HP (Hewlett-Packard) NW280AAABA Bedienungsanleitung

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

Zur Seite of

Richtige Gebrauchsanleitung

Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung HP (Hewlett-Packard) NW280AAABA an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von HP (Hewlett-Packard) NW280AAABA, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.

Was ist eine Gebrauchsanleitung?

Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung HP (Hewlett-Packard) NW280AAABA die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.

Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung HP (Hewlett-Packard) NW280AAABA. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.

Was sollte also eine ideale Gebrauchsanleitung beinhalten?

Die Gebrauchsanleitung HP (Hewlett-Packard) NW280AAABA sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts HP (Hewlett-Packard) NW280AAABA
- Den Namen des Produzenten und das Produktionsjahr des Geräts HP (Hewlett-Packard) NW280AAABA
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts HP (Hewlett-Packard) NW280AAABA
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen

Warum lesen wir keine Gebrauchsanleitungen?

Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von HP (Hewlett-Packard) NW280AAABA zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von HP (Hewlett-Packard) NW280AAABA und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service HP (Hewlett-Packard) finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von HP (Hewlett-Packard) NW280AAABA zu überspringen, wie es bei der Papierform passiert.

Warum sollte man Gebrauchsanleitungen lesen?

In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts HP (Hewlett-Packard) NW280AAABA, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.

Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von HP (Hewlett-Packard) NW280AAABA widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.

Inhaltsverzeichnis der Gebrauchsanleitungen

  • Seite 1

    HP Pr ime Gr aphing C alc ulator User G uid e[...]

  • Seite 2

    Ed i t io n 1 P art Number NW2 80 - 200 1 Legal Notices This manual and an y e xamples con tained here in are pr ov ided "as is" and ar e subject t o change w ithout notice . Hew lett -P ac kar d Compan y makes no w arra nt y of an y kind with r egard to this manual, inc luding, but not limited t o, the implied w arran ties of mer chantab[...]

  • Seite 3

    Cop yri ght © 20 1 3 Hewlett-P ac kar d Dev elopment Compan y , L .P . Repr oduction , adaptatio n, or tr anslation of this manual is pr ohibited w ithout pr ior wr itten per- mission o f Hewlett-P ac kar d Compan y , ex cept as allow ed under the copy right la ws. Pr inting History Ed i t io n 1 Ju l y 2 0 1 3[...]

  • Seite 4

    [...]

  • Seite 5

    Contents 1 Contents Preface Manual conventions ................ ................ ................. ............... 9 Notice ................ ................ ................ ................ ................. 10 1 Getting started Before starting .............. ................. ................ ................... .... 11 On/off, cancel operatio n[...]

  • Seite 6

    2 Con tents 4 Exam Mode Modifying the default co nfiguration .... ................... .............. 62 Creating a new c onfiguration ..... .................... ................ .... 63 Activating Exam Mode ................ ................... ................. ....... 64 Cancelling exam mode .... ................. ................... .............[...]

  • Seite 7

    Contents 3 6 Function app Getting started with the Fu nction app ............ ................... ..... 111 Analyzing functions .................... ................. ................ ........ 118 The Function Variables ... ................. ................ ................... .. 122 Summary of FCN operations . ................ ...................[...]

  • Seite 8

    4 Con tents Plot types ................. ................ ................ ................. ..... 219 Setting up the plot (Plot Setup view) ....... ................... ......... 2 21 Exploring the graph ......................... ................ ............... 221 11 Statistics 2Var app Getting started with the Statistics 2Var app . .............[...]

  • Seite 9

    Contents 5 15 Parametric app Getting started with the Parametric app ............... .................. 271 16 Polar app Getting started with the Polar ap p .......... .................... ........... 277 17 Sequence app Getting started with the Seq uence app ............. ................ ..... 281 Another example: Explicitly-defined sequ ences ..[...]

  • Seite 10

    6 Con tents App menu .................... ................ ................ ................. ..... 347 Function app functions ............ ................................ ......... 348 Solve app functions ... ................................ ................. ..... 349 Spreadsheet app functions ......... ................ ................. ..... 3[...]

  • Seite 11

    Contents 7 24 Lists Create a list in the List Catalog ........... ................ ................ .. 45 1 The List Editor ........... ................. ................ ................ ..... 453 Deleting lists . .................... ................ ................ ................ .. 455 Lists in Home view ............. ................ ......[...]

  • Seite 12

    8 Con tents 28 Basic integer arithmetic The default base ......... ................ ................ ................ ......... 5 82 Changing the default b ase ................... ................ ............ 583 Examples of integer arithmetic ......... .................... .................. 584 Integer manipulation ......... ................ ...[...]

  • Seite 13

    Preface 9 Pref ace Manual conventions The following conventions ar e used in this manual to represent the keys that you pres s and the menu options that you choose to perform operations. • A ke y that initiates an unshifted functio n is re presented b y an image of that key : e , B , H , etc. • A ke y combination that initiate s a shif ted unct[...]

  • Seite 14

    10 Preface • Items y ou can select fr om a list , and character s on the entry line , are se t in a non-propo r tio nal font , as follo ws : Function , Polar , Parametric , Ans , etc. • Cursor k ey s are r epresented by = , , > , and < . Y ou use thes e ke ys to mo ve f rom f ield to fi eld on a scr e en, or fr om one opt ion to anoth e[...]

  • Seite 15

    Getting started 11 1 Gett in g s ta rted The HP Pr ime Gr aphing Calc ulator is an eas y- to -use y et po werf ul graphing calc ulator desig ned for secondary mathemati cs educati on and be yond . It off ers h undreds o f functi ons and command s, and includes a computer algebr a sy stem (CA S) for s ymboli c calculati ons. In addition to an extens[...]

  • Seite 16

    12 Getting started When the calc ulator is on, a battery symbol appears in the titl e bar of the screen . Its app earance w ill indicate how muc h po wer the batte r y has. A flat battery w ill tak e appro x imately 4 hours to become fully char ged. Battery Warning • T o r educe the risk of f ire or bur ns, do not disassemble , cru sh or puncture[...]

  • Seite 17

    Getting started 13 The Home View Home v iew is the starting point f or many calculations . Most ma thematical func tions ar e av ailable in the Home v iew . Some additional f unctions ar e available in the computer algebra s ystem (CA S) . A histor y of your pre v ious calculati ons is retained and y ou can re-use a pre v ious calculati on or its r[...]

  • Seite 18

    14 Getting started Sections of the display Home v ie w has four s ections (sho wn abov e) . The title bar s h ow s e i t h e r t h e s cre e n n a m e o r t h e n a m e o f t h e a p p yo u are c urr ently using— Function in the e xample abo ve . It also show s the time , a b attery power indi cator , and a number of s ymbo ls that indicate var i[...]

  • Seite 19

    Getting started 15 CAS [White] Y ou ar e wor king in CAS v ie w , not Home v iew . [orange] In Home view The A lpha ke y is activ e. The c harac - ter show n in orange on a k ey w ill be entered in upper case wh e n a k ey is pr esse d. See “ Adding tex t” on page 2 3 f or more inf ormation . In CAS vie w Th e Alpha–Shift ke y comb inatio n i[...]

  • Seite 20

    16 Getting started Navigation The HP Pr ime offer s two modes of na vig ation: touch and k ey s. In many ca ses, y ou can tap on an icon , field , menu , or obj ect to select (o r deselect) it . F or ex ample , you can open the F unction app by tapping once on its i con in the Appli cation L ibrary . How ev er , to open the Appli cation Libr ary , [...]

  • Seite 21

    Getting started 17 Touch gestures In addition to selecti on by tapping , there ar e other touch- r elated operations a vailable to y ou: T o qui ckly mo ve fr om page to page , flick : P lace a finger on the sc ree n and quickl y sw ipe it in the desire d di r ection (up or dow n) . To p a n , dra g yo u r f i n g e r h or izon t a l l y o r v e r [...]

  • Seite 22

    18 Getting started The keyboard The n umbers in the legend be low r efe r to the parts of the k ey board de scr ibed in the illustr ation on the ne xt page. Number Feature 1 L CD and touch-sc reen: 3 20 × 2 40 p ix els 2 Conte x t-sens itiv e touch-but ton menu 3H P A p p s k e y s 4 Home v iew and pr efer ence settings 5 Commo n math and science [...]

  • Seite 23

    Getting started 19 Context-sensitive menu A conte xt-sensitive men u occup ies the bottom line of the screen. The opti ons available depend on the context , that is, the vi ew y ou are in. Note that the menu items ar e acti vated by touch . 1 2 3 4 5 6 7 8 9 11 13 14 12 15 16 10 17[...]

  • Seite 24

    20 Getting started The re ar e two types o f buttons on the conte xt-sensiti ve menu: • menu button: tap to displa y a pop-up menu . These buttons hav e squar e corners alo ng their top (such as in the illustr ation abo ve). • command button: tap to initiate a command . These buttons have r ounded corners (suc h as in the illustr ation abo ve).[...]

  • Seite 25

    Getting started 21 Sv Relations palette: Display s a palet te of compar ison operator s and Bool- ean operators . Sr Spec ial sy mbols palette: Displa ys a palette of common math and Gr eek cha rac te rs. Sc Automati cal ly inserts the d egree , minute , or second s ymbol accor d- ing to the conte xt. C Back sp ac e. Del ete s t he chara cter to th[...]

  • Seite 26

    22 Getting started Shift keys The re ar e two shift k ey s that you use to access the operati ons and characters pr inted on th e bottom of the keys : S and A . Sa Displa ys all the av ailable characters . T o enter a character , use the c ursor k ey s to highlight it , and then tap . T o select m ultiple char acters , select one , tap , and contin[...]

  • Seite 27

    Getting started 23 Adding text The text y ou can enter directly is sho wn by the orange char acters on the k ey s. The se char acters can only be enter ed in conjuncti on with the A and S keys. B ot h upper case and lowe rcase c haracters can be entered , and the method is ex actly the oppos ite in CAS vi ew than in Home v ie w . Y ou can al so ent[...]

  • Seite 28

    24 Getting started Math keys The mo st common math functi ons have their ow n ke ys o n the k ey board (or a k ey in comb ination w ith the S key ) . Ex am ple 1 : T o calc ulate SIN( 1 0) , pr ess e 10 a n d pres s E . The ans wer displa yed is –0. 544… (if y our angle measur e setting is r adians). Ex am ple 2 : T o find the squar e r oot of [...]

  • Seite 29

    Getting started 25 Example : Suppose y ou want t o find the c ube r oot of 94 5 : 1 . In Home v iew , pres s F . 2. S e l e c t . The skeleton or frame work for y our calculation now appears on the entry line: 3 . E ach box on the templ ate needs to be completed: 3 > 94 5 4. Pres s E to display the r esult: 9 .8 1 3… The t emplate palette can [...]

  • Seite 30

    26 Getting started degrees; and enters ″ if the pr ev iou s entry is a value in minutes. Thus enter ing : 36 Sc 40 Sc 20 Sc yie l d s 36 ° 4 0 ′ 20 ″ . See “Hexagesimal numbers ” on page 2 6 for mo re in form a ti on. Fractions The fra ct io n key ( c ) cyc les t hrough thee vari eties of fr actional dis play . If the curr ent ans wer is[...]

  • Seite 31

    Getting started 27 Note that the degr ee and minut e entri es must be in tegers, and the minute and second entries m ust be positiv e. Dec imals are not allo w ed, e xcept in the seconds . Note too that the HP Prime tr eats a value in hexgesimal f ormat as a single entity . H ence an y operati on per for med on a hex agesimal v alue is performed on[...]

  • Seite 32

    28 Getting started 5. P re s s E Th e re s ul t i s 8.0000 E 15 . This is equi valent t o 8 × 1 0 15 . Menus A menu off ers y ou a ch o i c e of i t e m s . A s i n t h e case sho wn at the r ight , some menu s have su b- menus and sub-sub- menus . To select from a menu The re ar e two tec hniques f or selecting an item f rom a menu: • direct ta[...]

  • Seite 33

    Getting started 29 To close a menu A menu w ill close a utomaticall y when yo u select an item fr om it . If you w ant to clos e a menu witho ut selecting anything f rom it , pr ess O or J . Toolbox menus The Tool b ox m en us ( D ) ar e a collection o f menus offe ring func tions and commands use ful in mathematics and progr amming. The Math , CAS[...]

  • Seite 34

    30 Getting started Reset input form fields T o r eset a f ield to its def ault value , highli ght the fie ld and pres s C . T o r eset all fields to the ir default v alues, pres s SJ (Clear ) . System-wide settings Sy stem-w ide settings ar e values that dete rmine the appearance of window s, the format of nu mbers, the scale of plots, the units us[...]

  • Seite 35

    Getting started 31 Page 1 Settin g Options Angl e Me asu re Degrees : 36 0 degrees in a c irc le . Rad ian s : 2  r adians in a cir cle . The angle mode y ou set is the angle s e t t i n g u s e d i n b o t h H o m e vi e w a n d the curr ent app . This is to ensure that tri gonometric calc ulations done in the c urren t app and Home vie w gi ve[...]

  • Seite 36

    32 Getting started Entry T ex tbook : An ex pres sion is en te red in mu ch th e sa me way as i f y ou wer e writing it on paper (w ith some ar guments abo ve or belo w others) . In oth er words, y our ent ry could be two -dimensional. Algebraic : An e xpressi on is enter ed on a single li ne . Y our entry is alw ay s one -dimensio nal. RPN : Re ve[...]

  • Seite 37

    Getting started 33 Page 2 Dec imal Mark Dot or Comma . Display s a number as 1 2 4 5 6. 98 (dot mode) or a s 1 2 4 5 6, 98 (comma mode). Dot mode uses commas to s eparate elements in lists and mat ri ces, and to separate function arguments. Comma mode us es semicolons as separators in these contexts. Settin g Options (Contin ued) Settin g Options F[...]

  • Seite 38

    34 Getting started Page 3 Pa g e 3 o f t h e Home Settings in put form is f or setting Exam mode . This mode enable s cer tain functi ons of the calc ulator to be disabled for a set per iod, w ith the disabling contro lled by a pass wor d. T his feature w ill primar ily be of intere st to those who supervise ex aminatio ns and who need to e nsure t[...]

  • Seite 39

    Getting started 35 Specifying a Home setting This e xam ple demonstrate s how to c hange the number for mat from the de fault setting—St anda r d—to Scientif ic w ith t wo dec imal places. 1 . Press SH (Settings) to open the Home Settings input form. The Angle Measur e fie l d i s highligh ted. 2. Ta p o n Numbe r For ma t (either the field lab[...]

  • Seite 40

    36 Getting started Mathematical calculations The mo st commonly used math oper ations ar e av ailable fr om the ke yboar d (see “Math ke ys ” on page 2 4). Access to the re st of the math functi ons is via v ario us menus (see “Menus ” on page 2 8) . Note that th e HP Prime r epresents all numbers small er than 1 × 1 0 –49 9 as z er o . [...]

  • Seite 41

    Getting started 37 • RPN ( Revers e P ol i sh N ota t io n ) . [Not av ailable in CA S view . ] The ar guments o f the expr ession ar e ente red f irst follo wed by the oper ator . The entry of an operator automaticall y evaluates w hat has alread y been entered . Thus you w ill n eed to enter a two -o perator ex pres sion (as in the e xample a b[...]

  • Seite 42

    38 Getting started If y ou make a mistak e while ent ering an e xpres sion, y ou can: • delete the c haracte r to the left of the cur sor by pres sing C • delete the c haracte r to the righ t of the curs or by pres sing S C • clear the entire entry line by pr essing O or J . Example Cal cula te R 23 jw 14 S j 8 >>nQ 3 >h 45 E This e [...]

  • Seite 43

    Getting started 39 The f ollo wing e xamples sho w the use of par entheses, and the use of t he cursor ke ys to mov e out side a group of obje cts encl osed with in paren the ses. Algebraic precedence The H P Prime calc ulates accor ding to the follo wi ng order of pr ecedence. F uncti ons at the same lev el of pre cedence are e valuated in order f[...]

  • Seite 44

    40 Getting started Explicit and implied multiplication Implied mu ltiplication t akes place w hen two oper ands appear with no operator between them . If you enter AB , fo r exa mp l e, t h e res u l t i s A*B . Noti ce in the ex ample on page 3 8 that we ent ered 1 4 Sk 8 with out the multip lication operator af ter 1 4. For the sake of clar it y [...]

  • Seite 45

    Getting started 41 Tip Pressing S= takes you straight to the very first entry in history, and pressing S takes you straight to the most recent entry. Using the clipboard Y our la st four e xpre ssions ar e alw ay s copied t o the clipboar d and can easily be r etrie ved b y pressing SZ . This opens the clipboard fr om wher e you can quickly choose[...]

  • Seite 46

    42 Getting started Y ou can repeat the pr ev ious calc ulation simply b y pressing E . This can be usef ul if the pre viou s calculatio n inv olv ed Ans . F or ex ample , suppos e you w ant to calc ulate the n th root of 2 when n is 2 , 4, 8 , 1 6, 3 2 , and so on . 1 . Ca lculate the sq uare r oot of 2 . Sj 2 E 2. N ow e n t e r √ Ans . SjS+E Th[...]

  • Seite 47

    Getting started 43 Example : T o assign  2 to to the var iable A : Szj AaE Yo u r s t o r e d v a l u e appe ars as shown at t he ri ght. If y ou then wanted to multiply your stored val u e by 5 , you co ul d enter: Aas 5 E . Y ou can also c reat e your o wn v ari ables in Home v iew . F or e xample , suppos e you wanted to cr eate a v ariable c[...]

  • Seite 48

    44 Getting started Complex numbers Y ou can per form ar ithmetic operations using complex numbers. Complex numbers can be entered in the fol lowin g form s, where x is the real part , y is the imaginar y part, and i is the imaginary constant , : • ( x, y ) • x + yi (ex cept in RPN mode) • x – yi (e xcept in RPN mode) • x + iy (ex cept in [...]

  • Seite 49

    Getting started 45 scr een with as a menu item, y ou c an select an item on that sc reen to se nd it to another HP Prime . Y ou use one o f the supplied USB cables to send obj ects fr om one HP Prime to another . This is the mi cr o - A–mic ro B U SB cable. Not e that the connectors on the end s of the USB c able are slightly differ ent. The mi c[...]

  • Seite 50

    46 Getting started Online Help Pres s W to open the online help . The help initiall y pro v ided is conte xt -sensiti ve , that is, it is al way s about the cur rent v ie w and its menu items . F or ex ample , to get help on the Functi on app , pr ess I , select F unction , and press W . F rom w ithin the help s yst em, tapp ing display s a hier ar[...]

  • Seite 51

    Reverse Polish Notation (RPN) 47 2 Re v erse P olish Notation (RPN) The HP Prime pro vides y ou with three way s of entering objects in Home v iew : • Te x t b o o k An e xpres sion is enter ed in much the same w ay was if y ou w ere wr iting it on paper (w ith some arguments abo ve or below o thers) . In other wo rds, y our entry could be two- d[...]

  • Seite 52

    48 Reverse Polish Notation (RPN) The same entr y-line editing tools ar e av ailable in RPN mode as in algebr aic and te xtbook mode: • Pres s C to delete the character to the left of the cursor . • Pres s SC to delete the char acter to the r ight of the cu rs or . • Pres s J to clear the entir e entry line. • Pres s SJ to clear the entire e[...]

  • Seite 53

    Reverse Polish Notation (RPN) 49 bottom . In RPN mode, y our history is or dered c hron ologically b y defa ult, but y ou can change the or der of the items in his tory . (This is explained in “Manipulating the stack ” on page 5 1.) Re-using results Ther e are two w ay s to re-use a result in history . Method 1 desele cts the copied r esult aft[...]

  • Seite 54

    50 Reverse Polish Notation (RPN) Ho we ver , y ou could also ha ve ent ere d the arguments s eparat ely and then, w ith a blank entr y line, enter ed the operator ( s ). Y our histor y would look like this befor e entering the o perator : If there are no entr ies in history and you enter an operator or functi on, an err or message appears. An er ro[...]

  • Seite 55

    Reverse Polish Notation (RPN) 51 Manipulating the stack A number of stack -manipulation options ar e av ailable. Most appear as menu items acros s t he bottom the scr een. T o see these items, y ou must f irst select an item in history: PICK Cop ies the selec ted item to stac k lev el 1 . The item belo w the one that is copied is then highlighted .[...]

  • Seite 56

    52 Reverse Polish Notation (RPN) DUPN Duplicates all items betw een (and including) the hi ghlighted item and the item on stack lev el 1 . If , for e xample , you ha ve selected the item on stac k lev el 3, selecting DUPN du plicates it and the two items belo w it, places them on stac k levels 1 to 3, and mo ves the items that wer e duplicated up t[...]

  • Seite 57

    Computer algebra system (CAS) 53 3 Computer algebra s y stem (CAS) A computer algebra sy stem (CAS) enables you to perform sy mbolic calc ulations . By def ault , CAS w orks in e xact mode , giv ing y ou infinite pr ecisi on. On the other hand, no n -CAS calculati ons, such as those perf ormed in HOME vi ew or by an app , are numeri cal calculation[...]

  • Seite 58

    54 Computer algebra system (CAS) The menu buttons in CA S vie w are: • : assigns an ob ject to a v aria ble • : applies common simplificati on rules to r educe an ex pres sion to its simples t form . F or ex ample , simplify(e a + LN( b *e c ) ) yi e l d s b *E X P ( a )* EXP( c ) . • : copies a selected entr y in histor y to the entry line ?[...]

  • Seite 59

    Computer algebra system (CAS) 55 Example 1 T o f ind the roots o f 2 x 2 + 3 x – 2: 1 . With the CA S menu open , select P olynomial and then Fin d Ro ot s . The function proot() appears on the entry line. 2 . Between the parentheses , enter: 2 Asj+ 3 Asw 2 3 . Press E . Example 2 T o f ind the area under the gr aph of 5 x 2 – 6 between x =1 an[...]

  • Seite 60

    56 Computer algebra system (CAS) Page 1 Setting Pur pose Angle Measur e Se lect the units for ang le measure- ments: Radians or Degrees . Number F ormat (firs t drop-do wn list) Select the number format for dis- play ed soluti ons: Standard or Scientific or Engineering Number F ormat (second dr op- do wn list ) Select the n umber of digits to dis- [...]

  • Seite 61

    Computer algebra system (CAS) 57 Page 2 Com plex Selec t this to allow co mplex r esults in var iables. Use √ If chec ked, s econd order poly no - mials ar e factor iz ed in comple x mode or in r eal mode if the dis- cr iminant is positiv e. Use i If chec ked , the calculator is in comple x mode and complex so lu - tions w ill be disp lay ed when[...]

  • Seite 62

    58 Computer algebra system (CAS) Setting the form of menu items One setting that aff ects the CAS is made ou tside the CAS Settings scr een. This setting determines whether the commands on the CA S menu ar e pre sented de scr iptiv ely or b y their command name . Here ar e some ex amples of id entical functi ons that are pr esented differentl y dep[...]

  • Seite 63

    Computer algebra system (CAS) 59 functi ons to be pre sented by the ir command name, deselec t the Menu Display opti on on the second page of the Ho me Settings scr een (see “Home settin gs ” on page 30) . To use an expression or result from Home view When y our are wor king in CAS, y ou can retr ieve an e xpres- sion or r esult fr om Home v ie[...]

  • Seite 64

    60 Computer algebra system (CAS)[...]

  • Seite 65

    Exam Mode 61 4 Ex am Mod e The HP Pr ime can be pr ecis ely conf igur ed for an e xaminatio n, w ith any number of f eatures or f unctions disabled for a set per iod of time. C onfigur ing a HP Prime for an e xaminatio n is ca lled ex am mode configur ation . Y ou can cr eate and save multiple ex am mode confi gurati ons, each w ith its ow n subset[...]

  • Seite 66

    62 Exam Mode Modifying the default configuration A conf igur ation named Default Exam a ppears w hen yo u first acces s the Exam Mode scr een. Thi s con figuration has no functions disabled. If onl y one configurati on is needed, y ou can simply modify the default ex am confi guration . If you en vis age th e need for a number of confi guratio ns?[...]

  • Seite 67

    Exam Mode 63 An e xpand box at the left of a f eature indicates that it is a categor y with sub-items that y ou can ind i viduall y disable . (Notice that there is an e xpan d bo x beside S ystem Apps in the ex ample show n abov e .) T ap on the ex pand box to s ee the sub-items . Y ou can then select the sub-items indi vi dually . If you w ant to [...]

  • Seite 68

    64 Exam Mode 5 . T ap , select Copy from the menu and enter a name for the new configuration. See “ Adding t ext” on page 2 3 if you need help with entering alphabetic c haracters . 6. T ap tw ice . 7 . T ap . The Ex am Mode Configuration scr een appears. 8. Select those featur es y ou want disabled, and mak e sur e that those f eatures y ou do[...]

  • Seite 69

    Exam Mode 65 T o act iva te ex am mode: 1. I f t h e Ex am Mode screen is not sho wing , pres s SH , tap and tap . 2 . I f a con figu ration other t han Default Exam is r equired , choose it f rom the Configuration list . 3 . Selec t a time -out period f rom the Timeout list. Note that 8 hour s is the maximum per iod . If you ar e prepar ing to sup[...]

  • Seite 70

    66 Exam Mode mode , with the spec ifi ed disabled feature s not accessible to the user of that calculator . 9 . Repeat f rom s tep 7 for eac h calculator that needs t o hav e its functi onality limited. Cancelling exam mode If y ou want to cancel e xam mode bef or e the set time period has elapsed, y ou will need to enter the passw ord fo r the cur[...]

  • Seite 71

    Exam Mode 67 To return to the default configuration 1. P r e s s SH . T he Home Setting s screen appears. 2. Ta p . 3. Ta p . The Ex am Mode scr een appea rs . 4. Choos e Default Exam from t he Configu ration list . 5. Ta p , selec t Reset from the menu and tap to confirm your intention to return the configuration to its default settings. Deleting [...]

  • Seite 72

    68 Exam Mode[...]

  • Seite 73

    An introduction to HP apps 69 5 An intr oduc tion to HP apps M u c h o f t h e f u n c t i o n a l i t y o f t h e H P P r i m e i s p ro vi d e d i n p a c ka g e s called HP apps. T he HP Prime comes w ith 1 8 HP apps: 1 0 dedicated to mathemati cal topic s or tasks, thr ee speci aliz ed Solv ers, thr ee function Explor ers, a spreadsheet , and a[...]

  • Seite 74

    70 An introduction to HP apps As y ou use an app to explore a les son or solve a pr oblem, y ou add data and def initions in one or mor e of the app ’s vie ws . All this info rmation is a utomaticall y sav ed in the app. Y ou can co me back t o the app at any time and all the infor mation is still ther e . Y ou can also sav e a v ersion of the a [...]

  • Seite 75

    An introduction to HP apps 71 With one ex ception , all the apps mentioned abov e are desc ribed in detail in this user guide . The ex ception is the DataStr eamer app . A brie f introduc tion to this app is gi ven in the HP Prime Qu ick St ar t Gu ide . F ull details can be found in the HP Strea mS ma r t 4 1 0 Use r G uid e . Application Library [...]

  • Seite 76

    72 An introduction to HP apps Y ou can change the sort order of the built-in apps to: • Alphabeticall y The app icons are so rted alphabetically by n ame, and in ascending order: A to Z. • Fix e d Apps are displayed in their default order: Function, Advanced Graphing, Geometry … Polar, a nd Sequence. Customized apps are pl aced at the end, af[...]

  • Seite 77

    An introduction to HP apps 73 App views Most a pps have three maj or vi ew s: Sy mbolic , Plo t, and Numer ic. Thes e vie ws ar e based on the s ymboli c, gr aphic, and numer ic repr esentations of mathematical obj ects. The y are accessed thr ough the Y , P , and M k ey s near the top left of the k eyboar d. T ypi cally these v iew s enable you to[...]

  • Seite 78

    74 An introduction to HP apps Symbolic Setup view The S y mbolic Setup v iew is the same for eac h app. It enables you to o ver ride the sy stem-wi de settings for angle measur e , number for mat, and comple x- number entry . The ov err ide applies only to the c urrent app . T o change the s ettings for all apps, see “S y stem-wi de settings” o[...]

  • Seite 79

    An introduction to HP apps 75 Plot view The table belo w outlines w hat is done i n the P lot vie w of eac h app. App Use t he Plot vie w to: Advanc ed Gra phing Plot and explor e the o pen sentences selected in S ymbolic v ie w . F inance Display an amorti z ation gr aph. F unction Plot and e xplore the f unctions selec ted in S ymboli c vi ew . G[...]

