HP (Hewlett-Packard) 200 Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 676 Seiten
- 2.9 mb
Zur Seite of
Ähnliche Gebrauchsanleitungen
-
Network Router
HP (Hewlett-Packard) HP8722A
376 Seiten 15.67 mb -
Network Router
HP (Hewlett-Packard) HP 4396A
164 Seiten 4.7 mb -
Network Router
HP (Hewlett-Packard) DT-10
20 Seiten 0.07 mb -
Network Router
HP (Hewlett-Packard) 85027 A
88 Seiten 3.58 mb -
Network Router
HP (Hewlett-Packard) 6100
50 Seiten 1.41 mb -
Network Router
HP (Hewlett-Packard) N1200
198 Seiten 2.9 mb -
Network Router
HP (Hewlett-Packard) P4000 G2
128 Seiten 3.38 mb -
Network Router
HP (Hewlett-Packard) 400
676 Seiten 2.9 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung HP (Hewlett-Packard) 200 an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von HP (Hewlett-Packard) 200, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung HP (Hewlett-Packard) 200 die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung HP (Hewlett-Packard) 200. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung HP (Hewlett-Packard) 200 sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts HP (Hewlett-Packard) 200
- Den Namen des Produzenten und das Produktionsjahr des Geräts HP (Hewlett-Packard) 200
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts HP (Hewlett-Packard) 200
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von HP (Hewlett-Packard) 200 zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von HP (Hewlett-Packard) 200 und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service HP (Hewlett-Packard) finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von HP (Hewlett-Packard) 200 zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts HP (Hewlett-Packard) 200, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von HP (Hewlett-Packard) 200 widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
Operator’ s Reference Dictionary of Configuring, Operating, and Reporting Features HP AdvanceStack Routers[...]
-
Seite 2
Hewlett-Packard Series 200, 400, and 600 Routers Operator’ s Reference[...]
-
Seite 3
© Copyright Hewlett- Packard Company 19 9 4. All rights reserve d. This document contai ns pro- prietary informatio n, which is protected by copy right. No par t of t his doc ume nt may be photocopied, repro- duced, or translated int o an- other language without the prior writte n consent of Hewlett-Packard. Publication Number 5962-8305 E0794 Edit[...]
-
Seite 4
Preface When T o Use This Guide Part I of this guide provides an alphabetical listing of Configuration Editor parameters and their descriptions, gr ouped according to their corresponding entries in the Configuratio n Menu of the Configuration E ditor . Refer to Part I w hen you need information on a parame ter in order to better understand how to u[...]
-
Seite 5
Refer to Part II when you need to learn the meanings of features in these areas. (T o learn how to use statistics screens, NCL commands, the Event Log, and the MIB variables, refer to the Use r’ s Guide .) Coverage Note This manual addresses the entire range of parameters and other soft- ware features found in He wlett-Packa rd rout ers, includin[...]
-
Seite 6
Chapter 10, ‘ ‘Xerox Network System (XNS) Pa rameters’ ’ Chapter 11, ‘ ‘IPX Protocol Parameters’ ’ Chapter 12, ‘ ‘AppleT alk Parameters’ ’ Chapter 13, ‘ ‘X.25 Service Parameters’ ’ Chapter 14, ‘ ‘V .25 bis Network Mapping Parameters’ ’ Part II: General Operating Referen ce provides detailed reference informat[...]
-
Seite 7
Operator’s Refer ence Preface 6[...]
-
Seite 8
Contents Operator’ s Reference Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 When T o Use This Guide . . . . . . . . . . . . . . . . . . . . . . . 3 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Other HP Router[...]
-
Seite 9
7 Internet Protocol (IP) Parameters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Parameters and Options . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 8 DECnet Parameters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Parameters and Options . . . . . . . . . . . . . . . . [...]
-
Seite 10
Part II General Operating Reference 15 Using the Statistic Screens AppleT alk Router Statistics Screen . . . . . . . . . . . . . . . . . . . 15-4 Bridge Statistics Screen . . . . . . . . . . . . . . . . . . . . . . . . . 15-6 Buffers Usage Statistics Screen . . . . . . . . . . . . . . . . . . . . . 15-8 Circuit Statistics Screen . . . . . . . . . .[...]
-
Seite 11
dev: Device Event Messages . . . . . . . . . . . . . . . . . . . . . . 17-60 dls: Data Link Services Event Messages . . . . . . . . . . . . . . . . 17-69 drs: DECnet Event Messages . . . . . . . . . . . . . . . . . . . . . . 17-74 egp: Exterior Gateway Protocol Event Messages . . . . . . . . . . . 17-79 ip: IP Event Messages . . . . . . . . . . . .[...]
-
Seite 12
decnet: DECnet Configuration Information Base . . . . . . . . . . . 18-53 dls: Data Link Services Information Base . . . . . . . . . . . . . . . 18-55 drs: DECnet Cir cuit Group Information Base . . . . . . . . . . . . . 18-58 echo: Echo Service Information Base . . . . . . . . . . . . . . . . . 18-60 egp: EGP Information Base . . . . . . . . . . .[...]
-
Seite 13
A Parameter Finder How T o Use the Parameter Finder . . . . . . . . . . . . . . . . . . . A-2 1. System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4 2. Software & 3. Lines . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 4. Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 5. Circui[...]
-
Seite 14
Introduction: How T o Use the Dictionary of Configuration Parameters Introduction[...]
-
Seite 15
Part I is a dictionary reference of the Parameters found in the Configuration Editor , which is accessable from the Main menu (or by using the [/] [M] hot- key combination in Quick Configuration). Access to the Configuration Editor Accessing the Configur ation Editor from the M ain Menu Operator’s Refer ence 2[...]
-
Seite 16
Part I is divided into fo urte en chapters corres p on ding to the options listed in the Configuration me nu: Figure 1-1. The Configuration Menu Operator’s Reference 3[...]
-
Seite 17
T o find a par ameter description, tur n to the chapter correspond ing to the Configuration me nu option containing tha t parameter . The n locate the pa- rameter by finding it in its alphabetic order . (Y ou can also locate the parame- ter description by using the page/par ameter listing at the beginning of each chapter .) W i thin each chapter , [...]
-
Seite 18
Example of Dictionary Entries in Operator’ s Reference Quality of Serv ice Specifies the li nk-level control. It al ways must remain set to L LC1, the default, for 802.3, 802.5, and PPP circuits. Default: LLC1 LLC1 Datagram service; best-effort delivery . LLC2 Reliable service, provides link-level control that includes error detection and error r[...]
-
Seite 19
[...]
-
Seite 20
Part I Dictionary of Configuration Parameters Pa rt I[...]
-
Seite 21
Part I[...]
-
Seite 22
1 Global and Session Parameters[...]
-
Seite 23
Overview Global Parameters: These specify how th e router initializes it s services. Page Global Paramet ers 1-4 Auto Enable 1-4 Automatic Reboot 1-5 Daylight T ime Rule 1-8 Screen Refresh Rate 1-9 System Contact 1-9 System Name 1-9 System Location 1-9 T imezone Access to Global an d Session Parameters Figure 1-1. Ac cess to Global Parame ters in t[...]
-
Seite 24
Session Parameters: Define the interface between the router and I/O devices, such as a console, modem, and T elnet. Page Session Par ameters 1-4 Baud Rate 1-5 Bit / Char . 1-5 Connection inactivity time (min) 1-6 Event Filter L evel 1-7 Flow Control 1-7 Modem connection time (sec) 1-7 Modem disconnection time (sec) 1-8 Modem lost receive ready time[...]
-
Seite 25
Parameters and Options Auto Enab le Determines whether various system services and application modules initialize automatically when the router bo ots . Default: Yes No Disables all protocol-specific Auto Enable parameters for all software modules and system services. Y ou will need to enable each service or software module with the NCL (Network Co[...]
-
Seite 26
Options: Sunday , Monday , T uesday , W ednesday , Thursday , Friday , Saturday Note: If Beginning Day is set to Sunday , the router compensates for daylight savings time at 2 a.m. on that Sunday . If Beginning day is not set to Sunday , the router makes the time correction at 2 a.m. on the first Sunday following the specified day . Beginning month[...]
-
Seite 27
Canada and Continen tal US Applies the daylight savings time rule observed in Canada and the continental U.S.A.. Middle Europe and Portugal Applies the daylight savings rule observed in middle Europe and Portugal. Southern Hemisphere Applies the daylight savings time rule observed in the southern hemisphere. User defined Displays a screen with four[...]
-
Seite 28
Drop All Sends no event messages. Just MAJOR Sends major event messages only . Not INFO Sends major , performance, and warning event messages. PERF and MAJOR Sends major and performance event messages. Show All Events Sends major , performance, warning, and information event messages. Flow Control Enables XON/XOF F flow control and sets the type of[...]
-
Seite 29
Default: 0.5 Options 0.5, 1, 5, 10, 15, 20, 30, 6 0 Modem Lost Receive Ready T ime Sets the number of milliseconds the receiver ready signal drops before the router disconnects the modem attached to the Console port. This is a form of debouncing the receiver ready sig na l. Default: 400 Options 0. 25, 50, 100, 200, 400, 800, 16 00, 2550 Note: The m[...]
-
Seite 30
Options 1, 1.5, 2 System Contact Accepts an ASCII characte r s tring identifyi ng the person responsible for the router . For example: John Smith, Building 6. System Location Accepts an ASCII character s tring identifyi ng the physical locatio n of the route r . For example: T echnology Center , Engineering Lab. System Name Accepts a 15 character s[...]
-
Seite 31
[...]
-
Seite 32
2 Software Parameters[...]
-
Seite 33
Overview Software Parameter: Enables the application modules--the bridging and specific routing services on the router . Y ou must enable each application to be used. Any service that you enable can be u s ed on any port. Page Software Parameter 2-3 Protocol Access to Software Param eters Figure 2-1. Ac cess to Software Par ameters in the Config ur[...]
-
Seite 34
Parameters and Options Protocol Adds or deletes the protocol (service) you want to enable or disable on the router . Default: Bridge Options Bridg e, DoD IP Router , DECnet Router , Xerox (XNS) Route r , IPX Router , AppleT alk Router Software Parameters 2 Software Parameters Parameters and Options 2-3[...]
-
Seite 35
[...]
-
Seite 36
3 Lines Parameters[...]
-
Seite 37
Overview Line Parameters: Describe the physical (level 1) connections between the router and local area networks and/or long-haul transmis- sion facilities. The lines for the ports are initially established with default attribute s config ured. Page Line Parameters 3-3 Bridge T ype 3-3 Circuit Name 3-3 Clock Source 3-4 Clock Speed 3-4 Connector 3-4[...]
-
Seite 38
Parameters and Options Bridge T ype Specifies the FDDI bridge type when FDDI is selected as the Physical Access Method. Default: Encapsulating Encapsulating T ranslating Circuit Name Identifies the circuit fo r the associated connector . T he default startup and defa ult Quick Configuration set this parameter to the name of the connector . This nam[...]
-
Seite 39
Clock Speed Sets the speed on the internal clock if the Clock Source parameter is set to Internal . Choose one of the following options: Default: 56 K (bits per second) Options 1.2 K, 2.4 K, 4.8 K, 7.2 K, 9.6 K, 19.2 K, 32 K, 38.4 K, 56 K, 64 K, 125 K, 230.4 K 420 K, 625 K, 833 K, 1.2 5 M Note: The Clock Speed limi t for RS -232 cables connected to[...]
-
Seite 40
SYNC Specifies a synchronous W AN port. Results in these additional parameters: Connector Clock Speed Clock Source FDDI Specifies an FDDI dual-attach port. For additional information, refer to the Bridge T ype parameter . X.25 Directs the router to use the link-level control associated with X.25. This should be set in conjunction with a circuit typ[...]
-
Seite 41
[...]
-
Seite 42
4 Circuit Parameters[...]
-
Seite 43
Overview Circuit Paramete rs: Describe the data-link layer (level 2) transmis- sion channels between the router and the extended network. Circuits condition the bandwidth provided by lines to provide a reliable transmis- sion medium. Access to Circuits Parameter s Figure 4-1. Access to Circuit Parameters Circuit Parameters Overview 4-2[...]
-
Seite 44
Page Circu i ts Para met e rs 4-5 AppleT alk multicast DLCI 4-5 ARP multicast DLCI 4-5 Auto Enable 4-6 Bridg e Flood multicast DLCI 4-7 Cir cuit Name 4-7 Cir cuit T ype 4-10 Conne ct Retry 4-11 Data Link Lay er protocol 4-11 DECNet multicast DLCI 4-12 De sired Link Quality 4-14 Echo Request T ime (secs) 4-14 Extended (3 2-bit) CRC 4-15 General mult[...]
-
Seite 45
Page Circu i ts Para met e rs — Continued From Previou s Page — 4-26 Retry Ti mer (T1) 4-28 Use UP AP 4-28 Window Siz e 4-29 XCVR signal polling Circuit Parameters Overview 4-4[...]
-
Seite 46
Parameters and Options Adapter Record Displays a screen with parameters for configuring a V .25bis circuit. For additional information, refer to Connect When. Alarm T imer Set s the time interval between issuing a Status Enquiry or Full Status Enquiry message and the receipt of a Link V erification or Full Status Repor t fr om a Frame Relay DCE. Th[...]
-
Seite 47
Bandwidth Re servation Reserves percentages of the to tal available bandw i dth on a W AN circuit for the transmission o f hig h, normal, and low prior ity packets. Use this feature to prevent any one priority from taking over the entire bandwidth of a circuit. Default: High Priority (34%) High Priority Reserves 34% of the total available bandwidth[...]
-
Seite 48
Not Used T ells the terminal adapter to operate on its preprogrammed channel management parameters. (Refer to the ma nua l for your adapter .) Use this option if your terminal adapter doesn’t have v .25 bis extension features or hasn’t been configured to use them. Circuit Name Identifies the circuit for the associated connector . The default st[...]
-
Seite 49
HP Point-to-Poin t Provides a transmission channel over a s ingle long-haul medium terminated by a router peer at a remote site. Uses HDLC (High-level Data Link Control) protocol to exchange data and control pa cket s. Di splays a screen with parameters for configuring an HP Point-to-Point Protocol circuit. Results in these additional parameters : [...]
-
Seite 50
SMDS Provides a transmission channel over V .35 (synchronous media) between the router and an SMDS (Switched Multi-megabit Data Service) data service unit (DSU) or switch. Displays a screen with parameters for configuring an SMDS (Switched Multi- megabit Data Service) circuit. Results in these additional parameters: ARP Group Address Extended (32-b[...]
-
Seite 51
Connect ina ctivity time (sec) Sets a time interval, in seconds, for determining how long to incrementally maintain a connection after no activity is detected in ei the r d irection. This pa ramet er is typically set to the incremental charge rate of the local phone system. The parameter does not become active until the Minimum connect duration (se[...]
-
Seite 52
Connect wh en Determines when to attempt a connection with the remote router via V .25 bis. Default: Data is available or on incoming calls Circuit is enabled Initiates a call attempt w hen the circuit i s enabled (that is, either when the subject circuit is configured and the router reboots or when the subject circuit is a backup circuit that will[...]
-
Seite 53
Delay after connect failure (min) Sets the time, in minutes, elapsing before the router attempts to make another outbound connection. This time interval come s into effect only when the router fails to establish a connection, and only after the Connect retry count has been exhausted. The pa rameter has no effe ct on a connection failing afte r s uc[...]
-
Seite 54
Desired Link Quality Value “Acc eptab le” Loss Percentage 250 0.4 300 0.3 500 0.2 999 0.1 00 DLCI Encoding Length Sets the l ength of the Frame Relay address field. Default: T wo Bytes Four Bytes Sets the DCLI encoding length for four -byte extended address fields. Use this value only if your Frame Re la y service supports extende d four -byte [...]
-
Seite 55
Q922 November Identical to Q922 encoding except in the extended forms (three-byte and four -byte address fields). Q922 No vember encoding lacks a contr ol indicator (D/ C) b it in the least s igni ficant byte . Ye s Disables the circuit when a connect failure occurs. No Allows the circuit to continue operating when a connect failure occurs. Echo Re[...]
-
Seite 56
Note: T o use the 32-bit encapsulation scheme, all interfaces on the network must have sufficient memory resources to handle 32-bit encapsulation. An interface with sufficient memory resources to handle 32-bit encapsulation can unpack packets with 16-bit and 32-bit encapsulation. An interface that supports only 16-bit encapsulation cannot unpack 32[...]
-
Seite 57
Every HP router is shipped with a unique universally-administered 48-bit station address for each port written in read-only memory (ROM). The first 24 bits are always 080009 (hexadecimal) from Hewlett-Packard, and the second 24 bits are unique to each port on each unit manufactured by He wl ett-Packard. Becaus e each LAN device w ith in your networ[...]
-
Seite 58
LCP Active-Open Determines whether Point-to-Point establishes the LCP connection. Note: At least one of the Point-to-Point peers must be configured to “actively” open the LCP connection. Default: Y es Ye s The Po int- to- Point circuit atte mpts to establish the LCP connec ti on as soon as the physic al link is ready. No The Point-to-Point circ[...]
-
Seite 59
Link-quality-monitoring (a Point-to-Point initial configuration option described in RFC 1172) is the process where Point-to-Point determines the frequency and magnitude of data loss across the circuit. W ith link-quality-monitoring enabled, both ends of a Point-to-Point circuit can exchange Link-Quality-Report packets. These packets serve two funct[...]
-
Seite 60
ANSI Annex D Displays a screen with parameters for specifyi ng interface management pr oc edures defined in Annex D to ANSI Standard T1617-1991. Results in these additional parameters : Alarm T imer Bandwidth Reservation Events for Error Intervals Between Full Polls Monitored Events Multicast Support Permanent Virtual Circuits Poll Interval LMI The[...]
-
Seite 61
Note: Because this parameter uses the ‘ ‘Clock Speed’ ’ of the W AN circuit configured in the Lines configuration to calculate the maximum number of bytes queued to the W AN circuit, be sure to enter the Clo ck Speed accurately ev en when an External Clock source is used. During router boot sequence, an event is logged to show the calculate[...]
-
Seite 62
Minimum conne ct duratio n (sec) Sets the total time to keep the connection open even if no further data is expected. (This parameter is al so di sabled when you set the Connec t when parameter to Circuit is enabled.) Default: 180 Disable: 0 Range: 0 to 64800 (seconds) This paramete r lets you keep a l i ne open for the mini mum pe ri od that you a[...]
-
Seite 63
Flag ... Flag Address Control I FCS Flag Key: Flag 8-bit sequence (01111110) Address 8/16 bits in length Control 16 bits if Modulus is 123; 8 bits if Modulus is 8 I (Information) Contains n bytes of data FPS 16-bit or 32-bit frame check sequence Monitored Events W orks in conjunction with the Events for Error parameter to define the quality of serv[...]
-
Seite 64
OSI multicast DLCI Refer to ‘ ‘Multicast Support’ ’, above. Password of Remote Station Accepts the password used by the remote Point-to-Point peer when logging into the local router . Enter the password as an ASCII string of less than 16 characters. Percent of queu e reserved for high priority pack ets Default: 34 Percent of queu e reserved[...]
-
Seite 65
Note: The remote device must be either an HP router configured as a HP Point-to-Point circuit for an HP Remote Bridge. DCE DCE is the required choice for a circuit connecting to an HP Remote Bridge. T o use this option, configure the remote device with the address ‘ ‘DTE’ ’. DTE T o use this option, configure the remote device with the addr[...]
-
Seite 66
LLC1 Datagram service; best-effort delivery . LLC2 Reliable service, provides link-level control that includes error detection and error recovery by retransmission. For more information, refer to these parameters : Retry Counter Retry T imer Connect Retries Link Idle T imer Modulus X.25 Directs the router to use the link-level control associated wi[...]
-
Seite 67
Remote signal & sense timeout (sec) Sets the timeout range for the Remote signal & sense fe ature. Smaller values allow quicker detection of disabled lines and larger values reduce the amount of line bandwidth needed. Default: 50-60 Range: 5-6 to 165-198 (seconds) Note: For the specified circuit, set Remote signal & sense timeout (sec) [...]
-
Seite 68
Here are the required CIC setti ng s for some V .25 bis devices: Device Required CIC Setting Ascend Multiband Adapters Y e s or No General Datacom 914 ADR Y es Hitachi ISDN Adapter No Motorola DU170 Y es NEC ISDN No Northern T elecom NT4X25AG Y es, if device not set for auto answer Server Passw ord Assigns the password used by the router when it lo[...]
-
Seite 69
No Disables heartbeat polling. Ye s Enables heartbeat polling. Use SNAP Identifies the version of IEEE 802.6 to be used. Default: Y es Ye s Enables the approved version of IEEE 802.6 (D15). W ith 802.6 (D15), encapsulation as specified by Internet RFC 1209, IP Over SMDS. No Enables IEEE version(s) D9 and D11. W ith IEE 802.6 (D9/D11), an At&T p[...]
-
Seite 70
Xcvr Signal Polling Enables the transmission of periodic self-addressed messages by the router software. Messages are sent at 5-second intervals to verify proper transceiver operation on the LAN port. When signal polling is enabled, the port’ s Net Fail LED indicates the loss of the transceiver connection even if no packets are bei ng transmitted[...]
-
Seite 71
[...]
-
Seite 72
5 Circuit Group Parameters[...]
-
Seite 73
Overview Circuit Gro u p P aramete rs: Complet e the co mmunication chan nels between multiprotocol routers and network devices by forming collec- tions of circuits us ed by the application modul es to brid ge an d rout e packets. A circuit group comprises circuits of the same type (such as LAN, W AN, and Frame Relay) that originate at a common poi[...]
-
Seite 74
Parameters and Options Circuit Group Name Accepts a maximum of 12 alphanumeric characters to identify the circuit group. ETHER1 G The default when configuring an Ethernet LAN port. W AN1G T he default when configuri ng a W AN port. Circuit Group Speed Used for W AN ports to enable the setti ng of the MIB interface (‘ ‘if ’ ’) Speed entry in[...]
-
Seite 75
[...]
-
Seite 76
6 Bridge Parameters[...]
-
Seite 77
Overview Bridge Parameters: Describe the means for filtering and relaying frames at the data-link layer between network and/or point-to-point con- nections using station (MAC, or Media Access Control) addressing. Page Bridge Parameters 6-5 Action 6-5 Aging T imer (min) 6-5 Auto Enable 6-6 Block STE 6-6 Bridg e ID (hex) 6-7 Circuit Group Name 6-7 Ci[...]
-
Seite 78
Page Bridge Parameters — Continued From P reviou s Page — 6-7 Default Conversion T ype 6-7 DL Format 6-8 DSAP (high) 6-8 DSAP (low) 6-9 Effect 6-9 Ethernet T ype (high) 6-10 Ethernet T ype (low) 6-10 Flood Interval (sec) 6-10 Forward Delay 6-11 Forwarding T able Size 6-11 Group LAN ID 6-11 Header 6-12 Hello T ime 6-12 High V alue (hex) 6-12 Hop[...]
-
Seite 79
Page Bridge Parameters — Continued From P reviou s Page — 6-18 Protocol T ype 6-18 SAP (high) 6-18 SAP (low) 6-18 Set Hop Count Reduction 6-19 Spanning T ree Enable 6-20 Src Rte 6-20 SSAP (high) 6-20 SSAP (low) 6-21 STP Priority 6-21 T able Age Interval 6-22 T raffic Priority 6-22 T ransitional Bridge 6-22 T ype (high) 6-23 T ype (low) Bridge P[...]
-
Seite 80
Parameters and Options Action Determines the disposition of frames meeting the filter rule. Default: Drop Drop Discards a frame meeting the filter rule. Accept Relays a fra me mee ti ng the filter rule. High Priority Assigns the first priority to all incoming bridged packets from the LAN circuit meeting the filter rule. This gives packets a higher [...]
-
Seite 81
When the global Auto Enable parameter is set to No, the bridge (as are all other application software modules) is unconditionally disabled. The bridge- specific Auto Enable parameter is disabled when the global Auto Enable parameter is di sabled. When the global Auto Enable parameter is set to Yes, the bridge (as are all other application software [...]
-
Seite 82
Note: Parallel source routing bridges require unique Bridge ID (hex) values. Non- parallel bridges do not need unique identifiers. Circuit Group Name Identifies the circuit group connecting the bridge and the attached LAN or network device. Enter the name of the circuit group providing the connection. Circuit Name Identifies the circuit (not the ci[...]
-
Seite 83
Ethernet Prepares Ethernet filte rs. Etherne t filters drop a fra me on the basis o f its Ethernet type. Ethe rnet fi lters filter Ether ne t typ e val ue s onl y , or some specified combination of Ethernet type values in conjunction with MAC-level source and destination addresses. 802.2 LLC Prepares of 802.2 LLC fi lters. 802.2 LLC filters drop o [...]
-
Seite 84
Enter a the lowest DSAP in this field and the highest DSAP in the DSAP (high) field if you are filtering a range of destination service access points. Enter the name of a SAP lis t in this field and leave the DSAP (h igh) field bla n k if you are establishing a range of destination service access points with a filter list. For more information, ref[...]
-
Seite 85
Enter the highest Ethernet Type in the range if you are filtering a range of Ethernet Types. Leave this field bl an k and ente r the name of a Ethernet Type li st if you want to establish the range of Ethernet Types using a filter list. For more inf orma tion, refer to “Etherne t T ype (low)” later in this chapter . T o learn how to create an E[...]
-
Seite 86
As the algorithm operates, it eventually places all circuit groups in either a forwarding (en abled) or blocking (di sabled) state. Late r , in response to network topology changes, the algorithm can change the state of specific circuit groups. In order to prevent network looping caused by sudden state changes, the algorithm does not transi tion ci[...]
-
Seite 87
Hello T i me Sets the time interval in seconds between BPDUs transmitted by the bridge. Default: 2 (seconds) Range: 1 to 10 Options Skip this field if the spanning tre e algorithm is not enabled. Enter the Hello Time in seconds. If the spanning tree algorithm is enabled, Hello Time sets the ti me i nterval between BP DUs. BPD U s ar e pe riod ic, f[...]
-
Seite 88
LAN ID (Hex) Sets the LAN ID of a particular interface. Y ou must assign a unique LAN ID to each bridge interface that uses source routing (including non-token ring interfaces ). Default: 1 Disable: Leave blank Range: 0 to fff (hexadecimal) Options Lea ve this field blank if you don’t want to enable source routing. Enable source routing by enteri[...]
-
Seite 89
Options If you are filtering a single MAC or data- link header, ente r the MAC or dat a- link header in this field and leave the High Value (hex) field blank. If you are filter in g a range of MAC or data- link header s, ente r the l owest MAC or data-link he ader in this field an d enter highest MAC or data -link header in the High Value (hex) fie[...]
-
Seite 90
For more information, refer to “MAC dest (low).” T o learn how to create a MAC Address list, refer to “MAC Address (low)” and “MAC Address (high).” MAC dest (low) Sets the lower bou ndary of the range for filtering a fr ame ba sed on the contents of its MAC-level destination address field. Options Leave this field blank if you do not wa[...]
-
Seite 91
Enter the MAC source address in this field and leave the MAC source (high) field blank if you are filtering a single MAC source address. Enter the lowest MAC source address in this field and enter the highest MAC source address in the MAC source (high) field if you are filtering a range of MAC source addresses. Leave this field blank and enter the [...]
