ., 4– 5 32767, 4–4 9.9E+37[...]

  • Seite 566

    DSP, 10–6 EOI, 9 –11 FI N D, 16–13, 22–13 FO R Mat, 35–10 GLE D ge, 22–14 HAXi s, 19–5 HEADer , 1–1 6 , 10–8 IN I Tialize, 11–13 INP or t, 12 –6 IN S ert, 12–7, 14–6, 1 8 –8, 23 – 10, 30–5 LABel , 15–7, 21–6 LEVe l , 34–8 LEVe larm, 1 3–6 LINE, 1 4–7, 17–9, 20–10, 24–9 LOAD:CONF ig, 11–14 LOAD:IASSe[...]

  • Seite 567

    Comm unicati on, 1– 3 comp are progr am e xample, 36–9 CO M Par e s el ect or, 20– 4 COMPar e Subsystem, 20–1, 20–3, 20–4, 20–5, 2 0–6, 20–7, 20–8, 20–9, 2 0– 10, 20–11, 20–12, 20 –1 3 Complex q ua l ifier, 1 6 –1 1 , 22–11 Compo und command s , 1–8 CONDition, 34–5, 34–6 CONDition?, 34–6 Confi guratio n fi [...]

  • Seite 568

    Identifi catio n number, 9 –8 Identify ing modules, 9 –8 IEEE 4 8 8.1, 2– 2 , 5– 2 IEEE 488.1 bus commands, 2–6 IEEE 4 8 8.2, 5– 2 IFC, 2–6 imme diate tri g ger, 34–11 infini t e persist ence, 30–4 Infinity, 4–4 Initial ization, 1–4 INITialize command, 11–13 INPort command, 12–6 Input buffer, 5– 3 inpu t impedance, 29–[...]

  • Seite 569

    OFFset?, 29–6 offse t_arg ument , 2 9–4 OPATtern command /quer y , 17–11, 23–13, 24 –11 OPC, 6–5 Ope ratio n Com plet e , 6– 6 OR notation, 4–5 OSEarch command /query , 1 7 –12, 23–14, 24 –12 OSTate query, 14– 8 , 17–13, 24 –1 3 OTAG command/query, 17–13, 24–14 OTIMe, 31–6, 31–7, 31–10 OTIMe command/query, 14?[...]

  • Seite 570

    DATA, 10–6, 1 7 –9, 20–8, 24–9, 26–5, 3 5 –9 DATA?, 35–9 DELay , 1 4–5, 18–7, 23–10, 33–4, 34–7 DELay ? , 3 3 –4, 34–7 EOI, 9 –11 ER R or, 10–7 FALLt i me, 3 2–6 FALLt i me?, 3 2 –6 FI N D, 16–14, 2 0–9, 22–14 FO R Mat, 35–10 FO R Mat? , 3 5–10 FRE Q uency, 32–6 FRE Q uency? , 32–6 FTIM e, 12 –6 G[...]

  • Seite 571

    31 –19 XOTi me?, 31–19 XPATt ern, 1 7 –2 0 , 23–23, 24 –20 Xr eference , 35–1 6 XREFere n ce?, 35–16 XSEarch, 1 7–21, 23–24, 2 4–21 XSTate , 14–11, 17–22, 24–21 XTAG , 1 7–23, 24–22 XTIMe, 1 4 –12, 23–25 XTIMe? , 31–20 XVOLt , 31–17 YINCreme n t, 35–17 YINCreme n t?, 35–17 YO R igin, 35–17 YO R igin?, 35?[...]

  • Seite 572

    INTermodule , 12–2 MAC Hine, 1 3–2 MA R Ker, 31–1, 31–2, 31–3, 31 – 4, 31–5, 31–6, 3 1– 7 , 31–8, 31–9, 31–1 0 , 31–11, 31–12, 31–13, 31 –14, 31–15, 31 –1 6 , 31–17, 31–18, 31–19, 31 –2 0 MEA S ure , 32–1, 32–2, 32–3, 3 2 –4, 3 2–5, 32–6, 3 2– 7 , 32–8, 32–9, 32–1 0 , 32–11, 32–12,[...]

  • Seite 573

    tra n sferr ing waveform data p rog ram exam p le, 36–28, 3 6–30 Transmit Data (TD), 3–4, 3–5 TRE E comman d, 1 2–9 trigger count :See trig ger , 34– 2 trig ger del ay, 33–4, 34–2, 34–7 tr igge r leve l v olt age , 34– 8 tr igge r l ogi c, 34– 1 0 trig g er mode, 34–11 trig g e r path, 3 4 –12 tr i g ger sl ope, 34– 12 t[...]

  • Seite 574

    Index–1 0[...]

  • Seite 575

    © Co pyright Agile nt Techno logies 1992-2000 All Rig h t s Reserve d. Reprod u ction, adaptation, or tra nslati on wi thout prior writt en permission i s prohib ited, except as all owed under the c o pyr i g ht laws. Restricted R ights Legen d Use , du p licat ion, or disclosure by the U.S. Gover nm e nt is subje c t to restri ctio ns set forth i[...]

  • Seite 576

    Produc t Warr anty This Ag ilent Technologies product has a warranty agai nst defect s in mate rial and workmansh ip for a perio d of one y e ar from date of shipment . During the warranty perio d , Ag ilent Technologies wi l l, at its optio n , e i t her repair or re place p rodu c ts tha t prove to be de fecti ve . For warr anty servi ce or repai[...]