  • Seite 80

    76 An introduction to HP apps Plot Setup view The table below outlines what is done in the P lot Setup vi ew of each app . App Use t he Plot Setup vie w to: Advanc ed Graphing Modify the appearance of plots and the plot env i r onm ent . F inance Not used F unction Modify the appearance of plots and the plot env i r onm ent . Geometry Modif y the a[...]

  • Seite 81

    An introduction to HP apps 77 Numeric view The table belo w outlines w hat is don e in the Numeri c vie w of each app . App Use the Numeric vie w to: Advanc ed Gra phing Vi ew a table of numbers gener ated by the open sentences se lected in S ymboli c vie w . F inance Enter v alues for time -value -of-mone y calc ulations . F unction Vie w a table [...]

  • Seite 82

    78 An introduction to HP apps Numeric Setup view Th e t a b l e b e l ow o u t l i n es wh a t i s d o n e i n t h e N u m e r ic S e t u p vi e w of each ap p. T ri angle Solv er Enter know n data about a tr iangle and solve for the un known data. T ri g Explorer Not used App Use the Numeric v iew to: (Cont .) App Use t he Numeric Setup view to: A[...]

  • Seite 83

    An introduction to HP apps 79 Quick example The fo llow ing ex ample uses all six app vi ew s and should give y ou an idea of the typ ical w orkflo w inv olv ed in wor king with an app . The P ol ar app is used as the sample app. Open the app 1 . Open the Appli cation Libr ary by pr essing I . 2 . T ap once on the i con of the P olar app . The Pola[...]

  • Seite 84

    80 An introduction to HP apps Symbolic Setup view 4. Press SY . 5. S e l e c t Radians from th e Angl e Measure menu . Plot view 6. Press P . A graph of the equation is plotted. However, as the illustration at the right shows, only a part of the petals is visible. To see the rest you will need to change the plot setup parameters. Plot Setup View 7 [...]

  • Seite 85

    An introduction to HP apps 81 Numeric View The values generated b y the equation can be seen in Numer ic vi ew . 10 . P r e s s M . Suppos e you w ant to see j ust whol e nu mb ers fo r  ; in other word s, yo u wa n t t h e i n cre me n t betw een consec uti ve v alues in the  column to be 1 . Y ou set this up in the Numer ic Setup v ie w [...]

  • Seite 86

    82 An introduction to HP apps Add a definition With the e xcepti on of the P arametr ic app , there ar e 1 0 f ields fo r entering def initions. In the P ar ametric app ther e are 20 fi elds, two for eac h paired def inition . 1 . Highlight an empt y field y ou want to use, e ith er by tapping on it or scr olling to it . 2 . Enter y our definiti on[...]

  • Seite 87

    An introduction to HP apps 83 • F rom Home v ari ables Some Home variables can be incorporated into a symbolic definition. To access a Home variable, press a , tap , select a category of va riable, and select the variable of interest. Thus you could ha ve a definition that reads F1(X)=X 2 +Q . ( Q is on the Real sub-menu of the Home menu.) Home v[...]

  • Seite 88

    84 An introduction to HP apps • Fro m a p p fu n ct io n s Some of the functions on the App menu can be incorporated into a definition . The App menu is one of the Toolbox menus ( D ). The following definition incorporates the app function PredY : F9(X)=X 2 + Statistics_2Var.PredY(6) . • Fro m t h e Catlg menu Some of the functions on the Catlg[...]

  • Seite 89

    An introduction to HP apps 85 Y ou can tell if a def inition is selec ted by the tic k (or chec kmark) beside it . A checkmark is added b y default as soon as y ou cr eate a def inition . So if y ou don ’t w ant to plot or e valua te a partic ular def inition , highlight it and t ap . (Do lik ew ise if y ou w ant to re-select a deselected functio[...]

  • Seite 90

    86 An introduction to HP apps Symbolic view: Summa ry of menu buttons Button P ur pose Cop ies the highligh ted definitio n to the entry line for editing . T ap when done. T o add a ne w definiti on—ev en one that is r eplacing an e xis ting one—highlight the fi eld an d just st ar t entering y our new definiti on. Selec ts (or deselects) a def[...]

  • Seite 91

    An introduction to HP apps 87 Common operations in Symbolic Setup view [Scope: all apps] The S ymboli c Setup vi ew is the same for all apps . Its primary purpose is to allow y ou to ov erri de t hree of the sy stem-wide settings specifi ed on the Home Settings wi n d ow . Pres s SY to open S ymbolic Setup vi ew . Override system-wide settings 1 . [...]

  • Seite 92

    88 An introduction to HP apps Common operations in Plot view Plo t view f un c t io na l i t y t h a t i s c om m o n to m a ny ap p s is d e scri b e d in detail in this section . Functi onalit y that is available onl y in a particular app is desc ribed in the chapter dedicated to that app. Pr ess P to open P lot vi ew . Zoom [Scope: Ad vanced Gra[...]

  • Seite 93

    An introduction to HP apps 89 Zoom keys Ther e are two z oom k eys: pr essing + z ooms in and pressing w z ooms out . The e xtent of the scaling is determined by the ZOOM FAC TOR settings (explained a bove). Zoom menu In Plot v iew , tap and tap an option . (If is not displa yed , tap .) The z oom options ar e explained in the follo w ing table. Ex[...]

  • Seite 94

    90 An introduction to HP apps Box zoom A b o x zo o m e n a b l e s y o u t o zo o m i n o n a n a r e a o f t h e s c r e e n t h a t you sp e cif y . 1 . With the P lot v iew menu open , tap and select Box . 2 . T ap one corner of the area y ou want to zoom in on and then tap . 3 . T ap the diagonally opposite cor ner of the area y ou want to z o[...]

  • Seite 95

    An introduction to HP apps 91 Views menu The most commonl y used z oom options a re als o availa ble on the View s menu. T hese are: • Auto sca l e • Dec ima l • Integer • Tr i g . The se optio ns—whi ch can be appli ed what ev er vi ew y ou ar e cur rentl y working in—ar e explained in th e table immediately above . Testing a zoom with[...]

  • Seite 96

    92 An introduction to HP apps Note that ther e is an Unzoom option on the Zoo m menu . Use t h i s t o re t u r n a p l o t t o i t s p r e -zo o m s t a t e . I f t h e Zoo m menu is not sho wn , tap . Zoom In In Shortc ut: pre ss + Zoom Out Out Shortc ut: pre ss w X In XI n X Out X Out Y In YI n[...]

  • Seite 97

    An introduction to HP apps 93 Y Out Y Out Square Square Notice that in this ex ample , the plot on left has had a YI n z oom applied to it . The Square z oom has r eturned the plot to its default state wher e t he X and Y scales are eq ual. Autoscal e Autoscale Decima l Decimal Notice that in this ex ample , the plot on left has had a XI n z oom ap[...]

  • Seite 98

    94 An introduction to HP apps Tri g Trig Trace [Scope: Ad vanced Gra phing, F unction , P arametr ic , P olar , Sequence , Solv e, S tatistics 1 V ar , and Statistics 2V ar .] The tr acing f unctionality enables yo u to mov e a cur sor (the trace cur so r ) along the curr ent g raph . Y ou mov e the trace c ursor b y pr essing < or > . Y ou c[...]

  • Seite 99

    An introduction to HP apps 95 To evaluate a definition One of the pr imary uses of the tr ace func tionality is to ev aluate a plot ted definit ion. Suppose in S ymbolic view y ou h ave def in ed F1(X) as (X – 1) 2 –3 . Suppos e further that you w ant to know what the v alue of that functi on is when X is 2 5. 1 . O pe n Pl ot vi ew ( P ). 2 . [...]

  • Seite 100

    96 An introduction to HP apps Plot view: Summary of menu buttons Common operations in Plot Setup view This sec tion cov ers onl y operatio ns common to the apps mentioned . See the chapter dedicated to an app for the a pp- specif ic operations done in P lot Setup vie w . Pr ess SP to open P lot Setup vie w . Configure Plot view [Scope: Ad vanced Gr[...]

  • Seite 101

    An introduction to HP apps 97 confi guration opti ons are spr ead acr oss two pages. T ap to mo ve fr om the fir st to the second page, and to r eturn to the f irst page . Tip When you go to Plot view to see the graph of a definition selected in Symbolic view, th er e may be no graph shown. The likely cause of this is that the sp read of plotted va[...]

  • Seite 102

    98 An introduction to HP apps Page 2 S * MAR K [St ats 2 V ar only] Sets the gr aphic that w ill be used t o r ep r esent a data point in a scat ter plot. A differ ent graphic can be used for each of the fi ve analy ses that can be plot ted together . XRNG S ets the initial range o f the x -ax is. Note that here ar e two fi elds: one for the minimu[...]

  • Seite 103

    An introduction to HP apps 99 Graphing methods The HP Pr ime giv es you the option o f choosing one of thr ee gra phing methods. The methods ar e descr ibed below , w ith each applied to the functi on f(x) = 9*sin(e x ). • adaptiv e : th i s g ives ve r y acc urate r esults and is us ed by de fault . With this method acti ve , some comple x funct[...]

  • Seite 104

    100 An introduction to HP apps Restore default settings [Scope: Ad vanced Gra phing, F unction , P arametr ic , P olar , Sequence , Solv e, S tatistics 1 V ar , Statistic s 2V ar , Geometry .] T o r estor e one field to its def ault setting: 1 . Select t he field . 2 . Press C . T o re store all default settings, pr ess SJ . Common operations in Nu[...]

  • Seite 105

    An introduction to HP apps 101 x- values w ill be 1 0, 1 0. 1 , 1 0.2 , 1 0. 3, 1 0.4, etc . (Zoo ming out does the opposite: 1 0, 1 0.4, 1 0, 8 , 1 1 .2 etc. becomes1 0, 1 1 .6, 1 3.2 , 1 4.8, 1 6.4 , etc.). Zoom options In Numeri c vie w , z oom options are a vailable fr om tw o source s: • the k ey board • the menu in Numeri c vie w . Note t[...]

  • Seite 106

    102 An introduction to HP apps The z oom op tions are explained i n the following table. Evaluating Y ou can step thr ough the table of e valuations in Nume ric v ie w by pr essing = or . Y ou can also q uickl y jump to an e valuatio n by enter ing the independent var iable of inter est in the independent vari able column and tapping . F or ex am[...]

  • Seite 107

    An introduction to HP apps 103 3. Tap . Numeric view is refreshed, with the value you entered in the first row and the result of the evaluation in a cell to the right. In this example, the result is 389373. Custom tables If y ou choo se Automatic for th e NUMTYPE s etting, the table of ev aluations in Numer ic v iew w ill follo w the settings in th[...]

  • Seite 108

    104 An introduction to HP apps Numeric view: Summary of menu buttons Button P urp ose T o modify the incr ement between consecuti ve values of the independ ent var iable in the table of evaluati ons. See page 1 00. [Build Y ourOwn only] T o edit the v alue in the select ed cell. T o o verw rite the v alue in the selected ce ll, y ou can just st ar [...]

  • Seite 109

    An introduction to HP apps 105 Common operations in Numeric Setup view [Scope: Adv anced Graphing , Fu nction , P arametr ic, P olar , Sequence] Pres s SM to open Numeric Setup v ie w . The Numeri c Setup vi ew is used to: • set the st ar ting number f or the independent var iable in automatic tables displa yed in Numeric v ie w: the Num Start fi[...]

  • Seite 110

    106 An introduction to HP apps T o help y ou set a starti ng number and increment that matches the c urr ent P lot vie w , tap . Restore default settings T o r estor e one field to its def ault setting: 1 . Select t he field . 2 . Press C . T o re store all default settings, pr ess SJ . Combining Plot and Numeric Views Y ou can display Plot v iew a[...]

  • Seite 111

    An introduction to HP apps 107 T o add a note to an app: 1. O p e n t h e a p p . 2. P re s s SI (Info) . If a note has already been crea ted for this app, its contents are displayed. 3 . T ap an d start wr iti ng (or editing) your note . The format and bullet options availa ble are the same as those in the Note Editor (described in “The Note Edi[...]

  • Seite 112

    108 An introduction to HP apps Lik e built -i n apps, customiz ed apps c an be sent to anot her H P Prime calculator . This is explained in “Sharing data” on page 44. Customi z ed apps can also be rese t, deleted, and sorted ju st as built-i n apps can (as e xplained earlier in this chapter ) . Note that the only apps that cannot be c ustomiz e[...]

  • Seite 113

    An introduction to HP apps 109 Seque nce app—see c hapter 1 7, “Seq uence app ” , beginning on page 2 8 1. As we ll as cloning a built -in app—as descr ibed abo ve—y ou can modify the internal w orkings of a c ustomi z ed app using the HP Prime pr ogr amming language. See “C ustomi zing an app” on page 5 2 2. App functions and variabl[...]

  • Seite 114

    110 An introduction to HP apps Suppose y ou are in Home vi ew and want to r etrie ve the mean of a data set r ecently calc ulated in the S tatistics 1V ar app. 1 . Press a . This opens the Variables menu . From here you can access Home variables, user-defi ned variables, and app vari ables. 2. Ta p . This opens a menu of app variables. 3. S e l e c[...]

  • Seite 115

    Function app 111 6 Function app The F uncti on app enables y ou to explor e up to 1 0 r eal- valued , r ectangular func tions of y in ter ms of x; for exa m p l e, an d . Once y ou have de fined a func tion y ou can: • cr eate g raphs to f ind roots, inter cept s, slope, signed area , and extr ema, and • cr eate tabl es that s ho w how function[...]

  • Seite 116

    112 Function app Open the Function app 1 . Open the F uncti on app. I Select Function Recall that you can open an ap p just by tapping its icon. You can also open it by using the cursor keys to highlight it and then pressing E . The Function app starts in Symbolic view. This is the defining view . It is where you symbolically define (that is, speci[...]

  • Seite 117

    Function app 113 5. D e ci d e i f y o u w a n t t o : – giv e one or mor e function a c ustom colo r when it is plotted – ev aluate a dependent function – deselec t a definiti on that you do n’t w ant to exp l ore – incorpor ate var iables, math commands and CA S commands in a def inition. For the sake of simplicity we c an ignore these [...]

  • Seite 118

    114 Function app Trace a graph By de fault , the trace f unctionality is acti ve . This enable s y ou to mov e a cursor along a gr aph. If mor e than two gr aphs are sho wn , the gra ph that is the highest in the list of func tions in S ymboli c vie w is the gra ph that will be traced by def ault. Since the linear equation is higher than the quadr [...]

  • Seite 119

    Function app 115 • Use opti ons on the Zoom menu to z oom in or out , hor iz on tally or verti cally , or both , etc. • Use option s on the Vi e w menu ( V ) to se lect a pre- def ined vie w . Note that the Autoscale option attempts to pro vide a best fit, sho w in g as man y of the cr itical f eature s of each plo t as possible . Note By dragg[...]

  • Seite 120

    116 Function app Y ou can also choose w hether the table of data in Numeri c vie w is automaticall y populated or whether it is populated by y ou t yp ing in the pa rtic ular x -va lues y ou are in tere sted in. T hese opti ons— Automatic or BuildYourOwn —are available fr om the Num Ty p e list. T hey ar e explained in detail in “Custo m tabl[...]

  • Seite 121

    Function app 117 ex pressi ons selected in S y mbolic v iew : 1–x and ( x–1 ) 2 –3 . Y ou can also scr oll through the columns of the depe ndant var iables (la beled F1 and F2 in the illustr ation abo ve). You can also scroll the table vertically or horizontally using tap and drag gestures. To go directly to a value 1 7 . P lace the cur sor i[...]

  • Seite 122

    118 Function app Analyzing functions The Fun ct ion menu ( ) in P lot vi ew enable s you t o find r oots, inters ections, slopes , signed areas , and ex trema f or any f unction def ined in the Func tion app . If y ou have mor e than one func tion plotted, y ou ma y need to choo se the functi on of inter est befo rehand . Display the Plot view menu[...]

  • Seite 123

    Function app 119 Note the button. If you tap this button, vertical and horizontal dotted lines are drawn through the current position of the tracer to highlight its position. Use this feature to draw attention to the cursor location. You can also choose a blinking cursor in Plot Setup. Note that the functions in the Fcn menu all use the current fun[...]

  • Seite 124

    120 Function app 3 . Choo se the functi on who se point of inte rsecti on with the c urren tly selec ted functi on yo u wish to f ind. The coordinates of the intersection are displayed at the bottom of the screen. Tap on the screen near the intersection, and repeat from step 2. The coordinates of the intersection nearest to where you tapped are dis[...]

  • Seite 125

    Function app 121 To find the signed area between the two functions W e ’ll no w find the area betw een the two f unctions in the ran g e . 1. T a p and select Signed area . 2. Spec ify the start val u e fo r x : Tap and press Q 1 . 3 E . 3. Ta p . 4. Select the o ther functi on as the boundary for the integr al. (If F1(X) is the c urre ntly selec[...]

  • Seite 126

    122 Function app Shortc ut : When the Goto opti on is available , y ou can display the Go T o sc r e e n s i m p l y b y t y p i n g a n u m b e r. T h e number y ou t ype appears on the entry line. Jus t tap to accept it. To find the extremum of the quadratic 1 . T o calculate the coordinates of the ex tremum o f the quad ratic equ ation, mo ve th[...]

  • Seite 127

    Function app 123 To access Function variables The Fun ct io n v aria bles are a vailable in Home v ie w and in the CAS, w here they can be included as arguments in calculati ons. The y ar e also available in S ymboli c vi ew . 1 . T o access the var iables, press a , tap and select Function . 2. S e l e c t Results and then the vari ab le o f i nt [...]

  • Seite 128

    124 Function app Summary of FCN operations Operation Description Root Select Root to f ind the root of the cur rent f unction near est to the tr acing cursor . If no root is found, b ut only an extr emum, then the r esult is labeled Extremum instead o f Root . T he cur sor is move d to t he root val ue on th e x -axis and the re sulting x -v alue i[...]

  • Seite 129

    Advanced Graph ing app 125 7 Adv anced Graphing app The A dvanced Gr aphing app enables yo u to define and explor e the gr aphs of symboli c open sentences in x , y , both or neither . Y ou can plot conic secti ons, poly nomials in standard or gener al form , inequalities, and f unctions. T he follo wing are e xamples of the sor ts of open sentence[...]

  • Seite 130

    126 Advanced Graphin g app Getting started with the Advanced Graphing app The A dv anced Graphing app u ses the c ustomary app vi ew s: S ymbolic , P lot, and Numer ic descr ibed in chapter 5. F or a descr iption of the menu buttons available in this app , see: • “S ymboli c vie w: Summary of menu buttons ” on page 86 • “P lot vie w: Summ[...]

  • Seite 131

    Advanced Graph ing app 127 Open the app 1 . Open the Ad vanced Gra phing app: I Select Advanced Graphing The app opens in the Symbolic view. Define the open sentence 2. Define the open sentence: j n 2 > w 7 n 10 > + 3 j n 4 > w n 10 > + n 5 >w 10 < 0 E Note that displays the relations palette from which relational operators can be[...]

  • Seite 132

    128 Advanced Graphin g app Set up the plot Y ou can change the r ange of the x - and y -ax es and the spac ing of the interval marks along the ax es. 4. Display Plot Setup view: SP (Setup) Fo r t h i s ex a m p l e, y o u c a n leav e the plot settings at the ir defa ult values . If your settings do not mat ch those in the illustr ation at the righ[...]

  • Seite 133

    Advanced Graph ing app 129 8. Tap . The definition as you entered it in Symbolic view appears at the botto m of the sc reen. 9. Tap . The definition is now editable. 10. Change the < to = and tap . Notice that the graph changes to match the new definition. The definition in Symbolic view also changes. 11. Tap to drop the definition to the bottom[...]

  • Seite 134

    130 Advanced Graphin g app The tr acer does no t extend be yo nd the curr ent P lot v iew w indow . The table belo w contains brief des cripti ons of each option . Tra c e o pt i o n D e s c r i p t i o n Off T ur ns trac ing off so that you can mo ve the c ursor fr eely in P lot v iew Inside Cons trains the tr acer to mov e within a r egion w here[...]

  • Seite 135

    Advanced Graph ing app 131 Numeric view The Numer ic vi ew of mo st HP apps is designed to e xplore 2 - var iable r elations using n umeri cal tables. Becau se the Adv anced Gra phing app expands this design to r elations that are not necessar ily func tions, the Numer ic v iew of this app becomes significantly differ ent, though its purpose is sti[...]

  • Seite 136

    132 Advanced Graphin g app Numeric Setup Although y ou can configur e the X- and Y -values show n in Numeri c vie w by enter ing values and z o oming in or out , y ou can also dir ectl y set the values show n using Numeri c setup. 1 5 . Displa y the Numeri c Setup view : S M (Setup) Y ou can set the starting v alue and step va lue (that is, the inc[...]

  • Seite 137

    Advanced Graph ing app 133 Trace Edge 16. Tap and select Edge . No w the table show s (if possible) pairs of value s that mak e the relation tr ue. By de fault , the fir st column is the Y -column and ther e are multiple X-columns in case more than one X-v al ue can be pair ed w ith the Y -value to mak e the relation tr ue. T ap to make the f irst [...]

  • Seite 138

    134 Advanced Graphin g app Plot Gallery A gallery of interesting gr aphs—and the equations that gener ated them—is pro v ided with the calc ulator . Y ou open t he galler y from Pl o t vi ew : 1 . W ith Plot v ie w open, pres s the Menu key . Note that y ou pr ess the Menu k e y here , not the Menu touch button on th e scr een. 2. From the menu[...]

  • Seite 139

    Geometry 135 8 Geo met ry The Geometry app enables yo u to draw and e xplore geometr ic constru ctions . A geometri c constructi on can be composed of any n umber of geometri c objects , such as points , lines, pol ygons , curves , tangents, and so o n. Y ou can take measur ements (such as ar ea s and distances) , manipulate objects , and note how [...]

  • Seite 140

    136 Geometry Preparation 1. P r e s s SH . 2. O n t h e Home Setting scr een set the number for mat to Fixed and the number of dec imal places to 3 . Open the app and plot the graph 3. P re s s I and selec t Geometry . If there are objects showing that you don’t need, p ress SJ and confirm your intention b y tapping . 4. Se le c t th e t yp e of [...]

  • Seite 141

    Geometry 137 Add a tangent 8. W e w ill now add a tange nt to the curv e, making poin t B the point of ta ngency: > More > Tangent 9 . T ap o n point B , press E and then pre ss J . A tangent is drawn through point B . (Depending on where you placed point B , your illustration might be different from the one at the rig ht.) We’ll now make t[...]

  • Seite 142

    138 Geometry finger completes the mo ve and dese lects the point . In this case t h e re i s no way t o c a n c e l t h e m ove un l e s s yo u h av e a ct i va t e d k ey board shortc uts, whi ch pr ov ides y ou with an undo functi on. (Shortcuts ar e descr ibed on page 1 4 7.) Create a derivative point The der iv ativ e of a graph at an y point i[...]

  • Seite 143

    Geometry 139 point B (referred to as GB in Symbolic view) and the later is to constrained to the slope of C (referred to as GC in Symbolic view). 19 . Yo u s h o u l d h a v e point() on the entry line. Between the parentheses , add: abscissa(GB),slope(GC) Y ou can enter the commands by hand , or choose them f rom one of two T oolbox menu s: App &g[...]

  • Seite 144

    140 Geometry tangent changes in Plot view, the value of the slope is automatically updated in Numeric view. 2 6 . With the new calc ulation highli ghted in Numeri c vie w , tap . Selecting a calculation in Numeric view means that it will also be displayed in Plot vi ew. 27 . P r e s s P to r eturn to Pl o t vi ew . Notice the calculation that you h[...]

  • Seite 145

    Geometry 141 Trace the derivative Po i n t D is t he point whos e ordinate value matches the der iv ativ e of the curv e at point B . It is easi er to see how the deri vati ve c hanges by looking at a plot of it rather than compar ing subsequent calc ulations . W e can do that by tr acing p oint D as it mov es in re sponse to mov ements of poin t B[...]

  • Seite 146

    142 Geometry Creating or s electing an objec t alwa ys in vol ves at least tw o steps: tap and pr ess E . Only b y pressing E do y ou confirm y our intenti on to cr eate the point or select an objec t. When cr eating a point , you can tap on the sc reen and then us e the cur sor k ey s to acc uratel y position the point bef or e pre ssing E . Note [...]

  • Seite 147

    Geometry 143 four v ert ice s are named D , E , G, and H . Mor eov er , eac h of the si x segments is also giv en a name: I, J , K, L , M, and N. The se names are not dis playe d in Plot v ie w , but y ou can see t h e m i f y o u g o t o S y m b o l i c v i e w ( s e e “ S y m b o l i c v i e w i n d e t a i l ” on page 1 48). Naming objec ts [...]

  • Seite 148

    144 Geometry Coloring objects An obj ect is colored black b y default (and cy an when it is selec ted) . If you w ant to change the color of an ob ject: 1 . S elect the obj ect wh ose color y ou w ant to c hange. 2. P r e s s Z . 3. S e l e c t Change Color . The Choo se C olor palette appears. 4. Select the colo r you w ant . 5. P re s s J . Filli[...]

  • Seite 149

    Geometry 145 Clearing an object T o c lear one objec t, se lect it and tap C . N o t e t h a t a n o b j e c t is distinct fr om the points y ou enter ed to cr eate it. Th us deleting the obj ect does not delete the po ints that define it . Tho se points r emain in the app . For e xam ple, if y ou select a cir cle and pr ess C , the cir c le is del[...]

  • Seite 150

    146 Geometry Plot view: buttons and keys Plot Setup view The P lot Set up v iew enables y ou to conf igur e the appear ance of P lot v ie w and to take adv antage of k eyb oard shortcuts . But ton or k ey Pur pose V ar ious scaling options . See “Zoom ” on page 8 8. T ools f or cr eating var ious types o f points. See “P oints ” on page 1 5[...]

  • Seite 151

    Geometry 147 The f ields and options are: • X Rng : T w o fields for enter ing th e minimum and max imum x-v alues, ther eby gi ving the defa ult hori z ontal ra nge. As w ell as c hanging this range on the Geomet r y Pl ot S e t up scr een, yo u can change it by panning and z ooming. • Y Rng : T w o fields f or entering the minimum and max imu[...]

  • Seite 152

    148 Geometry Symbolic view in detail Ev er y object—whether a point , segment, line , poly gon, or c ur ve—is gi ven a name, and its de finition is display ed in S ymboli c vie w ( Y ). The name is the name for it y ou see in P lot v iew , but pr efi xed b y “G” . Th us a point labeled A in P lot vi ew is giv en the name G A in S ymbolic v [...]

  • Seite 153

    Geometry 149 Note Calculations referencing geomet ry variables can be made in the CAS or in the Numeric view of the Geometry app (explained below on page 150). Y ou can change the definiti on of an object b y selecting it , tapping , and altering one or mor e of its def ining paramet ers. T he object is modif ied accordingl y in Plot v ie w . F or [...]

  • Seite 154

    150 Geometry Deleting an object As w ell as deleting an object in P lot v ie w (see page 1 45) you can delete an object in S ymboli c vie w . 1 . H ighlight the def inition of the ob ject y ou want t o delete. 2 . T ap or pr ess C . T o delet e all objects , press SJ . Symbolic Setup view The S y mbolic vi ew of the Geometry app is common w ith m a[...]

  • Seite 155

    Geometry 151 You could have entered the comma nd and object name manually, that is, without choosing them from menus. If you enter object names manu ally, remember that the name of the object in Plot view must be given a “G” prefix if it is used in any calculation. T hus the circle named C in Plot view must be referred to as GC in Numeric view [...]

  • Seite 156

    152 Geometry grouped accor ding to their type , with each gr oup gi ven its own m e n u. If yo u are building a calculati on, y ou can select an obje ct fr om one of the se var iables me nus. T he name of the se lected obj ect is placed at the insertion po int on the entry line. Getting object properties As we ll as employ ing functi ons to make ca[...]

  • Seite 157

    Geometry 153 Geometric objects The geome tric ob jects disc uss ed in this section ar e thos e that can be cr eated in Plot v ie w . Objects can also be cr eated in S ymbolic view—more , in fact, than in Plot vi ew—but these are discu ssed in “Geometr y functions and commands ” on page 1 6 5. I n P l o t v i e w, y o u c h o o s e a d r a w[...]

  • Seite 158

    154 Geometry placed on a c irc le will r emain on that c ir cle r egardles s of how y ou mov e the point . If ther e is no object w her e you t ap, a po int is cr eated if you then press E . Midpoint T ap wher e you w ant one point to be and press E . T ap wher e you w ant the other point to be and press E . A point is au tomaticall y creat ed midw[...]