-
Seite 92
Precedence Assi gns a priority val ue s to a fi l ter—the higher the precede nce , the greate r the priority . Y ou can construct up to 31 filters per bridge circuit group. The Precedence value is used when an incoming packet meets multiple filter rules. In such an instance, the filter with the highest priority i s applied to the frame. Default: [...]
-
Seite 93
If you are filtering a range of Protocol ID/Organization Codes, enter the lowest Protocol ID/Organization Code in this field and enter the highest Protocol ID/Organization Code in the Protocol ID/Org. Code (high) field . If you are establishing the range of P rotocol ID/Organiz ation Codes with a filter list, enter the name of a Protocol ID/Organiz[...]
-
Seite 94
Spanning T ree Enable Enables or disables the spanning tr ee algorithm. Default: No Ye s Enables the spanning tree algorithm if your network topology contains redundant bridge/LAN connections. No Disables the spanning tree algorithm if your network topology contains a single bridge or multiple, non-redundant bridges. If you enable source routing, t[...]
-
Seite 95
T o specify forwarding table size, refer to your network topology drawing and estimate the number of end-stations serviced by the bridge; then double this figure. Final ly , select the next highest value from the ava i lable respons es. (F or more information on the Forwarding T able parameter , refer to page 6-11.) Src Rte Enables or disables sour[...]
-
Seite 96
For more information, refer to “SSAP (high)” earlier in this chapter . T o learn how to create a SAP list, refer to “SAP (low)” and “SAP (high)” earlier in this chapter . STP Priority Sets the bridge priority for the spanning tree algorithm. Default: 32768 Options Skip this field if you have not enabled the sp anning tree algori thm. If[...]
-
Seite 97
The aging algorithm consumes CPU bandwidth that could otherw ise be used to forward pa cke ts. Therefore, ex cessive ag i ng of the table can caus e oc cas ional dropping of frames. The default should provide the most appropriate time interval for aging in most installat ions . T raffic Priorit y P rioritizes packets received for bridging to other [...]
-
Seite 98
Enter the highest Ethernet Type in the range if you are filtering a range of Ethernet Types. For more information, refer to “T ype (low)” below . T o learn how to apply an Ethernet T ype filter list, refer to “Ethernet T ype (low)” (page 6-10) and “Ethernet T ype (high)” (page 6-9). T ype (lo w) Sets the low e r bou ndary of the range f[...]
-
Seite 99
[...]
-
Seite 100
7 Internet Protocol (IP) Parameters[...]
-
Seite 101
Overview IP Parameters: Enable use of the Internet TCP /IP protocol s uite for establishing routing for IP dat agrams from a source to a d es tination over one of several available paths. Page IP Paramet e r 7-6 Action 7-6 Action on circuit group enable/ disable 7-6 Acquisition Mode 7-6 Address Mask Reply 7-7 Address Resolution 7-8 Allow Router to [...]
-
Seite 102
Page IP Paramet e r 7-8 ASB Flood 7-8 Authentication T ype 7-9 Auto Enable 7-9 Circuit Group 7-9 Connection Close T ime Out 7-9 Conditional Circuit Group 7-9 Cost 7-9 Dead Interval 7-10 Default Route Listen 7-10 Default Route Supply 7-10 Dest IP Addre ss 7-10 DLCI 7-10 D rop If Next Hop is Down 7-10 Effect 7-11 Encapsulation 7-11 Export Action 7-12[...]
-
Seite 103
Page IP Paramet e r 7-16 IP Port (high) 7-16 IP Port (low) 7-16 IP Sou rce (high) 7-17 IP Source (low) 7-17 LAN Addre ss 7-17 Length 7-17 List Name 7-17 Load Balancing 7-18 Local ASN 7-18 Local Addre ss 7-18 Low V alue (hex) 7-18 Make route conditional on an alternate circuit group 7-18 Manag ement Priority 7-19 Max Relay Hops 7-19 Max Retransmissi[...]
-
Seite 104
Page IP Paramet e r 7-23 Propagate to EGP 7-23 Propagate to RIP 7-23 Propagate to OSPF 7-23 Protocol 7-24 Proxy ARP 7-24 Receive Broadcas t 7-24 Relay Auto Enable 7-25 Remote Address 7-25 Remote ASN 7-25 Retransmission T ime Out 7-25 Retransmit Interval 7-25 RIP Interface Cost 7-25 RIP Network Diameter 7-26 RIP Li sten 7-26 RIP Supply 7-26 Router I[...]
-
Seite 105
Parameters and Options Action Determines the disposition of IP datagrams, UDP datagrams, or TCP segments meeting the filter rule. Default: Drop Accept Relays a packet meeting the filter rule. Drop Discards a packet meeting the filter rule. Action on circuit group enable/d isable Determines the action taken with the Conditional Circuit Group. Defaul[...]
-
Seite 106
Ye s Enable s ad dress mask reply mes sages to be generated i n co mpl iance with the relevant sections of RFCs 950 and 1009 . Address Resol ut i on Enables or disable s address resolution, the mapping of 32-bit IP addresses to 48-bit station addresses. This parameter setting also influences the data-link encapsulation method used at address resolu[...]
-
Seite 107
Allow Router to Accept Files Enables inbound TFTP by allow ing router to accept files via TF TP from other sources. Default: No Ye s No Enables router to accept files vi a TFTP fro m oth er sources. Disables acceptance of fil es via TFTP fro m oth er sources. Area ID Identifies an OSPF area in dotted-decimal notation. Note: The area ID value of 0.0[...]
-
Seite 108
Simple Password Enables password authentication. Note: If the Area ID is not specified or is a value other than 0.0.0.0., the Stub Area parameter i s dis p layed. Auto Enable Determines the i nitial state of the IP router . This IP-specific Auto Enable parameter works in conjunction with the global Auto Enable parameter found on the Global Paramete[...]
-
Seite 109
Note: All routers on the OSPF backbone must be configured with the same values for Hello Interval and Dead Interval. Default Route L isten Determines whether the IP router adds network and subnet default route information, received in RIP updates from neighboring routers, to its internal routing table. Default: No No Prevents the router from adding[...]
-
Seite 110
Packet Field IP Parameters IP Destination IP Dest (low) and IP Dest (high) IP Source IP Source (low) and IP Source (high) Default: Ignore Don’t Match Applies the filtering action (drop/a ccept/log) i f the contents of the packet field do not fall w ithin the range established by the matching set of (low) and (high) filter parameters . Ignore Appl[...]
-
Seite 111
Note: The Metric fiel d ap pears after s electing PROP AGA TE. Metric lets you assign a RIP cost to the propagate d rout e. F or more information, re fe r to “Metr ic ” later in this chapter . From Autonomo us System Lets you identify a specific autonomous system from which RIP updates are received. Options Lea ve this field blank if you want t[...]
-
Seite 112
Global Broadca st Determines whether the router accepts or discards a global broadcast message, a message with an IP destination address consisting entirely of 1 digits. Default: Y es No Allows the router to discard global broadcast messages, effectively disabling the Routing Information Protocol (RIP). Note: Routers use the Routing Information Pro[...]
-
Seite 113
Options Leave this field blank and enter the bit pattern in the Low Value (hex) field if you are filtering a single bit pattern. Enter the highest bit pa tter n in the range if you are filte ri ng a range of bit patterns. For more information, refer to “Low V alue (hex)” later in this chapter . Host Cache Enables or disables the aging of physic[...]
-
Seite 114
Non-Broadcast Multi- Access Supports multiple (more than two) routers, but does not provide the ability to address a single physical message to all routers. An example is a public switched packet netw ork . Internet Address Accepts the IP (Internet Protocol) address of the remote router port for the destination networ k. Enter the addre ss i n dott[...]
-
Seite 115
For more information, refer to “IP Dest (low)” later in this chapter . T o learn how to create an IP Address list, refer to “IP Address (low)” and “IP Address (high)” earlier in this chapter . IP Dest (low) Sets the lower boundary of the range for filtering a packet based on the contents of its IP destination field. Options Leave this f[...]
-
Seite 116
Options Leave this field blank if you do not want to filter an IP packet based on the contents of its IP source field. Leave this field blank and enter the IP source address in the IP Source (low) field if you are filtering a single IP source address. Enter the highest IP source address in this field if you are filtering a range of IP source addres[...]
-
Seite 117
No Disables load balancing. When disabled, then for a given source IP and destination IP address, the same circuit is us ed for all packets. Ye s Enables load bal anci ng. When enabled, a circuit i s randomly selected from the circuit group for each packet. Local ASN The NIC-assigned decimal number that identifies the local autonomous system. Enter[...]
-
Seite 118
Max Relay Hops Determines the maximum number of router hops allowed to reach a destination. Default: 4 Range: 1 to 16 (hops) Max Retransm i ssi on s Determines the number of times TFTP retransmits an unacknowledged data message before abandoni ng the transfer attempt. Default: 5 Metric Assigns a cost to the propagated route. Mode (normal or end-no [...]
-
Seite 119
Ye s Enables MTU dis covery . Neighbor ID Identifies the remote en d of the virtual link. Ente r the router ID of the remote end in dotted-decimal notation. Network Addres s Accepts the filtered IP network address, in dotted-decimal notation, when creating an import or export route filter . If you want to filter all destination networks, leave this[...]
-
Seite 120
Normal ARP Enables or disables the Address Resolution Protocol (ARP). ARP maps 32-bit IP addresses to 48-bit station addre sses. Fo r enab li ng to take effect, Addres s Res olution must also be set to ARP or to ARP & HP Probe. Default: Yes No Disables ARP Ye s Enables ARP . Offset Use to positi on the filtered bit patte rn within the selected [...]
-
Seite 121
Passive Place the local router in Passive mode. Polling T imer Specifies the time interval, in seconds, between EGP Poll commands. Default: 120 (seconds) Options 120 , 150, 180, 210, 240, 270, 3 00, 330, 360, 390, 420, 450, 48 0 (seconds) Poll Interval Allows the router to send additional Hello packets at a reduced rate even though no Hello packets[...]
-
Seite 122
Priority Specifies a weighted value used in the designated router and backup designated router selection algorithm. When two routers attached to the backbone both attempt to become the designated router , the one with the high est P r ior i ty value takes precedence. In the case of equal Priority values, the router with the highest Router ID takes [...]
-
Seite 123
UDP Enables filtering of UDP ports and displays additional parameters on the screen. TCP Enables filtering of TCP ports and displays additional parameters on the screen. Note: For more information about the parameters appearing on the screen when selecting UDP or TCP Proxy ARP Enable s or disables the P roxy ARP protocol. P roxy ARP lets the IP rou[...]
-
Seite 124
Note: The BOOTP relay agent does not need to be turned on in all routers between the client and server . The router adjacent to the client must be a relay ag ent. If the router adjacent to the client has a configured set of BOOTREQUEST destinations that are specific server addresses o r sub net addr esses, then the adjacent route r i s the only rou[...]
-
Seite 125
Default= 15 Maximum = 127 (hops) Note: It is strongly recommended that you accept the default value of 15 for RIP Network Diameter . Proper operation of RIP requires that every router within the network us e the same network dia meter value. Hosts also us e the RIP netw ork diameter to d etermine re achability . RIP Listen Determines whether the IP[...]
-
Seite 126
Note: When configuring a stub area, all routers within the stub area should configure the area as a stub. The router connecting to the backbone typically defines the default route onto the backbone. Subnet Mask Sets the bit mask for determining which portion of the IP address identifies the subnetwork. Subnetworks (called subnets) are two or more p[...]
-
Seite 127
EGP Exterior Gateway Protocol (EGP). RIP Routing Information Protocol (RIP). OSPF Open Shortest Path First Protocol (OSPF). T ransit Area Identifies the OSPF area through whic h traffic to Neighbo r ID is fo rw arded. Enter the area ID in dotted-decimal notation. T ransmit Broa dcast Identifies the interface-specific (network and/or subnet) transmi[...]
-
Seite 128
Adjacent Host Displays a screen for defining an adja cent host route. Adjacent hosts are systems on a locally-atta ch ed ne twork. Select Adja cent Hos t when the network or a particular host does not respond to ARP requests. UDP Checksum Off Enables or disables UDP checksum processing for the network interface. Default: No No Enables checksum proc[...]
-
Seite 129
For more inf orma tion, refer to “UDP /T CP Dest Port (high)” earli er in this chapter . T o learn how to create a Port list, refer to “Port (low)” and “Port (high)” earlier in this chapter . UDP/TCP Source Port (high) Sets the upper boundary of the range for filtering a UDP or TCP source port. Options Set the Protocol parameter to Igno[...]
-
Seite 130
8 DECnet Parameters[...]
-
Seite 131
Overview DECnet Parameters: Implements the Digital Netwo rk Arch itecture (DNA) session-control layer , which corresponds to the session layer of the Internati on al Standards Org anization’ s Open Systems In terconnect (OSI) refer ence model. (Supports Phase IV DECne t.) Page DECnet Parameters 8-4 Action 8-4 Area 8-4 Are a (high) 84- Area (low) [...]
-
Seite 132
Page DECnet Parameters — Continued From Previous Page — 8-6 Circuit Group Name 8-6 Cost 8-6 Dest Area (high) 8-7 Dest Area (low ) 8-7 Dest Node (high) 8-8 Dest Node (low) 8-8 Effect 8-9 Hello T imer 8-9 List Name 8-9 Max. Area 8-9 Max. Bcast End Nodes 8-9 Max Cost 8-9 Max Hops 8-9 Max. Nodes 8-10 Max. Visits 8-10 Node 8-10 Node (high) 8-10 Node[...]
-
Seite 133
Parameters and Options Action Determines the disposition of DECnet packets meeting the conditions set for a filter . Default: Drop Drop Discards a packet meeting the filter rule. Accept Relays a packet meeting the filter rule. Area Determines the DECnet ID number of the local area. Default: 1 Range: 1 to 63 Area (high) Sets the upper boundary of th[...]
-
Seite 134
Area Max. Cost Sets the maximum cost of a path to any area in the network. DECnet determines path costs by summing the individual sequential circuit costs. Circuit costs are decimal values reflecting the relative spe ed of the transmission media: the faster the media, the low er the cost. Refer to T able 8-1 at the end of this chapter for sugges te[...]
-
Seite 135
Bcast Routing T imer Sets the maximum number of seconds between routing topology message s issued by the router . Default: 180 Options 15, 30, 45, 60, 75, 90, 105, 120, 135, 1 50, 165, 180 Circuit Group Name Identifies the name of a circuit group for DECnet routing. This is one of the circuit groups configured for the Circuit Group menu. For more i[...]
-
Seite 136
Enter the DECnet ID of the highest destination area in the range if you are filtering a range of DECnet destination areas. Leave this field blank and enter the name of the Area list in the Dest Area (low) field if you want to use an Area lis t to establis h the up per and lower ra ng e of DECnet destination areas. For additional information, refer [...]
-
Seite 137
For additional information, refer to “Dest Node (low)” later in this chapter . For more information about Node lists, refer to “Node (high)” and “Node (low)” later in this chapter . Dest Node (low) Sets the lower boundary of the range for filtering a DECnet packet based on the contents of its destination node fi eld. Options Leave this [...]
-
Seite 138
Match Applies the filtering action (drop/accept) if the contents of the packet field falls within the range established by the matching set of (low) and (high) filter parameters . Hello T imer Sets the interval in seconds between Hello messages transmitted across the circuit group. Default: 15 Options 15, 30, 45, 60, 600, 1800, 2400, 3600 List Name[...]
-
Seite 139
Note: All routers within the extended (Phase IV) network must be configured with the same Max. Area and Max. Nodes values. Max. Visits Determines packet lifetime by specifying the number of times a packet can pass through the DECnet router . Such a limitation prevents a corrupted packet, or a packet whose destination node has somehow become unreach[...]
-
Seite 140
For more inf orma tion, refer to “Node (hig h)” earlier i n thi s chapter . T o learn how to assign an Node list to a filter , refer to “Dest Node (low)” and ”Source Node (low).” Number of Rout ers Identifies the number of adjac ent DECnet routers associated with this circuit group. Refer to your network map to determine this number . D[...]
-
Seite 141
Note: In the event of two filters with equal precedence, the first configured filter takes precedence over the second filter . Remote Area Identifies the area address of the remote target. Default: 63 Range: 1 to 63 Remote Node Identifies the no de addr ess of the remote target. Default = 1023 Range: 1 to 1023 Remote WAN Address Identifies the prot[...]
-
Seite 142
Enter the DECnet ID of the source are a in thi s fi el d an d leave the Source Area (high) field blank if you are filtering a single DECnet source area. Enter the DECnet ID of the lowest source area in this field and enter the DECnet ID of the highest s ourc e area in the Source Area (high) fi eld if you are filtering a range of DECne t source area[...]
-
Seite 143
Enter the Area list name in this field and leave the Source Node (high) field blank if you want to use an Area list to establish the upper and lower range of DECnet source nodes. For more information, refer to “Source Node (high)” earlier in this chapter . For more information about Area lists, refer to “Area (high)” and “Area (low)” ea[...]
-
Seite 144
9 SNMP Agent Parameters[...]
-
Seite 145
Overview SNMP Parameters Enable the Simple Networ k Management Proto- col (SNMP) agent, which allows the router to respond to queries from a network manager , and to report certain router events such as reinitializa- tions and disabled interfaces. Page SNMP Parameters 9-3 Community Name 9-3 Event Filter Level 9-3 Node Address 9-4 Send Event Message[...]
-
Seite 146
Parameters and Options Community N ame Serves as a password for network managers (“application entities” in SNMP terminology) to have access to the SNMP agent on this router . The SNMP application running on the network management node configures one or more community names the node may us e in i ts queries to agents . Ea ch query uses one name[...]
-
Seite 147
Options Leave this field blank if no ac cess of any type is allowed by either this console or any remote network managers, even if other parameters are set to “enable” the agent. You must enter an address to have access. Enter the address of a networ k mana gement s tati on in dotted-deci mal no tati on. To have access to this router’s agent,[...]
-
Seite 148
Regular Allows the router’ s agent to respond to queries. Tr a p Allows the router’ s agent to generate unsolicited asynchronous notifications of significant events, such as booting and enabling or disabling interfaces. Note: Additional fields are displayed when you select the Session T ype. For more information about the additional fields, ref[...]
-
Seite 149
[...]
-
Seite 150
10 Xerox Network Systems (XNS) Router Parameters[...]
-
Seite 151
Overview XNS Parameters: Enable use of the Xerox Network Systems Internet T ransport Protocols (XNS) suite for establishing routing over Ethernets and across point-to-point lines. Page XNS Parameters 10-4 Action 10-4 Auto Enable 10-4 Circuit Group 10- Che cksums On 10-5 Dest Host (high) 10-5 Dest Host (low) 10-5 Dest Network (high) 10-6 Dest Networ[...]
-
Seite 152
Page XNS Parameters — Continued from preceeding page — 10-7 Effect 10-8 Host lists 10-8 Host (high) 10-8 Host (low) 10-8 Host Number 10-8 Network Number (high) 10-9 Network Number (low) 10-9 Network lists 10-9 Network Number 10-9 Next Hop Host 10-9 Next Hop Net 10-9 Packet T ype (high) 10-10 Packet T ype (low ) 10-10 Precedence 10-10 RIP Interf[...]
-
Seite 153
Parameters and Options Action Determines the disposition of packets meeting the filter rule: Default: Drop Accept Relays a packet meeting the filter rule. Accept and Log Relays a packet meeting the filter rule and records an event message in the event log. Drop Discard a packet meeting the fi l ter rule. Drop and Log Drop Discards a packet meeting [...]
-
Seite 154
No Disables check summing. Ye s Enables check summing. Dest Host (high) Sets the high boundary of the range for filtering an XNS packet based on the contents of its destination host fie l d. Options Leave this field blank if you do not want to filter XNS destination hosts. Leave this field blank and enter the XNS host number in the Dest Host (low) [...]
-
Seite 155
Leave this field blank and enter the XNS network number in the Dest Network (low) field if you are filtering a single XNS destination network numbers. Enter the highest XNS network number in the range if you are filtering a range of XNS destination network number. Leave this field blank and enter the name of the Network list in the Dest Network (lo[...]
-
Seite 156
Leave this field blan k and ente r the na me of the Socket lis t in the Dest Socke t (low) field if you want to use a Socket list to establish the upper and lower range of XNS destination socket numbers. For additional information, refer to “Dest Socket (low)” later in this chapter . For more information about Socket lists, refer to “Socket ([...]
-
Seite 157
Ignore Applies no filtering action if the contents of the packet field falls within the range established by the matching set of (low) and (high) parameters.. Match Applies the filtering action (drop/accept/log) if the contents of the packet field falls within the rang e esta bl is hed by the matching set of (l ow ) and (high) paramete rs. Host lis[...]
-
Seite 158
Options Leave this field blank and enter the XNS network number in the Network Number (low) field if you are fil te ri ng a single XN S sour ce or de sti nation network. Enter the XNS highest network number in the range if you are filtering a range of XNS source or destination networks. For additional information, refer to “Network Number (low)?[...]
-
Seite 159
Enter the highest XNS packet type number in the range if you are filtering a range of XNS packet type numbers. Enter the list name in the Packet Type (low) field and leave this field blank if you are creating an XNS Packet Type filter and want to create a range of packet type numbers with a filter list. For additional information, refer to “Packe[...]
-
Seite 160
Ye s Sets th e route r to add routes received in RIP update s from neighboring ro uter s to its own internal routing table. RIP Supply Enables or disables the RIP supply function, determining whether the XNS router transmits periodic RIP updates to neighboring routers across the Circuit Group. Default: Y es No Prevents the router from transmitting [...]
-
Seite 161
No Disables source routing over token ring media. Ye s Enables source routing over token ring media. Note: If the router does not have a token rin g port, al ways set this paramete r to No. Source Host ( high) Sets the upper boundary of the range for filtering an XNS packet ba sed on the contents of its sou rce host field. Options Leave this field [...]
-
Seite 162
Options Leave this field blank if you do not want to filter XNS source networks. Leave this field blank and enter the XNS network number in the Source Network (low) field if you are filtering a single XNS source network. Enter the highest XNS host number in the range if you are filtering a range of XNS source networks. Leave this field blank and en[...]
-
Seite 163
Leave this field blank and enter the name of the Socket list in the Source Socket (low) field if you want to use a Socket list to establish the upper and lower range of XNS socket numbers. For additional information, refer to “Source Socket (low)” later in this chapter . For more information about Socket lists, refer to “Socket (high)” and [...]
-
Seite 164
11 IPX Protocol Parameters[...]
-
Seite 165
Overview IPX Parameters: Enable use of the Internet Packet Exchange Protocol (IPX) in support of a wide variety of LAN topologies and media. Page IPX Parameters 11-5 Accept NETBIOS Bcasts from net 11-5 Action 11-5 Auto Enable 11-6 Circuit Group 11-6 Deliver NETBIOS Bcasts to net 11-6 Dest Host (high) 11-6 Dest Host (low) 11-7 Dest Netw ork (Hex) 11[...]
-
Seite 166
Page IPX Parameters — Continued fr om previous page — 11-8 Dest Socket (high) 11-8 Dest Socket (low) 11-9 Effect 11-9 Encapsulation T ype 11-10 Host lists 11-10 Host Number (high) 11-10 Host Number (low) 11-11 Internal Network Number 11-11 Internal Router Name 11-11 IPXW AN 11-11 List Nam e 11-11 Network lists 11-11 N etwork Number 11-11 N etwo[...]
-
Seite 167
Page IPX Parameters —Continued From Previous Pag e— 11-16 Sourc e Host (high) 11-16 Sourc e Host (low) 11-17 Source Network (high) 11-17 Sourc e Network (low) 11-18 Source Route (T oken Ring) 11-18 Sourc e Socket (high) 11-18 Sourc e Socket (low) 11-19 T arget Net 11-19 W AN SAP Period IPX Protocol Parameters Overview 11-4[...]
-
Seite 168
Parameters and Options Accept NETBIOS Bcasts from net Enables or disables “local” client acc ess to remote NETBIOS servers. Default: Y es No Disables cli ent access to the int er net and effectively restricts NE TBI OS clients to those services offere d by local servers. Ye s Enables NETBIOS client access to the interne t; NETBIOS broadcasts ge[...]
-
Seite 169
When the global Auto Enable i s set to Yes, the IPX router (a s are all other application software modules) is conditionally enabled—the IPX router can be enabled or disabled by setting the IPX-spec ifi c Au to Enable parameter. Default: Y es No Disables the IPX router . Y ou will need to re-enable the IPX router manually with the NCL Interprete [...]
-
Seite 170
Options Leave this field blank if you do not want to filter IPX destination hosts. Enter the IPX host number in this field and leave the Dest Host (high) field blank if you are filtering a single IPX destination host. Enter the lowest IPX host number in this fi eld and enter the highest host nu mbe r in the Dest Host (high) field if you are filteri[...]
-
Seite 171
Enter the lowest IPX network number in this field and enter the highest network number in the Dest Network (high) field if you are filtering a range of IPX destination networks. Enter the Network list name in this field and leave the Dest Network (high) field blank if you want to use a Network l ist to establish the upper and lower range of destina[...]
-
Seite 172
For additional i nformation, refe r to “D est Socket (high)” earl ier in this chapter . For more information about Socket lists, refer to “Socket (high)” and “Socket (low)” later in this cha pter . Effect Determines whether packets are dropped or relayed (filtered) based on the contents of packet fields and a range establishe d by a mat[...]
-
Seite 173
802.2 Enables IEEE 802.2 logical link control encapsulation. The 802.2 encapsulation method prefixes one octet of destination service access point identification, one octet of source service access point identification, and one octet of control information to the IPX packet. The 802.2 packet, in turn, will be encapsulated within a packet specific t[...]
-
Seite 174
For additional information, refer to “Host Number (high)” earlier in this chapter . T o learn how to assign a Host list to a filter , refer to “Dest Host (low)” and “Source Host (low).” Internal Network Number Required if IPXW AN is set to "Y es". Must be unique within the relevant routing area, and is distinct from the networ[...]
-
Seite 175
Options Leave this field blank and enter the IPX netw ork number in the Network Number (low) field if you are filtering a single IPX source or destination network. Enter the highest IPX network number in the range if you are filtering a range of IPX source or destination netw orks. For additional information, refer to “Network Number (low)” lat[...]
-
Seite 176
Options Leave this field blank and enter the IPX packet type number in the Packet Type (low) field if you are filtering a single IPX packet type number. Enter the highest IPX packet type number in the range if you are filtering a range of IPX packet type numbers. Enter the list name in the P acket Type (low ) fi eld and leave this fi eld blank if y[...]
-
Seite 177
Ye s Enables random load balancing and disables Host ID load balancing—the router evenly distribute s IPX network traffic among all circuits wi thi n a cir cuit group to carry all network traffi c (packets) between the sour ce and destination. Note: In some cases, random l oad balancing can interfere with Novell burs t mode NLM. RIP Interface Cos[...]
-
Seite 178
SAP driven RIP supply Decreases the amount of RIP traffic advertised by the IPX router over specified interfaces. S AP dri ven RIP s upply works in conjunction with any SAP filters that you may have enabl ed on an i nterface to determi ne which servers are advertised by the interface. If SAP-driven RIP supply is configured on the interface, then on[...]