  • Seite 159

    Geometry 155 Erase Trace Eras es all trace lines , but leav es the definitio n of the trace points in S ymbo lic vie w . While a T r ace definition is s till in S ymboli c vie w , if you mo ve the point again , a new tr ace line is cr eate d. Center T ap a cir cle and pr ess E . A point is cr eated at the cente r of the c irc le. Element 0 .. 1 Ele[...]

  • Seite 160

    156 Geometry Line Segment T ap where y ou want one endp oint to be and p res s E . T ap w here y ou want the other endpoint to be and pres s E . A segment is dra wn between the tw o end p oints . Key b o a rd s h o r t cu t : r Ray T ap w here y ou want the endpoint to be and pr ess E . T ap a point that y ou want the ray to pas s through and pr es[...]

  • Seite 161

    Geometry 157 Parallel T ap on a point ( P ) and pr ess E . T ap on a line ( L ) and pr ess E . A ne w line is dra w parallel t o L and passing thr ough P . Perpendicular T ap on a point ( P ) and pr ess E . T ap on a line ( L ) and pr ess E . A ne w line is dra w perpendic ular to L and passing thr ough P . Tangent Ta p o n a cu r ve ( C ) and pres[...]

  • Seite 162

    158 Geometry fo ur vertices ar e automati cally calc ulated and the r egular hex agon is dr aw n. Special Eq. trian gle Pr oduces an eq uilateral tr iangle . T ap at one v ertex and pr ess E . T ap at another verte x and pr ess E . T he location o f the third v ertex is a utomaticall y calculated and the tri angle is dra wn . Square T ap at one ver[...]

  • Seite 163

    Geometry 159 Special Circumcircle A circu m ci rcl e i s th e ci rcl e that passes thr ough eac h of the tri angle’s thr ee vertic es, thus enc losing the tri angle. T ap at each v ertex of the tri angle, pr essing E after e ach tap . Incircle An incir cle is a c irc le that is tangent to each of a pol ygon ’s sides . The HP Prime can dr aw an [...]

  • Seite 164

    160 Geometry Locus T ak es two points as its argumen ts: the firs t is the point w hose possible locati ons form the loc us; the second is a po int on an objec t. T his second po int dri v es the firs t through its loc us as the second mo ves on its objec t. In the e xam ple at the r ight , c ir cle C has be en dr aw n and point D is a po int place[...]

  • Seite 165

    Geometry 161 Geometric transformations The Tr a n s f o r m menu—d isplay ed by tapping —pr ov ides nume rou s tools for y ou to perfo rm tr ansformati ons on geometr ic obj ects in P lot vi ew . Y ou can also def ine tr ansformati ons in S ymboli c vie w Translation A tr anslation is a transf ormati on of a set of po ints that mo ves each po i[...]

  • Seite 166

    162 Geometry Reflection A reflecti on is a tr ansformati on whi ch maps an object or set of point s onto its mirr or image, w here the mir ror is either a po int or a line. A reflec tion thr ough a point is sometimes called a half-t urn . In either case , each point on the mir ror image is the same distance fr om the mirr or as the corr esponding p[...]

  • Seite 167

    Geometry 163 Rotation A r otation is a mapping that rotates each point b y a fix ed angle ar ound a cent er point . The angle is de fined using the angle() command , wi th the verte x of the angle as the fir st argumen t. Suppose you w ish to rotate the squar e (GC) arou nd point K (GK) thr ough ∡ LKM in the figu re to th e righ t. 1 . Press Y an[...]

  • Seite 168

    164 Geometry lengths of the co rre sponding segments . If k=1 , then the lengths CA and CA ’ are r ecipr ocals. S u p p o s e yo u w i s h t o fi n d t h e i n v e r s i o n o f a c i r c l e ( G C ) w i t h a point on the c ir cle (GD) as center . 1 . T ap and selec t More > Inversion . 2 . T ap the po int that is to be the ce nter (GD) of th[...]

  • Seite 169

    Geometry 165 Geometry functions and commands The lis t of geometry-specif ic functi ons and commands in this section co ve rs those that can be f ound by ta pping in both S ymbo lic and Numer ic v ie w and those that ar e only av ailable fr om the Catlg men u . The sample sy ntax pro vided has been simpli fied . Geometric objects ar e re ferr ed to[...]

  • Seite 170

    166 Geometry center R eturns the center of a c ir cle . center(circle) Example: center(circle(x 2 +y 2 –x–y)) giv es point(1/2,1/2) division_point F or two points A and B, and a numeri cal factor k , r eturn s a point C suc h that C-B= k *(C-A). division_point(point1, point2, realk) Example: division_point(0, 6+6*i,4) retur ns point (8 , 8) ele[...]

  • Seite 171

    Geometry 167 isobarycenter Retur ns the hy pothetical cent er of mass of a set o f points. W orks lik e barycenter but assume s that all poin ts have eq ual weig h t. isobarycenter(point1, point2, …,pointn) Exam ple: isobarycenter(–3,3,3* √ 3*i) ret u rn s poin t(3* √ 3*i/3) , whi ch is equi valent to (0, √ 3). midpoint Retur ns the midpo[...]

  • Seite 172

    168 Geometry point2d Randoml y re-distributes a set of points suc h that, fo r each point , x ∈ [–5,5] and y ∈ [–5 ,5]. An y further move ment of one of the po ints will r andomly r e -distribute all o f the points w ith each tap or directi on ke y press . point2d(point1, point2, …, pointn) trace Begins trac ing of a specifi ed point. tra[...]

  • Seite 173

    Geometry 169 bisector Gi ven thr ee points , cr eates the bisec tor of the angle def ined by the thr ee poin ts whos e verte x is at the first po int. T he angle does not ha ve to be dra wn in the P lot vi ew . bisector(point1, point2, point3) Exam ples: bisector(A,B,C) dra ws the b isector of ∡ BAC. bisector(0,-4i,4) dr aw s the li ne gi ven b y[...]

  • Seite 174

    170 Geometry median_line Gi ven thr ee poin ts that define a tr iangle , cr eates the median of the tr iangle that pas ses thr ough the firs t point and co ntains the midpoi nt of the segment def ined by the other tw o points. median_line(point1, point2, point3) Example: median_line(0, 8i, 4) dr aw s the line who se equati on is y=2x; that is, the [...]

  • Seite 175

    Geometry 171 perpendicular Dra ws a line thr ough a giv en point that is perpendic ular to a gi ven line . The line may be de fined b y its name, tw o points, or an expr essi on in x and y . perpendicular(point, line) or perpendicular(point1, point2, point3) Exam ples: perpendicular(GA, GD) dr aw s a line per pendic ular to line D through po int A.[...]

  • Seite 176

    172 Geometry Polygon equilateral_triangle Dr aw s an equilater al tria ngle defined b y one of its side s; that is, b y two consec utiv e vertices . The third po int is calculated automaticall y , but is not def ined symboli cally . If a lo wer case va riabl e is added as a thir d argume nt, then the coo rdinate s of the thir d point are s tored in[...]

  • Seite 177

    Geometry 173 isosceles_triangle Dra ws an isosceles tr iangle defined by t wo of its v ertices and an angle. T he ve r tices def ine one of the tw o sides equal in length and the angle def ines the angle betw een the two sides of equal length . Lik e equilateral_triangle , y ou hav e the option o f storing the coo rdinates o f the third poin t into[...]

  • Seite 178

    174 Geometry polygon Dr aw s a poly gon fr om a set of v ertices . polygon(point1, point2, …, pointn) Example: polygon(GA, GB, GD) dr aw s Δ ABD quadrilateral Dra ws a quadrilater al fr om a set of fo ur points. quadrilateral(point1, point2, point3, point4) Example: quadrilateral(GA, GB, GC, GD) dr aws quadr ilateral ABCD . rectangle Dra ws a r [...]

  • Seite 179

    Geometry 175 Exam ple rhombus(GA, GB, angle(GC, GD, GE)) dr a ws a rhombus on segment AB such that th e angle at vertex A has the same measure a s ∡ DCE . right_triangle Dr aws a r ight tr iangle gi ven two po ints and a scale f actor . One leg of the r ight tr iangle is def ined by the two points , the verte x of the r ight angle is at the fir s[...]

  • Seite 180

    176 Geometry Curve function Dra ws the plot o f a function , giv en an expr ession in the independent var iable x. Note the use of lo w ercase x . plotfunc(Expr) Example: Example: plotfunc(3*sin( x) ) dr aws the gr aph of y =3*sin( x ). circle Dra ws a c ircle , giv en th e endpoints of the diameter , or a center and r adius, or an equati on in x a[...]

  • Seite 181

    Geometry 177 ellipse Dra ws an ellipse , giv en the foc i and either a point on the ellipse or a scalar that is one half the constan t sum of the distances f rom a poin t on the ellipse to each o f the foc i. ellipse(point1, point2, point3) or ellipse(point1, point2, realk) Exam ples: ellipse(GA, GB, GC) dr aw s the ellipse w hose foc i ar e points[...]

  • Seite 182

    178 Geometry incircle Dr aws the incir cle of a tri angle, the c ir cle tangent t o all three sides o f the triangle . incircle(point1, point2, point3) Example: incircle(GA, GB, GC) dr aw s the inc irc le of Δ ABC. locus Gi ven a fir st point and a second point that is an element of (a point o n) a geometri c object , dr aw s the locus of the fir [...]

  • Seite 183

    Geometry 179 inversion Dr aws the in versi on of a point , w ith res pect to another po int, by a scale f actor . inversion(point1, realk, point2) Exam ple: inversion(GA, 3, GB) dr aw s point C on line AB suc h that AB*A C=3 . In this case , point A is the cente r of the inv ersi on and the scale fac tor is 3 . P oint B is the point whos e in ver s[...]

  • Seite 184

    180 Geometry rotation Rotates a geometric object , about a giv en center point, thr ough a giv en angle . rotate(point, angle, object) Example: rotate(GA, angle(GB, GC, GD),GK) r otates the geometri c object labeled K, abou t point A, through an angle equal to ∡ CBD . similarity Dilates and rotates a geometric object about the same center point .[...]

  • Seite 185

    Geometry 181 Measure Plot angleat Used in S ymbolic v iew . Gi ven the three points of an angle and a fo ur th point as a location, display s the measure of the angle def ined by the f irst thr ee points . The measur e is displa yed , wi th a label, at the locati on in the P lot vi ew gi ven b y the fo ur th point . T he first po int is the v ertex[...]

  • Seite 186

    182 Geometry distanceatraw W orks the same as distanceat, but w ithout the label. perimeterat Used in S ymboli c vi ew . Display s the perimeter of a pol ygon or c irc le . The measur e is display ed, w ith a label , at the gi ven po i nt i n Pl ot vi ew . perimeterat(polygon, point) or perimeterat(circle, point) Example: perimeterat(circle(x^2+y^2[...]

  • Seite 187

    Geometry 183 affix Retur ns the coordinat es of a point or both the x - and y -l engths of a ve ctor as a comple x number . affix(point) or affix(vector) Exam ple: if G A is a point at ( 1 , –2) , then affix(GA) retu rns 1–2i . angle Returns the measure of a directed angle. The first point is taken as the vertex of the angle as the ne xt two po[...]

  • Seite 188

    184 Geometry Examples: If G A is defined to be the unit c irc le, then area(GA) ret u rn s  . area(4-x^2/4, x=-4..4) ret ur n s 1 4. 666 … coordinates Gi ven a v ector o f points, r eturns a matr ix co ntaining the x - and y-coor dinates of tho se points . Eac h ro w of the matr i x defines one poin t; the first colu mn giv es the x-coo rdinat[...]

  • Seite 189

    Geometry 185 equation Retur ns the Cartesian eq uation of a c ur ve in x and y , or the Cartesian coor dinates of a point . equation(curve) or equation(point) Exam ple: If G A is the point at (0, 0), GB is the point at ( 1 , 0) , and GC is def ined as cir cle(G A, GB-G A), then equation(GC) ret u r ns x 2 + y 2 = 1 . extract_measure Retur ns the de[...]

  • Seite 190

    186 Geometry If G A is the point at (0, 0), GB is the point at ( 1 , 0) , and GC is def ined as square(G A, GB-G A ) , then perimeter(GC) re t u rn s 4 . radius R eturns the r adius of a c irc le. radius(circle) Example: If G A is the point at (0, 0), GB is the point at ( 1 , 0) , and GC is def ined as c irc le(GA, GB-G A ) , then radius(GC) ret u [...]

  • Seite 191

    Geometry 187 is_element T est s if a poin t is on a geometr ic ob ject . R eturns 1 if it is and 0 otherw ise is_element(point, object) Exam ple: is_element(point , circle(0,1)) ret u rn s 1 . is_equilateral T ak es three points and te sts whether o r not they are v ertices of a single equilater al tri angle. R eturns 1 if the y are and 0 otherwise[...]

  • Seite 192

    188 Geometry is_parallel T ests w hether or not two lines ar e parallel . Retur ns 1 if they are and 0 otherw ise. is_parallel(line1, line2) Example: is_parallel(line(2x+3y=7),line(2x+ 3y=9) re t u rn s 1 . is_parallelogram T ests w hether or no t a set of fo ur points ar e vertices o f a parallelogr am . Returns 0 if the y are no t. If the y are ,[...]

  • Seite 193

    Geometry 189 is_square T ests w hether or not a set o f four points ar e v ertices of a squar e. R eturns 1 if the y ar e and 0 otherwise . is_square(point1, point2, point3, point4) Exam ple: is_square(point(0,0), point(4,2), point(2,6), point(-2,4)) ret u r n s 1 . Other Geometry functions The f ollow ing func tions ar e not av ailable fr om a men[...]

  • Seite 194

    190 Geometry Example: harmonic_division(point(0, 0), point (3, 0), point(4, 0), p) ret u rn s point(12/5, 0) and stor es it in the var iable p is_harmonic T ests w hether or not 4 points ar e in a harmonic di visi on or ra nge. Re turns 1 if they ar e or 0 otherwise . is_harmonic(po int1 , point2 , point3, point4) is_harmonic(point1, point2, point3[...]

  • Seite 195

    Geometry 191 LineHorz Dra ws the horiz ontal line y=a. LineHorz(a) Exam ple: LineHorz(-2) dra ws the hor iz ontal line who se equation is y = –2 LineVert Draws th e ver t ic al li n e x = a. LineVert(a) Exam ple: LineVert( – 3) dra ws the v ertical line who se equatio n is x = –3 open_polygon Connec ts a set of poin ts with line seg ments, in[...]

  • Seite 196

    192 Geometry pole R eturns the pole of the gi ven line w ith re spect to the gi ven ci rcl e . pole(circle, line) Example: pole(circle(x^2+y^2=1), line(x=3)) re t u rn s point(1/3, 0) powerpc Gi ven a c irc le and a point , retur ns the difference betw een the squar e of the distance f rom the poin t to the cir cle ’ ’s center and the squar e o[...]

  • Seite 197

    Geometry 193 single_inter Retur ns the inters ection of curv e1 and curve2 that is closes t to point . single_inter(curve1, curve2, point) Exam ple: single_inter(line(y=x),circle(x^2+y^2=1) , point(1,1)) ret u rn s point(((1+i)* √ 2)/2) vector Creates a vector fr om point1 to point2 . With one point as argume nt, the ori gin is used as the tail o[...]

  • Seite 198

    194 Geometry[...]

  • Seite 199

    Spreadsheet 195 9 Spre adsh eet The S preadsheet app pro vi des a grid of cells for y ou to enter content (such a s numbers, te xt, e xpressions , and so on) and to perform certain oper ations on wha t yo u e nt e r . T o open the Spr eadsheet app , pre ss I and selec t Spreadsheet . Y ou can cr eate an y number of cu stomi zed spr eadsheets, each [...]

  • Seite 200

    196 Spreadsheet 3. E n t e r PRICE and tap . Y ou have named the entire firs t c o lu mn PRICE . 4. Select column B . E ither tap on B or us e the cur sor k ey s to highligh t the B cell. 5 . Enter a f ormula fo r your commissi on (being 1 0% o f the pr ice of each it em sold): S. PRIC E s 0. 1 E Because you enter ed the for mula in the heading of [...]

  • Seite 201

    Spreadsheet 197 1 1 . T o delete the dummy v alues, selec t cell A1 , tap , pres s until all the dummy value s are se lected, and the n pres s C . 1 2 . Select cell C1 . 1 3. Enter a la bel for y our taking s: S.AN TA K I N G S E Notice that t ext str ings, but not name s, need to be enc losed w ithin quotation marks . 1 4. Select cell D1 . 1 5 .[...]

  • Seite 202

    198 Spreadsheet 2 3 . Enter a label for y our fi xed costs: S.AN COS TS E 2 4. In cell D5 , enter 1 00. This is what y ou hav e to pay the landow ner for r enting the space for y our stall. 2 5. Enter the label PROFIT in cell C7 . 2 6 . I n cell D7 , enter a formula to calc ulate y our pro fit: S. D3 w D5 E Y ou could als o hav e named D3 and D5 ?[...]

  • Seite 203

    Spreadsheet 199 3 2 . T ap and select Color . 3 3 . Choose a color f or the contents o f the selected cells . 34. T ap and select Fill . 3 5 . Choose a color f or the back gr ound of the selec ted cells. The mo st important cells in the s preadsheet w ill no w stand out from the rest. The spr eadsheet is complete, but y ou may want to c heck all th[...]

  • Seite 204

    200 Spreadsheet Cell references Y ou can re fer to the value o f a cell in for mulas as if it w ere a var iable . A cell is re fer enced by its column and r ow coor dinates, and references can be absolute or relative . An absol ute r efe re nce is wr itte n as $C$R ( wh ere C is the column number and R the r ow number ) . Thu s $B$7 is an abso lute[...]

  • Seite 205

    Spreadsheet 201 The f ollo wing is a mor e comple x ex ample in vol ving the naming of an entir e column. 1 . S elect cell A (that is the header cell f or column A). 2. E n t e r COST and tap . 3 . Selec t cell B (that is the header cell f or column B) . 4. Enter S. COST*0.33 and tap . 5 . Enter so me values in column A and obse r ve the calc ulate[...]

  • Seite 206

    202 Spreadsheet underl ying fo rmula that generates the v alue, mo ve y our cursor to the cell . The entry line show s a for mula if ther e is one. A single for mula can add conte nt to ev ery cell in a column or r ow . F or ex ample, mo ve t o C (the heading cell for column C), enter S. SIN(Row) and press E . E ach cell in the column is populated [...]

  • Seite 207

    Spreadsheet 203 The column is f illed with the dat a from the s tatistic s app, starting w ith the cell selected at step 1 . An y data in that column will be o verwr itten by the data being imported. Y ou can also export data from the Spr eadsheet app to a statisti cs app. See “Enter ing and editing statistical data” on page 2 1 5 for the gener[...]

  • Seite 208

    204 Spreadsheet The re ar e additio nal spre adsheet functi ons that y ou can use (mostl y related to f inanc e and statistics calc ulations). See “Spr eadsheet a pp func tions ” on pa ge 34 9 . Copy and paste T o cop y one or mor e cells, selec t them and pre ss SV (Cop y). Mo ve to the desir ed location and pr ess SZ (P aste). Y ou can choose[...]

  • Seite 209

    Spreadsheet 205 Referencing variables An y var iable can be inserted in a cell. This inc ludes Home var iables, App v ariables , CAS var iables and user v ariables . V a ri ab l es c a n b e refe re n ce d o r en t ere d. For exa m pl e, i f yo u hav e assigned 1 0 to P in Home vie w , you co uld enter =P*5 in a spreadsheet cell, pr ess E and get 5[...]

  • Seite 210

    206 Spreadsheet Using the CAS in spreadsheet calculations Y ou can for ce a spr eadsheet calc ulation t o be perfor med b y the CAS , thereb y ensuring that r esults ar e sy mbolic (and thus e xact). F or ex ample , the for mula = √ Row in r ow 5 gi ves 2.2360679775 if not calc ulated by the CA S, and √ 5 if it is. Y ou choose the calculation e[...]

  • Seite 211

    Spreadsheet 207 Buttons and keys Button or ke y P urpose Ac tivat es the entry line for y ou to edit the obj ect in the select ed cell. (Onl y visible if the selec ted cell has content .) Con verts the te xt y ou hav e enter ed on the entry line to a name . (Only v isi ble w hen the entr y line is acti ve .) / A toggle button that is onl y v isible[...]

  • Seite 212

    208 Spreadsheet Formatting options The f ormatting opti ons appear when y ou tap . The y apply to w hatever is c urrentl y select ed: a cell, block , column, r ow , or the entir e spre adsheet. The o p tio n s a re : • Nam e : display s an input for m for y ou to gi ve a name to w hatev er is selected • Numb er F ormat : Auto , S tandard , F i [...]

  • Seite 213

    Spreadsheet 209 Format Parameters E ach for mat at tribute is r epresented b y a parameter that can be refere nc ed i n a fo rmu la. For exam pl e, =D1(1) retur ns the fo rmula in cell D1 (or no thing if D1 has no for mula). The attribut es that can be retr iev ed in a for mulas b y ref ere ncing its assoc iated parameter ar e listed belo w . As w [...]

  • Seite 214

    210 Spreadsheet r e l e v a n t c e l l . F o r e x a m p l e , w h e r e v e r i t i s p l a c e d g5(1):=6543 enters 6543 in cell g5 . An y pre viou s content in g5 is replaced . Similarl y , B3(5 ) :=2 for ces the contents of B3 to be display ed in medium fon t siz e . Spreadsheet functions As w ell as the func tions on the Math , CAS and Catlg [...]

  • Seite 215

    Statistics 1Var app 211 10 Statistics 1V ar app The S tatistics 1V ar app can stor e up to ten data sets at one time . It can per for m one -vari able statistical anal ysis o f one or mor e sets of data. The S tatistics 1V ar app star ts w ith the Numeric v iew which is used to enter data. The Sy mbolic vie w is used to specify whi ch columns conta[...]

  • Seite 216

    212 Statistics 1Var app 2 . Enter the measur ement data in column D1 : 16 0 E 16 5 E 17 0 E 17 5 E 18 0 E 3 . F ind the mean of the sample. T ap to see the statis tics calc ulated fr om the sample data in D1 . Th e m ea n (x _ )i s 1 7 0 . Ther e are more statisti cs than can be display ed on one scr een. Th us you may need to scr oll to see the st[...]

  • Seite 217

    Statistics 1Var app 213 re presen t the data in Plot v ie w: Histogr am , Box and Whisk er , Normal Proba bility , L ine, Bar , or P ar eto . Symbolic view: menu items The menu items you can tap on in S y mbolic vi ew ar e: T o con tinue our e xample , suppos e that the heights of the r est of the students in the cla ss are measur ed and that each [...]

  • Seite 218

    214 Statistics 1Var app 7 . Ent er the name of the column that yo u will contain the fr equenc ies (in this exam p le, D2 ): 2 8 . I f y o u w a n t t o c h o o s e a color for the gr aph of the data in P lot vi ew , see “Choose a color fo r plots” on page 8 5. 9 . If yo u have mor e than one analy sis defined in S ymboli c vi ew , deselect an [...]

  • Seite 219

    Statistics 1Var app 215 1 3. Configur e a histogr am plot for the data. S P ( ( Setup ) Enter parameters appropriate to y our data. Th ose show n at the r ight w ill ensure that all the data in this particular ex ample are displa yed in Plot v iew . 14 . P l o t a h i s t o g r a m o f the data . P Pres s > and < to mo ve the tr acer and see [...]

  • Seite 220

    216 Statistics 1Var app 1V ar app open, r eturn to Home v ie w and enter Spreadsheet.A1:A10 D7 E . Whic hev er method y ou use, the dat a you enter is automati cally sa ved . Y ou can lea ve this app and come b a ck t o i t l a t e r. Y o u wi l l fi n d t h a t t h e d a t a yo u l a s t e n t e r e d is still a vailable . After entering the da ta[...]

  • Seite 221

    Statistics 1Var app 217 Delete data • T o delete a data item, highli ght it and pres s C . The values be low the deleted cell w ill scr oll up one r o w . • T o delete a column of data , highlight an entry in that column and pres s SJ (Clear). Selec t the column and tap . • T o delete all data in ev er y column, pr ess SJ (Clear), select All [...]

  • Seite 222

    218 Statistics 1Var app y ou want to sort by income , then y ou make C2 the independent column and C1 the depend ent column. 4. Spec ify an y fr equency dat a column. 5 . T ap . The independent column is sorted as spec ified and any o ther columns are sorted to match the independent column . T o sort just o ne column, c hoose None for th e Dependen[...]

  • Seite 223

    Statistics 1Var app 219 Plotting Yo u c a n p l o t : • Histo grams • Box -and- Whisker plots • Normal Probab ilit y plots • Lin e p l o ts • Bar gra phs • Pa r e t o c h a r t s Once y ou have entered y our data and def ined your data set , you can plot y our data . Y ou can plot up to f iv e box - and-whisk er plots at a time; how ev [...]

  • Seite 224

    220 Statistics 1Var app that bin is 6 . The data set is def ined by H3 in S ymboli c v iew . Y ou can see inf ormation abo ut other bins b y pres sing > or < . Box-and-Whisker plot The l ef t wh is ker m a rks the minimum data v alue. The bo x mar ks the firs t quartile , the median , and the third q uartile. The rig ht wh is ker ma rk s the [...]

  • Seite 225

    Statistics 1Var app 221 Pareto chart A par eto chart places the data in descending or der and displa ys ea ch w ith its perce ntage of the who l e. Setting up the plot (Plot Setup view) The Pl ot S et up view ( SP ) enables y ou to s pecify many of the same plotting parameters as other app s (such as X Rng and Y Rng ). Ther e are tw o settings uniq[...]

  • Seite 226

    222 Statistics 1Var app Plot view: menu items The men u items you can tap on in P lot vi ew ar e: But ton Purpose Display s the Z oom menu . T urns tr ace mode on or off . See “Z oom ” on page 1 00.) Display s the def inition of the c urr ent statistical plot . Sho ws or hides the menu .[...]

  • Seite 227

    Statistics 2Var app 223 11 Statistics 2V ar app The S tatistics 2V ar app can stor e up to ten data sets at one time. It can perf orm two -var iable statistical anal ysis of one or mor e sets of data. The S tatistics 2V ar app star ts w ith the Numeric v iew which is used to enter data. The Sy mbolic vie w is used to specify whi ch columns contain [...]

  • Seite 228

    224 Statistics 2Var app Open the Statistics 2Var app 1 . Open the Statisti cs 2V ar app: I Select Statistics 2Var . Enter data 2 . Enter the advertising minutes d ata in column C1 : 2 E 1 E 3 E 5 E 5 E 4 E 3. E n t e r t h e re s u l t i n g sales data in column C2: 14 0 0 E 92 0 E 11 0 0 E 2265 E 2890 E 2 200 E Choose data columns and fit In S ymb[...]

  • Seite 229

    Statistics 2Var app 225 5. S e l e c t a fi t : Fro m t h e Ty p e 1 fi eld select a fit . In this ex ample , select Linear . 6. I f you w an t t o choo se a color for the gr aph of the data in P lot vie w , see “Choo se a color for plo ts” on page 8 5. 7 . If y ou hav e mor e than one analy sis defined in S ymbolic v ie w , deselect an y analy[...]

  • Seite 230

    226 Statistics 2Var app 1 0. Find the mean sales () . The mean sales , , is appro x imately $1 , 7 9 6 . Pres s to re turn to Numer ic vi ew . Setup plot 1 1 . Change the plotting range to ensur e that all the data points ar e plotted (and to select a differ ent data -point indicator , if you w ish) . SP (Setup) Q 1 E 6 E Q 10 0 0 E 3 200 E 5 00 [...]

  • Seite 231

    Statistics 2Var app 227 Display the equation 1 3. Return to the S y mbolic vi ew . Y Note the expressi on in the Fit1 fie l d. I t sho ws that the slope ( m ) of th e regression line is 4 2 5 .8 7 5 and the y -inter cept ( b ) is 37 6 . 2 5 . Predict values L et’s now predic t the sales figur e if adv er tising w ere to go up to 6 minutes. 1 4. R[...]

  • Seite 232

    228 Statistics 2Var app The cu rsor jumps from w hatever data point it w as on to the regr ession c ur ve . 1 6. T ap on the regr ession line near x = 6 (near the r ight edge of th e display) . Then pr ess > until x = 6 . If the x -value is not sho w n at the bottom left of the sc reen , tap . When y ou r each x = 6 , you w ill see that the PRED[...]

  • Seite 233

    Statistics 2Var app 229 Whic hev er method y ou use , the data yo u enter is automaticall y saved . Y o u can leav e this app and come back to it later . Y ou will find that the data you last enter ed is still av ailable. After entering the d ata, y ou must define da ta sets—and the wa y they ar e to be plotted—in S ymboli c vie w . Numeric vie[...]