-
Seite 179
Socket (low) Sets the lower boundary of the range for filtering IPX source or destination sockets when creating a Socket lis t. Options Enter the IPX socket number in this field and lea ve the Socket (high) field blank if you are filtering a single IPX source or destination socket. Enter the lowest IPX socket number in this field and enter the high[...]
-
Seite 180
For additional information, refer to “Source Host (high)” earlier in this chapter . For more information about Host lists, refer to “Host Number (high)” and “Host Number (low)” earlier in this chapter . Source Net work (hi gh) Sets the upper boundary of the range for filtering an IPX packet based on the contents of its source network fi[...]
-
Seite 181
Source Route (T oken Ring) Enables or disables source routing over token ring media for the interface you are defining. Because the HP Router PR does not have a token ring port, this option should always be set to No. Default: No No Disables token ring source routing. Source Socket (high) Sets the upper boundary of the range for filtering an IPX pa[...]
-
Seite 182
T arget Net Identifies a specific network in an internet. WAN SAP Period Sets the time interval elapsing when the IPX router transmits GSRs across any W AN link. Default: 1 (minute) Range: 0 to 99 (minutes) IPX Protocol Parameters 11 IPX Protocol Parameters Parameters and Options 11-19[...]
-
Seite 183
[...]
-
Seite 184
12 AppleT alk Parameters[...]
-
Seite 185
Overview AppleT alk Parameters: Implement the AppleT alk Phase 2 protocol to operate with Ethernet and T oken Ring networ ks. Note The AppleT alk router does not support AppleT alk Phase 1. Phase 1 traffic cannot be routed through the AppleT alk router . However , such traffic can be relayed through a bridge. Access to Ap pleT alk parameters Figure[...]
-
Seite 186
Page AppleT alk Par ameters 12-6 AARP Mapping T able Size 12-6 Checksum 12-6 Cir cuit Group Name 12-6 Cost 12-6 DDP T yp e Lis ts 12-6 DDP T yp e (high) 12-7 DDP T ype (low) 12-7 Default Zone Name 12-7 DDP T ype (low) 12-7 Default Zone Name 12-7 Dest Net (high) 12-8 De st Net (low) 12-8 De st Node (high) 12-9 De st Node (low ) 12-9 Dest Sock (high)[...]
-
Seite 187
Page AppleT alk Par ameters — Continued From Previous Page — 12-15 Socket (low) 12-15 Source Net (high) 12-15 Source Net (low) 12-16 Source Node (high) 12-16 Source Node (low) 12-17 Source Route (T oken Ring) 12-17 Source Sock (high) 12-17 Source Sock (low) 12-18 Zone Filter 12-18 Zone Name 12-18 Zone T able Size AppleTalk Parameters Overview 1[...]
-
Seite 188
Parameters and Options Action Determines the filtering action taken when the contents of a AppleT alk datagram field meet the crit eria established for a filter rule. Default: Drop and Log Accept Relays a datagra m meeting the f i lter rule. Accept and Log Relays a datagram meeting the filter rule and reco rds th e action in the event log . Drop Di[...]
-
Seite 189
AARP Mapping T able Size Specifies the number of entries in the AppleT alk router’ s address-resolution mapping table. Estimate the number of end nodes on the attached local network. Then select the next highest number from one of the following toggle options: Default: 887 Options 53, 211, 523, 887, 1327, 3327, 9551. Checksum Enables or disables [...]
-
Seite 190
Enter the list name in the DDP Type (low) field and leave this field blank. if you are creating an DDP Type filter, and want to specify one or more ranges of DDP Types with a DDP Type list. For additional information, refer to “DDP T ype (low)” later in this chapter . Note: The creation of DDP T ype filters and DDP T ype lists is similar—the [...]
-
Seite 191
Leave this field blank and enter the name of the Network list in the Dest Net (low) field if you want to use a Network list to establish the upper and lower range of AppleTalk destination network numbers. For additional information, refer to “Dest Net (low)” later in this chapter . For more information about Network lists, refer to “Network N[...]
-
Seite 192
Dest Node (low) Sets the l ower boundary of the range for filtering a datagram based on the contents of its destination node field. Options Leave this field blank if you do not want to filter AppleTalk destination nodes. Enter the AppleTalk node identifier in this field and leave the Dest Node (high) field blank if you are filtering a single AppleT[...]
-
Seite 193
Enter the lowest AppleTalk socket number in this field and enter the highest socket number in the Dest Sock (high) field if you are filtering a range of AppleTalk destination sockets. Enter the Socket list name in this field and leave the Dest Sock (high) field blank if you want to use a Socket list to establish the upper and lower range of destina[...]
-
Seite 194
Note: Lists can simplify the process of creating filters. For example, you could enter the name of a Node list in the Dest Node (low) field rather than creating a range of nodes to filter by entering a range of nodes in the Dest Node (low) and Dest Node (high) fields. Lists save time when you need to filter the same range of source or destination p[...]
-
Seite 195
Network Min Functional when Seed Router set to ‘ ‘Y es’ ’. Operates in conjunction with Network Max to specify the range of network numbers available to nodes on the directly- connected AppleT alk network. In order to increase the number of nodes residing on a local netw o rk, AppleT alk Phase 2 mandates that the seed router provide a rang [...]
-
Seite 196
For additional information, refer to “Node (low)” later in this chapter . T o learn how to assign a Node list to a filter , refer to “Dest Node (low)” and “Source Node (low).” Node ID Assigns the circuit-group-specific node identifier portion of the AppleT alk address. The AppleT alk router uses multiple AppleT alk addresses (one addres[...]
-
Seite 197
Probe W orks in conjunction with the Node ID parameter and, in the case of seed routers, the Network parameter to enable or disable the generation of AARP Probe datagrams and their subsequent transmi ssion across Circuit Group Name. Note: It is recommended that you enable Probe, even if you plan to assign an explic it node identifier . Enabling Pro[...]
-
Seite 198
Socket (high) Sets the upper boundary of the range for filtering AppleT alk source or destination sockets when creating a Socket lis t. Options Lea ve this field blank and enter the AppleTalk socket number in the Socket (low) field if you are filtering a single AppleTalk source or destination socket. Enter the highest AppleTalk socket number in the[...]
-
Seite 199
Options Leave this field blank if you do not want to filter AppleTalk source networks. Enter the AppleTalk network number in this field and leave the Source Net (high) field blank if you are filtering a single AppleTalk source network. Enter the lowest AppleTalk network number in this field and enter the highest network number in the Source Net (hi[...]
-
Seite 200
Enter the Node list name in this field and leave the Source Node (high) field blank if you want to use a Node list to establish the upper and lower range of source node identifiers. For additional information, refer to “Source Node (high)” earlier in this chapter . For more information about Node lists, refer to “Node (high)” and “Node (l[...]
-
Seite 201
Enter the lowest AppleTalk socket number in this field and enter the highest socket number in the Source Sock (high) field if you are filtering a range of AppleTalk source sockets . Enter the Socket list name in this field and leave the Source Sock (high) field blank if you want to use a Socket list to establish the upper and lower range of source [...]
-
Seite 202
13 X.25 Service Parameters[...]
-
Seite 203
Overview X.25 Paramete rs: Use LAPB circuits to operate X.25 DDN, X.25 PDN, and X.25 Point to Point services. Access to X.25 parameters Figure 13-1 . Access to X.25 Parameters X.25 Service Parameters Overview 13-2[...]
-
Seite 204
Page X.25 Parameters 13-4 Auto Enable 13-4 Broadcast 13-4 Call Retry T imer (secs) 13-5 Circuit Name 13-5 Circuit T ype 13-5 Closed User Group 13-5 Connection ID 13-6 Flow Control 13-6 Group Number 13-6 High PVC LCN 13-6 High SVC LCN 13-7 Internet Address 13-7 IP Address 13-8 Local DTE Address 13-8 Lower Circuit Name 13-8 Low PVC LCN 13-8 Low SVC L[...]
-
Seite 205
Parameters and Options Auto Enab le Determines the initial state of the LAPB circuit. The LAPB-specific Auto Enable parameter works in conjunction wi th the global Auto Enable parameter based on the following criteria: When global Auto Enable is No, the LAPB circuit identified by Circuit Name is unconditionally disabled—the LAPB-specific Auto Ena[...]
-
Seite 206
Call Retry T imer (secs) is activated in th e eve nt of an failed call atte mpt and prevents a potential “thrashi ng ” situation that ma y oc cu r when the IP router dir ects a stre am of datagrams to a busy or unreachable destination. W ith the timer enabled (set at a non- zero value), the X.25 PDN service drops received datagrams and transmit[...]
-
Seite 207
Flow Ctrl Enables or disables Flow Control Parameter Negotiation. Flow Control Parameter Negotiation is available as a subscription option from most service providers. Default: Negot Deflt Disables flow control negotiation. W ith negotiation disabled, the configured value s for Pkt W indow and Pkt Size serve as the defaults ac ro ss the ci rc ui t.[...]
-
Seite 208
High SVC LCN = [254 / N ] + Low SVC LCN - 1 where: N is the number of LAPB circuits on the slot. [254 / N ] is the integer quotient of 254 divided by N . Low SVC LCN is the value as signed to the Low SVC LCN p arameter. If you are configuring a combination of X.2 5 DDN, X.25 PDN or X.2 5 Switch service in conjunction with X.25 Point-to-Point servic[...]
-
Seite 209
Local DT E Address Sets the network-supplied decimal number (X.121 Address) identifying the interfac e between the route r and th e X. 25 network. After assi gning the local DTE addr ess, the screen prompts for X.25 address map data. Lowexxr Circuit Name Assigns the cir cu it providing the LAPB servi ce. Enter the name of the pr evio usly configure[...]
-
Seite 210
Max Link Latency (m s) (0=none) Determines how many byte s can be qu eued on a W AN link (expressed i n milliseconds). For a detailed descri ption, refer to ‘ ‘Max Link Latency (ms) (0=none)’ ’ on page -. Max Queue Size Sets the maximum size (in packets) of the transmit queue of each individual X.25 virtual circ ui t. If the value specified[...]
-
Seite 211
N2 Determines the number of times a frame is retransmi tted before the circuit is res et. If a frame remains unacknowledged at the expiration of the T1 timer , X.25 retransmits the outstanding frame u p to N2 times, with each retrans mittal requesting an immediate ackn owledgment. If the frame remains unacknowledg ed after N2 retrie s, the router r[...]
-
Seite 212
TRANSP AC PDN subscription service. Use Bitmap Displays the Bitmap (hex) field and allows you to construct a 32-bit status word for specifying certa i n low-level attribu tes of th e i nterface between the route r and the X.25 service pro vider . T able 13-1 (page 13-13), “X.2 5 PDN Parameter Bitm ap Argument V a lues ”, shows you how to cons t[...]
-
Seite 213
SVC Enables or disables switched virtual circuits (SVCs). Default: Y es No Disables switc hed vi rtual circui ts . Ye s Enables switched virtual circ ui ts. When SVC i s enabled, the Low SVC LCN and High SVC LCN parameter s take effect. T1 Sets the T1 time i nterval, in tenths of a secon d, d etermining how long a fr ame can remain unacknowledged. [...]
-
Seite 214
T able 13-1. X.25 PDN Parameter Bitmap Argu ment V alu es Bit Number Function ON (logical 1) OFF (logical 0) 20 to 31 Reserved for future use n/a n/a 19 LINE_MODE X.25 line behaves as a DCE at network and data- link layers, but remains DTE at physical lay er . X.25 line behaves as a DTE at network, data-link, and physical layers. 18 FRAME LEVEL KEE[...]
-
Seite 215
T able 13-1. X.25 PDN Parameter Bitmap Argu ment V alu es Bit Number Function ON (logical 1) OFF (logical 0) 10 COLLISION REJECT If a Clear Collision occurs, and the received CLEAR packet has a bad length, a new CLEAR packet is sent with a diagnostic code. If a Clear Collision oc curs, and the received CLEAR packe t has a bad length, a new CLEAR pa[...]
-
Seite 216
T able 13-1. X.25 PDN Parameter Bitmap Argu ment V alu es Bit Number Function ON (logical 1) OFF (logical 0) 3 DISC ANSWER If X.25 sends an SABM (or is waiting for one), and receives a DISC, it responds with a UA. If X.25 sends an SABM (or is waiting for one), and receives a DISC, it responds with a DM. 2 CLEAR P/F Rec eiving an unknown frame cause[...]
-
Seite 217
[...]
-
Seite 218
14 V .25 bis Network Mapping[...]
-
Seite 219
Overview V .25 bis Network Mappin g Parameters: Enab le th e ro uter to choose an available port for establishing a v .25 bis connection with a remote router . Used when you want the router to be able to contact more than one next-hop router . Page Circu its P arameters 14-3 Connect Retry 14-3 Connect wait time 14-3 Hold down time 14-4 IP Next Hop [...]
-
Seite 220
Parameters and Options Connect retry co unt Sets the number of times per phone number that the router tries to establish a connection if the initial call attempt fails. The range i s 1 (try only once) to 30. Where multiple phone numbers are specified, they will be used in a circular fashion. For example, if you set Connect retry count to 3, the rou[...]
-
Seite 221
IP Next Hop Designates the router through which to access the target network. This is the next hop router address configured under IP static routes. Enter the IP address of the next hop router in do tted decimal notation. Remote Station Num ber Is the phone number to the next-hop router . Y ou can assign up to 15 numbers to the same router . If the[...]
-
Seite 222
Part II General Operating Reference Pa rt I I[...]
-
Seite 223
Part II[...]
-
Seite 224
15 Using the Statistic Screens[...]
-
Seite 225
This chapter provides a reference to the statistics screen outputs available in Hewlett-Packard router s. For information on how t o operate the statistics screens, refer to the Us er’ s Guide . The range of statistics available in most Hewlett-Packard routers includes: AppleT alk Router statistics (page 15-4) Summarizes for each AppleT alk route[...]
-
Seite 226
In the factory defaul t state, the Circuit, Per Second, Bridge, and Buf fers Usage statistics are ava ilable. The indivi dual routing service s t at istics are available when the corres ponding routing se rvices are e nabled by the Protocol parameter in the Software menu in your router’ s configuration. Note All of the above-listed statistics are[...]
-
Seite 227
AppleT alk Router Statistics Screen The AppleT alk Router Statistics screen is availab le if the AppleT alk routin g service is enabled in your configuration. This screen summarizes AppleT alk traffic volume for each circuit grou p. T o see more detailed AppleT alk statistics maintained by the r outer , you can use the NCL Get com mand. Figure 15-1[...]
-
Seite 228
Categories on the AppleT alk Router Statistics screen are the following: NAME Lists each AppleT a lk circuit group by name. Receive Lists the number of AppleT alk packets received on the circuit gro up. Forward Lists the number of AppleT alk packets transmitted. Drop Lists the number of received AppleT alk packets dropped by the App leT alk Router [...]
-
Seite 229
Bridge Statistics Screen The Bridge Statistics screen is available if the bridge service is enabled in your configuration. This screen summarizes bridge traffic volume for each circuit group. Figure 15 -2. Bridge Statistics Sc reen Using the Statistic Screens Bridge Statistics Screen 15-6[...]
-
Seite 230
Categories on the Bridge Statistics screen are the following: NAME Lists each individual circuit group by name. Receive Lists the number of frames received by the circuit gr oup. Forward Lists the nu mber of received frames th at were forwarded by the bridge. Forwarding requires that the bridge “lear ned” the destination address. Flood Lists th[...]
-
Seite 231
Buffers Usage Statistics Screen The Buffers Usage Statistics screen, always available, summarizes the allocation, usage, and availability of global memory buffers within the router . Global memory contains two types of buffers: message and packet. Message buffers are used for inter -process communications internal to the router . Packet buffers are[...]
-
Seite 232
Categories on the Buffers Usage Statistics screen are the following: MSG: miss Lists the number of times the router was unable to obtain a message buffer (that is, all buffers were in use). MSG: init Lists the number of message buffers allocated when the router booted. MSG: free Lists the number of message buffers available for use. Due to overhead[...]
-
Seite 233
Circuit Statistics Screen The Circuit Statistics screen summarizes traffic volume for each cir cuit on the router . For more detailed circu it statis tics maintained by th e router , use the NCL Get command. Figure 15-4 . Circuit Statistics Screens Using the Statistic Screens Circuit Statistics Screen 15-10[...]
-
Seite 234
Categories on the Circuit Statistics screen are the following: NAME Lists each in dividual con figu red circuit by nam e. Rx: Bytes Lists the number of bytes of data received by the circuit. Rx: Frames Lists the number of frames received by the circuit. Rx: Err Lists the number of f au lty frames (frames that contai ned an error) received by the ci[...]
-
Seite 235
DECnet Router Statistics Screen The DECnet Router Statistics screen is available if the DE Cnet routing service is enabled in your configuration. This screen summarizes DE Cnet traffic volume for each circuit grou p. T o see more detailed DECnet s tat istics maintained by the router , you can use the NCL Get command. Figure 15-5 . DECnet Router Sta[...]
-
Seite 236
Categories on the DECnet Router Statistics screen ar e the following: NAME Lists each DECnet circuit group by name. Receive Lists the number of data frames received on the circuit group. Forward Lists the number of data frames transmitted on the circuit group. Drop Lists the number of data frames dropped by the router . TOT AL Lists the total for e[...]
-
Seite 237
DoD IP Router Statistics Screen The DoD IP Router Statistics sc reen is av ailable if DoD Internet (IP) routin g is enabled in your configuration. This screen summarizes traffic volume for each IP network interface. Figure 15-6 . DoD IP Router Statistics S creen Using the Statistic Screens DoD IP Router Stat istics Screen 15-14[...]
-
Seite 238
Categories on the DoD IP Router Statistics screen are the following: NAME Lists each network interface address in dotted decimal notation. Receive Lists the number of IP datagrams received by the network interface. T ransmit Lists the number of IP datagrams transmitted by the network interface. Deliver Lists the number of IP datagrams addressed to [...]
-
Seite 239
IPX Router Statistics Screen The IPX Router Statistics screen is available if IPX routing is enabled in your configuration. This screen summarizes traffic volume for each IPX network interface. Figure 15 -7. IPX Router Statist ics Screen Using the Statistic Screens IPX Router Statistics Screen 15-16[...]
-
Seite 240
Categories on the IPX Router Statistics screen are the following: NAME Lists the network interface address in 8-digit hexadecimal format. Receive Lists the number of IPX datagrams received by the network interface. T ransmit Lists the number of IPX datagrams transmitted by the network interface. Deliver Lists the number of IPX datagrams delivered b[...]
-
Seite 241
Per Second Statistics Screen The Per Second Statistics screen summarizes traffic volume per second for each circuit on the router . Figure 15-8 . Per Second Statistics Screen Using the Statistic Screens Per Second Statistics Screen 15-18[...]
-
Seite 242
Categories on the Per Second Statistics screen ar e the following: NAME Lists the circuit name(s). RX: Bytes Lists the number of bytes per second of data received by the circuit. RX: Frames Lists the number of frames per second received by the circuit. TX: Bytes Lists the number of bytes per second of data transmi tted by the circuit. TX: Frames Li[...]
-
Seite 243
XNS Router Statistics Screen The XNS Router Statistics screen is available if the XNS routing service is enabled in your configuration. This screen summarizes traffic volume for each XNS network interface. Figure 15-9 . XNS Router Statistics Screen Using the Statistic Screens XNS Router Statistics Screen 15-20[...]
-
Seite 244
Categories on the XNS Router Statistics screen are the following: NAME Lists the network interface address in 8-digit hexadecimal f ormat. Receive Lists the number of XNS datagrams received by the network interface. T ransmit Lists the number of XNS datagrams transmitted by the network interface. Deliver Lists the number of XNS datagrams delivered [...]
-
Seite 245
[...]
-
Seite 246
16 Using the Network Control Language[...]
-
Seite 247
Managing Router Operations and Resources The commands available in this category are the following. Command Function [!] [repetitions] Repeat the last NCL command (page 16-4). Atping x.x [wait] Send an AppleT alk Echo Proto col request to another AppleT al k node (page 16-4). Boot Reboot the rout er (page 16-5) . Browse Display the entire current c[...]
-
Seite 248
Command Function Repeat Continually rep eat the last NCL command until another key is pressed (page 16-22). Stamp Display software version information (page 16-23). Stats Invoke the Statistics Screens menu witho ut leaving NCL (page 16-24). Summary Display the Quick Configuration summ ary without leaving NCL (page 16-25). T elnet X.X.X.X Establish [...]
-
Seite 249
! Repeating the Previous NCL Command Use the exclamatio n mark (the [!] key) to repeat the previous NCL command once or a number of times. Syntax ! [repetitions] [repetitions] (optional) specifies how many times to repeat the previous command. If you do not specify a number , it is repeated only once. Example get lb.ether1g.recv ! Repeats the Get c[...]
-
Seite 250
Boot: Rebooting the Router Use NCL ’ s Boot command to reboot the router . Any changes in configuration or password will take effect, and the console session is restarted. Note If you see “ NCL ERR- - invalid command (ig nored) ” in response to the Boot command, it is possible you did not use the manager pass- word when starting this console [...]
-
Seite 251
Browse: Displaying the Formatted Configuration Use NCL ’ s Browse command to display all of the configuration screens that the Configuration Editor presents, as if you had chosen the Br owse action for each screen. The configuration is displayed in its entirety on the console s creen, no t divid ed into th e same inte rac tive screens as th e Con[...]
-
Seite 252
Crash: Displaying the Crash and Reboot History Use NCL ’ s Crash command to display the times and reasons for the last four occasions the router was rebooted or restarted. For the HP Router 650, Crash also displays this information for each of the interface modules. (T o output the display to a printer or file instead of your console screen, see [...]
-
Seite 253
Disable: Disabling Configured Enti ties Use NCL ’ s Disable command to remove a routing service, a circuit, an X.25 point-to-poi nt virtual circuit, or another configured soft ware o bject from service. (Y ou cannot use Disable to disable a line.) On the HP Router 650, you can also enable a previously disabled interface module slot.Y ou need to i[...]
-
Seite 254
Enable: Enabling Configured Entities Use NCL ’ s Enable com mand to place a configured protoc ol application, circuit, an X.25 point-to-point virtual circuit, or other configured software object into ser vice. Y ou would do this f or: Entities previously disabled using the Disable command Entities con figured not to be au to-enabled w hen the rou[...]
-
Seite 255
Exit: Leaving NCL, Back to the Main Menu Use NCL ’ s Exit command to exit NCL and return to the Main menu (see figure 1-2 in chapter 1). Syntax exit Help: Listing the NCL Commands Use NCL ’ s Help command to display a summar y of syntax and functions of NCL commands. (T o output the display to a printer or file instead, see the Print command on[...]
-
Seite 256
Log: V iewing the Entire Event Log or Selected Message Categories Use NCL ’ s Log command to display any of the following: The event log messages generated since the last boot. The entire event log that is stored in RAM (up to 1000 lines) The events whose severity is W arning, Performance, or Major The events that contain a search string that you[...]
-
Seite 257
log ’ string ’ log -a log -a filter log -a ‘ string ’ Examples of Log ‘‘string” log ‘mgr’ Displays all messages in the event log (since the last boot)that have the string ‘ ‘mgr’‘. log ‘rok’ Displays all messages in the event log (since the last boot) that have the string ‘ ‘rok’ ’. log -a ‘mgr’ Displays al[...]
-
Seite 258
Logi: Invoking the Automatically Updating Event Log Use NCL ’ s Logi command to switch to the event log view , as if you had chosen “Event Log” fr om the Main menu. The function of Lo gi is to allow you to go to the event log without leaving NCL. Refer to chapter 17 for information on interpreting the contents of the event log. (If you need t[...]
-
Seite 259
Page: T oggle Page Mode Use NCL ’ s Page command to enable or disable page mode. Wi th page mode enabled (the default), output is displayed on the console one page (twenty lines) at a time. W ith page mode disabled, output is displayed continuously . Syntax page More: Continuing the Display When page mode is enabled (as i t is by default), and mo[...]
-
Seite 260
Password: Implementing Password Protection Use NCL ’ s Password command to assign, change, or remove the passwords protecting console access to the router . Such access may be local, through a modem, or through T elnet. The router is shipped from the factory wit h no passwords set and thus no password protection. T wo types of password can be set[...]
-
Seite 261
Syntax T o assign an initial password: password The console displays “ Whi ch password is changing? ”. type type is either M for manager or U for user password. The console displays “ Ent er current manager password ”, if a manager password already exists . mgr mgr is the current manager password required, if existing, to assign the user pa[...]
-
Seite 262
Syntax T o remove a password from protecting the router: password The console displays "Which password is changing?”. type type is either M for manager or U for user password. The console displays “ Enter c urrent manager password ” if a manager password exists. mgr mgr is the current manager password requir ed, if assigned, to remove ei[...]
-
Seite 263
Ping: Sending an ICMP Echo Request Message Use NCL ’ s Ping c ommand to send an Internet Control M essage Protocol (ICMP) echo request message to a specific IP address, as a network-layer test of the reachability of the node. Ping does not support loopback (pinging this router) or broadcast addr esses. This router must have IP routing configured.[...]
-
Seite 264
Print: Outputting a Display Command to a File or Printer Use NCL ’ s Print command to redirect the output of any NCL command that displays data on the console screen to a printer or a file. Each line of output is terminated with carriage return and line feed. Y ou can use Print with the commands Help , T ime and Date (with no arguments), Summary [...]
-
Seite 265
print list [i dentifier] print log ’ string ’ print get identi fier print rget... (Commands beginning with rget and print ospf... with o spf are de scribed in later sectio ns of this chapt er .) Quick: Invoking Quick Configuration Use NCL ’ s Quick command to switch to Quick Configuration, as if you had chosen “Quick Configuration” from t[...]
-
Seite 266
Rboot: Rebooting a Remote Router Use the NCL Rboot command to reboot a remote router having version A.08 or later operating code. Any changes made in the configuration or password since the remote router was last booted will take effect. Syntax rboot X.X.X.X [community] X.X.X.X is the IP address (in dotted decimal notation) of a port on the remote [...]
-
Seite 267
Repeat: Continuing to Repeat the Previous NCL Command Use NCL ’ s Repeat command to repeat the previous NCL command over and over until you press any key to stop. The frequency interval is configurable using the Screen Refresh Rate parameter in the Configuration Editor; the default is three seconds. Syntax repeat Example get cct.ether1.octets_tx_[...]
-
Seite 268
Stamp: Displaying the Operating Code V ersion Use NCL ’ s Stamp command to display the router’ s operating code version and date. (T o output the display to a printer or file instead of your console screen, see the Print command on page 16-19.) For example, “A.08.01” is a full version number , which has three fields. The character in the fi[...]
-
Seite 269
Stats: Invoking the Statistics Screens Use NCL ’ s S tats command to switch to the Stat istics Screen menu, as if you had chosen “Statistics Screen Menu ”from the Main menu, as described in chapt er 1. The function of S t at s is to allow you to vi ew the statistics screens without leaving NCL. Refer to chapter 15 for information on how to in[...]
-
Seite 270
Summary: Displaying the Quick Configuration Summary Use NCL ’ s Summary command to display the summary table that Quick Configuration prese nts at the top of the screen. Y ou remain in NCL; you do not actually go into Quick Configuration as selected from the Main menu. (T o output the display to a pri nter or file instead of your console screen, [...]