  • Seite 234

    230 Statistics 2Var app Delete data • T o delete a data item, highli ght it and p r ess C . The value s below the delete d cell will sc roll u p one ro w . • T o delete a column of dat a, highligh t an entry in that column and press SJ (Clear). Se lect the column and tap . • T o delete all data in e very column, pr ess SJ (Clear), select All [...]

  • Seite 235

    Statistics 2Var app 231 Defining a regression model Y ou define a r egr ession model in S ymboli c vie w . Ther e are three w ays to do so: • Accept the def ault option to f it the data to a str aight line . • Choose a pr e -defined fit ty pe (logarithmic , exponential , and so on) . • Enter your o w n mathematical expres sion. The ex pressi [...]

  • Seite 236

    232 Statistics 2Var app To define your own fit 1. P r e s s Y to display the S ymbo lic vie w . 2 . F or the anal ysis y ou are in tere sted in (S1 thr ough S5), select the Ty p e fi el d. 3 . T ap the f ield again to see a menu of fit types . 4. Select User Defined fr om the menu . 5 . Select the corresponding Fit n fie ld. 6. Enter an expr ession[...]

  • Seite 237

    Statistics 2Var app 233 Computed statistics When y ou tap , three sets o f statistics become av ailable. B y default , the statisti cs inv olv ing both the independent and depend ent columns are sho wn . T ap to see the st atistics in vol ving j ust the independent column or to displa y the statisti cs der iv ed fr om the dependent column . T ap to[...]

  • Seite 238

    234 Statistics 2Var app The statisti cs display ed when you tap are: The statisti cs display ed when you tap are: Plotting statistical data Once you hav e entered your data, selected the da ta set to analyz e and spec ified y our fit model, y ou can plot y our data . Y ou can plo t up to fi ve scatter plots at a time . 1 . In S y mbolic vi ew , sel[...]

  • Seite 239

    Statistics 2Var app 235 necessary), the X Rng and Y Rng fields in Plot Setup view . ( SP ). 3. P re s s P . If the data set and regr ession line ar e not ideally positio ned, Pr ess V and se lect Autoscale . Autos cale can be relied upon to giv e a good star ting scale w hich can the n be adjusted lat er in the Plo t Setup view . Tracing a scatter [...]

  • Seite 240

    236 Statistics 2Var app pres s a fourth time , you w ill re turn to the S1 scatter plot . If you ar e confused as to w hat yo u are tr acing , just tap to see the definiti on of the object (scatter plo t or f it) curr entl y being tr aced. Plot view: menu items The men u items in Plot v iew ar e: Plot setup As with all the app s that pro vide a p[...]

  • Seite 241

    Statistics 2Var app 237 Predicting values PredX is a func tion that pr edicts a va lue for X giv en a val u e fo r Y . Lik ew ise , PredY is a functi on that predi cts a val u e fo r Y g iven a val u e fo r X . In both cases , the pr edictio n is based on the equati on that best fits the data according to the spec ifi ed fit type . Y ou can predi c[...]

  • Seite 242

    238 Statistics 2Var app Tip In cases where more than one fit curve is displayed, the PredX and PredY functions use the first act ive fit defined in Symbolic view. Troubleshooting a plot If y ou hav e problems plotting, c heck the f ollow ing: • The f it (that is, r egres sion model) that y ou int ended to select is the o ne selected . • Only th[...]

  • Seite 243

    Inference app 239 12 Infer ence app The Inf er ence app enable s you to calc ulate conf idence intervals and undertake h ypothesis tests bas ed on the Normal Z -distributi on or Student’s t -distribution . In addition t o the Infer ence app , the Math menu has a f ull set of pr obability functions based on v arious dis tributions (Chi-S quare , F[...]

  • Seite 244

    240 Inference app Symbolic view options The table belo w summari z es the options available in S ymbolic v ie w for the two inf erence methods: h ypothesis test and confi dence inter val . If y ou choo se one of the h ypothesis tes ts, y ou can choo se an alternativ e hypothesis to test against the null h ypothesis . F or each tes t, ther e ar e th[...]

  • Seite 245

    Inference app 241 Select the inference method 2. Hypothesis Test is the def ault infer ence method . If it is not select ed, tap on t he Method f ield and select it. 3. C h o o s e t h e t y p e o f test . In this case , select Z–Test: 1  fr o m th e Ty p e menu . 4. Select an alternati ve hy pothesis. In this case , select  from th e[...]

  • Seite 246

    242 Inference app The Nume ric v ie w is wher e yo u enter the sample statis tics and population parameters fo r the situation you ar e ex amining . The sa mple data supplie d here belo ng to the case in w hich a s tudent has generated 5 0 pseudo-random numbers o n his graphing calc ulator . If the algorithm is wo rking properl y , the mean would b[...]

  • Seite 247

    Inference app 243 Importing statistics The Inf ere nce app can c alc ulate confidence in ter vals and test h ypothese s based on data in the Statistics 1V ar and Statisti cs 2V ar apps. T he follo wing e xample illustr ates the proces s. A ser ies of si x e xperiment s giv es the follo w ing values as the boiling point of a liq uid: 8 2 . 5, 83 . 1[...]

  • Seite 248

    244 Inference app Calculate statistics 4. Calc ulate statistics: Th e s ta ti s ti cs calc ulated will no w be imported into the Infer ence app . 5 . T ap to close the statis tics w indow . Open the Inference app 6. Open the Infere nce app and clear the cu rre nt s e t t i ng s. I Select Inference SJ Select inference method and type 7 . T ap on the[...]

  • Seite 249

    Inference app 245 1 1. F r o m t h e App fie ld select the stat istics app that has the data y ou want to impo r t . 12 . I n t h e Column fiel d spec ify the column in that app wher e the data is stor ed. (D1 is the defa ult.) 13 . T a p . 14 . S p e c i f y a 9 0 % confi dence inter val in the C fie ld. Display results numerically 15 . D i s p l [...]

  • Seite 250

    246 Inference app The HP Pr ime h ypothesis tes ts use the Normal Z - distributi on or the Student’s t -distribution to calc ulate probab ilities. If y ou wish to use other distributi ons, please use the Home v ie w and the distributi ons found w ithin the Probab ilit y cate gory of th e Math menu. One-Sample Z-Test Menu name Z- T e s t : 1  O[...]

  • Seite 251

    Inference app 247 Results The r esults ar e: Two-Sample Z-Test Menu name Z- T e s t :  1 –  2 On the basis of two samples , each fr om a separate populatio n, this test meas ures the str ength of the e vi dence fo r a selected h y pothesis against the n ull hy pothesis. T he null h ypothe sis is that the means of the two populati ons are eq[...]

  • Seite 252

    248 Inference app Results The r esults ar e: One-Proportion Z-Test Menu name Z- T e s t :  On the basis of s tatistic s fro m a single sample , this test measur es the str ength of the ev idence f or a selected hy pothesis against the n ull hy pothesis. T he null h ypothesis is that the propo r tion of succes ses is an assumed value ,  [...]

  • Seite 253

    Inference app 249 Results The r esults ar e: Two-Proportion Z-Test Menu name Z- T e s t :  1 –  2 On the basis of statisti cs from tw o samples, each fr om a differ ent populati on, this tes t measur es the str ength of the ev idence f or a selec ted hy pothesis against the null h ypothesis . The null h ypothe sis is that the proporti ons o[...]

  • Seite 254

    250 Inference app Results The r esults ar e: One-Sample T-Test Menu name T-T e st : 1  This test is used when the population standar d devi ation is not kno wn . On the basis of s tatistics f rom a single s ample, this test mea sures the st rength of the e vi dence for a select ed hy pothesis against the null h y pothesis. T he null hy pothesis [...]

  • Seite 255

    Inference app 251 Inputs The in puts are: Results The r esults ar e: Two-Sample T-Test Menu name T-T e st :  1 –  2 This te st is used w hen the population standard de vi ation is not kno w n. On the basis of statistic s fr om t w o samples , each sample from a differ ent population, this test measures the strength of the ev idence for a se[...]

  • Seite 256

    252 Inference app Inputs T he inputs ar e: Results The r esults ar e: Fie ld name Definition Sample 1 mean Sample 2 mean s 1 Sample 1 standard de viati on s 2 Sample 2 standard de viati on n 1 Sampl e 1 size n 2 Sampl e 2 size  Signif icance le vel Pooled Chec k th is option to pool samples based on their standar d devi ations x 1 x 2 Resu lt D [...]

  • Seite 257

    Inference app 253 Confidence intervals The co nfidence int erval calculati ons that the HP Prime can perform ar e based on the Normal Z -distr ibution or Studen t’s t -distr ibution . One-Sample Z-Interval Menu name Z- I n t :  This option us es th e Normal Z -distributi on to ca lc ulate a confi dence inter val f or  , the true mean [...]

  • Seite 258

    254 Inference app Inputs T he inputs ar e: Results The r esults ar e: One-Proportion Z-Interval Menu name Z- I n t : 1  This option use s the Normal Z -distr ibution to calc ulate a confi dence interval f or the pr oportion of succes ses in a population f or the case in w hich a s ample of si z e n has a number of su ccesses x . Inputs T he inpu[...]

  • Seite 259

    Inference app 255 Results The r esults ar e: Two-Proportion Z-Interval Menu name Z- I n t :  1 –  2 This option us es th e Normal Z -distributi on to calculate a confidence interval for the differ ence between the proportions o f successes in two populati ons. Inputs The in puts are: Results The r esults ar e: Result Desc ription CC o n f i[...]

  • Seite 260

    256 Inference app One-Sample T-Interval Menu name T-I n t : 1  This option use s the Student’s t-distr ibution to calc ulate a confi dence inter val f or  , the tr ue mean of a population, for the ca se in whic h the true population s tandard dev iation ,  , is unknow n. Inputs T he inputs ar e: Results The r esults ar e: Two-Sample T-In[...]

  • Seite 261

    Inference app 257 Inputs The in puts are: Results The r esults ar e: Result Def inition Sample 1 mean Sample 2 mean s 1 Sample 1 standard de viati on s 2 Sample 2 standard de viati on n 1 Sample 1 siz e n 2 Sample 2 siz e C Con fiden ce level Pooled Whether or not t o pool the samples based on their standar d dev iations x 1 x 2 Result D escription[...]

  • Seite 262

    258 Inference app[...]

  • Seite 263

    Solve app 259 13 Solv e app The Solv e app en ables you to def in e up to ten equations or expr essions eac h with as man y var iables a s you lik e. Y ou can sol ve a single equati on or ex pres sion fo r one of its var iable s, based o n a seed va lue. Y ou can als o sol ve a s ys tem of equa tions (linear or non-linear), again using seed v alues[...]

  • Seite 264

    260 Solve app One equation Suppose y ou w ant to f ind the accelerati on needed to inc rea se the speed of a car fr om 1 6.6 7 m/s (6 0 kph) to 2 7 .7 8 m/s ( 1 00 kph) ov er a distance of 1 00 m. The equ ation to sol ve is: V 2 = U 2 +2 AD . whe re V = f inal speed, U = initial s peed, A = acceler ation needed, and D = distance . Open the Solve ap[...]

  • Seite 265

    Solve app 261 Enter known variables 4. Display the Numer ic v ie w . M Here y ou spec ify the value s of the know n var iables, highligh t the vari able that yo u want to sol ve f or , and tap . 5 . Enter the v alues for the know n var iables. 2 7 . 7 8 E 1 6 . 6 7 E 1 0 0 E Note Some variables may already have values agai nst them when you displa[...]

  • Seite 266

    262 Solve app Plot the equation The P lot v iew s how s one graph f or each si de of the sol ved equation . Y ou can choose an y of the v ariable s to be the independent var iable by selecting it in Numeric v iew . So in this ex ample make sur e that A is highligh ted. The c urr ent equati on is V 2 = U 2 +2 AD . The plot v ie w will plot two eq ua[...]

  • Seite 267

    Solve app 263 Note By dragging a finger horizontally or vertically across the sc reen, you can quickly see parts of the pl ot that are initially out side the x and y ranges you set. Several equations Y ou can define up to ten equations and e xpressions in Sy mbolic vie w and se lect those you want to solve tog eth er as a sy stem. For ex ample , su[...]

  • Seite 268

    264 Solve app var iables, or let the calc ulator pro vi de a solution . (T yp ically a seed v alue is a value that dir ects the calc ulator t o pro vi de, if possible , a solutio n that is closes t to it rather than some o ther value .) In this e xample , let’s look f or a solut ion in the v icinity of X = 2 . 5 . Enter the s eed value in the X f[...]

  • Seite 269

    Solve app 265 Solution information When y ou are sol ving a single equation , the button appears on the menu after y ou tap . T apping disp lays a me ssage giving you som e in format ion ab out t he soluti ons found (if an y) . T ap to clear the message . Message Mean ing Zero T h e Sol ve app found a po int wher e both side s of the equati on wer [...]

  • Seite 270

    266 Solve app Cannot find solution No values satisfy the selected equation or expression. Bad Guess(es) The initial guess lies outsid e the domain of the equation. Therefore, the solution was not a real number or it caused an error. Constant? The value of the e quation is the same at every point sampled. Message Meaning (Co ntinued)[...]

  • Seite 271

    Linear Solver app 267 14 Li n e a r S ol ve r a p p The L inear Sol ver app enable s you to s olve a set of linear equati ons. T he set can contain tw o or thr ee linear equations. In a two-equation set , each equati on must be in the form . In a thr ee -equation set , eac h equation mu st be in the for m . Yo u p r o v i d e v a l u e s f o r a , [...]

  • Seite 272

    268 Linear Solver app Note If the last time you used the Linear Solver app you solved for two equations, the two-equation input form is displayed. To solve a thr ee-equation set, tap ; now the input form displays three equations. Define and solve the equations 2 . Y ou def ine the equatio ns you w ant to so lve b y entering the coeffic ients of eac[...]

  • Seite 273

    Linear Solver app 269 Solve a two-by- two system If the thr ee -equation input fo rm is display ed and you wan t t o s ol ve a t wo - equation set, tap . Note You can enter any expression th at resolves to a numerical result, including variables. Just enter the name of a variable. For more informatio n on assigning values to variables, see “Stori[...]

  • Seite 274

    270 Linear Solver app[...]

  • Seite 275

    Parametric app 271 15 Pa r a m e t r i c a p p The P arametr ic app ena bles you to e xplor e parametr ic equati ons. T hese ar e equations in w hic h both x and y are defined as f unctions of t . The y take the f orms and . Getting started with the Parametric app The P arame tric a pp uses the c usto mary app vie ws: S ymboli c, P lot and Numer ic[...]

  • Seite 276

    272 Parametric app The graphical and numerical data you see in Plot view and Numeric view are derived from the symbolic functions defined here. Define the functions The re a re 2 0 fie ld s for de fin in g fun ct ion s. Thes e a re labelled X1(T) thr ough X9(T) and X0(T ) , and Y1(T) thr ough Y9(T) and Y0(T) . E ach X functi on is paired w ith a Y [...]

  • Seite 277

    Parametric app 273 Set the angle measure Set the angle meas ure to de grees: 5. S Y (Settings) 6. T a p t h e Angle Measure fi el d and select Degrees . Yo u c o u l d a l s o hav e set the angle measur e on the Home Settings scr een. Ho we ver , Home settings ar e sy stem-w ide . By setting the angle measur e in an app r ather than Home vie w , yo[...]

  • Seite 278

    274 Parametric app Explore the graph The men u but ton gi ves y ou access to common tools f or ex ploring plo ts: : displays a range of z oom options. (The + and w ke ys can als o be used to z oom in and ou t.) : when activ e, enables a trac ing cursor to be mov ed along th e contour of the plo t (w ith the coor dinates of the curs or display ed at[...]

  • Seite 279

    Parametric app 275 Display the numeric view 15 . D i s p l a y t h e Numeri c vie w: M 1 6. W ith the cur sor in the T column , t ype a new v alue and tap . The table scrolls to the val u e yo u en te red. Y ou ca n also zoom in or out on the inde pendent variable (thereb y decr easing or increasing the incr ement bet ween consecuti ve values). Thi[...]

  • Seite 280

    276 Parametric app[...]

  • Seite 281

    Polar app 277 16 Po l a r a p p The P olar app enables y ou to explore polar eq uations. P olar equations ar e equations in whi ch r —the distance a point is f rom the or igin: (0, 0)—is defined in terms o f  , the angle a segment f rom the po int to the ori gin makes w ith the pola r axis. Such equations take the form . Getting started with[...]

  • Seite 282

    278 Polar app 3 . Define the e xpression 5  cos(  /2)cos (  ) 2 . 5 Szf dn 2 >> fd > j E Notice how the d key en t e rs wha teve r va ria bl e is re levant to the c urr ent app . In this app the r eleva nt vari ab l e i s  . 4. If y ou wish, c hoose a color f or the plot other than its default . Y ou do this by selecting the co[...]

  • Seite 283

    Polar app 279 8. Set up the plot by specifying appropriate graphing options. In this example, set the upper limit of the range of the independ ent variable to 4  : Select the 2nd  Rng field and enter 4 Sz (  The re ar e numer ous wa ys o f confi guring the appear ance of Plot v ie w . For mor e infor mation , see “Common oper ation[...]

  • Seite 284

    280 Polar app If only one polar equa tion is pl otted, you can see th e equation that ge nerated the plot b y tapping . If ther e are se ver al equati ons plotted, mo ve the tr acing c ursor to the plo t you ar e inter ested—b y pres sing = or —and then tap . F or more informati on on explor ing plots in Plot v ie w , see “Co mmon operatio [...]

  • Seite 285

    Sequence app 281 17 Sequence app The S equence app pro vides y ou w ith var ious w ays to explor e sequences. Y ou can define a sequence named , for e xample , U1 : • in terms of n • in terms of U1( n –1 ) • in terms of U1( n –2) • in terms o f another sequence, f or ex ample , U2( n ) or • in an y combination of the abo ve . Y ou can[...]

  • Seite 286

    282 Sequence app Open the Sequence app 1 . Open the Sequ ence app: I Sele ct Sequence The ap p o pe n s i n S ymbolic v ie w . Define the expression 2 . Def ine the F ibonacc i sequence: , , for . In the U 1 ( 1 ) field , spec ify the fir st term o f the seque nce : 1 E In the U1(2) f ield , spec ify the second term o f the seque nce : 1 E In the U[...]

  • Seite 287

    Sequence app 283 6. Select Stairstep from th e Seq Plot menu . 7 . S et the X Rng maxim um, and the YR n g maximu m, to 8 (as show n at the rig h t ) . Plot the sequence 8. P lot the Fibonacc i seque nce : P 9 . Return to Plot Setup view ( S P ) and select Cobweb , fr om the Seq P lot menu . 1 0. Plot the seq uence: P Explore the graph The button g[...]

  • Seite 288

    284 Sequence app Display Numeric view 1 1 . Displa y Numeri c view: M 12 . W i t h t h e c u r s o r anyw here in the N column, type a ne w value and tap . The table of v alues sc rolls to the v alue yo u e n t ere d. Y o u c a n then see the corr esponding value in the sequence. T he ex ample at the right sho ws that the 2 5th value in the Fibonac[...]

  • Seite 289

    Sequence app 285 Set up the table of values The N u me ric S et u p view pro vi des o ptions common to mos t of the graphing apps , although there is no z oom factor as the domain for the sequences is the set of counting numbers. See “Common oper ations in Numer ic Setup v iew ” on pa ge 1 05 for m ore in form a ti on. Another example: Explicit[...]

  • Seite 290

    286 Sequence app Plot the sequence 6. Pl ot t h e se q u en c e : P Pres s E to see the dotted lines in the fi gure to the righ t. P res s i t a g ai n to hide the do tted lines. Explore the table of sequence values 7 . Vie w the table : M 8. T ap and select 1 t o see the sequence v alues.[...]

  • Seite 291

    Finance app 287 18 Finance app The F inance app e nables you t o solv e time -value -of-mone y (TVM) and amor ti z ation pr oblems. Y ou can use the app to do compound interest calculations and to cr eate amorti zati on tables . Comp ound interest is accumulati ve inter est , that is, intere st on inter est alr eady earned . The in tere st earned o[...]

  • Seite 292

    288 Finance app 3. I n t h e I%/YR fie ld, t yp e 5.5— t h e i n te res t rat e — an d pres s E . 4. In PV fi eld, type 1 9 500 w 3000 and pre ss E . This is the pr esent v alue of the loan, be ing the purc hase pr ice less the deposit . 5. L e a v e P/YR and C/YR both at 12 (their def ault value s) . Leave End as th e pay ment option . Also , [...]

  • Seite 293

    Finance app 289 The P V va l u e i s calculated as 1 5, 7 05 .8 5, this being the max imum you c an b o r row . Th us, w ith yo ur $3, 000 deposit, y ou can affor d a car with a p ri c e t a g o f u p t o $ 1 8,7 05. 85. Cash flow diagrams TVM transactions can be r epresented in cash flo w diagr ams . A cash flow diagr am i s a time line div ided i[...]

  • Seite 294

    290 Finance app The f ollow ing cash flo w diagra m shows a loan f rom the lender's point of v iew : Time value of money (TVM) Time-value -of-money (TVM) calc ulations make u se of the notio n that a dollar today w ill be w orth more than a dollar sometime in the f uture . A dollar toda y can be inv ested at a certain interest r ate and genera[...]

  • Seite 295

    Finance app 291 The re ar e sev en TVM vari ables: TVM calculations: Another example Suppose y ou hav e taken ou t a 30 -year , $ 1 50, 000 house mortgage at 6. 5% an nual inter est. Y ou e xpect to sell the hous e in 1 0 y ears, r epay ing the loan in a balloon Va r i a b l e D e s c r i p t i o n N The total number of compoundin g periods or pay [...]

  • Seite 296

    292 Finance app pay ment . Find the si z e of the balloon pay ment—that is , the value o f the mortgage after 1 0 y ears of pa yment . The f ollo wing cash flo w diagr am illustr ates the case o f a mortgage with balloon pa yment: 1 . S tart the Fi nance app: I Select Finance 2 . R eturn all fi elds to their def ault value s: SJ 3. E n t e r t h [...]

  • Seite 297

    Finance app 293 Calculating amortizations Amorti z ation calc ulations de termine the amoun ts applied to war ds the principal and inter est in a pay ment , or series of pa yments. T hey also use TVM var iables. To calculate amortizations: 1 . S tart the Finance app . 2 . Spec ify the number of payments per y ear ( P/YR ). 3 . Spec ify whether pay [...]

  • Seite 298

    294 Finance app 2 . T ap . 3 . Sc ro ll dow n the table to pay ment group 1 0. Note that after 1 0 y e a r s , $ 22,8 35 . 53 has been paid off the pri ncipal and $90, 9 36 .4 7 paid in inter est, lea ving a balloon pay ment due of $1 2 7 ,1 6 4 . 4 7 . Amortization graph Pres s P to see the amortiz ati on schedule pres ented graphically . The bala[...]

  • Seite 299

    Finance app 295[...]

  • Seite 300

    Triangle Solver app 295 19 T riangle Solver app The T riangle S olv er app enables y ou to calc ulate the le ng th of a si de of a t ria ng l e, o r t he s iz e of an a ng le i n a triangle, fr om in formation you supply about th e other lengths, angle s, or both. Y ou need to spec ify at least thr ee of the si x possible value s—the lengths of t[...]

  • Seite 301

    296 Triangle Solve r app 2 . If ther e is unwanted data fr om a prev ious calc ulation, y ou can clear it all b y pressing SJ (Clear ). Set angle measure Mak e sure that your angle measur e mode is appr opri ate. By de fault , the app starts in degree mode . If the angle infor mation you ha ve is in radians and y our curr ent angle measur e mode is[...]

  • Seite 302

    Triangle Solver app 297 Solve for the unknown values 4. T ap . The app d ispl ays the values of the unknow n vari abl es. A s t h e illustr ation at the r ight sho ws, the length of the unknow n side in our e xample is 3 .2 2 9 6 7… The other tw o angles hav e also been calculated . Choosing triangle types The Trian gl e So lver app has tw o inpu[...]

  • Seite 303

    298 Triangle Solve r app Special cases The indeterminate case If two sides and an adjacent acute angle ar e entered and ther e are tw o soluti ons, only one w ill be displa yed initi ally . In this case , the button is display ed (as in this ex ample). Y ou can tap to display the seco nd sol ution a nd tap again to return to the fir st soluti on. N[...]

  • Seite 304

    Triangle Solver app 299[...]

  • Seite 305

    The Explorer apps 299 20 T he Explorer apps Ther e are thr ee e xplorer apps. T hese ar e designed for y ou to explore the relationships between the p arameters of a functi on and the shape of the gr aph of that functi on. T he explorer apps are: • Lin e a r E xp l o re r F or explor ing linear functi ons • Quadr atic Ex plor er F or explor ing[...]

  • Seite 306

    300 The Explorer apps fo rm of the equati on being ex plored at the top and, belo w it, the cur rent eq uation of that for m. The ke ys y ou can use to manipulate the graph or equation appear belo w the equatio n. T he x- and y-int ercepts are gi ven at the bottom. Ther e ar e two types (or le vels) o f linear equation a vailable for y ou to explor[...]

  • Seite 307

    The Explorer apps 301 Equation mode T ap to enter equation mode . A dot w ill appear on t he Eq button at the bottom of the scr een. In equation mode , you use the c urso r ke ys to mov e between par ameters in the equation and change their values, obser ving the ef fect on t he g raph dis played. Pre ss or = to decr ease or incr ease the v alue [...]

  • Seite 308

    302 The Explorer apps Quadratic Explorer app The Quadrati c Explorer app can be used to in vesti gate the behavi or of as t he values of a , h and v cha n ge. Open the app Press I and selec t Quadratic Explorer . The left half o f the display sho ws the gr aph of a quadr atic func tion. The r ight half sho ws the gener al for m of the equation be i[...]

  • Seite 309

    The Explorer apps 303 Choose a gener al for m by tapping the L eve l button— , and so on—until the for m you want is dis played . The k eys a vailable to y ou to manipulate the gr aph vary from le vel t o level . Equation mode T ap to mov e to equation mode . In equation mode , y ou use the cursor k ey s to mov e between par ameters in the equa[...]

  • Seite 310

    304 The Explorer apps Trig Explorer app The T ri g Explorer app can be used to in vestigate the behav ior of the gr aphs and as th e values of a , b , c and d cha n ge. The menu items av ai lable in this app are: • or : toggles between gr aph mode and equation mode • or : toggles between sine and cosine gra phs • or : toggles between r adians[...]

  • Seite 311

    The Explorer apps 305 Graph mode The app opens in graph mode . In graph mode , you m a n i p u l a t e a c op y of the graph b y pre ssing the cur s or keys . Al l fo u r key s are a vailable . The original graph—conv er ted to dotted lines—remains in place for y ou to easily see the r esult of yo ur manipulations. Whe n i s chos en, the cursor[...]

  • Seite 312

    306 The Explorer apps Test mode T ap to enter test mod e. In test mode you test y our skill at matching an eq uation to the gr aph sho wn. T est mode is lik e equation mode in that y ou use the c urso r ke ys t o s e l e c t a n d c h a n g e t h e v a l u e o f o n e o r m o r e p a r a m e t e r s in the equation . The goal is to try to match the[...]

  • Seite 313

    Functions and command s 307 21 Fu nc tions and commands Many mathemati cal functions ar e av ailable from the calculator ’s ke yboar d. Thes e are desc ribed in “K ey board functi ons ” on page 309. Other func tions and commands ar e collected together i n the T oolbox menus ( D ) . Ther e are fi ve To o l b o x m e n u s : • Math A collect[...]

  • Seite 314

    308 Functions and commands – used in pr ogramming – used in the Matr ix E ditor – used in the L ist E ditor – and some add itional fun ctions and c ommands See “Ctlg menu” on page 378. Although the Cat lg menu includes all the programming commands, the Commands menu ( ) in the Program Editor contains all the programming commands grouped[...]

  • Seite 315

    Functions and command s 309 Abbreviations used in this chapter In desc ribing the s ynt ax of functi ons and commands, the follo w ing abbrev iations and con venti ons are used: Eqn: an equation Expr : a mathematical e xpressi on Fnc : a func tion Frac : a fr action Intgr : an int eger Obj : signif ies that obj ects of mor e than one t ype ar e all[...]

  • Seite 316

    310 Functions and commands The e xam ples below sho w the r esults yo u would get in Home v iew . If y ou ar e in the CAS , the r esults are giv en in simplifi ed s ymboli c format . F or e xample: Sj 32 0 r e t u r n s 17.88854382 in Home vie w , and 8* √ 5 in the CAS . + , w,s, n Add, subtract, multiply, divide. Also accepts complex numbers, li[...]

  • Seite 317

    Functions and command s 311 efg Sine, cosine, tangent. Inputs and outputs de pend on the current angle format: degrees or radians. SIN ( val ue ) COS ( val ue ) TAN ( val ue ) Example: TAN(45) ret u rn s 1 (degrees mode) Se ( ASIN )A r c s i n e : s i n –1 x. Output range is from –90° to 90° or –  /2 to  /2. Inputs and outputs depe nd[...]

  • Seite 318

    312 Functions and commands Sj Square root. Also accepts complex numbers. ) √ val u e Example: √ 32 0 r e t u r n s 17.88854382 k x raised to the power of y . Also accepts complex numbers. val u e pow er Example: 2 8 ret u rn s 256 Sk The n th root of x . ro o t √ va l ue Example: 3 √ 8 ret u rn s 2 S n Reciprocal. val u e -1 Example: 3 -1 r[...]

  • Seite 319

    Functions and command s 313 Math menu Pr ess D to open the T oolbox menus (one of which is the Math menu). The functi ons and commands av ailable on the Math menu are listed as they ar e categori z ed on the menu . Numbers Ceiling Small est integer greater tha n or equal to val ue . CEILING(value) Exam ples: CEILING(3.2) ret u rn s 4 CEILING(-3.2) [...]

  • Seite 320

    314 Functions and commands ROUND can also r ound to a number of significant di gits if places is a negativ e integer (as sho wn in the se cond ex ample below). Examples: ROUND(7.8676,2) ret u rn s 7.87 ROUND(0.0036757,-3) ret u rn s 0.00368 Truncate Tr u n c a t e s va lu e to decimal places . Also accepts comple x num ber s. TRUNCATE(value,places)[...]

  • Seite 321

    Functions and command s 315 pr ess K . This opens the computer algebra sy stem. If y ou wan t to return t o Home vie w to mak e further calculations , pr ess H . Minimum Minimum. The lesser of tw o values. MIN(value1,value2) Exam ple: MIN(210,25) ret u rn s 25 Modulus Modulo . The remainder o f va l ue 1 / val u e2 . value1 MOD value2 Exam ple: 74 [...]

  • Seite 322

    316 Functions and commands Real Part Re a l pa r t x , of a comple x number , ( x+y*i ). RE(x+y*i) Example: RE(3+4*i) re t u rn s 3 Imaginary Part Imaginary part, y, of a complex nu mber , ( x+y*i ). IM(x+y*i) Example: IM(3+4*i) re t u rn s 4 Unit Vector Sign of val u e . If positi ve , the r esult is 1 . If negativ e, –1 . If z ero , r esult is [...]

  • Seite 323

    Functions and command s 317 SEC Secant: 1/cos x . SEC(value) ASEC Ar c secant. ASEC(value) COT Cot ang en t: cos x /sin x . COT(value) ACOT Arc cota ng ent. ACOT(value) Hyperbolic The hy perbolic trigonometr y functions ca n also take complex numbers as ar guments. SINH Hype rbol ic s ine. SINH(value) ASINH Inverse hyperb olic si ne : si nh –1 x [...]

  • Seite 324

    318 Functions and commands Combination The n umber of combinations ( without r egard to or der) of n things tak en r at a time . COMB(n,r) Exam ple: Suppose yo u want to kno w ho w many w ay s fiv e things can be combined two at a time . COMB(5,2) ret u r ns 10. Permutation Number of permutati ons (with r e gard to order ) of n things tak en r at a[...]

  • Seite 325

    Functions and command s 319 Seed Sets the seed value on whic h th e random f unctions operate . By s pecify ing the same seed value on tw o or more calc ulators , yo u ensure that the same r a ndom numbers app ear on each calc ulator when the r andom functi ons are e xec uted . RANDSEED(value) Density Normal Normal pr obability densi ty function . [...]

  • Seite 326

    320 Functions and commands Binomial Binomial pr obabilit y density function. C omputes the probab ilit y of k success es out of n tr ials, eac h with a probab ilit y of success of p . Retur ns Comb(n,k) if ther e is no third ar gument. Note that n and k ar e integers w ith . BINOMIAL(n,k,p) Example: Suppose y ou want to kno w the probability that j[...]

  • Seite 327

    Functions and command s 321 Cum ulativ e distr ibution fu nction . Retur ns the low er - tail probabili ty of th e probabilit y dens it y function for th e value x , gi ve n n degrees o f free dom. CHISQUARE_CDF(n,k) Exam ple: CHISQUARE_CDF ( 2,6.1 ) ret u rn s 0.952641075609. F Cum ulativ e Fisher distr ibutio n function . Retu rns the low er - ta[...]

  • Seite 328

    322 Functions and commands T Inv erse cumulati ve S tudent's t distr ibution f unction . Retur ns the val u e x such that the S tudent's- t low er - tail probab ility of x , w ith n degrees of fr eedom, is p . STUDENT_ICDF(n,p) Example: STUDENT_ICDF ( 3,0.0246659214814 ) ret u rn s –3.2. Inv ers e cumulati v e distr ibution f unctio n. [...]

  • Seite 329

    Functions and command s 323 Matrix The se functi ons wor k on matri x data stor ed in matri x var iables. T hey ar e explained in detail in cha pter 2 5, “Matri ces ” , beginning on page 46 3. Special Beta Retur ns the value of the bet a function (  for t wo n um be rs a and b . Beta(a,b) Gamma Retur ns the value o f the gamma functio n ([...]

  • Seite 330

    324 Functions and commands CAS menu Press D to open the T o olbo x menus (one of w hich is the CAS men u) . The func tions on the CAS men u are those mo st commonl y use d. Man y mor e func tions are available . See “Ctlg menu ” , beginning on p a g e 378 . Note that the Geometry functions appear on the App menu . The y ar e descr ibed in “Ge[...]

  • Seite 331

    Functions and command s 325 Substitute Subs titutes a value f or a var iable in an e xpr ession . Syntax: subst(Expr,Var=value) Exam ple: subst(x/(4-x^2),x=3) ret u rn s -3/5 Partial Fraction P erforms pa rtial fr a ction decomposi tion on a fraction. partfrac(RatFrac or Opt) Exam ple: partfrac(x/(4-x^2)) ret u rn s (-1/2)/(x-2)-(1/2)/ ((x+2) Extra[...]

  • Seite 332

    326 Functions and commands Calculus Differentiate With one expr ession as ar gument , returns de ri vativ e of the expr ession w ith res pect to x . W ith one expression and one var iable as arguments , retur ns the deri vati ve or partial deri v ative of the expr essi on with r espec t to the vari able. W ith one e xpre ssion and mor e than one va[...]

  • Seite 333

    Functions and command s 327 Series Returns the ser ies expansion of an e xpression in the v ic init y of a gi ven equality var iable . With the opti onal third and fo ur th ar guments y ou can spec ify the or der and dir ection o f the seri es expansion. If no or der is specified the ser ies returned is fifth or der . If no dir ection is spec ifi e[...]

  • Seite 334

    328 Functions and commands Gradient Retur ns the gradi ent of an e xpre ssion . With a list of v aria bles as second ar gument, r eturns the v ector of partial der ivati ve s. grad(Expr,LstVar) Example: grad(2*x^2*y-x*z^3,[x,y,z]) gi ves [2*2*x*y- z^3,2*x^2,-x*3*z^2] Hessian R eturns the Hessian matr ix o f an expr essio n. hessian(Expr,LstVar) Exa[...]

  • Seite 335

    Functions and command s 329 F(b)–F(a) Ret u rns F ( b )–F( a ). preval(Expr(F( var)),Real(a) ,Real(b),[Var ]) Exam ple: preval(x^2-2,2,3) gi ves 5 Limits Riemann Sum Returns in the ne ighborh ood of n =+ ∞ an equi valent of the sum of Xpr(v ar1 ,var2) for v ar2 fr om var2=1 to var2=v ar1 when the s um is looked at a s a Rie mann sum assoc iat[...]

  • Seite 336

    330 Functions and commands Inverse Laplace Ret urns th e i nverse Lapl ace tran sform of an expression. invlaplace(Expr,[Var],[IlapVar]) Example: ilaplace(1/(x^2+1)^2) ret u rn s ((-x)*cos(x))/ 2+sin(x)/2 FFT With one ar gument (a vec tor), retur ns the discr ete F our ier transf orm in R . fft(Vect) With tw o additional integer arguments a and p ,[...]

  • Seite 337

    Functions and command s 331 Zeros W ith an expr essio n as argumen t, r eturns the r eal z er os of the expr essi on; that is, the solu tions whe n the expr essio n is set equal to z ero . With a list o f expre ssions as ar gument, r eturns the matr ix wher e the r ow s ar e the real s olutions of the sy stem f ormed b y setting each e xpre ssion e[...]

  • Seite 338

    332 Functions and commands Differential Equation R eturns the soluti on to a differ ential equati on. deSolve(Eq,[TimeVar],Var) Example: desolve(y''+y=0,y) ret u rn s G_0*cos(x)+G_1*sin(x) ODE Solve Ordinary D iffer ential Equati on solver . Sol ves an ordinary differ ential equation gi ven b y Expr , w ith var iables declar ed in V ectrV[...]

  • Seite 339

    Functions and command s 333 texpand Expands a transcendental e xpressi on. texpand(Expr) Exam ple: texpand(sin(2*x)+exp(x+y)) ret u rn s exp(x)*exp(y)+ 2*cos(x)*sin(x)) Exp & Ln e y*lnx → x y Returns an expr essio n of the fo rm e n*ln(x ) re wr itten as a power of x. Applies e n*ln(x) =x n . exp2pow(Expr) Exam ple: exp2pow(exp(3*ln(x))) gi v[...]

  • Seite 340

    334 Functions and commands asinx → atanx Retur ns an expr essi on w ith asin( x ) re wr itten as: asin2atan(Expr) Example: asin2atan(2*asin(x)) ret u rn s sinx → cosx*tanx R eturns an e xpre ssion w ith sin( x ) r ew ritten as co s( x )*tan( x ). sin2costan(Expr) Example: sin2costan(sin(x)) gi ves tan(x)*cos(x) Cosine acosx → asinx Re turns a[...]

  • Seite 341

    Functions and command s 335 Tangent atanx → asinx Retur ns an expr ession w ith atan( x ) re wr itten as: atan2asin(Expr) Exam ple: atan2asin(atan(2*x)) ret ur n s atanx → acosx Retur ns an expr ession w ith atan( x ) re wr itten as: atan2acos(Expr) tanx → sinx/cosx R eturns an e xpression w ith tan( x ) re wr itten as si n( x )/cos( x ). tan[...]

  • Seite 342

    336 Functions and commands trigx → cosx R eturns an e xpres sion simplif ied using the f ormula s sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) . Cos(x) is gi ven pr ecedence ov er sin(x) and tan(x) in the r esult . trigcos(Expr) Example: trigcos(sin(x)^4+sin(x)^2 ) re turns cos(x)^4- 3*cos(x)^2+2 trigx → tanx R eturns an e xpres sion simplif ie[...]

  • Seite 343

    Functions and command s 337 trigexpand Retur ns a tri gonometric expr ession in expanded for m. trigexpand(Expr) Exam ple: trigexpand(sin(3*x)) gi ves (4*cos(x)^2- 1)*sin(x) trig2 exp Retur ns an expr essio n with tr igonometr ic func tions r ewr itten as comple x exponenti als (with out lineari z ation). trig2exp(Expr) Exam ple: trig2exp(sin(x)) r[...]

  • Seite 344

    338 Functions and commands GCD Re turns the great est common di visor of tw o or more int egers. gcd(Intgr1, Intgr2,…) Example: gcd(32,120,636) ret u rn s 4 LCM R eturns the low est co mmon multiple of two or inte gers. lcm(Intgr1, Intgr2,…) Example: lcm(6,4) re t u rn s 12 Prime Test if Prime T ests w hether or not a giv en integer is a prime [...]

  • Seite 345

    Functions and command s 339 Division Quotient Retur ns the integer quoti ent of the E ucli dean div ision of tw o integ ers . iquo(Intgr1, Intgr2) Exam ple: iquo(63, 23) ret u rn s 2 Remainder R eturns the integer r emainder fr om the Eu clidean di visi on of tw o in teg er s. irem(Intgr1, Intgr2) Exam ple: irem(63, 23) ret u rn s 17 a n MOD p Fo r[...]

  • Seite 346

    340 Functions and commands Coefficients Gi ven a poly nomial in x, r eturns a vector containing the coeff ici ents. If the poly nomial is in a var iable other than x , then declar e the vari able as the second argument . With an integer as the optional third ar gument , retur ns the coeffi ci ent of the po lyn omial who se degr ee matches the inte [...]

  • Seite 347

    Functions and command s 341 Create Poly to Coef Giv en a polynomi al, r eturns a vector containing the coeffi ci ents of the polyn omial. W ith a vari able as second ar gument, r eturns t he coeffi ci ents of a pol ynomi al with r espec t to the var iable. W ith a list of var iables as the second ar gument, r eturns the int ernal fo rmat of the pol[...]

  • Seite 348

    342 Functions and commands Random Returns a vector of the c oeffic ients of a poly nom ial of deg ree Integer and w here the coe ffic ie nts are r andom integ ers in the range –9 9 thr ough 99 w ith unifor m distribution or in an interval spec ified b y Interval . Use w ith poly2s ymbo l to cr eate a ra ndom poly nomial in an y vari able. randpol[...]

  • Seite 349

    Functions and command s 343 Degree Retur ns the degre e of a poly nomial . degree(Poly) Exam ple: degree(x^3+x) gi ves 3 Factor by Degree For a gi ven pol ynomial in x of degr ee n , factors out x n and r eturns the r esulting produ ct. factor_xn(Poly) Exam ple: factor_xn(x^4-1) gi ves x^4*(1-x^-4) Coef. GCD Returns the gr eatest common di v isor ([...]

  • Seite 350

    344 Functions and commands Special Cyclotomic R eturns the list of coe ffic ien ts of the cy clotomic polyno mial of an integer . cyclotomic(Integer) Example: cyclotomic(20) gi ves [1 0 –1 0 1 0 –1 0 1] Groebner Basis Giv en a vector of pol ynomials and a vector of v ariables , r eturns the Gr oebner basis o f the ideal spanned b y the set o f [...]

  • Seite 351

    Functions and command s 345 Lagrange Giv en a vector of abscissas and a vector of ordinates, returns the Lagr ange pol ynomial f or the points s pecif ied in the two vect ors. T his functi on can also take a matr i x as argument , w ith the fir st ro w cont aining the absc issas and the second r ow containing the or dinates. lagrange([X1 X2…], [Y[...]

  • Seite 352

    346 Functions and commands Plot Function Used t o define a func tion gra ph in the Sy mbolic v ie w of the Geometr y ap p . Plots t he graph of an expr ession wr it ten in terms of the independent vari able x . Not e that the va riable is lo wer case . plotfunc(Expr) Example: plotfunc(3*sin(x)) dra ws the gr aph of y=3*sin(x) Implicit Us ed to defi[...]

  • Seite 353

    Functions and command s 347 ODE Used in the S ymboli c vie w of the Geometry app . Dra ws the soluti on of the differ enti al equation y ’=f( x , y ) that contains as initial condition the po int (x 0 , y 0 ) . The f irst ar gument is the exp re ss io n f ( x , y ), the second argument is the v ector of var iables (absc issa must be listed f irst[...]

  • Seite 354

    348 Functions and commands Function app functions The F uncti on app func tions pro v ide the same func tionality found in the F uncti on app's P lot v ie w under the FCN me nu . All the se oper ations work on func tions. The functi ons may be expr essions in X or the name s of the F uncti on app v ari ables F0 thro ugh F9 . AREA Ar ea under a[...]

  • Seite 355

    Functions and command s 349 Solve app functions The S olv e app has a single functi on that sol ves a gi ven equation or e xpr ession f or one of its va riables . En may be an equation o r expr ession , or it may be the name o f one of the Sol ve S ymbolic vari ables E0–E9 . SOLVE Solve . Solves an e quat ion for on e of its variables. Solves the[...]

  • Seite 356

    350 Functions and commands The s yn tax for man y , but not all, the s preadsheet f unctions fo llow s this pattern: functionName (input,[optional parameters]) Input is the input lis t for the func tion . This can be a cell r ange r efer ence , a simple list or an ything that results in a lis t of val u es. One usef ul optional par ameter is Config[...]

  • Seite 357

    Functions and command s 351 AVERAGE Calc ulates the ar ithmetic mean of a r ange of numbers . AVERAGE([input]) F or example , AVERAGE(B7:B23) r eturns the ar ithmeti c mean of the numbers in the r ange B7 to B2 3. Y ou can also specify a block of cells , as in AVERAG(B7:C23) . An err or is r eturned if a cell in the s pecif ied range cont ain s a n[...]

  • Seite 358

    352 Functions and commands STAT1 The S T A T1 functi on pro vi des a range of one -var iable statistic s. It can calc ulate all or any of , Σ , Σ ², s, s², σ , σ ², serr , , n, min , q1 , med, q3, and max. STAT1(Input range, [mode], [outlier removal Factor], ["configuration"]) Input range is the data sour ce (such as A1 :D8) . Mode[...]

  • Seite 359

    Functions and command s 353 F or ex ample if you spec ify "h n Σ x ", the fir st column w ill contain r o w headers , the firs t ro w w ill be the number of it ems in the input data , the second the sum o f the items and the third the mean of the data . If you do n ot specify a conf igur ation string , a default string w ill be used. Not[...]

  • Seite 360

    354 Functions and commands 7 y= L/( 1 + a* e x p(b* x )) 8y = a * s i n ( b * x +c)+d 9y = c x ^2+b x +a 10 y = d x ^3+c x ^2+ b x +a 11 y = e x ^4+d x ^3+c x ^2+b x +a • Conf igur ation: a str ing whi ch indicate s whic h values y ou want to place in w hich r ow and if y ou want ro w and columns headers. P lace ea ch par ameter in the order that[...]

  • Seite 361

    Functions and command s 355 PredY Retur ns the predi cted Y for a giv en x. PredY(mode, x, parameters) • Mode go vern s the regr essio n model used: 1 y= sl*x+int 2 y= sl*ln(x)+int 3 y= int*exp(sl*x) 4 y= int*x^sl 5 y= int*sl^x 6 y= sl/x+int 7 y= L/( 1 + a*e xp(b*x)) 8 y= a*sin(b*x+c)+d 9 y= cx^2+bx+a 1 0 y= dx^3+cx^2+bx+a 1 1 y= ex^4+dx^3+cx^2+b[...]

  • Seite 362

    356 Functions and commands HypZ1mean The o ne -sample Z - test fo r a mean. HypZ1mean( , n,  0 ,  ,  ,mode, [”configuration”]) The i n p ut p a ra m et e rs c a n b e a ra n g e re fe re nc e, a l i st o f ce l l r efer ences , or a simple list o f values . Mode: Spec ifies w hich alter native h ypothe sis to use: • 1:  <  0[...]

  • Seite 363

    Functions and command s 357 Mode: Spec ifies w hich alter nat i ve hy pothesis to use: • 1:  1 <  2 • 2:  1 >  2 • 3:  1 ≠  2 • Configuration: a string that controls what results are shown and the order in which they appear. An empty string "" disp lays the de fa ult: all results, including headers. The o[...]

  • Seite 364

    358 Functions and commands • Conf igur ation: a s tring that contr ols w hat re sults are show n and the order in whi ch they appear . An empt y str ing "" display s the defa ult: all results , including headers . The options in the confi guration s tring ar e separ ated b y spaces . • h: header cells will be c reated • acc:0 or 1 t[...]

  • Seite 365

    Functions and command s 359 • prob: the lo w er-tail pr obability • cZ: The c riti cal Z -value assoc iated w ith the input α -le vel • cp1 : The lo w er cr itical value o f  assoc iated with the crit ic a l Z -va l ue • cp2 : The upper c ritical v alue of  as soci ated with the crit ic a l Z -va l ue Exam ple: HypZ2prop(21, 26[...]

  • Seite 366

    360 Functions and commands HypT2mean The two -sample T-test for the difference of two means. HypT2mean((x 1 ,x 2 ,s 1 ,s 2  n 1 ,n 2  ,pooled,mode, [”configuration”]) P ooled: Specif ies w hether or not the sa mples are poo led • 0: not pooled • 1 : pooled Mode: Spec ifies w hic h alternative h ypothesis to u se: • 1:  1[...]

  • Seite 367

    Functions and command s 361 • h: header cells w ill be cr eated • Z: the cr itical Z -value • zXl: the lo wer bound of the conf idence in terval • zXh: the upper bound of the confidence interval • std: the standar d dev iation Exam ple: ConfZ1mean(0.461368, 50, 0.2887, 0.95, "") ConfZ2mean The two -sample Normal confidence inter[...]

  • Seite 368

    362 Functions and commands • zXh: the upper bound of the conf idence interval • zXm: the midpoin t of the confidence inte r val • std: the s tandard de v iation Example: ConfZ1prop(21, 50, 0.95, "") ConfZ2prop The two- sample Normal confidence interval f or the differ ence of two pr oportions . ConfZ2prop(x 1 ,x 2 ,n 1 ,n 2 ,C,[”c[...]

  • Seite 369

    Functions and command s 363 Exam ple: ConfT1mean(0.461368, 0.2776, 50, 0 .95, "") ConfT2mean The tw o -sample Studen t’s T confi dence interval f or the difference o f t wo means . ConfT2mean( , , s 1 ,s 2 ,n 1 ,n 2 ,C,pooled, [”configuration”]) Conf igurati on: a string that contr ols what r esults ar e show n and the order in w hi[...]

  • Seite 370

    364 Functions and commands Do1VStats Do1 -vari able statisti cs. P erforms the same calc ulations as tapping in the Numer ic v iew o f the Statisti cs 1V ar app and stor es the r esults in the appr opriate S tatistic s 1V ar app r esults var iables. Hn must be one of the S tatisti cs 1V ar app S ymbolic v ie w vari ables H1-H5 . Do1VStats(Hn) Examp[...]

  • Seite 371

    Functions and command s 365 Statistics 2Var app functions The S tatistics 2V a r app has a number of functi ons. Some ar e design ed to calculate summar y statisti cs based on one of the statistical analy ses ( S1-S5 ) de fined in the S ymboli c vi ew of the Statisti cs 2V ar app . Others predi ct X- and Y -value s based on the fit s pecif ied in o[...]

  • Seite 372

    366 Functions and commands SetIndep Set indepe ndent column. S ets the independent column f or one of the statis tical analy ses S1-S5 to one o f the column var iables C0-C9 . SetIndep (Sn,Cn) Example: SetIndep(S1, C2) se ts the In dependent C olumn fiel d fo r t he S1 analy sis to use the data in list C2 . Inference app functions The Inf ere nce a[...]

  • Seite 373

    Functions and command s 367 Exam ple: HypZ1mean(0.461368, 50, 0.5, 0.2887, 0.05, 1) re t u rn s {1, -.9462…, 0.4614, 0.8277…, 1.6448…, 0.5671…} HYPZ2mean The tw o -sample Z -test for means . Retur ns a list containing (in order ) : • 0 or 1 to r eject or fail to r ejec t the null h ypothesis • The t est Z -va l u e • The t est  va [...]

  • Seite 374

    368 Functions and commands Mode: Spec ifies w hich alter native h ypothe sis to use: • 1:  <  0 • 2:  >  0 • 3:  ≠  0 Example: HypZ1prop(21, 50, 0.5, 0.05,1) ret u rn s {1, -1.1313…, 0.42, 0.8710…, 1.6448…, 0.6148…} HypZ2prop The tw o - sample Z -test for pr oportions . Returns a list containing (in orde r): [...]

  • Seite 375

    Functions and command s 369 Mode: Spec ifies w hich alter nat i ve hy pothesis to use: • 1:  <  0 • 2:  >  0 • 3:  ≠  0 Exam ple: HypT1mean(0.461368, 0.2776, 50, 0.5, 0.05, 1) re t u rn s {1, -.9462…, 0.4614, 0.8277…, 1.6448…, 0.5671…} HypT2mean The tw o -sample T-test f or means. R eturns a list con taining [...]

  • Seite 376

    370 Functions and commands ConfZ1mean The one-sample Normal confi dence interval for a mean . Re turns a list containing (in or der): • The lo w er criti cal Z -value • The lo wer bound of the conf idence interval • The upper bound of the conf idence inter val ConfZ1mean( ,n,  , C) Example: ConfZ1mean(0.461368, 50, 0.2887, 0.95) ret u rn s[...]

  • Seite 377

    Functions and command s 371 ConfZ2prop The two -sample Normal confidence inter val fo r the difference of two pr oportions. R eturns a list containing (in or der): • The lo w er cr itical Z -value • The lo w er bound of the co nfide nce interval • The u pper bound of the confidence interval ConfZ2prop(x 1 ,x 2 ,n 1 ,n 2 ,C) Exam ple: ConfZ2pr[...]

  • Seite 378

    372 Functions and commands Finance app functions The F inance app u ses a set o f functions that all r ef erence the same set o f Finance app v aria bles. Thes e corre spond to the fi elds in the F inance app Numeric v ie w . T here are 5 main TV M variables, 4 of which are mand atory for each of these functi ons, as the y each so lve f or and re t[...]

  • Seite 379

    Functions and command s 373 CalcIPYR Sol ves for the inte rest r ate per year o f an inv estment or loan. CalcIPYR (NbPmt,PV,PMTV,FV[,PPYR,CPYR, BEG]) Exam ple: CalcIPYR(360, 150000, -948.10, -2.25) ret u rn s 6.50 CalcNbPmt Sol ves for the n umber of pay ments in an inve stment or loan. CalcNbPmt (IPYR,PV,PMTV,FV[,PPYR,CPYR,BEG]) Exam ple: CalcNbP[...]

  • Seite 380

    374 Functions and commands Linear Solver app functions The L inear Sol ver app has 3 func tions that offe r the user fle xibility in sol ving 2x2 or 3x3 linear sy stems of equatio ns. Solve2x2 Sol ve s a 2x2 linear s yst em of equati ons. Solve2x2 ( a , b , c , d , e , f ) Sol ves the line ar sy stem r epresented by : ax+by=c dx+ey=f Solve3x3 Sol v[...]

  • Seite 381

    Functions and command s 375 AAS Angle- Angle -Side . T ake s as arguments the measur es of two angles and the length o f the side opposite the first angle and r eturns a list containing the le ngth of the side opposit e the second angle, the length of the thir d side, and the measur e of the thir d angle (in that or der). AAS (angle,angle,side) Exa[...]

  • Seite 382

    376 Functions and commands SSS Side-Side-Side T ak es as ar guments the lengths o f the three sides o f a triangle and r eturns the measur es of the angles opposite them , in order . SSS (side,side,side) Example: SSS(3, 4, 5) in degr ee mode retur ns {36.8…, 53.1…, 90} DoSolve Sol ves the c urr ent problem in the T r iangle Sol ver app . The T [...]

  • Seite 383

    Functions and command s 377 Quadratic Explorer functions SOLVE Sol ve quadr atic. G iv en the coeffi cie nts of a quadr atic equation ax 2 +b x +c = 0 , re tu r ns t h e re al s o lu t io n s. SOLVE(a, b, c) Exam ple: SOLVE(1,0,-4) ret u rn s {-2, 2} DELTA Discr iminant . Giv en the coeffi cient s of a quadrati c equation ax 2 +bx+c=0, r eturns the[...]

  • Seite 384

    378 Functions and commands Example: With the F uncti on app as the cur ren t app, CHECK(1) ch e cks the F unction app S ymboli c vi ew var iable F1 . The r esult is that F1(X) i s d r a w n i n t h e P l o t v i e w a n d h a s a c o l u m n o f f u n c t i o n value s in the Numer ic v iew o f the F unction app . W ith another app as the cur rent [...]

  • Seite 385

    Functions and command s 379 descr ibed in “K ey board functi ons” on page 30 9. Those that ar e also on the CA S menu ar e desc ribed in “CAS men u” on page 3 2 4. The f unctio ns and commands spec ifi c to the Geometry app are desc ribed in “Geometry functions and commands ” on page 1 6 5, and those spec ifi c to progr amming ar e desc[...]

  • Seite 386

    380 Functions and commands + Additi on sy mbol. R eturns the sum of tw o numbers, the t erm-by- term sum of tw o lists or two matri ces, or adds two str ings together . − Subtracti on sy mbol. R eturns the di ffer ence of two numbers , or the term-b y- term subtr action o f two lists or two matr ices . .* Li st or matri x multiplicati on sy mbol.[...]

  • Seite 387

    Functions and command s 381 <> Inequality test. R eturns 1 if the inequality is true, and 0 if the inequality is false . = E qualit y s ymbol . Connects tw o members of an equation . == E quality test . Re turns 1 if the left si de and ri ght side ar e equal , and 0 otherw ise . > Str ict gr eater than inequality test . Retur ns 1 if the l[...]