-
Seite 271
If you enter ‘ ‘y’ ’ (for ‘ ‘ Y es’ ’) you will then see the configuration with the conflict ing informat ion. If you enter ‘ ‘n’ ’ (for ‘ ‘No’ ’) the router exits from Summary and displays the NCL prompt. Note The above hotswap operation applies only to the HP Router 650. Continue/E xit prompt Figure 16-1 . The &quo[...]
-
Seite 272
T elnet: Establishing a Virtual T erminal Connection Use NCL ’ s T elnet command to establish a T ransmission Control Protocol (TCP) virtual terminal connection to a remote node, allow ing you to interact with the remote nodes interface. This router must have IP routing and a T elnet session configured. This router supports a maximum of four simu[...]
-
Seite 273
T est: Sending an IEEE 802.2 T est Packet Use NCL ’ s T est command to perform a link-layer test of a directly connected network or a bridged link. T est sends an IEE E 802.2 test packet to a specified target node on a network directly attached to a port on this router , or on a network bridged from a W AN port on this router (for example, using [...]
-
Seite 274
T ime: Setting or Displaying the Date and T ime Use NCL ’ s T ime command to set the router’ s clock and/or calendar . Using the T ime command without any arguments simply displays the current date and ti me. (T o output the da te and time display to a printer or file instead, see the Print command on page 16-19.) The current date and time also[...]
-
Seite 275
Accessing the Management Information Base The management information base (the MIB) is the repository of all variables gathered and used by the router , as well as accessible to the router’ s console and to other devices in the network using SNMP . The MIB’ s hierarchical structure can be represented as an inverted tree, such as the one shown o[...]
-
Seite 276
The Get, List, and Reset commands use MIB pathnames for access to the MIB structure. Fo r more det ails on th e MI B s tructure itself and how to specify a pathname to a MIB variable, refer to ‘ ‘Accessing the Management Informa ti on Base’ ’ in chapter 7 of the User’ s Guide. The router’ s “managed objects” defi ne the major MIB ca[...]
-
Seite 277
Managed Objects T able Managed Object s T able (co ntinued) Nam e Alarms (u ses slot # ) alarm AppleT alk router at AppleT alk router MIB atmib Bridge lb Bridge addres s table lbmib Buffers (uses slot #) buf Chassis in formation b ase chassis Circuits cct Configura tion config Data link services dls DECnet router drs DECnet routing table decnet Dev[...]
-
Seite 278
Managed Object s T able (co ntinued) Nam e TCP echo service echo T rivial File T r ansfer Protocol tftp V .25 bis isdn XNS router xrx X.25 x25 The MIB commands are: Command Function Get identifier Display on the console the value of a MIB variable (page 16-34). List [identifier] Display on the console a variable or pa rt of the MIB s tructure ( pag[...]
-
Seite 279
Get: Displaying the V alue of a MIB V ariable Use NCL ’ s Get command to display the value of a MIB variable on the router . Y ou need to specify the path to the variab le. Y ou can obtain the pathname using the List command (see page 16-35). T o output the display to a printer or file instead of the screen, place the get command within the Print[...]
-
Seite 280
List: Displaying the MIB Use NCL ’ s List command to display all or any part of the structure of the router’ s management information base. List tells you what specific variables that part of the MIB contains, showing their pathnames. T o output the display to a printer or file instead of the screen, place the List command within the Print comm[...]
-
Seite 281
Examples list Displays a list of router -resident managed objects (the items in the “Man aged Ob jects T a ble ”, page 16-32). list ip.* Displays the “ip“ (IP router) MIB branch. (See the “Managed Objects T able”, page 16-32, for others.) list buf[2] Displays a list of the MIB variables for buffers for slot 2 of a Router 650. list 11.2 [...]
-
Seite 282
The following paragraphs describe how to use the List command to step through branches of the MIB, using the “buf” information base as an example (see figure 16-2 above). T o begin with “buf” after displaying the objects shown in figure 16-3, you would enter a t the NCL prompt: list buf or list 11 Note in figure 16- 3 that 11i s the object [...]
-
Seite 283
As shown in figure 16-2, those six items are the lowest-level variables in the buffers MIB. If you attempted to use List to display more variables, for example, by entering the following: list 11.1.1.1 In response, the console would display no data and simply return you to the NCL prompt. T o see the contents o f variab le 11.1.1.1 (“init”), s [...]
-
Seite 284
Reset: Setting the V alue of a MIB V ariable to Zero Use NCL ’ s Reset command to set the value of one or more MIB variables to zero. Y ou can obtain the pathname using the List comma nd (see page 16-35). Syntax reset identifier identifier is the pathname identifying a specific variable. Y ou must provide the pathname from the rout er’ s highes[...]
-
Seite 285
Accessing the Internet Management Information Base Internet Request for Comments 1156 defines the variable set required for monitoring and controlling various components of the IP Internet. The router’ s MIB implementatio n is fully compliant w it h all requirements of RFC 1156. Some of the NCL commands work in conjunction with th e Simple Networ[...]
-
Seite 286
Rgeta: Displaying the MIB IP Address T ranslation T able Use NCL ’ s Rg eta command to format and display the Inter net MIB IP address translation (ARP) table (also termed the ‘ ‘ARP cache table’ ’) for a local or a remote network node. Syntax rgeta [X.X.X.X] [community] [X.X.X.X] (optional) is the IP address of the local or r emote node [...]
-
Seite 287
Rgeti: Displaying the MIB IP Address T able Use NCL ’ s Rgeti command to format and display the Internet MIB IP address table for a local or remote network node. Syntax rgeti [X.X.X.X] [community] [X.X.X.X] (optional) is the IP address of the local or r emote node in dotted decimal notati on. If you omit this field, an IP address on the local rou[...]
-
Seite 288
Rgetms: Displaying the V alues of a MIB V ariable Class Use NCL ’ s Rgetms command to display the values of the variables in a branch of the standard Internet MIB, for either a local or remote network node. Y ou can also use Rgetms to display the values of Internet standard MIB variables on this (local) router . Rgetms defaults the standard Inter[...]
-
Seite 289
rgetms 6.13 192.32.2. 194 Displays the Internet MIB T ransmission Control Protocol ( TCP) connection table from the node whose IP address is 192.32.2.194: 1.3.6.1.2.1.6.13 .1.1.192.32.2.194.23.192.32 .1.167.1665 = (TCP connectio n state) 1.3.6.1.2.1.6.13 .1.2.192.32.2.194.23.192.32 .1.167.1665 = (local IP address f or the TCP connection) 1.3.6.1.2.[...]
-
Seite 290
Rgetr: Displaying the MIB IP Routing T able Use NCL ’ s Rgetr command to format and display the Internet MIB IP routing table for a local or remote network node. Syntax rgetr [X.X.X.X] [community] [X.X.X.X] (optional) is the IP address of the local or r emote node in dotted decimal notati on. If you omit this field, an IP address on the local rou[...]
-
Seite 291
The fields in the table are as follows: – Destination lists the destination subnetwork address (in dotted decimal notation). – Mtr lists the hop count pl us cost to Destination . – Next Hop lists the ad dress (in dotted decimal no tation) of the next hop. – T lists the route type as follows: D a (local) route to a directly connected subnetw[...]
-
Seite 292
Rgets: Displaying the V alue of an Internet MIB Va r i a b l e Use NCL ’ s Rgets command to display the value of an individual Internet MIB variable for a remote network node (not this router). Y ou can also use Rgets to dis p lay the val ue of an individual Internet standard MIB variable on this (local) router . Rgets defaults the standard Inter[...]
-
Seite 293
Accessing a Remote Management Information Base T wo NCL commands work wit h the Simple Network Management Protocol (SNMP) agent and th e IP routing applicatio n to provid e acces s to the W ellfleet enterprise-specif ic section of the MIB of a rem ote HP or W ellfleet router . Hewlett-Packard Company and W ellfleet Communications, Inc., share this [...]
-
Seite 294
Rgetmw: Displaying the V alues of a Remote V ariable Class Use NCL ’ s Rgetmw command to display the values of the variables in a branch of the enterprise-specific section of the MIB of a remote HP or W ellfleet router . Syntax rgetmw identifier [X.X .X.X] [community] identifier is the object identification pat h identifying a branch of MIB varia[...]
-
Seite 295
Rgetw: Displaying the V alue of a Remote Va r i a b l e Use NCL ’ s Rgetw command to display the value of an individual variable from the enterprise-specific section of the MIB of a remote HP or W ellfleet router . Syntax rgetw identifier [X.X. X.X] [community] identifier is the object identification pat h identifying a specific MIB variable. Do [...]
-
Seite 296
Accessing a Foreign Management Information Base T wo NC L commands work in conjunction with the SNMP agent and the IP routing applicat io n to provide access to the en terpris e-specific section of the M I B o f an y remote node— other than a n HP or W ellfleet router—that provides a standard SNMP/MIB implementation. Y ou must use a complete MI[...]
-
Seite 297
Rget: Displaying the V alue of a Foreign Va r i a b l e Use NCL ’ s Rget co mmand to display the valu e o f an individ ual variable from a foreign enterprise-specific section of the MIB of a remote node. Syntax rget identifier [X.X.X.X] [communi ty] identifier is the complete object id ent ification path identifying a specific MIB variable. [X.X.[...]
-
Seite 298
Rgetm: Displaying the V alues of a Foreign V ariable Class Use NCL ’ s Rgetm command to display the values of the variables in a branch of a foreign enterprise-specific section of the MIB of a remote node. Syntax rgetm identifier [X.X. X.X] [community] identifier is the complete object id ent ification path identifying a branch of foreign MIB var[...]
-
Seite 299
Accessing Bridging and Routing Ta b l e s Some NCL commands work with the SNMP agent and the IP routing application to p rovid e acces s to applicat ion- specific brid ging, routing, and configuration tables maintained by local or remote HP routers. The commands available in this category are the following. Command Function Ospf Rtab* Display IP’[...]
-
Seite 300
Rgetat: Displaying the AppleT alk Configuration T able Use NCL ’ s Rgetat command to fo rmat an d display th e Appl eT alk router configuration table for a local or remote HP router . Syntax rgetat [X.X.X.X] [communi ty] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo u om it this field, [...]
-
Seite 301
Local Zone T able IF Zon e Name 3 Bldg 12 3 Administra tion 3 Corporate 2 Sales Dept 1 Printer zone 1 Laser W orld The fields in the table are as follows: IF lists the number the router assigned to the network interface for Net.Node. Net.Node lists the AppleT alk node address (the network number and node identifier pair) of each AppleT alk router p[...]
-
Seite 302
Rgetata: Displaying the AARP T able Use NCL ’ s Rgetat a command to format and dis play the AppleT alk Address Resolution Protocol (AARP) table for a local or remote HP router . Syntax rgetata [X.X.X.X] [co mmunity] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo u om it this field, an IP[...]
-
Seite 303
Rgetatr: Displaying the AppleT alk Routing T able Use NCL ’ s Rgetatr command to format and display the AppleT alk routing table for a local or remote HP or W ellfleet router . Syntax rgetatr [X.X.X.X] [co mmunity] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo u om it this field, an IP [...]
-
Seite 304
Rgetb: Displaying the Bridge Forwarding/Filtering T able Use NCL ’ s Rgetb command to format and display the bridge forwarding/filtering table for a local or remote HP or W ellfleet router . Syntax rgetb [X.X.X.X] [community] [X.X.X.X] (optional) is the IP address of the local or r emote router in dotted decimal n otat i on. If you omit this fi e[...]
-
Seite 305
Rgetd: Displaying the DECnet Router Configuration T able Use NCL ’ s Rgetd command to format and display the DEC net router configuration table for a local or remote HP router . Syntax rgetd [X.X.X.X] [community] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo u om it this field, an IP ad[...]
-
Seite 306
Rgetda: Displaying the DECnet Router Level 2 Routing T able Use NCL ’ s Rg etda command to format and display the DEC net router level 2 (inter -area) routing table for a local or remote HP router . Syntax rgetda [X.X.X.X ] [community] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo u om [...]
-
Seite 307
Rgetdn: Displaying the DECnet Router Level 1 Routing T able Use NCL ’ s Rgetdn command to format and display the DEC net router level 1 (node or intra-area) routing table for a local or remote HP router . Syntax rgetdn [X.X.X.X] [comm unity] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal not at i on . If yo[...]
-
Seite 308
Rgetir: Displaying the IPX Routing T able Use NCL ’ s Rgetir command to format and display the IPX r outing table for a local or remote HP or W ellfleet router . Syntax rgetir [X.X.X.X] [comm unity] [X.X.X.X] (optional) is the IP address of the local or r emote router in dotted decimal n otat i on. If you omit this fi eld, an IP address on the lo[...]
-
Seite 309
– Age lists the number of seconds since the route was learned. – IF lists the number the router assigned to the network interface for Next Hop. Using the Network C ontrol Language Accessing Bridging and Routing Tables 16-64[...]
-
Seite 310
Rgetis: Displaying the IPX Servers (SAP) T able Use NCL ’ s Rgetis command to format and display the IPX Service Advertising Protocol (SAP) table for either this router or a remote HP or W ellfleet router that is runnin g IPX. Syntax rgetis [X.X.X.X] [comm unity] [X.X.X.X] (optional) is the IP address of the local or r emote router in dotted deci[...]
-
Seite 311
– Ty p e lists the ser vice type supplied by the named server , as follows: 0 Unknown 3 Print Server 4 File Server 5 Job Server 9 Archive Server 24 Remote Bridge Server 47 Advertising Print Server • IF lists the number the router assigned to the circuit group used to reach the server . Using the Network C ontrol Language Accessing Bridging and [...]
-
Seite 312
Rgetrif: Displaying the Source Routing RIF Cache Use NCL ’ s Rgetrif co mmand to format and dis pl ay th e source routing Routing Information F ield (RIF) cac he. Syntax rgetrif X.X.X.X X.X.X.X is the IP address of the local or remote router in dotted decim al notati on. Example rgetrif 15.2.1.94 Displays the source routing RIF cache for the node[...]
-
Seite 313
10 =Spanning Tree Explorer 11 =All Routes Explorer 1 bit reserved. 5 bits for the length i n bytes (up to 18) of the RIF field. 1 directio n bi t: 0 =frame moves forward 1 =frame moves in reverse 4 bits for largest frame size in bytes handled (up to 4472). 3 bits reserved. Each subsequent series of two bytes (such as 0011 h and 7001 h in the exampl[...]
-
Seite 314
Rgetxr: Displaying the XNS Routing T able Use NCL ’ s Rgetxr command to format and display the Xer ox XNS routing table for a local or remote HP router . Syntax rgetxr [X.X.X.X] [comm unity] [X.X.X.X] (optional) is the IP address of the local or remote router in dotted decimal notation. If you omit this fiel d, an address on the local router will[...]
-
Seite 315
The fields in the table are as follows: Dst lists the XNS network number at the destination, in 8-digit hexadecimal format. Next Hop lists the station address of the next hop router . Hop lists the hop count to Dst . T lists the route type as fo llows: D direct (local) route I an invalid route R a remote route P lists how the route type was learne [...]
-
Seite 316
Managing the Open Shortest Path First Protocol OSPF, an IP internal gateway routing protocol, has an openly available protocol specificat io n that is not proprietary to any singl e vend or . Y ou can display the s tatus of various OSPF elements on this router using the NCL commands listed below . Y ou must use a complete MIB pathname with each of [...]
-
Seite 317
Ospf Errs: Displaying OSPF Error Counts Use NCL ’ s Ospf Errs command to format and display the number of errors accrued by OSPF . Syntax ospf errs Example ospf errs Displays the number of errors, a colon, and the type and name of each error , in two columns. Some of the possible OSPF errors in this table may also appear as event messages in the [...]
-
Seite 318
Ospf Intf: Displaying the Status of the OSPF Interfaces Use NCL ’ s Ospf Intf command to format and display the status of the interfaces on this router over which OSPF is running. Syntax ospf intf Example Area: 0.0.0.0 IP Address T ype State Cost Pri DR BDR 190.190.190.10 Bcast DR 1 5 190.190.190.10 190.190.190.13 The fields in the table are as f[...]
-
Seite 319
State is the functional level of the interface between adjacent neighbors, as follo ws: Down Inoperable interface. Loopback Self-referential interface: not attached to a network. W aiting An initial packet has been sent, and the interface is waiting to hear from other routers before s electing the design ated router . Point-to-Poin t A point -t o -[...]
-
Seite 320
Ospf Lsdb: Displaying the OSPF Link State Database Use NCL ’ s Ospf Lsd b command to format and display the database OSPF of link state advertisements. Syntax ospf lsdb Example LS Database: Area: 0.0.0.0 T ype Link ID Adv Rtr Age Len Seq # Metric LS_STUB 10.0.0.0 10.0.0.0 236 24 0 0 The fields in the table are as follows: Area lists the area ID o[...]
-
Seite 321
Link ID is the object attached to the router’ s link. The value de- pends on the T ype, as follows: LS_ASE The destination IP network number . LS_NET The designated router ’ s IP interface address. LS_RTR The neighbor’ s OSPF router ID. LS_SUM_ASB The AS boundary router’ s OSPF router ID. LS_SUM_NET The destin ation IP network nu mber . LS_[...]
-
Seite 322
Ospf Nbrs: Displaying the Status of the OSPF Neighbors Use NCL ’ s Ospf Nbrs command to format and display the status of the OSPF neighbors. Syntax ospf nbrs Example Area: 0.0.0.0 Interface Router ID Nbr IP Ad dr State Mode Priority 190.190.190.10 13.13.13.13 190.190.190.13 Full Slave 5 190.190.190.10 12.12.12.12 190.190.190.12 Full Slave 5 The f[...]
-
Seite 323
State is the functional level of the interface with the neighbor , as fol- lows: Down No recent information received from the neighbor , or the initial state of a neighbor conversation. Attempt No recent information received from the neighbor , but keep trying. (For neighbors attached to nonbroadcast networks.) Init A Hello packet recently seen fro[...]
-
Seite 324
Ospf Rtab: Displaying the OSPF Routing T able Use NCL ’ s Ospf Rtab command to format and display the OSPF routing table. Syntax ospf rtab Example Dest D Mask Area Cost E Path Ne xthop Advrtr AS Border Routes: 14.14.14.14 0.0.0.0 0.0.0.0 2 EXT 190.190.190.13 14.14.14.14 13.13.13.13 0.0.0.0 0.0.0.0 1 EXT 190.190.190.13 14.14.14.14 Area Border Rout[...]
-
Seite 325
Path is the type of path, as follows: EXT1 A utonomous system (AS) external path, of type 1. EXT2 A utonomous system (AS) external path, of type 2. INTER Inter -area path, to destinations in other ar eas. INTRA Intra-ar ea path, to destinations on one of the rou ter’ s attached areas. Next hop lists the next hop to t he destination. Advrtr lists,[...]
-
Seite 326
Ospf Tq: Displaying the OSPF T imer Use NCL ’ s Ospf Tq command to format and display the top ten times on OSPF’ s timer queue. Syntax ospf tq Example T ype Minutes Sec onds USeconds TQLsaLock 0 5 0 TQAck 0 5 0 TQHelloT imer 0 10 0 TQRetrans 0 10 0 TQSumLsdbA ge 7 37 0 TQAseLsdbA ge 9 11 0 TQIntLsa 10 19 0 TQLsa 12 27 0 NCL Commands 16 Using th[...]
-
Seite 327
The fields in the table are as follows: T ype is the type of timer , as follows: TQAck Used to send delayed ackn owl edge mes s ages. TQAseLsa When the Dijkstra algorithm will be run on external link state advertisements (recalculating the shortest path fir st tree using the exter nal link information). TQAseLsdbAge When the external link state dat[...]
-
Seite 328
Blocking and Unblocking Spanning T ree Explorer Frames Because the spanning tree does not operate automatically on source-routing br idging circuits, it is necessary to “ manually” build the spanning tree in the se circuits. T wo NCL commands allow yo u to block and unblock forwarding of spanning tree explorer frames on source-routing bridging [...]
-
Seite 329
Blockste: Block Spanning T ree Explorer Frames Use NCL ’ s Blockste command to block forwarding of spanning tree explorer frames on source-routin g brid gin g circuit groups , overriding the current setting of the Block STE configuration parameter . Syntax blockste all blockste circuit-group circuit-group is the name of a so urce-routing bridging[...]
-
Seite 330
Unblockste: Unblock Spanning T ree Explorer Frames Use NCL ’ s Unblockste command to restore forwarding of spanning tree explorer frames on source-routin g brid gin g circuit groups , overriding the current setting of the Block STE configuration parameter . Syntax unblockste all unblockste circu it-group circuit-group is the name of a so urce-rou[...]
-
Seite 331
Controlling IP-Mapped Circuits for V. 2 5 b i s Mapped data is IP data from an IP switched vi rtual circuit , which is configured by defining an IP static route and a phone number to IP to V .25 bis map entry . Individual map entries can be disabled while leaving others enabled. Three NCL commands are provided for disabling, enabling, and checking [...]
-
Seite 332
Disipmap: Disabling an IP Map for V .25 bis Switched V irtual Circuits Use NCL ’ s Disipmap command to disable an IP map entry—a specific location—while leaving the other mappings enabled. Then the IP next hop address configur ed with this map will remain unr eachable as will all of the static routes wit h w hich it is associat ed. Syntax dis[...]
-
Seite 333
Enipmap: Re-enabling an IP Map for V .25 bis Switched V irtual Circuits Use NCL ’ s Enipmap command to enable an IP map that was disabled earlier by using Disipmap. Syntax enipmap X.X.X.X X.X.X.X is the next hop IP address, in dotted decimal notation, of the map to enable. Using the Network C ontrol Language Controlling IP-Mapp ed Circuits for V.[...]
-
Seite 334
Ipmap: Displaying an IP Map for V .25 bis Switched V irtual Circuits Use NCL ’ s Ipmap command to display the status of an IP map. Syntax ipmap [X.X.X.X] [X.X.X.X] (optional) is the next hop IP address, in dotted deci- mal notation, of the map to sho w . If you omit this field, all cur - rently configured IP maps are shown. Before using the comma[...]
-
Seite 335
The display of Ipmap informatio n will vary , based on the state of the map when you execute Ipmap. In all cases, the map will show the following data: Next hop address of the map. Map state lists one of the foll owing: disconnected The map is disconnected; the circuit is available. disabled The circuit has been disabled by the Disipmap command. co[...]
-
Seite 336
Connection time th is connectio n instance shows the amount of time the map has been connected for the currently alive connection. Non-mapped d ata shows wh ether such data is ALLOWED or DISALLOWED for the currently alive connection (refer to the discussion above on page 16-87). Hold down time left shows the amount of time this map will remain in t[...]
-
Seite 337
Using TFTP T o T ransfer Operating Code, Configuration, and NCL Display T wo NC L commands work in conjunction with the T rivial File T ransfer Protocol (TFTP) and IP routing to provide TFTP serv er and client capability . Using the commands on this router , you can download the router’ s operating code or configuration from another router or hos[...]
-
Seite 338
TFTP Security Features The router provides some security measures to control access to and use of the TFTP facility . Initial TFTP connection requests are made on the well-known User Datagram Protocol (UDP) port 69. Access to TFTP on a specific network interface can be blocked, therefore, by constructing a T CP /UDP port filter to drop incomi ng d [...]
-
Seite 339
Fget: Loading the Operating Code or Configuration Use NCL ’ s Fget command with TFTP to download router operating code or a configuration fr om another HP router on an attached network, using TFTP . The router s must have IP routing and TFTP configured and enabled. See the TFTP security notes on page 16-94. Note The following limitations apply to[...]
-
Seite 340
Before operating code is downloaded, you will be asked to enter the current manager password if one exists, and to verify that you want the operating system changed (see page 16-15). If download- ing operating code fails, the router will be operating but most of the protocols and circ uits will be disabled; only the circuit used for TFTP will remai[...]
-
Seite 341
NCL-command is an NCL disp lay command string on this router . Possible commands are listed above and described earlier in this chapter . If the command has parameter s and thus includes a space, then enclose the command stri ng in double quotes. Examples fput 15.3.0.97 o s rok fput 15.3.0.97 c onfig account.cfg fput 15.3.0.97 " browse"?[...]
-
Seite 342
Using ZModem to T ransfer Configuration and NCL Display W ith an IBM-compatible personal computer (PC host) connected to the router’ s console port, two NCL commands use the Zmodem protocol to do the following: Copy a router configuration to the PC host for storage. Copy a router configuration from the PC host to the origin al router or to other [...]
-
Seite 343
Zget: Loading the Configuration to a Router Use NCL ’ s Zget command to upload t he router configurati on previous ly stored as a file on the PC connected to the router as a console. Note Zget overwrites the router’ s current configuration with the uploaded configuration. Preparation: Y ou must have previously used Zput to download the configur[...]
-
Seite 344
Zput: Storing the Configuration or NCL Command Output to a PC Host File Use NCL ’ s Zput c ommand to download the router configurat ion or NCL command output to a file on a PC connected to the router as a console. Preparation: 1. Star t PROCOMM PLUS . 2. Ensure that the PROCOMM PLUS “Auto downloading” feature for the Zmodem protocol is se t t[...]
-
Seite 345
8. Press [Esc ] three times to r eturn to the router ’ s Main menu (see figure 1-2). 9. Select the “Network Control Language Inter preter” in the router’ s Main menu. The procedure to download the confi guration or NCL command display to a PC host file (at the NCL prompt) is shown by the synt ax and examples on the following pages. Using th[...]
-
Seite 346
Syntax zput config file name [overwrite] [ format] transfer router configuration zput NCL-command filen ame [overwrite] [format] store display command output filename is the n ame of a file on the remote PC host to stor e the output from this router . NCL-command is an NCL disp lay command string on this router . Possible commands are listed above [...]
-
Seite 347
When the downlo ad is complete d, a flashing “COM P LETED” message appears briefly in the status window . Then the window closes and control returns to the NCL prompt. If the PC host does not respond within approximately 60 seconds after you execute Zpu t, the command times o u t an d co ntrol returns to the NCL prompt. Note If the “Auto down[...]
-
Seite 348
17 Event Log Messages[...]
-
Seite 349
How T o Use This Chapter The event log is a first-in, first-out buffer in RAM. Each entry is a single line composed of five fields: severity date time object event message I 08/05/94 10:52:13 c ct.wan1: ’WAN1 - ca rrier lost’ The event log messages listed in this chapter are organized alphabeticall y within subs ections corres p onding to th e [...]
-
Seite 350
T o Locate Event Messages by Managed O bject Name Subsection Page at: AppleT alk Event M essages 17-4 boot: Boot E vent Messa ges 17-1 5 bootp: Network Boot Protocol Event Messages 17-16 cct: Circuit Event Messages 17-18 dev: Device Event Messages 17-60 dls: Da ta Li nk Serv ices E vent Me ssage s 17-69 drs: DECnet Event Messages 17-74 egp: Exterio[...]
-
Seite 351
at: AppleT alk Event Messages These event messages are generated by the system variable “at”, the AppleT alk router . AARP mapping table is full Meaning: The AppleT alk router cannot add an address resolution pair (AppleT alk node address and an associated station a ddress) to its address mapping table; the table contains its maximum number of [...]
-
Seite 352
at_amt_alloc: out of memory Meaning: The AppleT alk router cannot obtain sufficient memory to allocate the AARP address mapp ing table. Action: Reduce the AARP Mapping T able parameter to place a lesser demand on memory . at_cg_cb_alloc: out of memory Meaning: The AppleT alk router cannot obtain sufficient memory to allocate a circuit group control[...]