  • Seite 388

    382 Functions and commands algvar R eturns the matr ix of the s ymbo lic var iable names us ed in an e xpres sion . The list is o rder ed b y the algebra ic ex tensions r equired to build the or iginal ex pressi on. algvar(Expr) Example: algvar(sqrt(x)+y) gi ves AND L ogical And. R eturns 1 if the le ft and right si des both ev aluate to true and r[...]

  • Seite 389

    Functions and command s 383 basis Gi ven a matr i x, r eturns the basis of the linear su bspace def ined by the set o f vecto rs in the matri x. basis(Matrix)) Exam ple: basis([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) giv es [[-3,0,3],[0,-3,-6]] black Used in the S ymboli c vie w of the Geometry app . In the definition of a geometri c object, including[...]

  • Seite 390

    384 Functions and commands charpoly R eturns the coeff ic ients of the c harac teris tic poly nomial of a matri x. W ith only one ar gument , the vari able used in the poly nomial is x . With a var iable as second ar gument, the poly nomial retur ned is in terms of that vari able. charpoly(Mtrx,[Var]) Example: charpoly re tu rn s chrem Re turns a v[...]

  • Seite 391

    Functions and command s 385 companion Retur ns the companion matri x of a polynomial . companion(Poly,Var) Exam ple: companion(x^2+5x-7,x) ret u rn s compare C ompares ob jects, and r eturns 1 if type(ar g1 )<type(arg2) or if type(arg1 )=t ype(ar g2) and arg1<ar g2 , and returns 0 otherwise . compare(Object1,Object2) Exam ple: compare(1,2) gi[...]

  • Seite 392

    386 Functions and commands contains Gi ven a list or v ector and an element, r eturns the inde x of the firs t occurr ence of the element in the li st or v ector; if the element doe s not appear in the list or v ector , retur ns 0. contains((List, Element) or contains(Vector, Element) Example: contains({0,1,2,3},2) ret u rn s 3 CopyVar Cop ies the [...]

  • Seite 393

    Functions and command s 387 covariance_ correlation Retur ns a vector containing both the covar iance and the corr elation of th e elements of a list or matri x. covariance_correlation(List) or covariance_correlation(Matrix) Exam ple: covariance_correlation ret u rn s cpartfrac Retur ns the re sult of partial frac tion decompo sition of a r ational[...]

  • Seite 394

    388 Functions and commands delcols Giv en a matri x and an integer n , deletes the n th column f rom the matr ix and r eturns the r esult . If an interval o f t w o integers is used ins tead of a single intege r , delet es all columns in the interval and r eturns the r esult . delcols(Matrix, Integer) or delcols(Matrix, Intg1..Intg2) Example: delco[...]

  • Seite 395

    Functions and command s 389 egcd Gi ven two pol ynomials, A and B , returns thr ee poly nomials U, V and D suc h that: U(x)*A(x)+V(x)*B(x)=D(x), whe re D(x)=GCD(A(x),B(x)) , the greates t common div isor of poly nomials A and B. The pol ynomials can be pro vided in s ymbolic f orm or as lists of coeffic ients in descending order . Witho ut a third [...]

  • Seite 396

    390 Functions and commands evalc Re turns a complex expr ession w ritten in the form real+i*imag . evalc(Expr) Example: evalc ret u r ns evalf Gi ven an e xp r ession and a number of signif icant digits, r eturns the numer ical e valuation o f the expr essio n to the giv en number of signif icant digits. W ith just an e xpressi on, r eturns the num[...]

  • Seite 397

    Functions and command s 391 exponential_ regression Gi ven a set o f points, r eturns a v ector containing the coeff ic ien ts a and b of y=b*a^x , the exp one ntia l which b est fits the se t of points . The poin ts may be the elemen ts in t wo lists or th e ro ws of a matrix. exponential_regression(Matrix) or exponential_regression(List1, List2) [...]

  • Seite 398

    392 Functions and commands fMax Gi ven an e xpressi on in x , retur ns the value of x for wh ich t h e e xpression has it s maximum value. G iv en an expres sion and a var iable , re turns the value o f that vari able for w hich the e xpressi on has its max imum value . fMax(Expr,[Var]) Example: fMax(-x^2+2*x+1,x) gi ves 1 fMin Giv en an expr essio[...]

  • Seite 399

    Functions and command s 393 fsolve Re turns the numer ical soluti on of an equation or a s yst em of equations . With the optional thir d argument y ou can spec if y a guess for the s olution or an interval w ithin whic h it is expec ted that the soluti on will occ ur . With the optio nal fourth argume nt you can name the iter ativ e algorithm to b[...]

  • Seite 400

    394 Functions and commands gramschmidt Gi ven a basis of a vec tor subspace , and a function that defines a scalar pr oduct on this vector subspace , retur ns a n orthonor mal basis for that f unction . gramschmidt(Vector, Function) Example: gramschmidt ret u rn s green Used in the S y mbolic vi ew of the Geometry app . In the definition of a geome[...]

  • Seite 401

    Functions and command s 395 head Returns the first element of a given v ector , sequ ence or string . head(Vector) or head(String) or head(Obj1, Obj2,…) Exam ple: head(1,2,3) gi ves 1 Heaviside Retur ns the value o f the Heavisi de functi on for a gi ven r eal number (i .e. 1 if x >=0, and 0 if x <0). Heaviside(Real) Exam ple: Heaviside(1) [...]

  • Seite 402

    396 Functions and commands id Re turns a vec tor containing the soluti on to the identity func tion for th e a rg um en t( s) . id(Object1, [Object2,…]) Example: id([1 2], 3, 4) ret u rn s [[1 2] 3 4] identity Giv en an i nte ger n , r eturns the i dentity matri x of dimension n . identity(Integer) Example: identity(3) ret u rn s iegcd Returns th[...]

  • Seite 403

    Functions and command s 397 iPart Retur ns a real nu mber withou t its frac tional part or a list of real numbers eac h wi thout its fr actional part . iPart(Real) or iPart(List) Exam ple: iPart(4.3) ret u rn s 4 iquorem Retur ns the Euc lidean quoti ent and remainde r of two integer s. iquorem(Integer1, Integer2) Exam ple: iquorem(63, 23) ret u rn[...]

  • Seite 404

    398 Functions and commands length R eturns the length of a list , string or s et of objec ts. length(List) or length(String) or length(Object1, Object2,…) Example: length([1,2,3]) gi ves 3 lgcd Retur ns the greate st common div isor of a set of int egers or poly nomials, contained in a list, a vect or , or just enter ed direc tly as arguments . l[...]

  • Seite 405

    Functions and command s 399 list2mat Returns a matr i x of n columns made by splitting a li st into ro w s, each containing n terms. If the number of elements in the list is not di v isible by n , then the matr i x is completed with ze ros . list2mat(List, Integer) Exam ple: list2mat({1,8,4,9},1) ret ur n s lname Returns a lis t of the var iables i[...]

  • Seite 406

    400 Functions and commands logistic_ regression R eturns y , y', C, y'max, xmax , and R, w here y is a logisti c functi on (the solut ion of y'/y=a*y+b), such that y(x0)=y0 and wher e [y'(x0) ,y'(x0+1 )...] is the best appr ox imation of t he line for med by the elements in th e list L. logistic_regression(Lst(L),Real(x0),R[...]

  • Seite 407

    Functions and command s 401 Exam ple: matpow([[1,2],[3,4]],n) gi ves [[(sqrt(33)- 3)*((sqrt(33)+5)/2)^n*-6/(-12*sqrt(33))+(- (sqrt(33))-3)*((-(sqrt(33))+5)/2)^n*6/(- 12*sqrt(33)),(sqrt(33)-3)*((sqrt(33)+5)/ 2)^n*(-(sqrt(33))-3)/(-12*sqrt(33))+(- (sqrt(33))-3)*((-(sqrt(33))+5)/2)^n*(- (sqrt(33))+3)/(- 12*sqrt(33))],[6*((sqrt(33)+5)/2)^n*-6/(- 12*sqr[...]

  • Seite 408

    402 Functions and commands modgcd Uses the modular algor ithm to retu rn the great est common div isor of two pol ynomials. modgcd(Poly1,Poly2) Example: modgcd(x^4-1,(x-1)^2) gi ves x-1 mRow Gi ven an e xpres sion, a matr ix , and an integer n , m ultiplies row n of the matri x by the e xpr ession. mRow(Expr, Matrix, Integer) Example: mRow ret u rn[...]

  • Seite 409

    Functions and command s 403 nDeriv Gi ven an expr ession , a varia ble of differentiati on, and a real number h , r eturn s an appro x imate value o f the deri vati ve of the expr essi on, using f’(x)=(f (x+h)–f(x+h))/(2*h) . Witho ut a third ar gument, the v alue of h is set to 0.00 1; with a real as thir d ar gument, it is the value of h. W i[...]

  • Seite 410

    404 Functions and commands order_size Re turns the remainder (O term) o f a series e xpansion: limit(x^a*order_si z e(x),x= 0)=0 if a>0. order_size(Expr) pa2b2 T ak es a prime integer n congruent to 1 modulo 4 and re turns [a,b] such that a^2+b^2=n. pa2b2(Integer) Example: pa2b2(17) giv es [4 1] pade R eturns the P ade appr ox imation of an e xp[...]

  • Seite 411

    Functions and command s 405 plotparam Used in the Geometry app S ymboli c vie w . T akes a comple x expr ession in one v ariab le and an inter val for that vari able as ar guments. Int erpr ets the comple x expr essi on f(t)+i*g(t) as x=f(t) and y=g(t) and plots the parametr ic eq uation ov er the interval specif ied in the second argumen t. plotpa[...]

  • Seite 412

    406 Functions and commands pole Gi ven a c irc le and a line , retur ns the point f or whic h the line is polar with r espec t to the cir cle . pole(Crcle,Line) Example: pole(circle(0, 1), line(1+i, 2)) ret u r n s point(1/2,1/2) POLYCOEF Retur ns the coeff ici ents of a pol ynomi al with r oots gi ven in the v ector or list ar gument. POLYCOEF(Vec[...]

  • Seite 413

    Functions and command s 407 polygonscatterplot Used in the Geometry app S ymbolic v ie w . Gi ve n an n × m matr ix , dra ws and connec ts the points ( xk, yk) , wher e xk is the elem ent in row k and column 1 , and yk is th e element in ro w k a nd colu mn j (with j fixed fo r k =1 to n r ow s) . Thus , each column pairing gener ate s its ow n f [...]

  • Seite 414

    408 Functions and commands power_regression Gi ven a set of points def ined by tw o lists, retur ns a vector containing the coeffi ci ents m and b of y = b* x^m , the monomi al whic h best appr ox imates the giv en points . power_regression(List1, List2) Example: power_regres sion({1, 2, 3, 4}, {1, 4, 9, 16}) ret u rn s [2 1] powerpc Gi ven a c irc[...]

  • Seite 415

    Functions and command s 409 propfrac Retur ns a fracti on or rati onal fr action A/B simplif ied to Q+r/ B, w here R<B or the degree of R is less than the degr ee of B . propfrac(Fraction) or propfrac(RatFrac) Exam ple: propfrac(28/12) gi ves 2+1/3 ptayl Gi ven a pol ynomial P and a value a , retur ns the T ay lor poly nomial Q such that P( x )=[...]

  • Seite 416

    410 Functions and commands quartile3 Giv en a list or vector , returns the third quartile of the elements of the list or v ector . Gi ven a matr ix , r eturns the third q uartile of the columns of the matr ix . quartile3(List) or quartile3(Vector) or quartile3(Matrix) Example: quartile3([1,2,3,5,10,4]) ret ur n s 5 quartiles Retur ns a matri x cont[...]

  • Seite 417

    Functions and command s 411 randperm Gi ven a positi ve integer , returns a r andom permutatio n of [0, 1 ,2 ,...,n–1]. randperm(Intg(n)) Exam ple: randperm(4) r eturns a ra ndom permutati on of the elements of the vect or [0 1 2 3] ratnormal Re wr ites an expr ession as an irr educible r ational fr action. ratnormal(Expr) Exam ple: ratnormal ret[...]

  • Seite 418

    412 Functions and commands reduced_conic T ak es a conic expr ession and r eturns a vec tor with the fo llow ing items: • The or igin of the coni c • The matr i x of a basis in whi ch the conic is r educed • 0 or 1 (0 if the conic is degenerate) • The r educed equ ation of the coni c • A vec tor of the conic’s par ametr ic equations red[...]

  • Seite 419

    Functions and command s 413 residue Re turns the re sidue of an e xpr ession at a valu e. residue(Expr, Var, Value) Exam ple: residue(1/z,z,0) ret u rn s 1 restart P urges all the var iables. restart(NULL) resultant Retur ns the result ant (i.e . the deter minant of the S ylv ester matr ix) of tw o poly nomials. resultant(Poly1, Poly2, Var) Exam pl[...]

  • Seite 420

    414 Functions and commands rowAdd Gi ven a matr i x and t w o integers , retur ns the matr ix obtained fr om the g iv en matrix after the ro w indicated b y t he second integer is r eplaced by the sum of the r ow s indicated b y the tw o inte gers . rowAdd(Matrix, Integer1, Integer2) Example: rowAdd ret u rn s rowDim R eturns the number o f ro ws o[...]

  • Seite 421

    Functions and command s 415 select Gi ven a Boolean e xpressi on in a single varia ble and a list or vector , tests ea ch element in the l ist or vector and returns a list or vec tor containing the elemen ts that satisfy the Boolean. select(Expr, List) or select(Expr, Vector) Exam ple: select(x → x>=5,[1,2,6,7]) gi ves [6,7] seq Gi ven an e xp[...]

  • Seite 422

    416 Functions and commands simult Retur ns the solution to a s y stem of linear equatio ns or sev eral s yste ms of linear equatio ns pres ented in matri x for m. In the case of one s yst em of linear equations , takes a matr ix o f coeff ici ents and a column matr ix o f constants, and r eturns the column matr ix of the s olution . simult(Matrix1,[...]

  • Seite 423

    Functions and command s 417 stddevp Retur ns the population standar d dev iation of the elements of a lis t or a list of the population s tandar d de viati ons of the columns o f a matr ix . The opti onal second lis t is a list o f wei ghts. stddevp(List1, [List2]) or stddevp(Vector1, [Vector2]) or stddevp(Matrix) Exam ple: stddevp({1,2,3}) gi ves [...]

  • Seite 424

    418 Functions and commands sylvester R eturns the S yl ves ter matri x of two pol ynomi als. sylvester(Poly1, Poly2, Var) Example: sylvester(x 2 -1,x 3 -1,x) gi ves table Def ines an arr ay w her e the index es ar e string s or real num ber s. table(SeqEqual(index_name=element_value)) tail Gi ven a list , string , or sequence of objects , retur ns [...]

  • Seite 425

    Functions and command s 419 trunc Gi ven a va lue or list of values , as well a s an integer n , r eturns the value o r list truncated t o n decimal places. If n is n ot pr ov ided , it is taken as 0. A ccepts complex n umbers. trunc(Real, Integer) or trunc(List, Integer) Exam ple: trunc(4.3) gi ves 4 tsimplify Retur ns an expr ession with tr ansce[...]

  • Seite 426

    420 Functions and commands vpotential Given a ve ct o r V an d a ve ct o r of va ria bl es, ret u rn s t h e ve ct or U such that c url(U)=V . vpotential(Vector1, Vector2) Example: vpotential([2*x*y+3,x 2 -4*z,-2*y*z],[x,y,z]) returns when Used to intr oduce a conditional statement . XOR Ex clusi ve or . Re turns 1 if the fir st expr essi on is tru[...]

  • Seite 427

    Functions and command s 421  Inserts a template fo r a summation expr essi on.  Insert s a minus sign.  Insert s a square r oot sign.  Insert s a template for an antideri vativ e expr ession.  Inequality test . R eturns 1 if the left and r ight side s are not equal and 0 if the y are equal .  Less than or eq ual inequalit y test .[...]

  • Seite 428

    422 Functions and commands 3. I n t h e Fun c ti on field, enter the function. eA A >+fA B >A C New f ields appear below y our f unction , one fo r each var iable us ed in def ining it. Y ou need to deci de whic h ones are to be input arguments fo r your func tions and whi ch ones ar e global vari ab l es wh ose va l ue s are n ot input withi[...]

  • Seite 429

    Variables 423 22 Va r i a b l e s V ar iables ar e objects that ha ve names and co ntain data. The y are used to stor e data, either for later use or to control settings in the Prime sys tem. Ther e are four types of var iables, all of w hich can be found in the Var s menu by pre ssing a : • Home v ariable s • CAS v ari ables • App variabl es[...]

  • Seite 430

    424 Variables y ou ev aluate that re sult (using the EVAL command) , the CAS w ill no w retu rn {2,4,6} . User var iables are e xplicitly c reated by the user . Y ou cr eate user vari ables either in a progr am or b y assignment in Home vi ew . User var iables cr eated in a pr ogram are either declar ed as local or exported as global. User var iabl[...]

  • Seite 431

    Variables 425 Working with user variables Example 2 : Create a vari able called ME and assign  2 to it. 1. P r e s s H to displa y Home v iew . 2. A s s i g n  2 to ME : Szj AQAcE 3 . A message appears asking if you w ant to cr eate a var iable called ME . T a p or press E to conf irm y our in tenti on . Y ou can no w use that v aria ble in s[...]

  • Seite 432

    426 Variables Enter ing HAngle:=0 E fo rce s t he s et ti n g to re t ur n to radians . Y ou can see what value has been assigned to a var iable—whether Home, app , or user—by enter ing its name in Home v iew and pr essing E . Y ou can enter the name letter by letter , or choose the v aria ble from the V ar iables menu b y pr essing a . More ab[...]

  • Seite 433

    Variables 427 Qualifying variables Some app v ariable names ar e shar ed by multiple apps. F or ex ample, the F unction app has a v aria ble named Xmin , bu t so too does the P olar app , the P ar ametri c app, the Sequence app , and the Solv e app . Although named identicall y , these vari ables usual ly hold differ ent values. If y ou attempt to [...]

  • Seite 434

    428 Variables Home variables The Home v ariables ar e accessed by pr essing a and tapping . Category Names Real A to Z and  For exa m p l e, 7 .45 A Comp lex Z0 t o Z 9 F or ex ample, 2+3× i Z1 or (2 ,3) Z1 (depending on y our Comple x number settings) List L0 to L9 For exa m p l e, { 1 ,2,3} L 1 . Matri x M0 to M9 Store matrices and vectors in[...]

  • Seite 435

    Variables 429 App variables The app v ariables ar e accessed by pr essing a and tapping . They ar e grou ped below b y app. (Y ou c a n f i n d t h e n g r o u p e d b y v i e w — Sy m b o l i c , N u m e ri c, P l o t, —in “V ari ables and Progr ams” on page 5 5 6.) Note that if y ou have c ustomi z ed a built -in app , your app w ill appe[...]

  • Seite 436

    430 Variables Results variables Extremum C ontains the value from the la st use of the Extremum functi on fr om the menu in the P lot vie w of the F unction app . The app f unction EXTREMUM does not stor e r esults to this var iable . Isect C ontains the value f rom the last u se of the Isect fun ct ion fr om the menu in the Plo t vie w of the F un[...]

  • Seite 437

    Variables 431 Spreadsheet app variables Solve app variables Category Names Numeric ColWidth Row Cell RowHeight Col Modes AAngle AComplex ADigits AFormat Category Names Sym b o l i c E1 E2 E3 E4 E5 E6 E7 E8 E9 E0 Pl o t Axes Cursor GridDots GridLines Labels Method Recenter Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Modes AAngle AComplex ADigits AFo[...]

  • Seite 438

    432 Variables Advanced Graphing app variables Category Names Sym b o l ic V1 V2 V3 V4 V5 V6 V7 V8 V9 V0 Pl o t Axes Cursor GridDots GridLines Labels Recenter Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Numeri c NumXStart NumYStart NumXStep NumYStep NumIndep NumType NumXZoom NumYZoom Modes AAngle AComplex ADigits AFormat[...]

  • Seite 439

    Variables 433 Statistics 1Var app variables Category Names R esults [explained below ] NbItem MinVal Q1 MedVal Q3 MaxVal  X  X2 MeanX sX  X serrX Sym b o l i c H1 H2 H3 H4 H5 H1Type H2Type H3Type H4Type H5Type Plot Axes Cursor GridDots GridLines Hmin Hmax Hwidth Labels Recenter Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Numer ic D1 D2 D3 [...]

  • Seite 440

    434 Variables Results NbItem Co ntains the number of data points in the c urr ent 1 - vari ab l e a n alys i s ( H1-H5 ). MinVal Con tains the minimum value o f the data set in the c urr ent 1- v a r i a b l e a n a l y s i s ( H1-H5 ). Q1 Con tains the value of the f irst quartile in the c urr ent 1 - vari ab l e a n alys i s ( H1-H5 ). MedVal Con[...]

  • Seite 441

    Variables 435 Statistics 2Var app variables Category Names Res u l t s [explained below ] NbItem Corr CoefDet sCov  Cov  XY MeanX  X  X2 sX  X serrX MeanY  Y  Y2 sY  Y serrY Sym b o l i c S1 S2 S3 S4 S5 S1Type S2Type S3Type S4Type S5Type Plot Axes Cursor GridDots GridLines Labels Method Recenter Xmax Xmin Xtick Xzoom Ymax Ym[...]

  • Seite 442

    436 Variables Results NbItem Co ntains the number of data points in the c urr ent 2 - vari ab l e a n alys i s ( S1-S5 ). Corr Contains the cor relati on coeffi cien t from the latest calc ulation of summary statistic s. This v alue is based on the linear f it only , r egardless o f the fit ty pe chos en. CoefDet Contains the coeff ic ient of deter[...]

  • Seite 443

    Variables 437  Y Con tains the sum of the dependent v alues (Y ) of the c urre nt 2 -vari able statisti cal analy sis ( S1-S5 ).  Y2 Con tains the sum of the squar es of the dependen t values (Y) o f the curr ent 2 -v ariab le statistical analy sis ( S1-S5 ). sY Con tains the sample s tandar d dev iatio n of the depende nt value s (Y) of the [...]

  • Seite 444

    438 Variables Results CritScore Con tains the value of the Z - o r t -distr ibution as soc iated w ith the input  -v alue CritVal1 Con tains the low er cr itical value of the e xperiment al var iable a ssoc iated w ith the negati ve TestScore va lu e whi ch wa s calculated fr om the input  -le vel . CritVal2 Contains the upper c ritical v alu[...]

  • Seite 445

    Variables 439 Parametric app variables Category Names Sym b o l i c X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7 X8 Y8 X9 Y9 X0 Y0 Pl o t Axes Cursor GridDots GridLines Labels Method Recenter Tmin Tmax Tstep Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Numeric NumStart NumStep NumType NumZoom Modes AAngle AComplex ADigits AFormat[...]

  • Seite 446

    440 Variables Polar app variables Finance app variables Category Names Sym b o l ic R1 R2 R3 R4 R5 R6 R7 R8 R9 R0 Pl o t  min  max  step Axes Cursor GridDots GridLines Labels Method Recenter Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Numeri c NumIndep NumStart NumStep NumType NumZoom Modes AAngle AComplex ADigits AFormat Category Names Nu[...]

  • Seite 447

    Variables 441 Linear Solver app variables Triangle Solver app variables Linear Explorer app variables Quadratic Explorer app variables Category Names Numeric LSystem LSolution a Modes AAngle AComplex ADigits AFormat a. Contains a v ector with the last s olution found b y the Linear Solv er app. Category Names Numeric SideA SideB SideC Rect AngleA A[...]

  • Seite 448

    442 Variables Trig Explorer app variables Sequence app variables Category Names Modes AAngle AComplex ADigits AFormat Category Names Sym b o l ic U1 U2 U3 U4 U5 U6 U7 U8 U9 U0 Pl o t Axes Cursor GridDots GridLines Labels Nmin Nmax Recenter Xmax Xmin Xtick Xzoom Ymax Ymin Ytick Yzoom Numeri c NumIndep NumStart NumStep NumType NumZoom Modes AAngle AC[...]

  • Seite 449

    Units and constants 443 23 Units and constants Units A unit of measur ement—suc h as inch , ohm, or Becquer el—enable s you to giv e a prec ise magnitude to a phy sical quantity . Y ou can attach a unit of measurement to an y number or numer ical r esult . A numer ical va lue with units attached is r efer red to as a measur ement . Y ou can ope[...]

  • Seite 450

    444 Units and constants Prefixes The Units menu include s an entry that is not a unit category , namely , Prefix . Selecting this opti on display s a palette o f pref i xes . Unit pre fi xes pro vi de a handy wa y of entering large or small numbers . For e xam ple, the speed of li ght is appro x imately 300, 000 m/s. If y ou wanted to use that in a[...]

  • Seite 451

    Units and constants 445 Example Suppose you w ant to a dd 20 centimeters and 5 inches and hav e the result displa yed in centimeters. 1 . If y ou w ant the re sult in cm, ente r the centimeter measurement f irst. 20 SF (Units) Select Length Select cm 2. N ow a d d 5 i n c h e s . + 5 SF Select Length Select in E The re su l t i s s h own a s 32. 7 [...]

  • Seite 452

    446 Units and constants 4. Now con vert the r esult to kilometer s per hour . SF Select Speed Select km/h E Th e re s ul t i s sh own a s 0 . 29 43 k i l o m e t e rs per hour . Unit tools Ther e are a number of tools f or managing and operating on units . Thes e are a vaila ble by pr essing SF and ta pping . CONVERT Con verts one unit to another u[...]

  • Seite 453

    Units and constants 447 UFACTOR Unit factor con version . Conv er ts a measurement using a compound uni t into a measurement expr essed in constituent units. F or e xample , a Coulomb—a measure o f electr ic c harge— is a compound unit der iv ed fr om the SI base units of Am pere and second: 1 C = 1 A * 1 s. Thus: UFACTOR(100_C,1_A)) ret u r n [...]

  • Seite 454

    448 Units and constants 3 . Select Physics . 4. Select c: 299792458 . 5 . Sq uare the sp eed of light and e v aluate the expr ession. jE Value or measurement? Y ou can enter just the v alue of a const ant or the constan t and its units (if it has units). If is sho wing on the scr een, the value is inserted at the cursor point. If is sho wing on the[...]

  • Seite 455

    Units and constants 449 List of constants Category Name and s ymbol Math e MAXREAL MINREAL  i Chem i str y Avogadro, NA Boltmann, k molar volume, Vm universal gas, R standard temperature, StdT standard pressu re, StdP Phy ic s Stefan-Boltzmann,  speed of li ght, c permittivity,  0 permeability,  0 acceleration of gravity, g gravitat ion[...]

  • Seite 456

    450 Units and constants[...]

  • Seite 457

    Lists 451 24 Li s ts A list consists of comma-separ ated real o r complex numbers , expre ssions, or matr ices, all enc losed in brace s. A list may , fo r ex ample, con tain a sequence of r eal numbers such as {1,2,3} . Lists r ep r esent a conv enient wa y to group related objects. Y ou can do list operati ons in Home and in progr ams. Ther e are[...]

  • Seite 458

    452 Lists 2 . T ap on the name y ou want to assign to the new list ( L1 , L2 , etc.). The li st editor appears. If y ou’r e creating a new lis t rather than changing , make sur e you c hoose a list with out any elements in it. 3 . Enter the values y ou wa nt in the list , pressing E after each one. V alues can be r eal or comple x numbers (o r an[...]

  • Seite 459

    Lists 453 The List Editor The L ist Editor is a special en vir onment for enter ing data into lists. T here are tw o way s to open the List E ditor once the List Catalog is op en: • Highli ght the list and tap or • T ap the name of the lis t. List Editor: Buttons and keys When y ou open a list, the follo wing buttons and ke ys ar e av ailable t[...]

  • Seite 460

    454 Lists To edit a list 1. O p e n t h e L i s t Catalo g. Sp (List) 2 . T ap on the name of the list ( L1 , L1 ,etc.). The L ist Edito r appears. 3 . Tap on the element y ou want to edit . (Al te rna t ively , p ress = or until the element you want to edit is highli ghted.) In this ex ample , edit the third element so that it has a v alue of 5 [...]

  • Seite 461

    Lists 455 Select L1( 2) , that is, the second element in the list . 9 Deleting lists To delete a list In the List C atalog, u se the cur sor k ey s to highli ght the list and pre ss C . Y ou ar e prompted to conf irm your dec ision . T ap or press E . If the li st is one of the rese r ved lists L0 -L9 , then only the conten ts of the list ar e dele[...]

  • Seite 462

    456 Lists 4. When y ou have f ini shed entering the elements, pr ess E . The list is added to Histo r y (w ith any expr essions among the elements evaluated) . To store a list Y ou can stor e a list in a vari able. Y ou can do this befor e the list is added to His tory , or y ou can copy it fr om Histor y . When y ou’ve enter ed a li st in the en[...]

  • Seite 463

    Lists 457 To send a list Y ou can send lists to another calc ulator or a P C just as you can apps, pr ogr ams, matrice s, and notes . See “Sharing data” on page 44 f or instructions . List functions Li st functi ons are fo und on the Math menu. Y ou can u se them in Home and in progr ams. Y ou can type in the name of the func tion, o r yo u can[...]

  • Seite 464

    458 Lists Menu format By de fault , a List func tion is pr esented on the Math menu using its desc ripti ve name , not its common command name. T hus the sh orth and name CONCAT is pr es ented a s Concat enate and POS is pr esented as Po s i t i o n . If y ou pre fer the Math menu to sho w command names instead, dese lect the Menu Display opti on o[...]

  • Seite 465

    Lists 459 Reverse Cr eates a list by rev ersing the or der of the ele ments in a list . REVERSE( list ) Example: REVERSE({1,2,3}) returns {3,2,1} Concatenate Concatenates two lists into a new list . CONCAT( list1 , list2 ) Example: CONCAT({1,2,3},{4}) ret u r n s {1,2,3,4} . Position R eturns the positio n of an element w ithin a list. T he element[...]

  • Seite 466

    460 Lists  LIST Creat es a new list comp osed of the fi rst differ ences o f a list; that is, the differences between consec utive elements in the list. The ne w list has one less element than the ori gin al list . The differ ences for { x 1 , x 2 , x 3 ,. .. x n-1 , x n } ar e { x 2 –x 1 , x 3 –x 2 ,... x n –x n–1 } .  LIST( list1 ) [...]

  • Seite 467

    Lists 461 Finding statistical values for lists T o f ind statistical values—suc h as the mean, median , max imum, and minimum of a list—yo u creat e a li st , stor e it in a data set and then use the Stat istics 1V ar app . Example In this ex ample, use the S tatistics 1V a r app to find the mean, median , maximu m, and minimum values o f the e[...]

  • Seite 468

    462 Lists 4. In the Sy mbolic v iew , spec ify the data set whos e statistic s you w ant to find . Y By def ault, H1 w ill use the data in D1 , so not hin g fur th er needs to be done in S ymboli c vi ew . Ho we ver , if the data of inter est w ere in D2 , or any column other than D1 , y ou would hav e to specify the desired data column here . 5. C[...]

  • Seite 469

    Matrices 463 25 Ma tr i ce s Y ou can cr eate , edit, and oper ate on matr ices and v ectors in the Home v iew , CAS , or in pr ograms. Y ou can enter matri ces direc tly in Home or CAS , or use the Matr ix Editor . Vectors V ectors are one -di mensional array s. They ar e c omposed of ju st o n e row . A ve c to r i s rep re se n te d by s in gl e[...]

  • Seite 470

    464 Matri ces Creating and storing matrices The M a trix Ca ta l og contains the reserved matri x var iables M0-M9 , as w ell as any matri x vari ab le s you have cr e a t e d i n H o m e o r C A S vi ew s (or from a pr ogram if they ar e global). Once y ou select a matri x name , you can cr eate , edit, and delete matr ices in the Matr ix E ditor [...]

  • Seite 471

    Matrices 465 Working with matrices To open the Matrix Editor T o creat e or ed it a ma trix, go to th e M atrix Cat alo g, an d tap on a matr ix . (Y ou could also use the c ursor k ey s to highlight the matrix and then press .) Th e M atrix E ditor opens. Matrix Editor: Buttons and keys The bu ttons and ke ys a vailable in the Matr i x Edit or are[...]

  • Seite 472

    466 Matri ces To create a m atrix in the Matrix Editor 1 . Open the Matr ix Catalog: St (Matrix) 2 . If y ou want to c reate a vector , pr ess = or unti l the mat ri x you want to use is highlighted, tap , and then pres s E . Co n ti n ue f rom s t ep 4 b e low . 3 . If you want to cr eate a ma tri x, either tap on t he nam e of the matr ix (M0?[...]

  • Seite 473

    Matrices 467 Matrices in Home view Y ou can enter a nd operate on matri ces directly in Home v iew . The matr ices can be named or unnamed. Enter a v ector or matr ix in Home o r CAS v iew s direc tly in the entr y line. 1. P r e s s S u ([]) to start a vector or matri x. T he matri x template will appear , as shown in t he figu re t o th e rig h t[...]

  • Seite 474

    468 Matri ces entry line or copied it fr om History to the entry line, tap , enter a name fo r it and press E . T he va ria b l e na m e s res er ve d for v ec t or s a nd m a t ric e s a re M0 thr ough M9 . Y ou can alw ay s use a var iable name y ou dev ise to stor e a vector or matr ix . The new v ariable w ill appear in the V ars menu under . T[...]

  • Seite 475

    Matrices 469 To store one element In Home v iew , enter val u e , ta p , and then ent er matri xname ( row , c o l u mn ). F or ex ample , to change the elemen t in the first r o w and second column of M5 to 7 2 8 and then display the re s u l t i n g m a t ri x: 728 AQ 5 R 1 o 2 E An attempt to stor e a n element to a ro w or column be yond the si[...]

  • Seite 476

    470 Matri ces Example 1 . Select the f irst matr ix : St (Matrix) T ap M1 or highlight it and pr ess E . 2 . Enter the matri x elements: 1 E 2 E 3 E 4 E 3. S elect the second matr ix : St (Matrix) T ap M2 or highlight it and pr ess E . 4. Enter the matri x elements: 5 E 6 E 7 E 8 E 5 . In Home v iew , add the two matr ices y ou hav e just c reated [...]

  • Seite 477

    Matrices 471 To multiply two matrices T o multipl y the two matri ces that you c reated f or the pre v ious ex ample, pr ess the f ollow ing ke ys: AQ 1 sA Q 2 E To m u l t i p l y a m a t ri x b y a vector , enter the mat ri x fir st, the n the vector . T he number of elements in the vector mus t e qual the number of columns in the matri x. To rai[...]

  • Seite 478

    472 Matri ces This oper ation is not a mathemati cal div ision: it is a left- multiplicati on by the in ve rse of the di visor . M1/M2 is equi valent to M2 –1 * M1 . To d i v i d e t h e t w o matri ces you c reat ed for th e p reviou s exa m pl e, pre ss the follo w ing ke ys: A Q 1 n A Q 2 To invert a matrix Yo u c a n i n v e r t a square matr[...]

  • Seite 479

    Matrices 473 2 . Cr eate the vect or of the thr ee constants in the linear sy stem . 5 E 7 E 1 E 3 . R eturn to the Matri x Cat al og. St The size of M1 should be showing as 3. 4. Select and clear M2 , and re-open the Matri x E ditor: [Press or = to select M2] C E 5 . Ente r the equation coeffi cients. 2 E 3 E [Tap in cell R1, C3.] 4 E 1 E 1 E Q [...]

  • Seite 480

    474 Matri ces 6 . R eturn to Home vi ew and left-multiply the cons tants vec tor by the in ver se of the coeff ic ients matr ix : HA Q 2 S n s A Q 1 E The r esult is a v ector of the soluti ons: x = 2 , y = 3 and z = –2 . An al terna tive meth od i s to use the RREF function (see page 4 7 6). Matrix functions and commands Functions F unctions can[...]

  • Seite 481

    Matrices 475 The matr i x commands are desi gned to support progr ams that use matri ces. The matr ix commands are liste d in the Matri x category of the Commands men u in the Progr am Edito r . T hey are als o listed in the Cat alog menu , one of the T oolbo x menu s. Pre ss D and tap to display the commands catalog. T he matri x functions ar e de[...]

  • Seite 482

    476 Matri ces RREF Red uc e d Row- Eche l on Form. Ch an ge s a re cta n gu l ar matri x to its reduced r ow-ec helon for m. RREF ( matrix ) Exam ple: RREF returns Create Make Creat es a matri x of dimension rows × columns , u sin g exp res s io n to calculate each element . If e xpression contains the v aria bles I and J, then the calc ulati on f[...]

  • Seite 483

    Matrices 477 Random Giv en t wo in tegers, n and m , and a matri x name, c reate s an n x m m a t r i x t h a t c o n t a i n s r a n d o m i n t e g e r s i n t h e r a n g e − 9 9 through 9 9 w ith a unifor m distributi on and stor es it in the matri x name. randMat ( MatrixName,n,m ) Example: RANDMAT(M1,2,2) returns a 2x2 matrix with random in[...]

  • Seite 484

    478 Matri ces Vandermonde Retur ns the V andermonde matr ix . Gi ven a v ector [ n1 , n2 … nj ], r eturns a matri x who se fir st ro w is [(n1 ) 0 , (n1 ) 1 , (n1 ) 2 , …,(n1 ) j- 1 ]. T he second r ow is [(n2) 0 , (n2 ) 1 , (n2) 2 , …,(n2) j- 1 ], etc. vandermonde ( vector ) Exam ple: vandermonde([1 3 5]) returns Basic Norm Retu rns the F ro[...]

  • Seite 485

    Matrices 479 Spectral Norm Spectral No rm of a squar e matri x . SPECNORM ( matrix ) Example: SPECNORM returns 5.46498570422 Spectral Radius Spectr al Radius of a square matr ix . SPECRAD ( matrix ) Example: SPECRAD returns 5.37228132327 Condition Conditi on Number. F inds the 1 -nor m (column norm) of a square matri x . COND ( matrix ) Example: CO[...]

  • Seite 486

    480 Matri ces Trace F inds the trace o f a square matri x. T he trace is equal t o the sum of the diagonal elements. (It is al so equal to the sum of the eigenvalues.) TRACE ( matrix ) Exam ple: TRACE returns 5 Advanced Eigenvalues Di s pl ays th e e ig enva l ue s i n vec tor fo rm for matri x . EIGENVAL ( matrix ) Exam ple: EIGENVAL returns: . Ei[...]

  • Seite 487

    Matrices 481 Diagonal Gi ven a lis t, r eturns a matr ix w ith the list eleme nts along its diagonal and z er oes else wher e. Gi ven a matr ix , r eturns a vect or of th e elements along it s diagonal. diag (list) or diag (matrix) Example: diag returns Cholesky F or a numeri cal sy mmetri c matrix A, r eturns the matr ix L such that A=L*tr an(L). [...]

  • Seite 488

    482 Matri ces Hessenberg Matri x r eduction to Hess enberg f orm. R eturns [P ,B] such that B=inv(P)*A*P . hessenberg(Mtrx(A)) Exam ple: In CAS view, hessenberg returns Smith Smith normal f orm of a matr ix w ith coeffi cient s i n Z: re turns U,B ,V such that U and V inv er tible in Z , B is diagonal, B[i,i] div ides B[i+1 ,i+ 1], and B=U*A*V . is[...]

  • Seite 489

    Matrices 483 Factorize LQ L Q Fa c t o riza t i o n. Fac t o r izes a m × n matri x into thr ee matri ces L, Q, and P , wher e {[L[ m × n low ertrapez o idal ]],[Q[ n × n orthogonal ]], [P[ m × m permutation ]]}and P*A=L*Q . LQ ( matrix ) Example: LQ returns LSQ Lea st Squar es. Displa ys the minimum nor m least squar es matri x (or v ector ) c[...]

  • Seite 490

    484 Matri ces QR Q R Fa c t o riza t i o n. Fa c t o rize s a n m × n matr ix A numer icall y as Q*R , wher e Q is an or thogonal matr ix and R is an upper tr iangular matri x, and retur ns R. R is stor ed in v ar2 and Q=A*inv(R) is stor ed in var1 . QR ( matrix A,var1,var2 ) Exam ple: QR return s SCHUR Schur D ec ompos itio n. Factori zes a squa [...]

  • Seite 491

    Matrices 485 SVL Singular V alues . Returns a vector co ntaining the singular val u es of matri x . SVL ( matrix ) Example: SVL returns Vector Cross Product C r oss Product of ve cto r 1 wi t h ve c to r2 . CROSS ( vector1 , vector2 ) Example: CROSS returns Dot Product Dot Product of tw o arra ys , matri x1 and matri x2 . DOT (matrix1, matrix2) Exa[...]

  • Seite 492

    486 Matri ces Max Norm Re turns the l ∞ nor m (the maximum of the a bsolute v alues of the coordinate s) of a vect or . maxnorm(Vect or Mtrx) Exam ple: maxnorm returns 4 Examples Identity M atrix Y ou can cr eate an identity matr ix w ith the IDENMAT functi on. F or example , IDENMAT (2) c reat es the 2×2 identity matri x [[1 , 0],[ 0, 1]]. Y ou[...]

  • Seite 493

    Matrices 487 whi ch can then be stor ed as a re al matri x in any matr i x vari able. M1 is used in this e xample . Y ou can t hen use the RREF function to change this to reduced-ro w echelon f orm, s toring it in any matr i x vari able. M2 is used in this e xample . The re d uc e d row e che l o n matri x gi ves the so lution to the linear equatio[...]

  • Seite 494

    488 Matri ces[...]

  • Seite 495

    Notes and Info 489 26 Notes and Info The HP Prime has t wo te xt e ditors for entering notes: • The Note E ditor: opens from w ithin the Note Catalo g (w hich is a collecti on of notes independent of apps) . • The Info Editor: opens from the Info view of an app. A note created in the Info view is associate d with the app and stays with it if yo[...]

  • Seite 496

    490 Notes and Info The Note Editor The Note E ditor is where y ou cr eate a nd edit notes. Y ou can laun ch the Note Editor fr om t he Notes Catalo g, and also fr om within an app . Notes cr eated within an app stay w ith that app ev en if you s end the app to another calc ulator . Suc h notes do not appear in the Note s Catalog. T hey can only be [...]

  • Seite 497

    Notes and Info 491 2 . Create a new note. 3 . Ente r a name for y our note . In this ex ample , we ’ll call the note MY NOTE . AA MYNOTE 4. W r ite your note , using the editing ke y s an d formatting options desc ribed in the follo w ing sections . When you are finished, exit the Note Editor by pressing H or pressing I and opening an app. Your w[...]

  • Seite 498

    492 Notes and Info Note Editor: buttons and keys The f ollow ing buttons and ke ys ar e available w hile you are adding or editing a note. But ton or Ke y Purpose Opens the te xt formatting menu . See “F ormatting options ” on page 4 9 4. Pr ov ides bold, it alic, underline , full ca ps, supersc ript and subs cript options . See “F ormatting [...]

  • Seite 499

    Notes and Info 493 Entering uppercase and lowercase characters The f ollo wing t able below de scr ibes ho w to qui ckly enter upper case and low ercase c haracter s. E Starts a ne w line. SJ (Clear) Erases the e ntire note . a Menu for entering var iable names, and the conten ts of vari ab les. D Menu fo r entering math commands. Sa (Chars) Displa[...]

  • Seite 500

    494 Notes and Info The le ft side of the n otificati on area of the title bar w ill indica te what ca se w ill be applied to the char acter y ou next ent er . Text formatting Y ou can enter te xt in differ ent formats in the Note Editor . Choose a for mat ting option befor e you start entering te xt. The f ormatting options ar e descr ibed i n “F[...]

  • Seite 501

    Notes and Info 495 Inserting mathematical expressions Yo u c a n i n s e r t a mathemati cal expr es sion in textbook f ormat into y our note , as show n in the figur e to th e ri ght. The Note E ditor uses the same 2D editor that the Home and CA S vie ws emplo y , ac tiv ated vi a the menu button . 1 . Ent er the text y ou want . When y ou come to[...]

  • Seite 502

    496 Notes and Info To import a note Y ou can import a note fr om th e Note Catalog into an ap p’ s I n fo view a n d vic e ve rs a. Suppos e you w ant to copy a no te named Assignmen ts fr om the Note Cat alog into the Func tion Info v ie w: 1 . Open the Note Catalog. SN 2 . Select the note Assignments and tap 3 . Open the cop y options fo r copy[...]

  • Seite 503

    Programming in HP PPL 497 27 Pr ogramming in HP P P L This c hapter descr ibes the HP Prime Pr ogramming Languag e (HP PPL). In this chapter y ou’ll lear n about: • progr amming commands • wr iting functi ons in progr ams • using v ariable s in progr ams • execu t i ng p ro gra m s • debugging pr ograms • cr eating progr ams for build[...]

  • Seite 504

    498 Programming in HP PP L Some built-in commands employ an alte rnativ e sy ntax wher eby f unction arguments do not appear in parenthe ses. Ex amples include RETURN and RANDOM . Program Structure Progr ams can contain an y number of subr outines (each of whi ch is a func tion or procedur e) . Subr outines start w ith a heading consisting of the n[...]

  • Seite 505

    Programming in HP PPL 499 Open the Program Catalog Pre ss Sx ( Pr ogram) to open the Pr ogram Catalog. The P ro gra m Ca t al o g display s a list of pr ogr am names. T he first item in the Progr am Catalog is a built-in entr y that has the same name as the activ e app . This entry is the app progr am for the acti ve app , if such a progr am ex ist[...]

  • Seite 506

    500 Programming in HP PP L Sav e crea te s a c o py o f the selec ted progr am w ith a new name y ou ar e prompted to gi ve . Rena me renames the sele cted prog ram. Sort sor ts the l ist of progr ams . (Sort options are alpha betical and chr onologi cal) . Delete dele tes the sele cted prog ram. Cle ar delet es all progr ams. T r ansmits the highl[...]

  • Seite 507

    Programming in HP PPL 501 Creating a new program In the follo w ing few s ections, w e wi ll creat e a simple progr am that counts to thr ee as an introduc tion to using the Progr am editor and its menus. 1 . Open the Pr ogram Catalog and start a new pr ogr am. Sx (Program) 2 . Enter a name f or the progr am. AA (to lock alpha mode) MYPROGRAM . 3. [...]

  • Seite 508

    502 Programming in HP PP L The Program Editor Until y ou become familiar w ith the HP Prime commands, the easiest wa y to enter command s is to select them from the Catalog men u ( D ) , or fr om the Commands menu in the Pr ogram E ditor ( ) . T o enter v ariables , s ymbols, mathematical func tions, units, or c haracter s, use t he key bo a rd key[...]

  • Seite 509

    Programming in HP PPL 503 Pre ss J to return to the main menu . The commands in this men u are des cr ibed i n “Commands under the Cmds menu ” , beginning on page 5 3 4. Opens a menu f rom whic h you can select common progr amming commands. T he commands are gr ouped under the options: • Block • Br anch • Loop • Va r i a b l e • Fu n [...]

  • Seite 510

    504 Programming in HP PP L 1. T o c o n t i n u e t h e MYPR OGRA M exam p le (wh ich we began on page 5 0 1), use the c urso r k ey s to position the cu rs or wh e re you wa nt t o i n se r t a command or ju st tap on the desired locati on. In this ex ample , you need to positi on the cursor betw een BEGIN and END . 2 . T ap to op en the menu of c[...]

  • Seite 511

    Programming in HP PPL 505 In this example we’ll select a LOOP command from the menu. 3. S e l e c t Loop and then selec t FOR from the sub-menu . Notice that a FOR_FROM_TO_DO _ template is inserted. All you need do is fill in the missing information. 4. Using the curs or ke ys and k ey board , fill in the missing parts of the command . In this ca[...]

  • Seite 512

    506 Programming in HP PP L 8. Fill in the ar guments of the MSGBOX command, and type a semicolo n at the end of the command ( S+ ). 9 . T ap to chec k the synt ax of your pr ogram . 1 0. When you ar e finished , pres s Sx to return to the Progr am Catalog or H to go to Ho me vie w . Y ou are read y now to e xec ute the pr ogra m. Run a Program F ro[...]

  • Seite 513

    Programming in HP PPL 507 4. T ap thr ee times to step through the FOR loop . Notice that the number show n incr ements by 1 each time . Aft er th e p rog ram terminates, y ou can r esume an y other activ ity with the HP Pr ime. If a progr am has ar guments, when y ou pr ess a sc reen appears pr ompt ing y ou to enter the progr am parameters . Mult[...]

  • Seite 514

    508 Programming in HP PP L 1 . In the Pr ogram Catalog , select MYPR OGRAM. Sx Select MYPROGRAM 2 . T ap . If there is more than one EXPORT function in a file, a list appears for you to choose which function to debug. While debugging a program, the title of the program or intra-pr ogram function appears at the top of the display. Below that is the [...]

  • Seite 515

    Programming in HP PPL 509 The message box appears. Note that when eac h message box is displayed, yo u still have to dismiss it by tapping or pressi ng E . Tap and press E repeatedly to execute the program step-by-step. T ap to close the debu gger at the curr ent line of the progr am , or tap to run the r est of the pr ogram w ithout using the debu[...]

  • Seite 516

    510 Programming in HP PP L : Cut the selection. : Copy the sele ction. 4. Select what y ou wan t to copy or c ut (using the optio ns listed immediately abo ve). 5 . T ap or . 6 . R eturn to the Pr ogram Cat alog and open the target progr am. 7 . Mo ve the c ursor to w here y ou want to ins er t the copied or c ut code. 8. Pres s SZ (P aste). The cl[...]

  • Seite 517

    Programming in HP PPL 511 To share a program Y ou can send pr ograms be tween calc ulators j ust as y ou can send apps , notes, matr ices , and lists. See “Shar ing data” on page 44. The HP Prime programming language The HP Pr ime progr amming language allow s yo u to e xtend the capabiliti es of the HP Pr ime by adding progr ams, f unctions an[...]

  • Seite 518

    512 Programming in HP PP L var iables is gi ven in chapter 2 2, “V ar iables ” , beginning on page 4 2 3.) In a pr ogram y ou can declare v ari ables for use onl y within a partic ular functi on. T his is done using a LOCAL declar ation . The u se of local var iable s enables y ou to declar e and use v ari ables that w ill not affect the r est [...]

  • Seite 519

    Programming in HP PPL 513 Note that EXPORT command fo r the var iable RADIUS appear s befo re the heading of the functi on whe re RADIUS is assi gned. A fter yo u e xec ute this pr ogram , a ne w vari able named RADIUS appears on th e USER GETRADIUS secti on of the V ar iables menu . Qualifying the name of a variable The HP Prime has man y sys tem [...]

  • Seite 520

    514 Programming in HP PP L Program ROLLDIE W e’ll f irst c reate a pr ogr am called ROLLDIE. It simulates the r olling of a single die, r eturning a r andom integer between 1 and whate ver number is passed into the fun ct ion. In the Progr am Catalog c reate a new pr ogram named ROLLDIE . (F or help , see page 50 1.) Then enter the code in the Pr[...]

  • Seite 521

    Programming in HP PPL 515 L2(roll)+1 ▶ L2(roll); END; END; B y omit ting the EXPORT command when a f unction is declar ed , its visibility can be r estr icted to the progr am w ithin whi ch it is def ined. F or e xample , y ou could defi ne the ROLLDIE function inside the ROLLMANY pr ogram lik e this: ROLLDIE(); EXPORT ROLLMANY(n,sides) BEGIN LOC[...]

  • Seite 522

    516 Programming in HP PP L FOR k FROM 1 TO n DO ROLLDIE(sides)+ROLLDIE(sides) ▶ roll; results(roll)+1 ▶ results(roll); END; RETURN results; END; ROLLDIE(N) BEGIN RETURN 1+RANDINT(N-1); END; I n H o m e v i ew yo u w o u l d e n t e r ROLLMANY(100,6)  L5 and the r esults of the simulation o f 1 00 r olls of two si x- sided dice w ould be stor[...]

  • Seite 523

    Programming in HP PPL 517 To activate persistent user mode, press SWSW . Notice that  U appears in the title bar. The user keyboard will now remain ac tive until yo u press SW again. If y ou ar e in user mode and pres s a k ey that hasn ’t been r e -assigned, the k ey ’s standard oper ation is perfo rmed. Re-assigning keys Suppose you w ant [...]

  • Seite 524

    518 Programming in HP PP L Tip A quick way to write a program to re-assign a key is to press Z and select Create user key when you are in the Program Editor. You will then be asked to press the key (or key combination) you want to re-assign. A program template appears, with the internal name of the key (or key combination) ad ded automatically. Key[...]

  • Seite 525

    Programming in HP PPL 519 n K_Div K S_Div KA_Di v KS A_Div . K_Dot K S_Dot KA_Dot KS A_Dot K_Dow n KS _Down KA_Do wn KS A_Dow n E K_Enter KS_Enter KA_Enter KS A_Enter H K_Home KS _Home KA_Home KS A_Ho me ,< K _ Le f t KS _ L e f t K A _ L ef t KSA _ Le f t ,> K_ Rig ht KS_ Righ t K A_ Rig ht KSA_Ri gh t h K_Ln KS_Ln KA_Ln KS A_Ln i K_Log KS[...]

  • Seite 526

    520 Programming in HP PP L App programs An app is a unif ied collection of v ie ws, pr ograms , notes, and asso ciat ed data. Cr eating an app progr am allo ws y ou to re define the app ’s v iew s and ho w a user w ill interact with those v ie ws. T his is done w ith (a) dedicated pr ogram func tions w ith spec ial names and (b) b y red e fin i n[...]

  • Seite 527

    Programming in HP PPL 521 Using dedicated program functions Ther e ar e nine dedicated pr ogram func tion names, as sho wn in the table below . These functions ar e called when the cor res ponding ke y s show n in the table ar e pre ssed . The se functi ons ar e designed to be w ritten int o a progr am that controls an app and us ed in the c onte x[...]

  • Seite 528

    522 Programming in HP PP L Customizing an app When an app is acti ve , its assoc iated progr am appears as the f irst item in the Pr ogram Cata log. It is w ithin this progr am that y ou put functions to c reate a c ustom app . A usef ul procedur e for c ustomizing an app is illustr ated below : 1 . Dec ide on the HP app that yo u want to cu stomi [...]

  • Seite 529

    Programming in HP PPL 523 1 . I n t he App lica tion Lib r ray , s e l ec t th e Statisti cs 1V ar app but don ’t open it. I Select Statistics 1Var . 2. Ta p . 3 . Enter a name f or the new a pp (such as DiceSimulation .) 4. T ap twi ce. The new app appears in the Application Libr ary. 5 . Open the Program Catalog . Sx 6. T a p t he p ro g ra m t[...]

  • Seite 530

    524 Programming in HP PP L Thes e vie ws w ill be activated b y pressing M and P , but the func tion Plot() in our app progr am will actuall y launc h the latter vi ew after doing s ome config urati on. Befor e entering th e fo llow ing progr am, pr ess S I to open the Info edit or and enter the te xt show n in the figur e. This note will be attach[...]

  • Seite 531

    Programming in HP PPL 525 FOR k FROM 1 TO ROLLS DO roll:=ROLLDIE(SIDES)+ROLLDIE (SIDES); D2(roll-1):= D2(roll-1)+1; END; Xmin:= -0.1; Xmax:= MAX(D1)+1; Ymin:= − 0.1; Ymax:= MAX(D2)+1; STARTVIEW(1,1); END; VIEW "Set Sides",SETSIDES() BEGIN REPEAT INPUT(SIDES,"Die Sides","N=","Enter# of sides",2); SIDES:= FLO[...]

  • Seite 532

    526 Programming in HP PP L BEGIN Xmin:=-0.1; Xmax:= MAX(D1)+1; Ymin:= − 0.1; Ymax:= MAX(D2)+1; STARTVIEW(1,1); END; Symb() BEGIN SetSample(H1,D1); SetFreq(H1,D2); H1Type:=1; STARTVIEW(0,1); END; The ROLLMANY() r outine is an adaptation of the progr am pres ented earlier in this chapter . S ince you cannot pass pa ra m e te r s t o a p rog ra m c [...]

  • Seite 533

    Programming in HP PPL 527 2. P r e s s V to see the cu stom app menu . Her e y ou can r eset the app ( Start ), se t the number of sides of the dice , the number of r olls, and execu te a s im u la t io n. 3. S e l e c t Set Rolls and enter 1 00. 4. Select Set Sides and enter 6 . 5. S e l e c t Roll Dice . Y ou w ill see a histogr am similar to the[...]

  • Seite 534

    528 Programming in HP PP L Commands under the Tmplt menu Block The bloc k commands determine the beginning and end of a sub-ro utine or function . Ther e is also a Return command to r ecall results fr om sub-r outines or functio ns. BEGIN END Sy n ta x: BEGIN command1; command2;…; commandN; END; Def ines a command or set of commands to be ex ecut[...]

  • Seite 535

    Programming in HP PPL 529 CASE Syn t a x : CASE IF test1 THEN commands1 END; IF t est2 THEN commands2 END; … [ DEFAULT commands ] END ; Eval u at es test1 . If true, e xec utes commands1 and e nds the CASE . Otherwise , ev aluates test2 . If true, e xec utes commands2 and ends the CASE . Continue s evaluating tests until a true is found. If no tr[...]