-
Seite 353
Cfg: cannot get zone name list for ccg Meaning: This message is generated only if the circuit group specified by ccg is a nonseed port. After a no nseed port obtains the default zone name fr om a seed router , it issues a query to obtain a list of zone names associa ted with the network. This message is generated if the port fails to receive a resp[...]
-
Seite 354
already in service. The default zone names conveyed by these seed routers are inconsistent. Action: One of the seed routers must be reconfigured to ensure the consistency of the default zone names. If you reconfigure the AppleT alk router to match the default zone name of the in-service router , no further changes are necessary . If you reconfigure[...]
-
Seite 355
Cfg: No config summary record Meaning: There is a serious prob lem in the router’ s co nfiguration file, affecting the system configuration and no t just the AppleT alk configuration. ( In this case, the ‘ ‘/CFG_SUMMARY’ ’ record is missing.) Action: Ensure that the rout er’ s configuratio n is valid. Cfg: No BOOTLOAD record Meaning: Th[...]
-
Seite 356
Cfg: number zone names incorrect for ccg Meaning: The circuit group specified by ccg has been configured as a seed port. The directly connected network is serviced not only by this seed, but also by another seed router already in service. The zone name lists conveyed by these seed routers are inconsistent; each list contains a different number of z[...]
-
Seite 357
ccg enabled with network range X - Y Meaning: The circuit group specified by ccg is enabled and con nected to the attached medium whose range o f network numbers is X to Y . ccg enabled with node address X.Y Meaning: The circuit group specified by ccg is enabled with the node address X.Y , where X is the network number and Y is the node iden tifier[...]
-
Seite 358
Illegal network number for ccg Meaning: The network number configured for ccg is ou tside of the range s pecified by the Network Min and Network Max par ameters. Action: Reconfigure the network number to within the range. Illegal network range for ccg Meaning: Either the Network Min or Network Max parameter for ccg is outside the range of legal App[...]
-
Seite 359
Invalid AARP event X , AARP state Y for cg ccg Meaning: The circuit group specified by ccg was in AARP state Y , and thus unable to process AARP event X . Possible values for X and Y : X value E vent Code 0 xmit AARP PROBE 1 xmit AARP REQUEST 2 rcv AARP PROBE 3 rcv AARP REQUEST 4 rcv AARP RESPONSE 5 t imer expired/ cancelled Y value AARP State Code[...]
-
Seite 360
No AppleT alk software configur ed Meaning: The portion of the configuration file that contains AppleT alk configuration data is faulty . One or more of the following requir ed records may be missing: AppleT alk record, configuration summary record, entity records, or boot-load record. Action: V erify and recon figure the AppleT alk router . No cir[...]
-
Seite 361
No msg buffers for ZIP background alarm Meaning: The Appletalk router cannot obt ai n a message buffer t o create its ZIP background timer . Action: Contact your HP support pr ovider . Rcv’d zone name(s) on port #; cannot distribute Meaning: A list of zone names received on port # could not be sent to the other ports running AppleT alk. Zone name[...]
-
Seite 362
boot: Boot Event Messages This event message is generated by the system variable "boot". System went down: day/month/hh:mm:ss/year Meaning: Identifies the last time t he system went down. Event Log Messages 17 Event Log Messages boot: Boot Event Messages 17-15[...]
-
Seite 363
bootp: Network Boot Protocol Event Messages These event messages are generated by the system variable "bootp", the network boot pr oto col. buffer for timer msg can’t be allocated Meaning: Buffer memory ran out, so the Bootp request or reply could not be serviced. can’t allocate any msg buffers Meaning: Buffer memory ran out, so the B[...]
-
Seite 364
illegal action for boop_act Meaning: Internal messaging error . Action: Call your local product support provider . received BOOTP reply from server Meaning: Reply received from Bootp server . received BOOTP request from client Meaning: Request received from Bootp c lient. received unknown BOOTP pkt type Meaning: Some node is generating bad packets.[...]
-
Seite 365
cct: Circuit Event Messages These event message are generated by the system variable "cct", for circuits. A TCP is down Meaning: For the in dicated PPP circuit, Appletalk Cont rol Protocol (A TCP) has gone down . A TCP is up Meaning: For the indicated PPP circu it , Applet alk Control Protocol (A TCP) is up. Adapter accepted CIC command M[...]
-
Seite 366
Adapter did not accept CRN command Meaning: The terminal adapter rejected the router CRN command. The router will bring down the circ uit and not allow an d more connectio ns on this circuit. Action: This error indicates ei ther a configuration error on the router or on the terminal adapter , or an incompatablity between them. Y ou must change the [...]
-
Seite 367
Attempt to init FR on inactive cct Meaning: The indicated frame relay cir cuit is not active, yet there was an attempt to initialize the circuit. This is an internal problem and cannot be corrected by the user . Bad Address option combination Meaning: In the indicated frame relay circuit, the s elected combinat io n o f addressing encoding and addr[...]
-
Seite 368
Action: Modify the configuration so that the polling interval is within the proper range. Bad interface discriminator found <xxx > Meaning: For the indicated frame relay circuit, a packet was received on the management interfac e Da ta Link Connection Iden tifier (DLCI), but the protocol discriminator field did not contain the proper value fo[...]
-
Seite 369
BUD Failed, SIFSTS = XXXX Meaning: The token ring device Bring Up Diagnostic (BUD) failed, indicating a possible hardware failur e. Action: Note the code number in the event message and contact your Hewlett-Packard representative. Call collision will rcv inbound call Meaning: The router received an incoming call after sending a connect request (CRN[...]
-
Seite 370
Carrier detected on WAN # Meaning: Carrier Detect has been received, either initially or after being lost, on the indicated W AN port. Circuit has been brought down Meaning: This is indicates th at the V .25 bis circuit has been brought do wn . Action: See other logged events for futher information. Circuit has been brought up Meaning: The V .25 bi[...]
-
Seite 371
config needs phone # to connect Meaning: The V .25 bis cir cuit has been configured to be enabled when the circuit first comes up. However no ou tbo und phon e nu mber has been configured. Therefore this circuit will only be able to connect when a call comes in. Action: No user action is required unless you did not intend to configure the circuit t[...]
-
Seite 372
Action: Check other event messages to see why the connection failed. Connection timeout, retry in progress Meaning: An outbound connect a ttempt has timed ou t waiting for the termina l adapter to respond. The re try count has not expired so the router will try again. Action: Check the connection between the adapter and the router . Also check the [...]
-
Seite 373
Data pkt received on downed connection Meaning: The adapter sent data packets on a link that was not connected. (The DSR line was down.) This is not expected when the router is in manual adapter mode. Action: Check the adapter configuration. Make sure that it raises DSR when the phone call is established. DCE set DSR TRUE before DTE sent XXX Meanin[...]
-
Seite 374
Action: No user action required. The router will try to re-syncronize the connection. If this happens frequently , check the terminal adapter’ s configuration. DCE set DSR while waiting for IND Meaning: While the router was waiting for an indication from the terminal adapter , the adapter unex pectedly pul led up DSR. This in dicat es that th e r[...]
-
Seite 375
DEV CCT : cct - Not enough memory for compression Meaning: Compression is configured on the circuit, but there is not enough free memory to allocate the co mpression table. Action: Either remove configured fun ctionality that is un necessary , or replace the router with another one having more memory . DEV CCT : cct - transmit congestion Meaning: T[...]
-
Seite 376
DLCI XXX not within range; not added Meaning: For the indicated frame relay circuit, a DLCI value was added that was not within the range of valid values for the specified type and length. XXX identifies the DLCI in error . DRSCP is down Meaning: For the indicated PPP circuit, DECnet Routing Service Control Protocol (DRSCP) is down. DRSCP is up Mea[...]
-
Seite 377
entity already disabled Meaning: An already disabled circuit, identified in the object field of the event message, has received NCL ’ s Disable command. entity already enabled Meaning: An already enabled circuit, identified in the object field of the event message, has received NCL ’ s Enable command. entity disabled Meaning: The circuit named [...]
-
Seite 378
interface is considered unstable and is taken down. This message indicates that this situ at io n ha s occurred. Free pkt buffs available V .25 bis clipping disabled Meaning: The the backlog has been relieved. Packet buffers can again be queued on V .25 bis circuits as necessary . Free pkt buffs low V .25 bis clipping enabled Meaning: The amount of[...]
-
Seite 379
Action: Reduce the overall size of memory resour es allocated by the configuration. (For example, reduce table sizes on other configuration parameters wher e possible.) insufficient mem on cct X for phone # Meaning: There is no system memory available for the given V .25 bis circuit ( cct ) to allocate storage for phone numbers. This circuit is not[...]
-
Seite 380
Invalid MFS, dflt=2 Meaning: The configuration record for circuit: cct contains a faulty value in the Minimum Frame Spacin g field . Th e s yst em has defaulted to a value of 2. Action: Modify Minimum Fr ame Spacing in the configuration. Invalid N2, dflt=16 Meaning: The configuration record for circuit: cct contains a faulty value in the Retry Coun[...]
-
Seite 381
IPCP is down Meaning: For the indicated PPP circuit, a packet was received which did not conform to standard PPP format. The packet was dropped. Nofurther action is necessary . IPCP is up Meaning: For the indicated PPP circui t, IP Control Protocol (IPCP) is up. IP packets may now be sent and received on the link. IP next hop X.X.X.X assoc w/ YYY M[...]
-
Seite 382
LCP is down Meaning: For the indi cated PPP circuit, Link Control Protocol (LCP) has gone down. If the LCP Auto-Restar t option was configured as Y es, then the system attempts to restart LCP . LCP is up Meaning: For the indicated PP P circuit, Link Control Protocol (LCP) is up. The system now attempts to b rin g up th e appropriate network lay er [...]
-
Seite 383
LQM negotiation rejected by remote station Meaning: For the indicated PPP circui t, the remote station refuses to accept negotiation of the Lin k Quality Monito r (LQM) paramet e r . The system cannot bring up the Link Control Protocol (LCP) until the remote station is willing to accept negotiation of th e LQM parameter . Action: If it is not consi[...]
-
Seite 384
min channel number > max (min set to X ) Meaning: The router configuration has the minimum channel number greater than the maximum channel number . The router will correct this. Action: Correct the router configuration. Minimum Latency cap being used Meaning: A minimum latency cap of 3100 bytes is being used because the latency cap time is too s[...]
-
Seite 385
Net sequence num receive recovery Meaning: The network is now properly sending keep-alive sequence numbers for the identified circuit. Next hop IP X.X.X.X has no ph # Meaning: All map items must have at least one configured phone number . The map record with with IP next-hop address X.X.X.X has no configured phone #. Action: Add a phone number to t[...]
-
Seite 386
Not receiving seq num on MI enquiry Meaning: For the indicated frame relay circuit, the other side of the frame relay interface is issuing sta tu s enquiry messages wit h last received keep-a live sequence numbers that are not as expected. That is, this sequence number is not the las t sequence number w e sent. This indicat es that the other side i[...]
-
Seite 387
Providing quality of service to remote Meaning: Follows the “circuit in auto-detect mode” message and indicates the Quality of Service pa ra meter settin g in the loca l rou ter for the indicated circuit. Pkts rcvd while waiting for outbound data Meaning: The router was waiting for outbound data so that it could establish a connection when inbo[...]
-
Seite 388
Action: Modify the configurati on . protocol 0x YY not supported Meaning: For the indicated PPP circui t, the peer (remote) station se nt a packet with a PPP protocol value of YY (hex), but the system does n ot support PPP protocol YY . Providing LLC1 service Meaning: The circuit named in the obj ect field of the event message is enabled and provid[...]
-
Seite 389
PVC XXX received xoff indication Meaning: A PVC informatio n element in dicat ed that th is PVC has rece ived an Xoff indication. Data wil l not be transmitt ed over this particu lar PVC until it receives an xon in dication. T his message i s only relevant if the Data Link Connection Managem ent type is LMI. Anne x D d oes not use the Xoff/Xon indi[...]
-
Seite 390
QOS = quality of service , addr = DCE /BIDTE, compression = Ye s / No Meaning: Follows the “circuit in auto-detect mode” message and indicates the current Quality of Service, Point-to-Point Address, and Compression parameter se ttings. Received a connect delay indication (DLC) Meaning: The terminal terminal adapter issued a delay call to the ro[...]
-
Seite 391
received indication too short, len = X Meaning: The terminal adapter indicat ion is too short. The route r will ignore i t. Action: Check the terminal adapter configuration. Received packets while in the down state Meaning: The router has received packets from the terminal adapter while the conection is down. These packets will be dropped. Action: [...]
-
Seite 392
Receiver overflow detected Meaning: The Local Area Network Controller , or the Link Level Controller for the circuit identi fied in the object field of the event message has dropped a received packet because of lack of space in the Receiver FIFO buffer . Remote clearing Meaning: The remote end of a point- to-point circuit is in the process of rese [...]
-
Seite 393
Remote disconnected local Meaning: The router has received (and processed) a disconnect request from the remote end. Remote reset to local Meaning: The router has received a reset request from the remote end. remote station has logged in to Server Meaning: For the indicated PPP circuit, the remote station has successfully logged in to the s yst em.[...]
-
Seite 394
remote station rejected IPCP Meaning: For the indicated PPP circuit, the remote station has rejected the IP Control Protocol (IPCP). No IP traffic may occur over the link until the remote station is ready to accept the IP Control Protocol. remote station rejected IPXCP Meaning: For the indicated PPP circuit, the remote station has rejected the IPX [...]
-
Seite 395
remote station’ s LQM time > configuration time Meaning: For the indicated PPP circu it , the Lin k Quality Monito r (LQM) time that the remote stat ion is willing t o n ego tiate for is great er tha n the LQM time configured for the PPP circuit. The higher LQM time is accepted, but it means that the remote station will be sending Link Quality[...]
-
Seite 396
Server’ s login attempt failed Meaning: For the indicated PPP circu it , the s ystem fail ed in its attem pt to login to the remote station. The system User ID or the System Password (or both) were i ncorrect. Action: Modify system User ID and/or System Password in the configuration. SQE absent (non 802.3 XCVR) Meaning: The circuit named in the o[...]
-
Seite 397
SR max hops exceeded in Specifically Routed Frames Meaning: The maximum number of hops for a source-routed packet, seven, was exceeded in a specifically routed frame (SRF). The packet is dropped. SR max RDs exceeded in explorer packet Meaning: The maximum number of route descriptors (RDs) for a source-routed packet, eight, was exceeded in an all-ro[...]
-
Seite 398
SR Rif_table out of space Meaning: The routing informati on field (RIF) table, which contains the RIFs used to route source-routed packets between the router and the remote token ring nodes, is out of space. It contains RIFs used for both end-station source routing for IP as well as intermediate-station sour ce routing for bridging. SR sr_es_find: [...]
-
Seite 399
SR Sr_is_srf_rif_insert: no rif entry Meaning: A specifically routed frame was received, bu t th e appropriate entry in the source-routing intermediate-station table (sr_is_table) does not contain a routing information field for the destination stat ion. The packet is dropped. SR Sr_is_table out of space Meaning: The sr_is_table, the source-routing[...]
-
Seite 400
Action: Check for a loose or disconnected cable, and verify other hardware. T oken SRA Programming Failure Meaning: The token ring device failed SRA progr amming, indicating a possible hardware failure. Source route bridging will not function properly . Action: Contact your Hewlett-Packard support provider . too many bytes lost: link unreliable Mea[...]
-
Seite 401
packets. When desired l ink quality is re-estab lished, the Network Control Protocols will be brought up again. T oo many V .25 bis maps defined, limit = %d Meaning: T oo many V .25 bis map records have been defined. The maximum number allowed is 255. Action: Check your configuration file and reduce the number of configured items. T oo many V .35 c[...]
-
Seite 402
TR Open Failed Meaning: The token ring device failed in its attempt to insert into the ring. This usually results from trying to insert to a ring at the wrong speed (4 or 16 Mbits). Action: V erify and select the proper ring interface speed for this line. Unable to perform update for dlci Meaning: For the indicated frame r elay circuit, an operator[...]
-
Seite 403
specified call restrictions placed on inbound calls. This is an unlikely event and may indicate an error by the connected adapter . Note: In V .25 bis mode, the W AN Net Fail LED lights if the connected adapt er does not respond with CTS T rue wi thin 20 seconds of the router raising DTR. The Net Fail LED t u rns off if the adap ter s ubsequent ly [...]
-
Seite 404
Unsupported IE value XXX found Meaning: For the indicated frame re lay circuit, a valid status update or full status message was received with an unrecognized or unsupported Information Element (IE). XXX identifies Information Element identifier co de in qu estion. Unsupported NLPID found XXX Meaning: For the indicated frame relay circuit, a receiv[...]
-
Seite 405
X - High priority transmit congestion Meaning: This message is reported when the data packets that were prioritized as high can’t be sent over the W AN link due to congestion. This message is reported on the first instance of dropping a packet due to congestion and the first time a pack et i s dropped after the tx_congestio n or total_tx_error st[...]
-
Seite 406
XNSCP is down Meaning: For the indicated PPP circuit, XNS Control Protocol (XNSCP) has gone down. XNSCP is up Meaning: For the indicated PPP circuit, XNS Control Protocol (XNSCP) is up. XNS packets may now be sent and received on the link. X - PPP/FR High Pri Tx congestion Meaning: When PPP is configured over slow W AN links (<=64K), the PPP con[...]
-
Seite 407
dev: Device Event Messages These event messages are generated by the system variable “dev” in one of the following formats, depending on the router model you are using: Series 200 and 40 0: dev: ’ device event message Router 650: dev[ slot number ]: ’ device event message Bad module ID Meaning: The adapter card (module) ID cannot be identif[...]
-
Seite 408
CCT cct : T oken cable connection fault Meaning: The router detected a cable fault on this token ring circuit. The circuit is no longer in o peration. Action: Check that the cable is still attached to the router and also to the token ring hub. If the connections are proper , then the cable itself may be bad. CCT cct : T oken Ring circuit recor d mi[...]
-
Seite 409
Connected module is non-link: nn Meaning: The adapter card cannot be identified by the dr iver . These ID s are listed in table A-1 in the “hw: Hardware Information Base” section in chapter 18. Action: V erify the adapter card har dware. Connector nn not on this module Meaning: The configuration record reflects a non-existent physical connector[...]
-
Seite 410
Ethernet Port # carrier sense lost Action: Check the transceiver and connection to router port # . Ethernet Port # failed self-test Meaning: Hardware error . Action: HP series 200 or 400 router: Replace the router . HP Router 650: Replace the interface card. Ethernet Port # transmit failure Action: Check the LAN cable and connection to the transcei[...]
-
Seite 411
Action: Reconfigure both lines to have the same clock speed. Internal clock must be the same on all ports Meaning: On all HP series 200 and 400 routers, all synchronous lines share the same clock sign al generator . Thus, whe n us ing internal clocking o n more than one line, the Clock Speed par ameter in the lines configurati on must have the same[...]
-
Seite 412
No buffers available for deadlock processing Meaning: Indicates a degenerative line condition resulting in the lack of receive buffers at both the line source and termination. No circuits configured Meaning: No circuits are configured. Action: Modify the configuration to include required circuit records. No configuration summary record Meaning: A c[...]
-
Seite 413
Action: Modify the configuration to ensure that it includes circuit records for all circuits. No T oken Ring circuits configur ed Meaning: This is a possible error condition in that no circuits have been configured for a router having one or more token ring ports. None of the circuits will be used. Action: Check your network topology to see if any [...]
-
Seite 414
T oo many Ethernet circuits configur ed Meaning: The configuration contains more Ethernet circuit records than can be accommodated. Action: Modify the configuration to ensure that no more than the maximu m Ethernet/802.3 circuit records are assigned. T oo many lines assigned to Ethernet connector Meaning: The same Ethernet/802.3 l ine has been assi[...]
-
Seite 415
T oo many V .35 circuits configured Meaning: The configuration contains an excessive number of V .35 line records. Action: Modify the line configur a tion. T otal bandwidth reserved not 100% ( XXX % cfg’ed) Meaning: The bandwidth reserved for each of the priorities for the W AN cir cuit does not add up to 100%. Action: Make sure the three percent[...]
-
Seite 416
dls: Data Link Services Event Messages Bad action Meaning: Internal DLS state machine er ror . Action: Contact your HP support repr esentative. Bad cct type configured Meaning: The cir cuit type configured is not a valid type. It can only beone of: Ether/802.3 , 802.5, FDDI, HP Point to Point, LAPB, PPP , SMDS, Frame relay , V .25 bis adaptor , Man[...]
-
Seite 417
Action: Reconfigure the circuit. CGM misconfigured Meaning: DLS was un able to notify the upper layer protocols that the circuit has come up. The Circuit Group Manager module is not active. Action: Disable the circuit and re-enable it via NC L. If the symptom persists, call your HP support representative. Clock recovered Meaning: The router has det[...]
-
Seite 418
Invalid Configuration: Pt-to-Pt address must be DCE Meaning: Auto-configuring has de tected a remote bridge, but the router ’ s Pt-to-Pt address configuration option is not set to DCE or auto-configure. Action: Use DC E or auto-configure as the Pt-to-Pt address for the Point-to-Point W AN circuit. Invalid Configuration: Mismatching QOS Meaning: T[...]
-
Seite 419
Invalid Configuration detected by remote side Meaning: A Point-to -Point configuration option that was not using auto-c onfigure is incompatible with the remote device. Action: Use t he auto-configure option to configure the Point-to-Point W AN circuit on either the local or the remote device. Lost carrier , disabling cct Meaning: The ro uter has d[...]
-
Seite 420
SR sr_es_find: Madr_table out of space Meaning: The table that stores station addr esses of end nodes on a token ring network is full. The router uses a Least-Recently-Used policy to replace entries in this table, so no c onnectivity is lost. The rep lacement of entries may only affect the forwarding performance to those nodes that have been replac[...]
-
Seite 421
drs: DECnet Event Messages These event messages are generated by the system variable “drs”, the DEC net routing service. Adj Down CG ccg , Bad Pkt, Adj= aa.nnnn Meaning: An adjacent node (accessible through circuit group ccg ), whose area and node address is aa.nnnn , is declared down because the node transmitte d an erroneous pa cke t. Adj Dow[...]
-
Seite 422
Adj Down CG ccg , Sync lost, Adj= aa.nnnn Meaning: The circuit group manager has declar ed circuit group ccg (which accesses node aa.nnnn ) to be disabled. Consequently , the DEC net router declares aa.nnnn down. Adj Down CG ccg , T imeout, Adj= aa.nnnn Meaning: An adjacent node (accessible through circuit group ccg ), whose area and node address i[...]
-
Seite 423
Area Reach Chg Area aa , Unreachable Meaning: The previously reachable area, whose area address is aa , has become unreachable. CG Down CG ccg , Sync lost, node= aa.nnnn Meaning: The circuit group manager has declar ed circuit group ccg (which accesses node aa.nnnn ) to be unavailable. CG Up CG ccg , Adj= aa.nnnn Meaning: The circuit group manager [...]
-
Seite 424
entity enabled Meaning: DEC net successfully initialized, or has been enabled with the NCL ’s Enable command. Init Fail CG ccg , Block size small, V er= nn.nn.nn Meaning: An adjacent host (accessible over circuit group ccg ) failed to compl ete initialization because of an insufficient configured block size. No DECnet Record configured Meaning: T[...]
-
Seite 425
Routing Pkt CG ccg , Highest= aa.nnnn , Adj= aa.nnnn Meaning: An adjacent router is configured with an area and/or node number greater than the values for which the router is configured. Adj= contains the source address of the packet. Highest= contains the faulty address data contain ed in the packet. Event Log Messages drs: DECnet Event Messages 1[...]
-
Seite 426
egp: Exterior Gateway Protocol Event Messages These event messages are generated by the system variable “egp”, the Exterior Gateway Protocol. Already enabled Meaning: An already enabled EGP has received NCL ’ s Enable command. Already disabled Meaning: An already disabled EGP has received NCL ’ s Disable command. Bad AS, local ip-address re[...]
-
Seite 427
Action: Modify the configuration. Configuration inconsistency repaired Meaning: EGP has noted a minor discrepancy in the configuration. It has initialized using default values. Configuration record not found Meaning: The configuration does not include an EGP record. Action: Modify the configuration. Enable failed Meaning: EGP failed to enable in re[...]
-
Seite 428
Entity not initialized Meaning: EGP has received an NCL command before it has complet ed in itializat ion . Error nnnn attaching to ip-address Meaning: EGP has encountere d an error attemp ting to at tach the nei ghbor designated by ip-address . nnnn designates the error listed in table 17-1 on page 17-83. Error nnnn detaching from ip-address Meani[...]
-
Seite 429
Invalid number of neighbors Meaning: While checking its neighbor table, EGP found too few or too many entries. Action: Modify the configuration to ensure that the number of neighbor s is greater than 1, b ut less than 20. IP entity not available Meaning: The IP entity is not available. EGP cannot function in the absence of IP . Action: Check if IP [...]
-
Seite 430
T able 17-1. Error Codes Code Explana tion 320 321 322 323 324 325 326 327 328 329 32a 32b 32c 32d 32e 32f 320 330 331 332 333 334 335 336 337 338 339 33a 33b 33c 33d 33e 33f 340 Interface not foun d Reques te d res ource unavailable Router out of memory Router ou t of buffe rs Necess ary param eter uns pecified Option or comma nd not supported Inv[...]
-
Seite 431
IP entity not ready Meaning: The IP entity is not currently available. Action: W ait for IP to initialize. Neighbor ip-address acquired Meaning: EGP has acquired a new neighbor . Neighbor ip-address down Meaning: The EGP neighbor reachability algorithm has declared ip-address in the down state. In this state, EGP allocates res ource s to the neigh [...]
-
Seite 432
Source address equal to destination Meaning: The configuration contains identical values for the Local Address and Remote Address parameters. Action: Modify the configuration to ensure the accuracy of local and remote addresses. Event Log Messages 17 Event Log Messages egp: Exterior Gateway Protocol Event Messages 17-85[...]
-
Seite 433
ip: IP Event Messages These event messages are generated by the system variable “ip”, the DoD Internet Router . arp: ip-address1 / ip-address2 Meaning: IP has added a new entry , lear ned through the Address Resolution Protocol (ARP), to it s address t ran slation tab le. ip-address1 is the host address; ip-a ddre ss2 is the network inter face [...]
-
Seite 434
Bad rx bcast bcast on ip address Meaning: The configuration contains an invalid receive broadcast address on the interface designated by ip address . Action: No action is required as IP will use a default broadcast address. Note that the Configuration Editor guards against this error . This message should be seen only if a user has attempted to mod[...]
-
Seite 435
entity enabled Meaning: IP has been enabled in response to NCL ’ s Enable command. entity reset Meaning: IP has reinitialized. filters configured Meaning: IP has configured source ad dress, destinati on address, an d/or T CP/UDP port filters. global broadcasts will not be received Meaning: The Global Broadcast parameter has been set to No. Action[...]
-
Seite 436
icmp: redirect from ip-address Meaning: IP has received an Internet Control Message Protocol (ICMP) redirect message from ip-address . icmp: Unsolicited Echo Reply from X.X.X.X Meaning: Indicates a reply from IP address X.X.X.X to a Ping that was not sent by the local router . A packet may have been duplicated on the network. Action: If this messag[...]
-
Seite 437
no network interfaces configured Meaning: The configuration contains no network interface records. Action: Modify the configuration to include network definitions for all network interfaces. resolved: ip-address1 / ip-address2 Meaning: IP has added a new entry , lear ned through the Address Resolution Protocol (ARP), to it s address t ran slation t[...]
-
Seite 438
SR sr_es_find: Madr_table out of space Meaning: The MAC address table (Madr_table) is out of space. The station address table contains station addresses that are used for both end station (ES) source routing over IP as well as intermediate station (IS) source routing over the bridge. SR Sr_es_table out of space Meaning: The source routing end stati[...]
-
Seite 439
ipx: IPX Router Event Messages These event messages are generated by the the system variable "ipx", the IPX router . CG ccg : Del Rt to dest net via next hop net : next hop Meaning: ccg is the name of the circuit group the route was learned on. dest net is t he destination network the route r eferred to. next hop net is the dir ectly conn[...]
-
Seite 440
CG ccg : New Rt to ipxnet via ipx-address Meaning: The IPX routing module generates a new event message whenever it learns a new route or updates an existing route. The new rout e is specified by ipxnet , which is the destination network to which the new or updated route refer s, and by ipx-address , which is the full IPX address of the next hop ro[...]
-
Seite 441
ipx: ipxwan - Internal Network Number not unique Meaning: IPXW AN detected the same Internal N etwork Number configured on both sides of the link. Action: Modify the configuratio n. Change t he IPX Internal Network Nu mber to be unique. ipx: ccg: ipxwan is up Meaning: IPXW AN exchange was successful and IPXW AN is up on this interface. ipx: ipxwan [...]
-
Seite 442
ipx: ccg : New Rt to ipxnet via ipx-address Meaning: The IPX routing module gen erates a new event mes sa ge whenever it learns a new route or updates an existing route. The new route is specified by ipxnet , which is the destination network to which the new or updated route refer s, and by ipx-address , which is the full IPX address of the next ho[...]
-
Seite 443
lb: Bridge Event Messages The event messages are generated by the system varaible "lb", the learning bridge. Circui t Gr oup ccg Blocking Meaning: The spanning tree algorithm has placed circuit group ccg in the blockin g state. A circuit group in this state does not participate in frame relay . The spanning tree algorithm, however , does [...]
-
Seite 444
entity disabled Meaning: The bridge has been disabled in response to NCL ’ s Disable command. entity enabled Meaning: The bridge successfully initialized, or has been enabled with NCL ’ s Enable command. fwd dlay should be >= XXX Meaning: The Forward Delay configuration parameter was misconfigured. Action: For the Forward Delay parameter , c[...]
-
Seite 445
No Bridge Software configured Meaning: The bridge protocol has not been loaded. Action: Modify the configuration to include a bridge record. SR internal LAN ID not in RIF route Meaning: A specifically rout ed frame (SRF) was recei ved that did not include th e Internal LAN ID of th e brid ge. The fram e cannot be forwarded an d must be dropped. SR [...]
-
Seite 446
SR out of buffers Meaning: An attempt was made to allocate a packet buffer to flood an All Routes Explorer (ARE) packet out of a par ticular interface. However , no packet buffer was available. The ARE cannot be flooded out of the inter face. SR possible ARE loop Meaning: A possible All Routes Explorer (ARE) loop has been de tected. This can occur [...]
-
Seite 447
SR sr_is_table: out cct’ s cg is 0, sending ARE Meaning: The specifically routed frame (SRE) was received and the appropriate entry in the source route intermediate station table (Sr_is_table) for the source des tination pair does n ot yet in clude the route to the destin ation station. The bridge will now send an All Routes Explorer (ARE) packet[...]
-
Seite 448
line: Lines Event Messages Connector nn not on this module Meaning: The configuration record reflects a non-existent physical connector . Action: Modify Connector in the line record in the configuration. Invalid MFS, dflt=2 Meaning: The configuration record for circuit cct # contains a faulty value in the Minimum Frame Spacin g field . Th e rout er[...]
-
Seite 449
Sync circuit assigned to multiple lines Meaning: One or more line records contains references to the same point-to-point circuit. Action: Modify the configuration to ensure that all line and circuit records are consistent. T oo many lines assigned to V .35 connector Meaning: The configuration contains an excessive number (greater than two) of line [...]
-
Seite 450
mgr: Manager Event Messages These event messages are generated by the system variable "mgr". auto enabling entity Meaning: The manager is auto-enabling the specified device or service. entity can be any of the following: a circui t of any type, the IP router , the bridge, the IPX router , EGP , SNMP , TCP , and T elnet. Config file conver[...]
-
Seite 451
cct.circuit name reserved as a backup circuit Meaning: The specified circuit was not auto-enabled because it was reserved as a backup circuit. No memory for session startup Meaning: There is insufficient mem ory ava ilable for the indic ated activity . Action: Contact your HP Service provider . No memory for temp session Meaning: There is insuffici[...]
-
Seite 452
ospf: OSPF Event Messages These event messages are generated by the system variable “ospf”, the Open Shortest Path Fir st internet routing protocol. DD: Extern option mismatch Meaning: The Hello external/stub option specified does not match the configured option. DD: Nbr’ s rtr = my rtrid Meaning: The OSPF entity has detected another OSPF rou[...]
-
Seite 453
Hello: IF dead timer mismatch Meaning: The dead timer value specified in an incoming Hello packet does not match the configured va lue. Hello: IF hello timer mismatch Meaning: The hello timer value s pecified in an in coming Hello packet does not match the configured va lue. Hello: IF mask mismatch Meaning: The mask value specified in an incoming H[...]
-
Seite 454
LS Req: Bad pkt Meaning: OSPF has received a bad link state request. LS Req: Empty request Meaning: OSPF has received an empty link state update request. LS Req: Nbr state low Meaning: The state of a neighbor sending a link state request is too low to honor . That is, the router will drop the Ls Req and Ls Update packets from the neighbor whose sta[...]
-
Seite 455
LS Update: Nbr state low Meaning: The OSPF e nt it y has received a l in k state update from a neighbor in a state too low to be processed. That is, the router will drop the Ls Req and Ls Update packets from the neighbor whose state is below Exchange in the following list: Full Loading Exchange Exch Start 2 Way Init Attempt Down LS Update: Newer se[...]
-
Seite 456
OSPF: Bad intf area id Meaning: The interface area identification specified in this packet does not match the one configured for this OSPF interface. Or , the packet was received on an interface belo nging to another area. OSPF: Bad OSPF checksum Meaning: The checksum calculated for this packet does not agree with the value specified in the pack et[...]
-
Seite 457
OSPF: Packet is too small Meaning: OSPF has received a packet that is too small. OSPF: Packet size > IP length Meaning: OSPF has received a packet exceeding the allowable IP datagram length. OSPF: Received on down IF Meaning: OSPF has received a packet on an interface that was considered to be down. OSPF: TQ_IFCHECK: Interface if_name ( ip-addre[...]
-
Seite 458
OSPF: TRANS [IF/NBR] ID = ip-address Event: X States: Y -> Z Meaning: The transit interface or neighbor ( ip-address ) has received an event ( X ) that caused it to pass through a s tate change from st at e Y to state Z . The following events can cause state machine changes for interfaces or neighbors: Events Received by Neighbors : Events Recei[...]
-
Seite 459
pm: Port Module Manager Event Messages These event messages are generated by the system variable ‘ ‘pm’ ’, which is the port module manager for the HP Router 650. Can’t allocate re-boot message, restart impossible Meaning: The router software was unable to allocate a message needed to initiate the reboot process of a port module. The port[...]
-
Seite 460
If the condition persists, contact you HP support provider . Downloading Port Module type type # in slot slot # Meaning: The softwar e for the port module in slot # is being downloaded. The port module type # is a numeric identifier (1, 2, etc.). Enabling Port Module Meaning: The NCL Enable command was s uccessful and th e proc ess of enabling the [...]
-
Seite 461
Port Module inserted in slot slot # Meaning: The router software has detected the insertion of a port module in the specified slot. Port Module in slot slot # ready for hot swap Meaning: The port module in the specified slot has been successfully shut down and is ready to be removed. Action: T o restart a module in slot # , extract the shut down po[...]
-
Seite 462
Port Module slot slot # state state incorrect for enable Meaning: The port module in the specified slot is no t in th e co rrect state to be enabled. It may already be enabled. Action: Attempt to disable the port module or perform a hot swap. Port Module slot slot # state mismatch Meaning: The router software has detected an inconsistency with stat[...]
-
Seite 463
Selftest failed on slot slot # Meaning: The port module in the speci fied slot of an HP Router 650 has failed selftest. Action: Determine the source of the failure by using the procedure described under ‘ ‘Card/Slot Failure During Self-T est’ ’ in the ‘ ‘T roubleshooting’ ’ chapter of the router installation manual. If the test indi[...]
-
Seite 464
ppp: Point-to-Point Protocol These event messages are generated by the PPP managed object. bad configuration file Meaning: PPP detected an inconsistency in the configur ation. Action: Modif y the configuration. XXX is up Meaning: The PPP protocol XXX has been successfully negotiated with the peer PPP . XXX is down Meaning: The PPP protocol XXX has [...]
-
Seite 465
missed NN Echo Replies: link is down Meaning: The local PPP has not received a response for NN echo replies. The link is going down. PPP will automatically retry opening the PPP link. nissed NN LQRs: link is down. Meaning: The link quality of the W AN is not conducive to data transfers. possible loop-back has been detected Meaning: It is possible t[...]
-
Seite 466
remote station rejected XXX Meaning: The peer PPP reject PPP pr otocol XXX . Action: There is a configuration mismatch between the local router’ s PPP and the peer PPP . For example, the local router may be configured for Appletalk on the PPP link while the peer PPP is not configured for Appletalk. In this example you would ei th er delete the Ap[...]
-
Seite 467
rok : Router Operating Kernel Event Messages These event messages are generated by the system variable "rok", the router operating kernel. Boot count = nnn Meaning: The router has been booted nnn ti mes. connection dropped due to inactivity Meaning: No console input has been received for the time set for the Connection Inactivity T ime co[...]
-
Seite 468
lost DSR/DM signal Meaning: Data Set Ready or Data M ode l ine dropped and modem disconnected . momentary drop in CD/RR line Meaning: Carrier Detect/Receiver Ready line lost, for less than the time set for the Modem Lost Receive Ready configuration parameter . Action: Check the phone lines. Event Log Messages 17 Event Log Messages rok : Router Oper[...]
-
Seite 469
SMDS Event Messages This section contains an apphabetical list of event messages generated by the SMDS managed object. Each message is followed by an explanation of the message contents and a recommended action (if any is required). bad configuration file Meaning: SMDS detected an inco nsistency in th e configurat i on . Action: Modify the configur[...]
-
Seite 470
invalid SMDS individual address for cct # Meaning: The individual address in the SMDS circuit record f or cct # is invalid. An SMDS address is ten digits in length, and each digit must be in the range of 0 to 9. Action: Modify the configurati on . Madr_table is full Meaning: The station Address T able (Madr_table) is out of space. The station addre[...]
-
Seite 471
tcp: T ransmission Control Protocol Event Messages These messages are generated by the system variable "tcp". bad configuration, using defaults Meaning: TCP has rejected user -supplied protocol parameters; TCP will initialize using default parameters. Action: Modify the configuration to accept default parameters. configuration complete Me[...]
-
Seite 472
telnet: T elnet Event Messages These messages are generated by the system variable "telnet". port 23 connected to ip-address Meaning: A T elnet vir tual terminal connection between the router and ip-address has been established throug h the well-known T elnet port. port 23 disconnected from ip-address Meaning: A T elnet vir tual terminal [...]
-
Seite 473
tftp: TFTP and Fget Event Messages These event messages are generated by the system variable "tftp", the T rivial File T ransfer Protocol. An FGET is already in progress, request denied Meaning: Only one Fget command can be satisfied at a time. Action: T ry the command again. Ensure that no other session is using TFTP . Can’t allocate a[...]
-
Seite 474
could not disable entity for FGET OS Meaning: In order to receive the operating system image, we disable all the entities other th an IP and the ci rcuit over which the file w ill be transferred. This frees up enough memory to store the image in memory before burning into no n-volatile memory . I n this case, one of the configured entities named en[...]
-
Seite 475
entity already disabled Meaning: An already disabled TFTP entity has received NCL ’ s Disable command. entity already enabled Meaning: An already enabled TFTP entity has received NCL ’ s Enable command. entity disabled Meaning: The TFTP entity was disabled in response to NCL ’ s Disable command. entity enabled Meaning: The TFTP entity was ena[...]
-
Seite 476
FGET Waiting for route to destination IP_address Meaning: The destination IP address was unavailable. The system is retrying the request. GET remote-filename from ip-address , file local-filename GET CONFIG from ip-address , file CONFIG Meaning: Echoes the Fget command request. Insufficient resources for Enable Meaning: Couldn’t allocate a messag[...]
-
Seite 477
No pkt buffers for TFTP data send, transfer aborted Meaning: Ran out of packet buffers during TFTP transfer . No such action Meaning: Internal entity action error . Action: Call your local product support provider . OS file checksum failed, GET failed Meaning: The operating system image has a CRC in it that is checked after the Fget transfer has co[...]
-
Seite 478
REBOOTI NG THE SYSTEM FOR FG ET OS MEMO RY Meaning: The oper ating system needs more memory than the current configuration can supply . TFTP is rebooting to reclaim memory and try again. receipt of filename file complete Meaning: The file filename specified in the Fget co mmand has been su ccessfully received. received pkt on deleted connection Mea[...]
-
Seite 479
Action: Check that IP is configured correctly and is enabled. TFTP REBOOTING THE SYSTEM FOR FGET OS MEMOR Y ... Meaning: The oper ating system needs more memory than the current configuration can supply . TFTP is rebooting to reclaim memory and try again. TFTP: Received pkt on deleted connection Meaning: A stray , duplicate, or retransmitted packet[...]
-
Seite 480
timep: T ime Protocol Event Messages These messages are generated by the system variable "timep". can’t reach time server ip-address Meaning: The client cannot reach the se rver wit h the ip-address . The normal cause is that the subnet of the server is not yet known by IP . However , if the condition persists for several minutes, it in[...]
-
Seite 481
entity enabled Meaning: T ime Pr otocol has been enabled in response to NCL ’ s Enable command. new time set Meaning: The time fields in front of this event message indicate what the time was before it was changed by a reque st from the T imep server , and to what the time was changed. (See the description of the message entry at the beginning of[...]
-
Seite 482
X.25 Event Messages These event messages are generated by the system variable “x25”, that is, X.25. bad configuration Meaning: X.25 had detected an inconsistency in the configuration. Action: Examine and modify the X.25 configuration. bad LAPB packet window value Meaning: The Pkt W i ndow parameter in the ‘Circui ts’configuration is outside[...]
-
Seite 483
call attempt: cct . ip-address Meaning: A call has been made to the destination with IP addr ess ip -address on circuit cct . call attempt on virtual-cct Meaning: A call has been made on the virtual circuit named virtual-cct . call: cct . ip-address . # Meaning: A DDN or PDN call has been established with the remote host or gateway identified b y i[...]
-
Seite 484
clr: cct . ip-address . # (C= mm ) (D= nn ) Meaning: An established DDN or PDN call to the remote host or gateway identified by ip-address has been cleared. cct identifies the X.25 DDN or PDN circuit and # identifies the logical connection number . C ( mm ) contains the decimal contents of the Cause field (octet 4) of the supervisory header of the [...]
-
Seite 485
clr call from DTE x121-address (no idle circuits) Meaning: The incoming call from DTE address x121- addres s has been cleared because an idle circuit is not available to receive the incoming call. clr: cct . ip_addr .# (C= nn ) (D= nn ) Meaning: An established DDN or PDN call to the remote host or gateway identified b y ip_addr has been cleared. cc[...]
-
Seite 486
packet. The values are listed in tables 17-2 and table 17-3, at the end of this X.25 section. high lcn ( xx ) < low lcn ( yy ); using ( yy ) for both Meaning: The high LCN (logical channel number) is lower than the low LCN configured for an X.25 circuit. The value given by the low LCN ( yy ) will be used for both LCN s. Action: Modify the config[...]
-
Seite 487
read error xx occurred in state xx Meaning: A read of the packet-level interface has generated an error . switch call - xxx to xxx Meaning: An incoming Call Request has been switched. switched call reset slot n . cir = clearing code diag = diagnostic Meaning: A virtual circuit has been reset. switched VC clear requested Meaning: A switched virtual [...]
-
Seite 488
T able 17-2. Cause Field Codes Code DCE-generated 1 3 5 9 11 13 17 19 21 25 33 41 57 Number busy Invalid facility request Network conge stion Out of o rder Access ba rred Not obtainable Remote proc edure error Local procedu re erro r RPOA out of order Reverse ch arging not av ailable Incompatible destination Fast select n ot available Ship absent C[...]
-
Seite 489
T able 17-3. Diagnostic Field Codes Code Point-to-Po int Servic e 0 1 2 3–15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30–31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46–47 No addition al information Invalid P(S) Invalid P(R) Not ass igned Packet type invalid For state r1 For state r2 For state r3 For state p1 For state p2 For state p3 For st[...]
-
Seite 490
T able 17-3. Diagnostic Field Codes (Continued) Code Point-to-Point Service (Continued) 48 49 50 51 52 53–63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78–79 80 81 82 83 84–111 112 113 T ime expired for incoming call for clear indica tion for reset indicat ion for restart indication Not assigned Call setup, call c learing, or regist ration pro[...]
-
Seite 491
T able 17-3. Diagnostic Field Codes (Continued) Code Point-to-Po int Service (Continued) 114 115 116 117 118 119 120 121 122 123–127 241 242 Internat ional protocol pro blem Internat ional link out-of -order Internation al link busy T ransit network facility problem Remote network facility problem Internat ional routing problem T emporary routing[...]
-
Seite 492
T able 17-3. Diagnostic Field Codes (Continued) Code DDN Service (Continued) 145 146 147 148 149 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 Called logical name has no effective translations Invalid address; logical addressing not used in this netwo rk Declared logic al name is n ow enable d Declared logic al name was already en[...]
-
Seite 493
T able 17-3. Diagnostic Field Codes (Continued) Code Network-Specific informa tion (Continued) 180 181 192 193 194 195 196 197 198 199 200 201 202 205 Invalid packet received during NAS select Call opened while the local DCE was waiting for a reply to a CALL REQUEST from DT E and a RESET CONFIRMA TION from the local DTE Call cleared because of loca[...]
-
Seite 494
xrx: XNS Router Event Messages These event messages are generated by the system variable “xrx”, the Xerox XNS router . xrx: ccg : New Rt to xrxnet via ipx-address Meaning: The XNS routing module generates a new event message whenever it learns a new route or updates an existing route. The new route is specified by xrxnet , which is t h e d esti[...]
-
Seite 495
xrx: ccg : Rcvd Err Pkt – err# , Param = errparam Meaning: An error packet has been received by the XNS router . ccg is the circuit group on which the error packet was received. err# is the error number (in decimal) of th e error pack et . errparam is the error parameter ( in decimal) of the error pa cket. V alid error numbers are: 0 1 2 3 512 51[...]
-
Seite 496
zmodem: Zmodem Event Messages These event messages are NCL error codes that can occur when using the Zmodem comman ds Zput and Zget. Display-Only Zmodem Event Messages These messages are not listed in the event log. They appear only on the console display . For messages that ar e also logged, see page 17-150. Command only allowed from the Console P[...]
-
Seite 497
Missing remote file name Meaning: The remote file name was n ot included with the Zput command. Action: The remote file name to transfer into must be entered. NCL ERR — invalid command (ignored) Meaning: This is a generic error i nd icat ing that either the command was mis typed or that manager capability is required to use the command. For Zmode[...]
-
Seite 498
CONFIG transfer aborted, no ID string found Meaning: The router rejected the reception of a n ew co nfi guration file because it lacked the proper conf iguration ID at th e be ginning of the fil e. This e rror only can occur with the Zget command. Action: T ry again with the proper configuration file. Data subpacket too long from remote Meaning: In[...]
-
Seite 499
T erminal connection broken Meaning: Indicates that the ser ial port between the router and the host has been disconnected. T imeout on initialization response Meaning: The router issued an initialization response and did not receive an acknowledgement w ithin ten seconds . Action: Check that the host is running the Zmodem protocol. T imeout waitin[...]
-
Seite 500
T ransfer terminated due to timeout Meaning: Indicates that the router did not receive a Zmodem message from the host for 10 seconds. This message also occurs if the host did not respond to the r outer when it attempte d to connect using the Zget command. (Zget tries for up to 70 secon ds before timing out). Action: Check the host configuration. Un[...]
-
Seite 501
[...]
-
Seite 502
18 Management Information Base V ariables[...]
-
Seite 503
This chapter provides descriptions of all variables contained in the enterprise-specific management in formation bas e (MIB) on the router . Routers from Hewlett-Packard use the W ellfleet private-enterprise branch of the MIB: “iso.org.d od.internet. private.enterpris es.wellfleet .commServer .wfmib” or 1.3.6.1.4.1.18.1.1. At the next level dow[...]
-
Seite 504
alarm: Alarm Information Base The “alarm” information base contains variables that describe the scheduling and issuance of router -generated alar ms. The structure is the following: alarm [ slot # ] variables listed below The pathname is constructed as follows: alarm [ slot # ] .variable The variables are listed alphabetically: cancel_cnt conta[...]
-
Seite 505
at: AppleT alk Information Base The “at” information base contains variables that describe transmission and reception a ctivities acros s each AppleT alk circuit group and rejection of certain packets by the AppleT alk router . The structure is the following: at ccg AppleT alk circuit group name protocol specific App leT alk protocol (see subhe[...]
-
Seite 506
rsp_rx contains the number of AARP RESPONSE packets received by circuit group ccg . rsp_tx contains the number of AA RP RESP ONSE packets transm itted by circuit group ccg . AppleT alk Echo Protocol (AEP) reply_tx contains the number of AEP REPL Y packets tran smitted by circuit group ccg . req_rx contains the number o f AEP REQUEST packets receive[...]
-
Seite 507
ddp_rx contains the number of valid AppleT alk packets received by circuit group ccg . ddp_total_drop contains the total number of AppleT alk packets dropped by circ uit group ccg . ddp_unknown_netwk contains the number of AppleT a lk packets dropped by circ uit group ccg because the destination network was unknown. ddp_upper_protocol contains the [...]
-
Seite 508
network_type_conflicts contains the number of RTMP DA T A packets (received by circuit group ccg ) whose routing tuples (a target network and a hop count) confli cted with network entries in the AppleT alk routing table. nonextended_netwk contains the number of no nextended routing tuples (a target network and a hop count) received by circuit gr ou[...]
-
Seite 509
getnetinfo_tx contains the number of ZIP GETNETINFO packets transmitted by circuit group ccg . getzonelist_rx contains the number of ZIP GETZONELIST packets received by circuit group ccg . getzonelistreply_tx contai ns the number of ZIP GETZONELISTRE- PL Y packets transmitted by circuit group ccg . netinforeply_rx contain s the numbe r of ZIP NETIN[...]
-
Seite 510
atmib: AppleT alk MIB Information Base The “atmib” information base contains variables that describe transmission and reception activities of the AppleT alk router . The structure is the foll owing: atmib protocol stands fo r the s pecific AppleT alk protocol (see subheadings) variables listed below The pathname is constructed as follows: atmib[...]
-
Seite 511
ddp_rx contains the total number of AppleT alk packets received by the AppleT alk router . ddp_total_drop contains the total number of AppleT alk packets dropped by the Appl eT al k router . ddp_tx contains the total number of AppleT alk packets transmitted by the AppleT alk router . ddp_unknown_netwk contains the total number of AppleT alk packets[...]
-
Seite 512
Zone Information Protocol (ZIP) zip_getlclzones_rx contains the total number of ZIP GETLOCALZONES packets received by the AppleT alk router . zip_getlclz ones_tx contains the total number of ZIP GETLOCALZONES p ackets trans mitted by the AppleT alk router . zip_getlclzonesreply_rx contains the total number of ZIP GETLOCALZONESREPL Y packets receive[...]
-
Seite 513
buf: Buffers Information Base The buffers “buf” information base contains variables that describe the router’ s use of two types of global memory buffer s: message buffers, which facilitate internal process-to-process communication, and packet buffers, which facilitate external communications by temporarily storing incoming or out going data [...]
-
Seite 514
miss contains the number of times that the router was unable to obtain either a message buffer or a packe t buffer . Failure to obtain a buffer indicates that all buffers were busy . This parameter is directly related to min . If mis s is greater than 0, min must equal 0. Conversely , if miss equals 0, then min must be greater than 0. size contains[...]
-
Seite 515
cct: Circuits Information Base The circuits “cct” information base contains variables that describe transmission and reception activities across each LAN and point-to-point circu it. The structure is the following: cct cct stands for the circuit name, usually indicating circuit type (see subheadings) variables for each type of circuit, as liste[...]
-
Seite 516
multiplexing/demultiplexing and encapsulation/deencapsulation. DLS can return frames for numerous reasons (many of which are application- specific): for example, because of unknown internal service-access points (ISAPs), because of user -specified filtering requirements contained within the configuration, or because of lack of enabled entities (for[...]
-
Seite 517
lack_resc_error_rx contains the number of instances that circuit cct lost a frame because it could not obtain a receive buffer . latency_tx contains the number of packets (of all priorities) dropped due to exceeding the maximum link latency configured by the user . Link_SetUps contains the number of times the li nk has been set up. Link_UpT ime con[...]
-
Seite 518
octets_tx_per_sec contains the number of octets that this circuit has transmitted in the last second. oflo_rx contains the total number of over flows on circuit cct . An overflow occurs when the receiver FIFO buffer is full when the link level controller was ready to input data. peak_frames_rx contains the peak number of frames that this circuit ha[...]
-
Seite 519
total_rx_error contains the total number of receive errors on circuit cct . This value equals the sum of bad_frames_rx, frams_incomp_rx, frmr _frames_rx, lack_re sc_error_rx, oflo_rx, rejects_rx, an d runts_tx . total_tx_error contains the total number of transmission errors, which is the sum of uflo_tx , latency_tx , an d tx_c ongestion . tx_conge[...]
-
Seite 520
FDDI Circuit canonical_addr Contains the address of this station in canonical form. cfm_state Contains the state of the configurati on management state machine. downstream_mac Contains the 48-bit address of the FDDI downstream neighbor . elm_a_pcm Contains the state of ELM A ’ s physical connection machine (PCM). elm_b_pcm Contains the state of E[...]
-
Seite 521
err_rx_crc Contains the number of received frames with a faulty FCS value. err_rx_mac_status Contains a count of receive frame indication errors (those th at are not pari ty or overrun erro rs ). err_rx_overrun Contains the number of circuit overruns. An overrun occurs when the FDDI receive circuitry cannot keep pace with the incoming flow of traff[...]
-
Seite 522
missed_cmd Contains a count of commands issue d to the FSI that were missed (not execu ted). missed_crf Contains a count of commands not executed because the FSI register did not become free. net_fail Indicates whether n et fail LED is li t for the circuit . octets_rx_ok Contains the number of error - free octets received. octets_rx_per_sec contain[...]
-
Seite 523
tx_congestion Contains the number of times where a buffer wasn’t available to transm it a frame. upstream_mac Contain s the 48-b it address of the FDDI upstream neighbor . Frame Relay Management Information Base The Frame Relay MIB tables are organized under the experimental MIB (“exmib”--number 26) in a six-level tree (instead of under the c[...]
-
Seite 524
Figure 18-1 . Frame Relay Exmib Managment Information Base 18 Management Information Bas e Variables cct: Circuits Information Bas e 18-23[...]
-
Seite 525
Each frame relay MIB item can be accessed through the Network Command Language (NCL) from the console screen. Us e the NCL list command to display a ll or a portion of the frame relay informat ion base. Use the NCL get command to obtain the value of any variable within the information base. There are two methods of access, one using the names of th[...]
-
Seite 526
exmib.fr.dlctble.entry.active. cct # 36.26.1.1.2. cct # where cct # indicates the circuit. addr States that address format are in use on th is fram e relay interface. There are four possible values: Q921 (1) specifies use of the first frame relay address format with support for a 13-bit DLCI with no DE, FECN, or BECN bit support. It is mostly obsol[...]
-
Seite 527
exmib.fr.dlctble.entry.errthr. cct # 36.26.1.1.7. cct # where cct # indicates the circuit. index Is the index in to the Dlcmi tab le. It correspo nds to the fram e relay circuit for which table information is requested. exmib.fr.dlctble.entry.index. cct # 36.26.1.1.1. cct # where cct # indicates the circuit. enqlnt Is the number of status enquiry i[...]
-
Seite 528
exmib.fr.dlctble.entry.multcast. cct # 36.26.1.1.10. cct # where cct # indicates th e circuit. pollint Is the number of seconds between successive status enquiry messages.The default value is ten seconds . exmib.fr.dlctble.entry.pollint. cct # 36.36.1.1.5. cct # where cct # indicates the circuit. Frame Relay Circuit T able V ariables (ccttbl) The c[...]
-
Seite 529
exmib.fr.ccttbl.entry.fecn. cct # . ddd 36.26.2.1.4. cct # . ddd where cct # indicates the circuit an d dd d indicates the dlci. f_rcvd Is the number of frames received over this circuit since it w as created. exmib.fr.ccttbl.entry.f_rcvd. cct # . ddd 36.26.2.1.8. cct # . ddd where cct # indicates the circuit an d dd d indicates the dlci. f_sent Is[...]
-
Seite 530
o_sent Indicat es the number of oc tet s sent from this circ ui t since it was created. exmib.fr.ccttbl.entry.o_sent. cct # . ddd 36.26.2.1.7 cct # . ddd where cct # indicat es th e circuit and ddd indicates the dlci. state Indicates wh ether the particul ar circuit is operational. These entries are created by the Data Link Connection Ma nage ment [...]
-
Seite 531
time Is the value of sysUpT ime at which the error was detected. exmib.fr.errtbl.entry.time. cct # 36.26.3.1.4. cct # where cct # indicates the circuit. type Is the type of error that was last seen on this interface. The fol- lowing value s are valid for th is field: • unknownErr ( 1) • receiveShort (2) • receiveLong (3) • illegalDLCI (4) ?[...]
-
Seite 532
byte_cnt_mismatch contains the number of times a packet is dropped due to the transmit packet size field not being equal to the transmit packet fragment size field. cerr contains the number of transceiver self-test failures on circuit cct . Some transceivers assert the collision signal during the interpacket delay period to verify the channel betwe[...]
-
Seite 533
fcs_error _rx contains the number of frames received by circuit cc t that contained an erroneous checksum. frames_rx_per_se c contains th e number of frames that this c ircuit has received in the last second. frames_tx_per_sec contains the number of frames that this cir cuit has transmitted in the last second. frames_rx_ok contains the number of fr[...]
-
Seite 534
octets_tx_per_sec contains the number of octets that this circuit has transmitted in the last second. octets_rx_ok contains the number of octets (bytes) received without error by circ uit cct . octets_tx_ok contains the number of octets (bytes) transmitted without error by circuit cct . oflo_rx contains the total number of overflows on circuit cct [...]
-
Seite 535
uflo_tx contains the total number of underflows on cir cuit cct . An underflow occurs when the transmitter portion of the local area controller (SONIC) truncates a frame because of the late receipt of data from memory . Management Information B ase Variables cct: Circuits Information Base 18-34[...]
-
Seite 536
PPP (Industry-Standard Point-to-Point Protocol) Circuits The PPP information contains the PPP MIB Link Quality T able and PPP circuit event messages. The PPP MIB variables for the Link Quality T able are organized under exmib.ppp.link_ quality_table.entry and are separate from the general W AN Circuits variables (page 18-14). Use NCL ’ s List com[...]
-
Seite 537
in_tx_lqrs Is an eight-bit state variab le indicatin g the numbe r of Link Quality Report (LQR) packets that the rem o te peer remote stat io n had to transmit so that the local end could receive exactly one LQR. The in_tx_lqrs variab le defines the l engt h of the perio d over wh ich in_tx_packets , in_tx_bytes , in_rx_packets , and in_rx_bytes we[...]
-
Seite 538
T oken Ring Circuits adpt_bad_dio_par contains the number of times the token-ring adapter detected a bad par ity value on data passed to the adapter through a direct I/O access. adpt_dma_rd_abort contains the number of times the token-ring adapter aborted a direct-memory-access read operation. This could be caused by excessive parity errors, excess[...]
-
Seite 539
log_dma_bus_err contains the number of direct-memor y-access bus errors that do not exceed the abort threshold. log_dma_par_err contains the number of direct-memory-access parity errors that do not exceed the abor t threshold. log_frm_cpy_err contains the number of times the token-ring adapt- er (while in the receive/repeat mode) recognized a frame[...]
-
Seite 540
octets_tx_per_sec contains the number of octets that this circuit has transmitted in the last second. peak_frames_rx contains the peak number of frames that this circuit has received in any given second since reboot. peak_frames_tx contains the peak number of frames that this circuit has transmitted in any given second since reboot. peak_octets_rx [...]
-
Seite 541
claim token frame when it detects th at the ring does not contain an active monitor , or that the active monitor is no t fu nc ti oning properly . ring_rem_station contains the nu mber of times the token-ring adapter remov ed itself from the rin g after receiving a remove ring station frame. A remove r ing station frame is issued from the netw ork [...]
-
Seite 542
total_log_error contains the aggregate count of token-ring adapter log errors, the sum of the counts of log_ari_fci_err, log_burs t_err , log_dma_bus_err , log_dma_par_err , log_frm_cpy_err , log_line_err , log_lost_frm, log_rx_congest, and log_token_err variables. total_ring_error contains the aggregate count o f ring errors, the sum of the counts[...]
-
Seite 543
tx_ill_frm_fmt contains the num b er of times the t o ke n- ring adapter recorded an illegal frame format error . An illegal frame format er ror occurs when bit 0 of the frame control ( FC ) field is equal to 1. tx_list_err contains the number of times the token-ring adapter recorded an error in one of the lists that compose the frame. The token-ri[...]
-
Seite 544
chassis: Chassis Information Base The chassis information base contains variables that describe various chassis el ements in th e HP Router 650. The struct ure is the follow ing: chassis id[0] slots[0] slot_table.entry variables instance entity_table.e ntry variables instance slotmap_table.e ntry variables instanc e sensor_table.entry variables ins[...]
-
Seite 545
ID[0] contains a uniqu e identifi er fo r thi s chassis. slots[0] contains the number of slots in this chassis. Slot_T able Example: get chassis.slot_table.en try .objectid .slot# descr[ slot# ] contains a texual description of the card plugged into slot# . index[ slot# ] contains the in dex number for slot# . lastchange[ slot# ] contains a time st[...]
-
Seite 546
timestamp[1] should always be 0. Slotmap_T able Example: get chassis.slotmap_table.entry .slot[ slot# ][1] entity[ slot# ][1] contains the enti ty number for slot# on th e HP Router 650. slot[ slot# ][1] contains the slot number for slot# on the HP Router 650. Sensor_T able These variables report the status of the power supply , fan, and internal t[...]
-
Seite 547
• 1: UNKNOWN Status of the object mon itored by the sens or is unknown. • 2: BAD The objec t monitored by the sensor may be inoper able or operating outside of the proper range. • 3: W ARNING The object monitored by the sensor is operat in g close to the limit of the proper range. • 4: GOOD The object mon it o red by the sensor is wit hi n [...]
-
Seite 548
config: Configuration Information Base The “config” information base contains variables identifying router hardware and software. The majo r s tructure for config (excluding variables) is: version[0] the version variable, listed first below key Key to available services cct_table Circuit branch cct_tbl_entry cgr_table Circuit Group branch cgr_t[...]
-
Seite 549
Pathnames for t he List a nd Get commands are con structed as shown in the following examples: get config.version .0 list config.key .* list config.cct _table.* get config.ip_table.ip_iftbl_entry .* get 35.14.1.3. cct # V ersion version[0] contains the operating code version number (also known as software or firmware). For example, a software versi[...]
-
Seite 550
lb Bridge service osi OSI routing smds SMDS services x25 X.25 circuit services xns XNS routing service Circuit T able cct_indx[ cct # ] circuit number cct_type[ cct # ] circuit type. cct_name[ cct # ] circuit name, such as ‘ ‘Ether 1’ ’ cct_slot[ cct # ] slot number cct_pam[cct #] physical access method cct_port[ cct # ] physical port numbe[...]
-
Seite 551
AppleT alk T able at_indx[ interface #] AppleT alk interface index at_cgr_num[ interface # ] AppleT alk interface index at_if_addr[ interface # ] address for interface DECnet T able drs_indx[ interface # ] DECnet interface number drs_cgr_num[ interface #] circuit group number adrsif_addr[ interface #] address for interface IP T able ip_if_indx[ int[...]
-
Seite 552
IPX T able px_if_indx[ interface] IPX interface number ipx_cgr_num[ interface] circuit group number ipx_if_addr[ interface] address for interface Managment Information Base 18 Management Information Bas e Variables config: Configuration Infor mation Base 18-51[...]
-
Seite 553
dev: Device Information Base The “dev” information base contains a single control object whose sole function is to gen erate s ys tem management mess ages. The single- level structure is the foll owing: dev Management Information B ase Variables dev: Device Informati on Base 18-52[...]
-
Seite 554
decnet: DECnet Configuration Information Base The DEC net configuration “decnet” information base contains variables that describe DECnet global and inte rface-s pecific configurat io n parameters. The structure is the following: decnet variables the global variables, listed below (see “Global” subheading) iftab.if the interface-specific br[...]
-
Seite 555
maxnode contains the maximum number of nodes per network area. maxvisi t contains the maximum number of ti mes a packet can pass through the same router . nmaxcst contains the maximum node-to-node transit cost. nmaxhop contains the maximum number of hops that a packet can transit from source to destination. node contains the router’ s DEC net nod[...]
-
Seite 556
dls: Data Link Services Information Base The Data Link Services information base contains variables that access the data link statistics for configured circuits. The structure is: dls cct name circuit na me variables listed below The pathnames are construc ted as shown in the following examples: dls. variable dls. cct name . variable re_rx_dma_ring[...]
-
Seite 557
test_rsp_rx contains the number of 802.2 Logical Link Control (LLC) T est responses received by cir cuit cct. Receipt of a T est response requires the previous transmission of a T est command. The value contained in this variable should be 0, as should the value of test_cmd_tx . test_rsp_tx contains the number of 802.2 Logical Link Control (LLC) T [...]
-
Seite 558
xid_rsp_rx contains the number of 802.2 Logical Link Control (LLC) XID responses received by circuit cct. Receipt of an XID response requires the previous transmission of an XID command. The value contained in this variable should be 0, as should the value of xid_cmd_tx. xid_rsp_tx contains the number of 802.2 Logical Link Control (LLC) XID respons[...]
-
Seite 559
drs: DECnet Circuit Group Information Base The DEC net routing service “drs” information base contains variables that describe transmission and reception activities across each DEC net circuit group; it also contains variables that describe the rejection of certain packets by the DEC net router . The structure is the foll owing: drs cg circuit-[...]
-
Seite 560
Aggregate Rejection aged_pkt_loss contai ns the number of packets droppe d by the DEC net router because the packet had transited too many routers prior to reaching its destination. The maximum n umber of routers that a packet can transit is determined by the Area Max. Hops and Max. Hops parameters. Area Max. Hops sp ecif ies the number of rout ers[...]
-
Seite 561
echo: Echo Service Information Base The TCP “echo” information base contains variables that describe the T ransmission Control Protocol echo service. The structure is the following: echo variables listed below The pathname is constructed as follows: echo. variab le The variables are listed alphabetically: mem_err contains the number of memory e[...]
-
Seite 562
egp: EGP Information Base The Exterior Gateway Protocol “egp” information base contains variables that describe the transmission and reception of messages by the EGP protocol. The structure is t he following: egp variables listed below The pathname is constructed as follows: egp. variable The variables are listed alphabetically: bad_asn contain[...]
-
Seite 563
cmdoos contains the number of ti mes EGP received an out-of-se- quence command mes sage. An out-of-s equ ence message indicat es that a prior message, issued by an EGP peer , has been missed. cmdrej contains the number of times EGP refuse d to respond to a received command. Such refusal could be generated by receipt of a neighbor acquisition messag[...]
-
Seite 564
hw: Hardware Information Base The structure of the hardware “hw” information base is the following: hw [ slot # ] always ‘ ‘1’ ’ for HP Series 200 and 400 routers ‘ ‘1’ ’ through ‘ ‘5’ ’ for the HP Router 650 variables listed below The pathname is constructed as follows: hw[ slot # ]. variable The variables are listed al[...]
-
Seite 565
ip: IP Information Base The IP router “ip” information base contains variables that describe transmission and reception activities across each IP interface; it also contains variables descri bing the IP routing table. The structure is t he following: ip ip_interface the interface-specific branch (see subheading) ip-address the IP address in dot[...]
-
Seite 566
drop.frag_error contains the number of IP datagrams dropped by interface ip-interf ace because of its inability to fragment a datagram. ip-interface forwards datagrams up to 1500 bytes in length; longer datagrams must be fragmented. Should the datagram originator forbid fragmenting (by setting the DF bit--Do Not Fragment-- in the IP header), interf[...]
-
Seite 567
icmp_rx.redirect contains the number of ICMP redirect messages received by interface ip-a ddress . Such me ssages inform the re cipient of a more optimum IP route. icmp_rx.ttl contains the number of ICMP time exceeded mess ages received by interface ip-a ddress . Such messages are generated when a datagram’ s hop count reaches 0. icmp_rx.xsum_err[...]
-
Seite 568
rx contains the total number of IP datagrams received by interface ip-address . tx contains the total number of IP datagrams transmitted by interface ip-addres s . ulp contains the total number of IP datagrams delivered by the router to one of three upper -level protocols (Internet Control Message Protocol, T ransmission Control Protocol, or User D[...]
-
Seite 569
ipx: IPX Information Base The “ipx” information base is a composed of: (1) a set of variables that describe transmiss ion and reception of p ackets acros s each IPX interface, (2) a set of variables that describe aggregate Internet Datagram Protocol (IDP) activity , (3) an IPX addressing table, (4) a SAP table, and (5) an IPX routing table. Y o[...]
-
Seite 570
Internet Datagram Protocol (IDP) forwarding contains an integer switch indicating the node’ s function within the extended IPX networ k. A value of 1 indicates that the no de is acting as a gateway (routes and forwards datagrams); a value of 2 indicates that th e node is acting as a host (does no t route an d forward datagrams). forwdatagrams con[...]
-
Seite 571
isdn: ISDN (V .25 bis) Information Base The “isdn” information base contains variables for V .25 bis lines through a terminal adapter (manual or automati c dialing). The structure is th e following: isdn V .25 bis adapter the terminal adapter branch (see subheading) ccttbl V .25 bis cir cuit table variables the terminal adapter variables, liste[...]
-
Seite 572
ccttype[ cc t# ] contains the circuit type defined in the V .25 bis circuit group definition,either Circuit Group Mem ber , Backup Member , Pool Member , or Misconfigured Circuit . connecttime[ cct# ] conta ins the value indicating the time in seconds that the current V .25 bis connection has been alive. If there is no current connection, the n thi[...]
-
Seite 573
subaddr[ cct# ] co ntains the last subaddress sent on an ou tbound connection or received on an inbound connection. If not known, the value is set to Unk nown . If no connection has been established since the router was booted, the value is set to Never used . IP Mapping ip_networks[ IP-addr-f or-hop ] contains the IP networ k map to the circuit. E[...]
-
Seite 574
ipmapstate[ map# ] indicates the state of the I P map. The possible states are the follo wing: disconn ected means the ma p is disconnected; the circui t is available. disabled means the circuit has been disabled by NCL ’ s Disipmap command. connecting means the map is in the process of making a V .25 bis connectio n. connected means the map is c[...]
-
Seite 575
key: Key Information Base The “key” infor mation base indicates whether specific HP rout er services are available to be configured on this model router . A value of 1 means the service can be configured. A value of 0 means the service is not available. key variables listed below The pathname is constructed as follows: key . variable The variab[...]
-
Seite 576
lb: Bridge Information Base The bridge “lb” information base contains variables that descri be the reception and transmission of packets across each bridging circuit group. The structure is the following: lb ccg bridge circuit group name variables listed below The pathname is constructed as follows: lb. ccg.variable The variables are listed alp[...]
-
Seite 577
Interval time, those packets are dropped if the destination of the first packet has not yet replied. The router will not flood packets more than once wihin the Flood Interval time if the Flood inter val time is set to a value other than zero. drop_invalid_ringid increments when an explorer frame is received and the last ring ID in the RIF does n ot[...]
-
Seite 578
fwd_load_bal contains the number of packets forwarded by circuit group ccg in accordance with load balancing options specified by the configuration. fwd_mcast_addr contains the number of packets forwarded by circuit group ccg in accordance with global multicast-address filters specified by the configuration. fwd_protocol contains the number of pack[...]
-
Seite 579
xmit contains the number of packets transmitted by circuit group ccg . xmit_cfg contains the number of config uration BPDUs sent by circuit group ccg . xmit_tcn contains the nu mber of topo logy-change notificatio n BPDUs sent by circuit group ccg . Management Information B ase Variables lb: Bridge Inf ormation Base 18-78[...]
-
Seite 580
lbmib: Bridge Address T able Information Base The bridge address table “ lbmib” information base contains data o n the forwarding and filtering of bridge frames. Use NCL ’ s Rgetb command to access the “lbmib” address table. The structure is the followi ng: lbmib fwdtable entry variables listed below count riftable rifentry variables list[...]
-
Seite 581
rif describes the path used to source route packets between the source route and the destination. The first two bytes contain the routing control (RC) field th at describes the routing type, field len gth, direction bit, and largest fra me size, as follows: bits 1-2: RIF type 00: Specifically Routed Frame (SRF) 11: Spanning T ree Explorer (STE) 10:[...]
-
Seite 582
log: Event Log Information Base The event log information base contains data on the event log and enables access to certain events. Y ou can use the NCL List command to diaplay all or a part of the event log information base, and the NCL Get command to obtain the value of any variable within the information base. The MIB number fo r l og is 57. The[...]
-
Seite 583
mem: Memory Information Base The memory “mem” infor mation base contains variables that descri be system memo ry man agement. The structure is the following: mem [ slot # ] always ‘ ‘1’ ’ for an HP Series 200 or 400 router; ‘ ‘1’ ’ to ‘ ‘5’ ’ on an HP Router 650 type either local or global , both with the same variables [...]
-
Seite 584
mgr: Manager Information Base The System manager “mgr” information base contains a single control object whose function is to generate system management and entity enabling messag es. NCL ’ s List and Get com mands provide no additional information regarding the “mgr” information base. Managment Information Base 18 Management Information [...]
-
Seite 585
mib: Internet MIB This IP routing information base, the “mib” branch, within the private- enterprise section, contains the same variables as the standard Internet MIB I section, as defined in Internet Request for Comments (RFC) 1156. The variables in the private-ent erprise sect ion have different names but have the same identificat io n codes [...]
-
Seite 586
name: Name Information Base The “name” information base contains variables that describe the operations and structure of the name server . The structure is the following: name [ slot # ] always ‘ ‘1’ ’ for an HP Series 200 or 400 router; ‘ ‘1’ ’ to ‘ ‘5’ ’ on an HP Router 650 variables listed below The pathname is constr[...]
-
Seite 587
pm: Port Module Manager Information Base The ‘ ‘pm’ ’ port module manager information base contains var iables that describe port interface modules that may be installed in the HP Router 650. pm total_ports_modules slot # variables module-specific bran ch and variables Examples of pathnam e constructions are: pm. slot # . var iable pm.total[...]
-
Seite 588
Module Example: get pm.slot2.state state The current state of the port module. The following values are possible. 0 = Dead 1 = Absent 2 = Hard Re set 3 = Soft Reset 4 = Selftest Pass 5 = Selftest Fail 6 = Downlo ading 7 = Booting 8 = Alive 9 = Running hwid the type of port module i n the slot. The following values are possible. 0 = Empty Slot (i. e[...]
-
Seite 589
proprietary: Proprietary Information Base This is a proprieta ry Information Bas e used by HP netw ork man agement applications . If further informat io n is desired, pleas e con tact your HP representitive. Management Information B ase Variables proprietary: Proprietary Information Base 18-88[...]
-
Seite 590
rok: Router Operating Kernel Information Base The structure of the router operating system “rok” information base is the followi ng: rok [ slot # ] always ‘ ‘1’ ’ for an HP Series 200 or 400 router; ‘ ‘1’ ’ to ‘ ‘5’ ’ on an HP Router 650 variables listed below The pathname is constructed as follows: rok[ slot # ]. variab[...]
-
Seite 591
snmp: SNMP Information Base The Simple Net work Management Protoc ol “snmp” inform ation base contains variables that describe the transmission and reception of User Data Protocol (UDP) datagrams delivered to or originated by the SNMP management agent. The structure is the fol lowing: snmp variables listed below The pathname is constructed as f[...]
-
Seite 592
svc: System Services Information Base The system services “svc” information base contains variables that describe the private memory management function of system management. This func tion maintain s dynam ic i nformation on the memory space availab le to active tasks . The next level identi fies the memory management instance ( sm e ). The ne[...]
-
Seite 593
tcp: TCP Information Base The T ransmission Control Protocol “tcp” information base contains variables that describe the exchange of TCP segments between communicating TCP peer entities . The structure is the follow in g: tcp variables listed below The pathname is constructed as follows: tcp. variable The variables are listed alphabetically: ac[...]
-
Seite 594
dupack contains the number of duplicate acknowledgment segments. dupseg contains the number of duplicate received TCP segments. erract contains the total number of error messages sent by TCP . hashcolls contains the number of times hashing of th e TCP port information produced a collision with a previous port. hashhits contains the number of times [...]
-
Seite 595
rehashes contains the number of times the TCP port table was rehashed. This happens wh en a connection is closed, or w hen the control block hash table requires rehashing. reseq contains the number of packets resequenced by the router . reseq_drop contains th e number of elements dropped b ecau s e of resequencing. reseq_full contains the number of[...]
-
Seite 596
telnet: T elnet Information Base The “telnet” information base contains variables that describe virtual- terminal connections between the router and a remote device. The structure is the foll owing: telnet variables listed below The pathname is constructed as follows: telnet. variable The variables are listed alphabetically: inp.bad_opt contain[...]
-
Seite 597
out.no_if c ontains the number of outgoing TCP segments tha t were dropped for lack of an interface. out.too_big contains the number of outgoing TCP segments that were dropped because they exceeded the MTU. rx_bytes contains the number of bytes received by the router while connected to a remote terminal by means of T elnet. sess_cur contains the cu[...]
-
Seite 598
tftp: TFTP Information Base The T rivial File T ransfer Protocol “tftp” information base contains variables that describe file transfers between the router and a remote device. The structure is the following: tftp variables listed below [ n ] the inter face number assigned by the router The pathnames are construc ted as follows: tftp. var iable[...]
-
Seite 599
wrqin contains the number of received TFTP WRITE REQUEST packets (Opcode=2). wrqout contains the number of transmitted TFTP WRITE REQUEST packets (Opcode=2). Management Information B ase Variables tftp: TFTP Information B ase 18-98[...]
-
Seite 600
timep: T ime Protocol Information Base The “timep” information base contains variables that count two T i me Protocol events. The structure of the information base is the following: timep variables listed below The pathname is constructed as follows: timep. variable The variables are listed alphabetically: requests contains the number of times [...]
-
Seite 601
timer: T imer Information Base The “timer” information base contains variables that describe the scheduling and issuance of rout er -generated timers. The str ucture of the information base is the following: timer [ slot # ] always ‘ ‘1’ ’ for an HP Series 200 or 400 router; ‘ ‘1’ ’ to ‘ ‘5’ ’ on an HP Router 650 variabl[...]
-
Seite 602
xrx: Xerox XNS Information Base The “xns” information base is a composed of: (1) a set of variables that describe transmiss ion and reception of p ackets acros s each XNS interface, (2) a set of variables that describe aggregate Internet Datagram Protocol ( IDP )/Error Pro t oco l activity , (3) an XNS addressing table, and (4) an XNS routing t[...]
-
Seite 603
ulp contains the total number of IDP datagrams delivered by the router to an upper -level protocol (for example, RIP , Echo, Erro r) for processing. Protocol errsdestbadsock contains the numb er of destinat io n-h ost- generated Error Protocol packets, with an Error Number of 2, that were relayed by the router . This error number i ndicates that th[...]
-
Seite 604
errsxithopcnt contains the number of rou ter -generated Error Protocol packets with an Error Number of 1003. This er ror number indicates that the packet ha d pass ed through more th an the maxim u m number of routers before arriving at its destination. errsxittoobig contains the number of router -generated Error Protocol packets with an error numb[...]
-
Seite 605
inunknownprotos contains the number of IDP datagrams discarded because of an in correct or corrupt ed value in the Prot oco l T ype field in the IDP header . outdiscards contains the number of valid output IDP datagrams discarded because of insufficient router resources (lack of buffer space). outnorou tes contains the number of IDP datagrams disca[...]
-
Seite 606
x25: X.25 Information Base The “x25” information base contains variables that describe frame-level and packet-level transmission and reception activities across each X.25 circuit; it also contains variables that describe packet-level transmission and reception a ctivities acros s each X.25 poin t-t o-point dedica ted switched virtual cir cuit. [...]
-
Seite 607
Circuit Frame Level bad_len_rx contains the number of supervisory FRMR (Frame Reject) frames received by X.25 circuit cct that contained W and X bits set to 1. Th is bit patte rn in dicat es that th e rem ote end has reject ed a supervisory or unnumb ered fram e i ssued by X.25 circuit cct beca use the frame length was fa ulty . bad_len_tx contains[...]
-
Seite 608
frmr_rx contains the aggregate number of FRMR (Frame Reject ) frames received by X.25 circuit cct. FRMR frames report specific error conditions . frmr_tx contains the aggregate number of FRMR (Frame Reject) frames transmitted by X.25 circuit cct. FRMR frames rep ort specific error conditions. ignore_rx contains the aggregate number frames, received[...]
-
Seite 609
rr_rx contains th e nu mber of RR (Receiver Ready) frames received by X.25 circuit cct. An RR frame either indicates th e readiness to rec eive I frames, or acknowledges the receipt of I frames. rr_tx contains the number of RR (Receiver Ready) frames transmit- ted by X.25 circuit cc t. An RR frame either i ndicates the readines s to receive I frame[...]
-
Seite 610
Circuit Packet Level call_cfm_rx contains the number of CALL CONNECTED packets received by X.25 circuit cct. A CALL CONNECTED packet completes the call- setup procedure. call_cfm_tx contains the nu mber of CALL ACCEPTED pa ckets transmitte d by X.25 circuit cct. A CALL ACCEPTED pa cket indicates readiness to accept an incoming call, and generates a[...]
-
Seite 611
data_rx contains the number o f DA T A packets received by X.25 circuit cct. DA T A packets contain user da ta . data_tx contains the number of DA T A packets transmitted by X.25 circuit cct. DA T A packets contain user data. dropped_tx contains the count of IP datagrams dropped by the circuit because of X.25 failures or queue clipping. error_rx co[...]
-
Seite 612
packet acknowledges that the previously requested restart action has been implemented . restart_rx contains the number of REST ART INDICA TION packets received by X.25 circuit cct. A REST ART INDICA TION packet informs the recipient that the remote node has cleared all switched virtual circuits. restart_tx contains the number of REST ART RE QUEST p[...]
-
Seite 613
t22_tmout contains the number of T2 2 timer expirations. The T22 timer starts when a RESET REQUEST packet is issued, and terminates when a RESET CONFIRMA TION or RESET INDICA TION packet is received. If such a packet is not received within T22 seconds (typically 180 sec- onds), the RESET REQUEST is reissued. t23_tmout contains the number of T2 3 ti[...]
-
Seite 614
reset_tx contains the number of RESET REQUEST packets transmit- ted by X.25 virtual circuit svc. A RESET REQUEST packet sets the send and receive packet sequences to 0, and generates a RESET INDICA TION packet at the remote end of the circuit. rnr_rx contains the number of RNR (Receiver Not Ready) packets received by X.25 virtual circuit svc. An RN[...]
-
Seite 615
After verifying that a call has been established, scan the log to ensure that the call (and switched virtual circuit) is still active (has not been cleared). Cleared calls are indicated by an event log entry that takes the following format: clr: cct_name.ip_addr.#(C=nn)(D=nn) where: cct_name is the name of the X.25 DDN or PDN circuit. ip_addr is th[...]
-
Seite 616
A Parameter Finder[...]
-
Seite 617
How T o Use the Parameter Finder The parameter finder is a tool you can use to help deter mine the menu path to any parameter in the Configuration Editor by listing each parameter according to its position in the Configuration Editor hierarchy . The parameters are grouped according to the menu items under which they occur in the main screen of the [...]
-
Seite 618
1. System (1) System Name Auto En able Automatic Re boot Ti m e z o n e Daylight T ime Rule Daylight T ime Rule = User d efined Beginning month Ending month Beginning day Ending day System Contact System Location 1. System Session Event Filter Level Session Mod e (User , T elnet) T ypographic al Conventions Parameter names appear as: System Name Au[...]
-
Seite 619
1. System 1. System System Name Auto En able Automatic Re boot Ti m e z o n e Daylight T ime Rule Daylight T ime Rule = User d efined Beginning month Ending month Beginning day Ending day System Contact System Location 1. System Session Event Filter Level Session Mod e T erminal Screen Ref resh Rate Session Mode = Us er Baud Rate Flow Control Parit[...]
-
Seite 620
2. Software 3. Lines 2. Software Protocol 3. Lines Physical Access Method Physical Access Method = CSMA/CD Connector Physical Access Metho d = FDDI Bridge T ype Physical Access Method = SYNC Connector Clock Sou rce Clock Speed Physical Access Method = T OKEN RING Connector Ring Interface 1. Circuit Name Circuit Name Parameter Finder A A: Parameter [...]
-
Seite 621
4. Circuits 4. Circuits Circuit Name Auto En able Quality of Service Circuit T yp e Circuit T ype = Ether/802.3 LAN Address XCVR signal polling Circuit T ype = PPP over V .25 bis LQM T im e (secs) Echo Requiest T ime (secs) Desired Link Qu ality Min Frame Spacing Extended (32-bit) CRC Max Pkt Size IP Address LCP Active-Open LCP Auto-Restart Max Lin[...]
-
Seite 622
4. Circuits (Con tinued) Circuit T ype = PPP over V .25 bis ( Continued) 1. Adapter re cord (Cont inued) Min channels to ag gregate Max channels to agg regate Channel Management 1. Outbound call number Remote st ation Number Subaddres s 2. Allowed inbound call numbers Allowed Number Subaddres s 3. Local number (Used for collision avoidance) Remote [...]
-
Seite 623
4. Circuits (Con tinued) Circuit T ype = V .25 bis adapter ( C ontinued) 1. Adapter record Connect when Minimum connect duration (sec) Connect retr y count Connect wait time (sec) Connect inac tivity time (sec) Send CIC on all allowed INC’ s Delay after connect failure (min) Per ch annel B andw idth Min channels to ag gregate Max channels to agg [...]
-
Seite 624
4. Circuits (Con tinued) Circuit T ype = Frame Relay ( Co ntinued) Management T ype = ANSI Annex D or LMI Poll Interval (seconds) Intervals between Full Polls Monitored Events Events for Error Alarm T i me r Management T ype = LMI Switch or Annex D Switch Provide Update Status Maximum Poll Interval (seconds) Monitored Events Events for Error 1. Per[...]
-
Seite 625
4. Circuits (Con tinued) Circuit T ype = SMDS ( Contin ued) Use Heartbeat Poll Heartbeat Polling Interval Heartbeat Do wn Count Max Link Latency (ms) (0=non e) 1. Bandwidth Reservation Percent of queue reserved for high priority pkts Percent of q ueue reserved for no rmal priority pk ts Percent of queue reserved for low priority pkts Circuit T ype [...]
-
Seite 626
4. Circuits (Con tinued) Circuit T ype = LAPB (X.25) (Continued) SVC Low SVC LCN High SVC LCN PVC Low PVC LCN High PVC LCN Max Link Latency (ms) (0=non e) 1. Bandwidth Reservation Percent of queue reserved for high priority pkts Percent of q ueue reserved for no rmal priority pk ts Percent of queue reserved for low priority pkts Circuit T ype = HP [...]
-
Seite 627
5. Circuit Groups 5. Circuit Groups Circuit Group Name Circuit Group Speed 1. Circuit Group Members Circuit Name 2. Circuit Group Backup Members Circuit Name 3. Circuit Group Pool Members Circuit Name A: Parameter Fin der A-12[...]
-
Seite 628
6. Bridge 6. Bridge Auto En able Forwarding T able Size STP Priority Max Age Flood Interval (sec) Bridge ID (Hex) Hop Count Re duction T able Age Interval (min) Spanning T ree Enable Hello T ime Forward Delay Internal LAN ID (He x) Loop Detection T ime (ms) Group LAN ID 1. Lists 1. MAC Address Lists List Name 1. List Members MAC Address (low) MAC A[...]
-
Seite 629
6. Bridge (Continue d) 1. Lists (Continued) 4. Protocol ID/Org. Code Lists List Name 1. List Members Protocol ID/Org. Code (low) Protocol ID/Org. Code (high) 2. Circuit Groups Circuit Grou p Name Cost LAN ID (Hex) Max hops Learning B ridge T ranslational Bridge STP Priority Src Rte Block STE T raffic Priority 1. T raffic Filters Precedence MAC dest[...]
-
Seite 630
6. Bridge (Continue d) 2. Circuit Groups (Continu ed) 1. T raffic Filters (Continued) DL Format = 802.2 LLC DSAP (low)/(high)/Effect SSAP (low)/(high)/Effect DL Fo rmat = Et hernet T ype (low)/(high)/Effect Action 1. User Defined Fi elds Header Offset Length Effect 1. V alues Low Value (hex) High Value (hex) 2. Outgoing Circuit Group Assignment Cir[...]
-
Seite 631
7. DoD Internet Router 7.DoD Intern et Router Auto Enable RIP Network Diameter Management Priority Global Broadca st Mode Drop Non-Local Ar p Suppress Auth entication T ra ps 1. Lists 1. IP Address Lists List Name 1. List Members IP Address (low) IP Address (high) 2. IP Port Lists List Name IP Port (low) IP Port (high) 2. Network Interface Definiti[...]
-
Seite 632
7. DoD Internet Router (Continued) 2. Network Interface Definition (Continued) Default Route Supply Default Route Listen Poisoned Rever se RIP Interface Cost Address Mask Reply MTU Discovery Option Load Balancing ASB Flood Source Route (T oken Ring) 1. T raffic Filters Preceden ce IP Dest (low) IP Dest (high) Effect IP Source (low) IP Source (high)[...]
-
Seite 633
7. DoD Internet Router (Continued) 2. Network Interface Definition (Continued) 1. T ra ffic Filters (Continued) 2. Next Hop Assignment Next Hop Address Drop if Next Hopis Down 3. Static Rout es Internet Addr ess T ype (Static Route, Static Adjacency , Adjacent Host) T ype = Static Route Subnet Mask Next Hop Cost Preference Propagate to RIP Propagat[...]
-
Seite 634
7. DoD Internet Router (Continued) 4. OSPF ( Continued) 1. Areas (Continued) 1. Network Su mmaries IP Address Network Map 2. Interfaces Circuit Group Name Password 1. Interface Definition Interface T ype IP Addre ss Metric Interface T ype = Broadcast 1. Broadcast Definition Hello Interval Dead Interval Retransmit Inter val Priority Interface T ype [...]
-
Seite 635
7. DoD Internet Router (Continued) 5. EGP Configuration Auto En able 1. EGP Neighbors Local Mode local Address Remote ASN Remote Addr ess Aquisition Mode Polling Mode Hello T imer Polling T imer 6. TCP Configuration Number of Connections T ransmit Window Size Receive Windo w Size Open/Close T imeout (ms) Activity T imeo ut (ms) Minimum Retransmit I[...]
-
Seite 636
7. DoD Internet Router (Continued) 9. BOOTP Configuration (Continued) 1. BOOTP Reques t Destinat ions Dest IP Address 10. Import Route Filters Network Address Network Mask Import Action From Protocol (RIP , OSPF , EGP) From Protocol = RIP From Gateway From Interface Preference (If Import Action = Ac cept) From Protocol = OSPF Ty p e Ta g Preference[...]
-
Seite 637
7. DoD Internet Router (Continued) 11. Export Route Filters (Continued ) T o Protocol = EGP T o Peer T o Au tonomous System Metric A: Parameter Fin der A-22[...]
-
Seite 638
8. DECNET IV Routing Service 8. DECNET IV Routin g Service Auto En able Max Nodes Max. Area Node Area Max. Hops Area Max. Hops Max. Cost Area Max. Cos t Max. Bcast Endnodes Max. Visits Bcast. Rout ing T imer 1. Lists 1. Area Lists List Name 1. List Members Area (low) Area (high ) 2. Node Lists List Name 1. List Members Node (low) Node (high) 3. Pac[...]
-
Seite 639
8. DECNET IV Rout ing Service ( Continued) 2. Circuit Groups Circuit Group Name Cost Hello T imer Router Priority Number of Routers 1. T ra ffic Filt ers Preceden ce Dest Area (low) / (high) / Effect Dest Node (low) / (high) / Effect Source Area (low) / (hi gh) / Effect Source Node (low) / (hi gh) / Effect Packet T ype (low) / (high) / Eff ect Acti[...]
-
Seite 640
9. SNMP Sessions 9. SNMP Sessions Community Name Session mode Session type Session type = T ra p Send Ev ent Me ssages As T raps Event Filter Level 1. Node Addresses Node Addre ss Parameter Finder A A: Parameter Finder A-25[...]
-
Seite 641
10. Xerox Routing Service 10. Xerox Routing Service Host Number Auto En able 1. Lists 1. Network Lists List Name 1. List Member s Network Number (low) Network Number (high) 2. Host Lists List Name 1. List Member s Host (low) Host (high) 3. Socket Lists List Name 1. List Member s Socket (low) Socket (hig h) 3. Packet T ype Lists List Name 1. List Me[...]
-
Seite 642
10. Xerox Routing Service (Continued) 2. Network Interface Definitions Network Number Circuit Group RIP Supply RIP Listen RIP Interface Cost Checksums On Source Route (T oken Ring) RIP and SAP split horizon Random load balan cing 1. T ra ffic Filt ers Preceden ce Dest Network (low) / (high) / Eff ect Dest Host (low)/(high)/ Effect Dest Socket (low)[...]
-
Seite 643
11. IPX Routing Service 11. IPX Routing Service Auto En able 1. Lists 1. Network Lists List Name 1. List Member s Network Number (low) Network Number (high) 2. Host Lists List Name 1. List Member s Host (low) Host (high) 3. Socket Lists List Name 1. List Member s Socket (low) Socket (hig h) 4. Packet T ype Lists List Name 1. List Member s Packet T [...]
-
Seite 644
11. IPX Routing Service (Continu ed) 2. Network Interface Definitions (Continued) Accept NETBIOS Bcasts from net Deliver NETBI OS Bcasts to n et Source Route (T oken Ring) SAP driven RIP supply RIP and SAP split horizon Random load balan cing IPXWAN 1. SAP Network Level Filter Definitions Action Network Number (He x) Server T ype (Hex) 2.SAP Server[...]
-
Seite 645
11. IPX Routing Service (Continu ed) 4. Intern al Network Number and Router Na me Internal Network Number Internal Router Name A: Parameter Fin der A-30[...]
-
Seite 646
12. AppleT alk Router 12. AppleT alk Rout er Auto En able AARP Mapping T able Size Routing T able Size Zone T able Size 1. Lists 1. Network Lists List Name 1. List Member s Network (low) Network ( hig h) 2. Node Lists List Name 1. List Member s Node (low ) Node (hig h) 3. Socket Lists List Name 1. List Member s Socket (low) Socket (hig h) 4. DDP T [...]
-
Seite 647
12. AppleT alk Rout er (Continued) 2. Circuit Groups Circuit Group Name Probe Checksum Node ID Source Route (T oken Ring) Seed Router Seed Rout er = Y es Network Min Network Max Network Default Zone Name Zone Filter Cost Seed Rout er = Y es 1. Zone Name List Zone Name 2. T ra ffic Filters (Same as ‘‘1. T raffic Filters’’, below) 1. T ra ffi[...]
-
Seite 648
13. X.25 Network Service 13. X.25 Network Service Auto En able 1. PDN Service Lower Circuit Name Max Queue Size MTU Size Upper Circuit Name Local DTE Addr ess Closed User Group Closed User Group = Y es Outgoing Access Group Number 1. X.25 Address Map IP Addre ss X.121 Address Broadcast Max Conns Min Idle T ime (secs) Max Idle T ime (secs) Call Retr[...]
-
Seite 649
13. X.25 Network Service (Continued) 2. DDN IP Service Lower Circuit Name Precedence Max Queue Size Max Conns/Dest Min Idle T ime (secs) Max Idle T ime (secs) Upper Circuit Name Internet A ddress 3. HP Point to Point Service Lower Circuit Name Max Queue Size Local DTE Addr ess 1. X.25 Virtual Circuits Circuit Name Remote DTE Ad dr Connection ID Flo[...]
-
Seite 650
14. V .25 bis Network Mapping 14. V .25 bis Network Mapping 1. Phone # to IP mapping IP Next Hop Connect re try coun t Connect wait time (sec) Hold down time (sec) VC inactivity time (sec) 1. Outbound call number Remote Stat ion Number Subaddr ess Parameter Finder A A: Parameter Finder A-35[...]
-
Seite 651
[...]
-
Seite 652
Index ! !...16-4 32-bit encapsulation...4-15 802.2 LLC...6-8 802.2 SNAP ...6-8 A A.08 code...16-21, 16-23 AARP Mapping T able Size...12-6 Accept NETBIOS Bcasts from net...11-5 Acquisition Mode...7-6 Action...6-5, 7-6, 8-4, 10-4, 11-5 Action on circuit group enable/disable...7-6 Adapter Record...4-5, A-6, A-8 Address Mask Reply ...7-6 Address Resolu[...]
-
Seite 653
Area...8-4 Area (high)...8-4 Area (low)...8-4 area list, DECnet...8-4 Area Max. Cost...8-5 Area Max. Hops...8-5 ...8-5 ARP Group Address...4-5 Circuits...4-5 multicast DLCI...4-5 table...16-41 unpredictable results...7-20 ASB Flood...7-8 at (AppleT alk)...16-32 atmib...16-32 Atping...16-4 authentication key ...7-21 Authentication T ype...7-8 Auto E[...]
-
Seite 654
Bridge parameters Action...6-5 Aging T imer ...6-5 Block STE...6-6 Bridge ID (Hex)...6-6 Circuit Group N ame...6-7 Default Conversion T ype...6-7 DSAP (low)...6-8 Flood Interval (sec)...6-10 Forward Delay ...6-10 Hello...6-12 High V alue (hex)...6-12 Hop Count Reduction...6-12 LAN ID (Hex)...6-13 Length...6-13 List Name...6-13 Loop Detection T ime [...]
-
Seite 655
Checksum...12-6 checksum, faulty ...15-15 Checksums On...10-4 Circuit Group...7-9, 10-4, 11-6, 12-6 Circuit Group Name...6-7, 8-6,12-14 Circuits...5-3 Circuit Group Speed...5-3 Circuit Name...6-7, 13-5 Circuits...3-3, 4-7, 5-3 Circuit T ype...4-7, 13-5 Circuits ARP Group Address...4-5 Auto Enable...4-5 Call restrictions...4-6 Channel Management.. .[...]
-
Seite 656
Maximum Packet Size...4-20 Min Frame Spacing...4-20 Minimum connect du ration (sec). . .4- 21 Modulus...4-21 Monitored Events...4-22 Multicast Support...4-22 Password of Remote Station...4-23 Perchannel bandwidth...4-23 Permanent Virtual Circuit...4-23 Point-to-Point Address...4-23 Poll Interval (seconds)...4-24 Provide InARP ...4-24 Quality of Ser[...]
-
Seite 657
Connect Retries...4-10 Connect retry count...4-10, 4-12, 14-3 Connect wait time (sec)...4-10, 14-3 Connect when...4-11 Connection Close T ime Out...7-9 Connection ID...13-5 Connection Inac tivity T ime...1-5 connector ...3-3 - 3-4 connector na me, default...3-4 console port, connecting...1-5 Cost...6-7, 7-9, 8-6 Crash...16-7 crash, software...1-4 C[...]
-
Seite 658
Bcast Routing T i mer ...8-6 Circuit Group N ame...8-6 Dest Network (low)...8-7 Dest Node (high)...8-7 Max. Area...8-9 Max. Bcast End nodes...8-9 Max. Cost...8-9 Max. Hops...8-9 Max. Nodes...8-9 Node...8-10 Node (high)...8-10 Node (low)...8-10 Packet T ype (low)...8-11 Precedence...8-11 Remote W AN Address...8-12 Source Area (low)...8-12 Source Nod[...]
-
Seite 659
DLCI...4-23 - 4-24, 7-10 DLCI Encoding Length... 4-13 DLCI Encoding T ype...4-13 dls...16-32 driver ...16-32 Drop If Next Hop is Down...7-10 drs...16-32 DSAP (high)...6-8 - 6-9 DSAP (low)... 6-8 DSU...4-15 DSU/CSU...4-27 DTR...4-10 duplicate station address...4-16 DXI...4-27 E echo...16-33 Echo Request T i mes (sec)...4-14 Edit...16-8 Effect...6-9,[...]
-
Seite 660
Extended (32-bit) CRC...4-14 external clock source...3-3 F F1047-80002 cable...16-100 factory default...15-3 FDDI bridge type...3-3 file NCL command output...16-100 print to...16-19 upload...16-99 filter rule...6-5 filter , priority values...6-17 filtering, frames...6-9 filtering, IP ...7-17 filters, in bridging...6-7 Flood Interval (sec)...6-10 fl[...]
-
Seite 661
G General Multicast DLCI...4-15 Get...16-34 global auto enable...1-4 Global Broadcast...7-13 GMT ...1-9 Grenwich Mean T i me...1-9 Group Address...4-15 Group LAN ID...6-11 Group Number ...13-6 H HDLC...4-8, 4-20 - 4-21 Header ...6-11, 7-13 Heartbeat Down Count...4-15 heartbeat polling...4-27 Heartbeat Polling Interval...4-15 heartbeat polling messa[...]
-
Seite 662
I ICMP address mask reply message...7-6 ICMP datagram...15-15 IEEE 802.2 test packet...16-28 IHU response...7-21 Import Action...7-14 Individual Address...4-15 Information (event log) ...1-6 interface module...4-27 Interface T ype (OSPF)...7-14 internal clock source...3-3 Internal LAN ID (Hex)...6-12 Internal Network Number ...11-11 Internal Router[...]
-
Seite 663
Metric...7-19 MTU Discovery Option...7-19 Next Hop...7-20 Offset...7-21 Poisoned Reverse/Split Horizon...7-21 Preference...7-22 Propagate to RIP ...7-23 Receive Broadcast...7-24 RIP Interface Cost...7-25 RIP Supply ...7-26 SNAP ...7-11 Source Route (T oken Ring)...7-26 T o Interface...7-27 T o Protocol...7-27 T ransmit Broadcast...7-28 T ype...7-28[...]
-
Seite 664
SAP driven RIP supply ...11-15 Socket (low)...11-16 Source Route (T oken Ring)...11-18 Source Socket (low)...11-18 IPXW AN...11-11 isdn...16-33 See v .25 bis K - L key ...16-32 LAN Address...4-15, 7-17 LAN ID (Hex)...6-13 latency ...4-19 lb...16-32 lbmib...16-32 LCO Auto Restart...4-17 LCP Active-Open...4-17 LCP connection...4 -17 Learning Bridge..[...]
-
Seite 665
Low V alue (hex)...6-13, 7-18 Lower Circui t Name...13-8 LQM T i me...4-18 LQM T ime (secs)...4-17 M MAC address See also station address MAC Address (high)...6-14 MAC Address (low)...6-14 MAC data link header ...6-14 MAC dest (high)...6-14 MAC dest (low)...6-15 MAC source (high)...6-15 MAC source (low)...6-15 Major (event log)...1-6 Make route con[...]
-
Seite 666
Max. Visits...8-10 Maximum Packet Size... 4-20 mem...16-32 Menu path...A-2 Metric...7-19 mgr ...16-32 MIB...16-32, 16-36 variables...16-31 foreign...16-51 remote...16-48 Min Channels to Aggregate...4-20 Min Frame Spacing...4-20, 13-9 Min Idle T ime (secs)...13-9 Minimum connect duration (secs)...4-21 Minimum Frame Spacing...4-21 Mode...7-19 Mode (n[...]
-
Seite 667
Network...12-11 Network Address...7-20 Network lists...10-9, 11-11, 12-10,12-11 Network Mask...7-20 Network Max...12-11 Network Min...12-12 Network Number ...10-9, 11-11 Network Number (Hex)...11-12 Network Number (high)...10-8, 11-11 Network Number (low)...10-9, 11-12, 12-12 Next Hop...7-20 Next Hop Address...7-20 Next Hop Host...11-12 Next Hop Ne[...]
-
Seite 668
Ospf Rtab...16-80 Ospf Tq...16-82 Outgoing Access...13-10 P Packet T ype (high)...8-11, 10-9, 11-12 Packet T ype (low)...8-11, 10-10, 11-13 Packet type lists specify ...11-12 Page...16-14 parameter finder ...A-2 Parameter finder , how to use...A-2 Parity ...1-8 pass-thru...4-11 Password...7-21, 16-15 incorrect...16-21 manager ...16-96 of Remote Sta[...]
-
Seite 669
print to file...16-19 priorities for different packet types...6-22 Priority ...6-17, 7-23 Probe...12-14 Procomm Plus...16-98 - 16-100 Propagate to OSPF ...7-23 Propagate to RIP ...7-23 propagated route...7-12 Protocol...2-3, 7-23 Protocol ID/Org. Code (high)...6-17 Protocol ID/Org. Code (low)...6-17 Protocol T ype...6-18 Provide InARP ...4-24 Proxy[...]
-
Seite 670
RFC 1156...16-40 Rget...16-52 Rgeta...16-41 Rgetat...16-55 Rgetata...16-57 Rgetatr ...16-58 Rgetb...16-59 Rgetd...16-60 Rgetda...16-61 Rgetdn...16-63 Rgeti...16-42 Rgetif...16-68 Rgetir ...16-64 Rgetis...16-66 Rgetm...16-53 Rgetms...16-43 Rgetmw ...16-49 Rgetr ...16-45 Rgets...16-47 Rgetw ...16-50 Rgetxr ...16-70 rif...18-80 Ring Interface...3-5 RI[...]
-
Seite 671
Send Event Messages As T raps...9-4 Server Name...11-15 Server Password...4-27 Server T ype Server T ype (Hex)...11-15 Server User ID...4-27 services, routing...1-4 Session mode...1-8, 9-4, A-4 Session type...9-4 severity , event log...16-11 severity , event log message...17-2 single-route explorer frames...6-6 Slot Number ...4-27 slot number , HP [...]
-
Seite 672
Source Socket (high)...10-13, 11-18 Source Socket (low)...10-14 source socket field...12-10 source-route bridging...16-84, 16-86 source-route packets...18-80 spanning tree...16-84 - 16-85 spanning tree algorithm...6-7, 6-21 Spanning T ree Enable...6-19 spanning tree parameter values...6-19 speed sense...1-4 Split horizon...7-21 Src Rte...6-20 SRF .[...]
-
Seite 673
TELENET ...13-10 T elnet...16-27, 16-32 T elnet Mode...1-8 T erminal...1-9 terminal emulation...1-9 terminal, ANSI...16-98 terminal, VT100...16-98 T est...16-28 TFTP ...7-9, 16-33, 16-93, 16-95 - 16-96 T ime...16-29 time rule...1-4 - 1-6 T ime out...16-21 timep...16-32 timer ...16-32 timer , OSPF ...16-82 T imezo ne...1-9 TIP T able Cost...11-14 T [...]
-
Seite 674
UDP/TCP Source Port (low)...7-30 UK-PSS...13-10 UP AP ...4-28 Upper Circuit Name...13-12 Use Bitmap...13-11 Use DXI v3.2...4-27 Use Heartbeat Poll...4-27 Use SNAP ...4-28 Use UP AP ...4-28 User ID of Remote Station...4-28 user password See Password V - W v .25 bis map entry ...16-87 - 16-90 v .25 bis, net fail LED...17-56 V alue (hex)...7-13 VC ina[...]
-
Seite 675
Dest Network (low)...10-6 Dest Socket (high)...10-6 Dest Socket (low)...10-7 Effect...10-7 Host (low)...10-8 Network Number ...10-9 Network Number (high)...10-8 Next Hop Host...10-9 Next Hop Net...10-9 Packet T ype (high)...10-9 RIP Interface Cost...10-10 RIP Listen...10-10 RIP Supply ...10-11 Socket (high)...10-11 Source Network (low)...10-13 Sour[...]
-
Seite 676
©Copyright 1994 Hewlett-Packard Company Printed in Singapore 7/94 Manual Part Number 5962-8305[...]