  • Seite 536

    530 Programming in HP PP L Example 1 : This pr ogram deter mines whic h integer from 2 to N has the gr eatest number of f actors . EXPORT MAXFACTORS(N) BEGIN LOCAL cur,max,k,result; 1 ▶ max;1 ▶ result; FOR k FROM 2 TO N DO SIZE(CAS.idivis(k)) ▶ cur; IF cur(1) > max THEN cur(1) ▶ max; k ▶ result; END; END; MSGBOX("Max of "+ ma[...]

  • Seite 537

    Programming in HP PPL 531 RECT(); xincr := (Xmax - Xmin)/318; yincr := (Ymax - Ymin)/218; FOR X FROM Xmin TO Xmax STEP xincr DO FOR Y FROM Ymin TO Ymax STEP yincr DO color := RGB(X^3 MOD 255,Y^3 MOD 255, TAN(0.1*(X^3+Y^3)) MOD 255); PIXON(X,Y,color); END; END; WAIT; END; FOR DOWN Sy n t a x: FOR va r FROM star t DOWNTO fi ni s h DO commands END; Se[...]

  • Seite 538

    532 Programming in HP PP L END; d+1  ▶ d; END; RETURN sum==n; END; The f ollo wing pr ogram dis play s all the perfect numbe rs up to 1 000: EXPORT PERFECTNUMS() BEGIN LOCAL k; FOR k FROM 2 TO 1000 DO IF ISPERFECT(k) THEN MSGBOX(k+" is perfect, press OK"); END; END; END; REPEAT Syn t a x: REPEAT commands UNTIL test ; Rep e at s th e [...]

  • Seite 539

    Programming in HP PPL 533 Variable The se commands enable y ou to contr ol the v isibility of a user -defined variable . LOCAL Loc a l. Syn t a x : LOCAL va r1 , var2 ,…v arn; Mak es the vari ables va r1 , var2 , etc . local to the progr am in whi ch the y are fo und. EXPORT Syn t a x : EXPORT var1, var2, …, varn; Exports the vari ables va r1 ,[...]

  • Seite 540

    534 Programming in HP PP L Commands under the Cmds menu Strings A str ing is a sequence of char acter s enclosed in double quotes (""). T o put a double quote in a string, u se two consec utiv e double quotes. The char acter starts an escape sequence , and the character(s) immedi ately follo w ing are inte rpreted s pecia lly . n in s[...]

  • Seite 541

    Programming in HP PPL 535 STRING Syn t a x : STRING ( obj ect ); Ret u r ns a s t ri ng re p re se n ta t io n of objec t . Th e res u l t va rie s depending on the t ype of obj ect . Examples: INSTRING Syn t a x : INSTRING ( str1 ,str2 ) R eturns the index o f the firs t occurr ence of str2 in st r1 . Ret u r ns 0 i f str 2 is not present in str1 [...]

  • Seite 542

    536 Programming in HP PP L MID Syn t a x : MID ( str ,pos, [ n ]) Extr acts n cha rac te rs from st ri ng str st artin g at i ndex pos . n is optio nal, if not s pecif ied, extr acts all the r emainder of the str ing. Exam ple: MID ( "MOMOGUMBO", 3,5 ) r eturns "MOGUM", MID ( "PUDGE", 4 ) r eturns "GE" ROTATE[...]

  • Seite 543

    Programming in HP PPL 537 coordinates using the Cartesian plane def ined in th e cur rent app by the var iables Xmin, Xmax , Ymin, and Ymax . The r emaining thirteen wor k with pi xel coordinates w here the pix el 0,0 is the top left pi xel of the GROB , and 320, 240 is the bottom ri ght. F uncti ons in this second set ha ve a _P suffi x to the fun[...]

  • Seite 544

    538 Programming in HP PP L Pixels and Cartesian ARC_P ARC Syn t a x ; ARC ( G, x, y , r [ , a1 , a2 , c ]) ARC_P ( G, x, y , r [ , a1 , a2 , c ]) Dra ws an arc or c ir cle on G , center ed on point x, y , wi th rad i u s r and color c starti ng at angle a1 and ending on angle a2 . G can be any of the gr aphics v ariables and is opti onal. The d ef [...]

  • Seite 545

    Programming in HP PPL 539 sx2 , sy2 ar e optional and if not spec ified w ill be the bottom r ight of the sr cGRB . sx1 , sy1 ar e optional and if not spec ifi ed will be the to p left of sr cGRB . dx1 , dy1 are optional and if n ot spec ified w ill be the top left of tr gtGRB . c can be an y color specif ied as #RRG GBB. If it is not spec ifi ed, [...]

  • Seite 546

    540 Programming in HP PP L GROBW_P GROBW Syn t a x : GROBW ( G ) GROBW_P ( G ) Retu rns the wi dth of G . G can be any of the gr aphics v ariables and is opti onal. The d ef aul t i s G0 . INVERT_P INVERT Syn t a x : INVERT ( [ G, x1 , y1 , x2 , y2 ]) INVERT_P ( [ G, x1, y1, x2, y2 ]) Exec ute s a re vers e video o f the selected r egion . G can b [...]

  • Seite 547

    Programming in HP PPL 541 PIXON_P PIXON Sy n t a x : PIXON( [ G ] , x, y [ ,color ]) PIXON_P( [ G ], x, y [ ,color ]) Sets the color o f the pi xel G wit h co o rd in a te s x, y to color . G can be any of the gr aphics var iables and is optional. The d efa ul t i s G0 , the cur rent gr aphic . Col or can be any color spec ified as #RRGGBB . The de[...]

  • Seite 548

    542 Programming in HP PP L EXPORT BOX() BEGIN RECT(); RECT_P(40,90,#0 00000); WAIT; END; The pr ogr am below als o uses the RECT_P command . In this case , the pair of arguments 320 and 240 corr espond to x2 and y2 . The pr ogram pr oduces ar e rectangle with a black edge and a red f ill. EXPORT BOX() BEGIN RECT(); RECT_P(40,90,32 0,240,#000000,# F[...]

  • Seite 549

    Programming in HP PPL 543 TEXTOUT_P TEXTOUT Syn t a x : TEXTOUT ( text [ , G ] , x , y [ ,font , c1 , width , c2 ]) TEXTOUT_P ( text [ , G ] , x , y [ ,font , c1 , widt h, c2 ]) Dra ws te xt usin g color c1 on graphic G at position x, y usin g fo nt . Do not dr aw te xt more than widt h pixels wide and eras e the back ground bef ore dr aw ing the t[...]

  • Seite 550

    544 Programming in HP PP L TEXTOUT_P(K ,35,0,2,#FFFFFF, 100,#333399); TEXTOUT_P(A ,90,30,2,#000000,100, #99CC33); sign*- 1 ▶ sign; K+1 ▶ K; UNTIL 0; END; END; The pr ogr am ex ecu tes until the use r press es O to terminate . Matrix The matr i x commands desc ribed in this sec tion ar e in addition to the matr i x functio ns descr ibed in “Ma[...]

  • Seite 551

    Programming in HP PPL 545 EDITMAT Sy n t a x : EDITMAT ( name ) Starts the Matr ix E ditor and displa ys the spec ifi ed matri x. If used in pr ogramming , retur ns to the progr am when user pre sses . Even though this command r eturns the matri x that wa s edited, EDITMAT cannot be used as an argumen t in other matri x commands. REDIM Sy n t a x :[...]

  • Seite 552

    546 Programming in HP PP L App Functions The se commands allow you to la unch an y HP app, br ing up an y vie w of the c urre nt app , and change the options in the Vi ew menu . STARTAPP Syn t a x : STARTAPP( "name" ) Starts the app w ith name . T his will cau se the app progr am ’s START function to be run , if it is presen t. The app [...]

  • Seite 553

    Programming in HP PPL 547 Y ou can also launch v ie ws that are not spec ifi c to an app by sp e ci f yi n g a va l u e fo r n that is less than 0: Home Screen:-1 Home Settings:-2 Memory Manager:-3 Applications Library:-4 Matrix Catalog:-5 List Catalog:-6 Program Catalog:-7 Notes Catalog:-8 VIEW Syn t a x : VIEW ("string"[,program_name]) [...]

  • Seite 554

    548 Programming in HP PP L BITSL Syn t a x : BITSL(int1 [,int2]) Bitwise Shift Left . T akes o ne or t wo int egers as input and r eturns the r esult of shifting the b its in the firs t integer to the left by the number places indicated b y the second integer . If ther e is no second in teger , the bits ar e shifted to the left by o n e p l ac e. E[...]

  • Seite 555

    Programming in HP PPL 549 GETBITS Sy n t a x: GETBITS(#integer) R eturns the number o f bits used b y integer , e xpres sed in the default base . Example: GETBITS(#22122) retu rn s #20h or 32 R → B Syn t a x : R → B(integer) Con verts a dec imal integer (base 1 0) to an integer in the defa ult base. Example: R → B(13) re tu r n s #1101b (if t[...]

  • Seite 556

    550 Programming in HP PP L Retur ns true (not z er o) if the user selects an objec t, otherwis e retur n false (0). Exam ple: CHOOSE (N,"PickHero", "Euler","Gauss ","Newton"); IF N==1 THEN PRINT("You picked Euler"); ELSE IF N==2 THEN PRINT("You picked Gauss");ELSE PRINT("You picked Ne[...]

  • Seite 557

    Programming in HP PPL 551 INPUT Syn t a x : INPUT(var [,"title", "label", "help", reset]); Opens a dialog bo x wi th the title text title , with one fi eld named label , display ing help at the bottom and usin g th e reset val ue if S J is pres sed. Upda tes th e variable var if the user taps and r etu rns 1 . If the u[...]

  • Seite 558

    552 Programming in HP PP L ISKEYDOWN Syn t a x : ISKEYDOWN ( key _ id ); Retu rns true (non- z ero) if the k ey w hose key_ id is pro vi ded is c urrentl y pres sed, and false (0) if it is not . MOUSE Syn t a x : MOUSE[(index)] Retu rns two lists de scr ibing the c urr ent location o f each potential pointer (or empty lists if the pointers ar e not[...]

  • Seite 559

    Programming in HP PPL 553 PRINT Syn t a x : PRINT ( ex p ress i on or str ing ); Pr ints the re sult of ex p re ss i o n or string to the terminal. The ter minal is a progr am text output v iew ing mec h anism whi ch is display ed only w hen PRINT commands are e xecuted . When visible , you can pre ss or = to vie w the text, C to er ase the text [...]

  • Seite 560

    554 Programming in HP PP L More %CHANGE Syn t a x : %CHANGE(x,y) The pe rcent age change in going f ro m x to y . Exam ple: %CHANGE(20,50) ret u rn s 1 50. %TOTAL Syn t a x : %TOTAL(x,y) The p erc en ta g e of x that is y . Exam ple: %TOTAL(20,50) ret u rn s 250. CAS Syn t a x : CAS.function() or CAS.variable Exec ute s the function o r retur ns th[...]

  • Seite 561

    Programming in HP PPL 555 second list . The plus operator between them adds the two elements until th ere are no mor e pa irs. W ith t wo lists, the numbers appended to & can have two di gits; in this case , the fi rst digit r efe rs to the list n umber (in orde r fr om left to ri ght) and the second digit can still onl y be fr om 1 to 9 inclus[...]

  • Seite 562

    556 Programming in HP PP L TYPE Syn t a x : T Y PE ( o bj e c t ) Retu rns the type of the obj ect: 0: Real 1: I n t e g e r 2: St ri n g 3: Comple x 4: Mat rix 5: Err or 6: Lis t 8: F unction 9: Un i t 1 4. ?: cas objec t. T he fracti onal part is the cas type . Variables and Programs The HP Pr ime has four types o f var iables: Home var iables , [...]

  • Seite 563

    Programming in HP PPL 557 var iables r epresent the def initions and settings you mak e whe n wo rk i ng wi t h ap ps i n t era ct ive ly . A s you wo rk thr ough an app , the app functi ons may stor e resu lts in app var iables as w ell. In a pr ogram , app var iables are u sed to edit an app’ s data to cust omiz e it and to r etri eve r esults [...]

  • Seite 564

    558 Programming in HP PP L App variables Not all ap p var iables a re us ed i n ev er y app. S1F it, for e x a m p l e , i s o n l y u s e d i n t h e S t a t i s t i c s 2 Va r a p p . H o w e v e r, many o f the var iables ar e common to the Func tion, Ad vanced Gr aphing, P arametr ic, P olar , Sequence , Solv e, Statisti cs 1V ar , an d Statist[...]

  • Seite 565

    Programming in HP PPL 559 GridLines T urns the back gr ound line grid in P lot Vi ew on or off . In Plo t Se tu p view , ch e ck ( o r u n ch eck ) GRID LINES . In a progr am, type: 0  GridLines —to turn the grid lines on (default). 1  GridLines —to turn the grid lines off. Hmin/Hmax Statistics 1Var Def ines the minimum and maxim um value[...]

  • Seite 566

    560 Programming in HP PP L Nmin/Nma x Sequence Def ines the minimum and maximum v alues for the independe nt var iable . Appe ars as the N RNG fie l d s i n t h e Plo t Se t u p vi ew . I n Plo t Se tu p vi ew , e nt er va lu e s f or N Rng . In a pr ogra m, type :  Nmin  Nmax whe re Recenter Recenters at the cur sor when z ooming. F rom Plot[...]

  • Seite 567

    Programming in HP PPL 561  step Polar Sets the s tep siz e f or the independent var iable . In Plo t Se tu p vi ew , e nte r a va l ue fo r  Step . In a progr am, type:  step whe re Tmin/Tmax Parametric Sets the minim um and max imum independent v aria ble values . In Plo t Set up view , ente r val ues for T Rng . In a progr am, type[...]

  • Seite 568

    562 Programming in HP PP L Ymin/Ymax Sets the minim um and maximum v ertical value s of the plot scr een. In Plot Se tup vie w , enter the values for Y Rng . In a pr ogra m, type :  Ymin  Ymax whe re Xzoom Sets the hor i z ontal z oom facto r . In P lot Vie w , pres s then . Scr oll to Set Factors, select it and tap . Enter the v alue for X Z[...]

  • Seite 569

    Programming in HP PPL 563 E0...E9 Solve Cont ains an equation or expr ession . In Sy mbolic v iew , sele ct on e of E0 through E9 and enter an e xpressi on or equation. The independent variable is selected by highlighting it in Numer ic vi ew . In a progr am, type (f or ex ample) : X+Y*X-2=Y  ▶ E1 F0...F9 Function C o n t a i n s a n e x p r e[...]

  • Seite 570

    564 Programming in HP PP L Method Inference Determines whether the Infer ence app is set to calculate hy p o t h e s i s t e s t re s u l t s o r c o n fi d e n c e i n t e r v a l s . I n Sy m b o l i c vi ew , make a selecti on for Method . In a pr ogra m, type : 0  Method —for Hypothesis Test 1  Method —for Confidence Interval R0...R9 [...]

  • Seite 571

    Programming in HP PPL 565 Type Inference Determines the type of hypothe si s test or confidence interval. Depends upon the value of the v ariable Method . F rom S y mbolic V iew , mak e a selectio n for Type . Or , in a progr am, stor e the constant number fr om the list below into the v ariable T ype . With Method=0 , the constant values and the i[...]

  • Seite 572

    566 Programming in HP PP L Numeric view variables C0...C9 Statistics 2Var Contain lis ts of numerical data . In Numeric v ie w , ente r numeri cal data in C0 through C9 . In a pr ogra m, type : LIST  Cn wher e , 1 , 2 , 3 ... 9 and LIST i s e i t h e r a l i s t o r t h e name of a list . D0...D9 Statistics 1Var Contain lis ts of numerical data [...]

  • Seite 573

    Programming in HP PPL 567 NumYStart Advanced Graphing Sets the s tarting value for the Y - va lues in a table in Numeric v iew . F rom Numer ic Setup v ie w , enter a v alue for NUMYSTART . In a progr am, type:  NumYStart NumStep Function Parametric Polar Sequence Sets the s tep si ze (inc reme nt value) f or the independent varia b le i n Nu me[...]

  • Seite 574

    568 Programming in HP PP L NumXZoom Advanced Graphing Sets the z oom fa ctor fo r the valu es in the X column in the Numeri c vie w . F ro m Numeri c Setup v ie w , type in a value f or NUMXZOOM . In a pr ogra m, type :  NumXZoom whe re NumYZoom Advanced Graphing Sets the z o om f actor f or the values in the Y column in the Numeri c vie w . F r[...]

  • Seite 575

    Programming in HP PPL 569 Mean 1 Sets the v alue of the mean of a sample f or a 1 -mean h ypothesis test or co nfidence interval. F or a 2 - mean test or interval , sets the va lue of the mean of the f irst sample . F rom Numer ic v iew , set the v alue of or . In a progr am, type:  Mean 1 Mean 2 F or a 2 -mean test o r interval, s ets the value[...]

  • Seite 576

    570 Programming in HP PP L P ooled Determine whether or not the samp les are pooled for tests or intervals using the Student ’s T-distributi on invol ving two means. F r om the Numeric v ie w , set the value of Pooled . In a pr ogra m, type : 0  Pooled —for not pooled (default). 1  Pooled —for pooled . s 1 Sets the sam ple standar d dev[...]

  • Seite 577

    Programming in HP PPL 571 x 1 Sets the n umber of successe s for a one -pr oportion h y p o t h e s i s t e s t o r c o n f i d e n c e i n t e r v a l . F o r a t e s t o r i n t e r v a l inv olv ing the differ ence of two pr oportions , sets the number of successes of the first samp le. F rom the Nu meric v iew , set the v alue of x 1 . In a pro[...]

  • Seite 578

    572 Programming in HP PP L IPYR Intere st per year . Sets th e annual interes t rate for a cash flo w . Fr om the Numeric v iew o f the F inance app, enter a val u e fo r I%YR . In a pr ogra m, type :  IPYR whe re NbPmt Number of pay ments. Sets the number of pay ments for a cash flo w . F r om the Numeric v ie w of the F inance app, enter a v a[...]

  • Seite 579

    Programming in HP PPL 573 GSize Group si z e. Sets the siz e of each gr oup for the amorti zati on table . Fr om the Numer ic v iew of the Finance app , enter a value f or Group Size. In a progr am, type:  GSize Linear Solver app variables The f ollo wing v aria bles are u sed by the L inear Sol ver app . The y corr espond to the f ields in the [...]

  • Seite 580

    574 Programming in HP PP L SideC The le ngth of Side c . Sets the length of the side opposite the angle C. F r om the T r iangle Sol ver Numer ic v ie w , en ter a positi ve va lue for c. In a pr ogra m, type :  SideC whe re AngleA T he measure of angle A. Sets the measur e of angle A. T he value of this var iable w ill be interpreted accor ding[...]

  • Seite 581

    Programming in HP PPL 575 RECT Cor responds to the status of in the Numeric v ie w of the T r iangl e Solv er app. Determines w hether a general tri angle solv er or a right tr iangle sol ver is used . F rom the T r iangle Solv er vie w , tap . In a progr am, type: 0  RECT —for the general Triangle Solver 1  RECT —for the right Triangle S[...]

  • Seite 582

    576 Programming in HP PP L HComplex Sets the comple x number mode fo r the Home vie w . In Home Setti ngs , che ck o r u nche ck t he Comple x fiel d. Or , in a progr am, ty pe : 0  HComplex —for OFF. 1  HComplex —for ON. Date Contains the sy stem date. T he format is YYYY.MMDD . T his fo rmat is used ir re specti ve of the f ormat se t o[...]

  • Seite 583

    Programming in HP PPL 577 Entry Contains an integer that indi cates the entr y mode . In Home Settings , select an option f or Entry . In a p ro g ram, e n te r: 0  Entry —for Textbook 1  Entry —for Algebraic 2  Entry —for RPN Integer Base R eturns or sets the integer base . In Home Setting s , s elect an option f or the firs t fie l[...]

  • Seite 584

    578 Programming in HP PP L Symbolic Setup variables The f ollo wing var iables ar e fou nd in the S ymboli c setup o f an app . The y can be used to o verw rite the v alue of the co rresp o nd in g vari ab le i n Home Settings . AAngle Sets the angle mode . F rom Sy mb olic set up, choose System , Degrees , or Radians for a n gl e me as ure. System[...]

  • Seite 585

    Programming in HP PPL 579 AFormat Defines the n umber display f ormat used for n umber display in the Home v ie w and to label axes in the P lot view . F rom S y mbolic setup , choos e Standard , Fi xed , Scientific , or Engineering in the Number For mat fie l d. In a pr ogram , store the co nstant number into the v ari able AFormat . 0 System 1 St[...]

  • Seite 586

    580 Programming in HP PP L[...]

  • Seite 587

    Basic integer arithmetic 581 28 Basic integ er arithmetic The common number bas e used in contempor ar y mathematics is base 1 0. By de fault , all calc ulations perfor med by the HP Prime ar e carr ied out in base 1 0, and all r esults are displa yed in base 1 0. Ho we ver , the HP Prime ena bles you to carry out integer arithmeti c in four bases:[...]

  • Seite 588

    582 Basic integer arithmetic repr esents 2 28 10 . In this case, the bas e marker h in dicates that the number is to interpreted as a he xadec im al number: E4 16 . Note that w ith integer arithmetic , the r esult of an y calculation that wou l d re tu rn a re m a in d e r in f l oa t i n g - point ar ithmetic is truncated: only the integer portion[...]

  • Seite 589

    Basic integer arithmetic 583 Note that if y ou change the def ault base , an y calcula tion in history that invo lves in teger ar ithmetic for whi ch y ou did not expli citly add a base mark er w ill be r esispla yed in the new bas e. In the ex ample at the r ight , the first ca lcul at ion expl icitly included bas e marke rs ( b for eac h operand)[...]

  • Seite 590

    584 Basic integer arithmetic Examples of integer arithmetic T h e o p e r a n d s i n i n t e g e r a r i t h m e t i c c a n b e o f t h e s a m e b a s e o r o f mix ed bases. Mixed-base arithmetic With o ne ex ception , wher e you hav e operands of different base s, the re sult of the calculati on is pres ented in th e base o f the first ope ran[...]

  • Seite 591

    Basic integer arithmetic 585 Integer manipulation The r esult of integer arithmeti c can be further analyz ed, and manipulated, b y vi ew ing it in the Edit Integer di alog . 1 . In Home v ie w , u se the curs or ke ys t o select the re sult of inte re st . 2. P re s s Sw (Base) . The Edit I nteger dia log appears. The Wa s field at the top shows t[...]

  • Seite 592

    586 Basic integer arithmetic : returns the one’s complement (that is, each bit in the specified wordsize is inverted: a 0 i s replaced by 1 and a 1 by 0. The new integer represented appears in the Out field (and in the hex and decimal fields below it). : activates edit mode. A cursor appears and you can move abut the dialog using the cursor keys.[...]

  • Seite 593

    Glossary 587 Appendix A Glossary app A sma ll app lica tion, desig ned for t he study of one or more r ela ted topics or to solv e problems of a partic ular t ype . The built-in apps are F uncti on, Adv anced Gra phing, Geometry , Spreads heet, Sta tist ics 1V ar , Stat ist ics 2V ar , Infer ence, Dat aStr eamer , Sol ve , Linear S olver , T riangl[...]

  • Seite 594

    588 Glossary command An operati on for use in pr ograms . Commands can s tore r esults in var iables, but do not display r esults. ex pres sion A number , var iable , or algebr aic expr essi on (numbers plus f unctions) that produces a v alue. functi on An operation , possibly with ar guments, that r etur ns a result . It does not s tore r esults i[...]

  • Seite 595

    Glossary 589 matr ix A two-dimensiona l arra y of r eal or complex numbers enclosed b y square brac kets . Matrices can be cr eated and manipulated b y the Matri x E ditor and stor ed in the Matri x Catalog . V ect ors are als o handled by the Matri x Catalog and Ed itor . menu A choi ce of options gi ven in the display . It can appear as a list or[...]

  • Seite 596

    590 Glossary[...]

  • Seite 597

    Troubleshooting 591 Appendix B T roubleshooting Calculator not responding If the calc ulator does no t res pond, y ou should f irst try to re se t it. T his is much lik e res tar ting a PC . It cancels cer tain operati ons, r estor es cer tain conditions, and c lears tempor ary memor y locations. Ho we ver , it does not clear stor ed data (vari abl[...]

  • Seite 598

    592 Troubleshooting Operating limits Opera ting tempe rature: 0  to 45  C (3 2  to 1 1 3  F) . Sto rage t emper atur e: –20  to 6 5  C (– 4  to 1 4 9  F) . Opera ting and storag e humi dity : 90% rel a tive humidity at 40  C ( 1 04  F) max imum. Avoi d g et t i n g th e calculato r wet . The batter y operates at 3 [...]

  • Seite 599

    Troubleshooting 593 S yntax er ror The func tion or command yo u enter ed does not inc lude the proper arguments or order of arguments . The delimiters (paren theses, comma s, peri ods, and semi -col ons) must a lso b e corr ect . Look u p the functi on name in the inde x to find its proper s yntax . No functions che cke d Y ou must enter and check[...]

  • Seite 600

    594 Troubleshooting[...]

  • Seite 601

    Product regulatory information 595 Appendix C Pr oduc t regulatory inform ation Federal Communications Commission notice This equipment has been t ested and found to comply w ith the li mits for a Class B digital dev ice, pursuant to P ar t 1 5 of the FC C Rules . Thes e limits are de signed to pr ov ide r easonable pr otection agains t harmful int[...]

  • Seite 602

    596 Produ ct regulato ry information Dec larat ion of Confo rmit y for p roduc ts M arked wi th F CC Logo, United States Only This devi ce c omplies with P art 1 5 of th e FCC Rules. Oper- ation is sub ject to the f ollow ing two conditi ons: ( 1 ) this dev ice ma y not cause har mful interf erence , and (2) this dev ice mus t accept an y interfere[...]

  • Seite 603

    Product regulatory information 597 European Union Regulatory Notice Pr oducts bearing the CE marking co mply w ith the follo w- ing EU Dir ecti ves: • Lo w V oltage Dir ectiv e 2006/95/E C • EMC Dir ectiv e 2004/1 08/E C • Ecode sign Directi ve 2009/1 2 5/EC, w here appli cable CE compliance of this pr oduct is v alid if po wer ed with the co[...]

  • Seite 604

    598 Produ ct regulato ry information Japanese Notice Korean Class Notice Disposal of Wast e Equipment by Users in Private Household in the European Union This sy mbol on the product or on its pack aging indicates that this product must not be disposed o f with y our other household wa ste. Instead, it is your responsib ili ty to dispose of your w a[...]

  • Seite 605

    Product regulatory information 599 Chemical Substances HP is committed to pr ov iding our cu stomers w ith informa- tion about the c hemical substances in our pr oducts as needed to comply with legal requirements such as REA CH ( Re gulation EC No 1 90 7/2006 of the Eur opean P a rli ament and the Counc il) . A chemi cal information r eport for thi[...]

  • Seite 606

    600 Produ ct regulato ry information[...]

  • Seite 607

    Index 601 Index A adapter 12 adaptive graphing 99 Advanced Graphing app 69, 125–134 Plot Gallery 134 trace options 129 variables, summary of 432 algebra func tions 324–325 algebraic en try 32, 36, 47 algebrai c precedence 39 alternative h ypothesis 240 amortization 293–294 angle measur e 31, 56 annunciators 14 Ans (last an swer) 41 antilogari[...]

  • Seite 608

    602 Index buttons command 20 menu 20 See also menu buttons C cables 45 calcula tions CAS 54, 324–347 confidence intervals 253 financial 287–294 geometric 150 in Home view 36, 309–323 statistical 218, 233 with units 44 4 calculus fu nctions 326–330 CAS 53–59 calculations using 5 4, 324–347 functions algebra 324–325 calculus 326 –330 [...]

  • Seite 609

    Index 603 decimal mark 33 decimal zoom 90, 93, 102 default settings, restoring 21, 87, 100, 106 define your o wn fit 232 degree symbol 21 deleting apps 72 characters 21 lists 455 matrices 464 notes 490 programs 500 statistical data 217, 230 determinant 475 dilation 162 display 13 annunciators 14 clearing 13 engineerin g 31 fixed 31 fraction 31 menu[...]

  • Seite 610

    604 Index keyboard 309–312 Linear Expl orer 376 Linear Solver 374 number 313–314 plot 346–347 polynomial 339–345 probability 317–322 rewrite 332–337 solve 330–332 Solve app 349 spreadsheet 210, 349 –363 Statistics 1Var 363– 364 Statistics 2Var 365– 366 Triangle Solver 374–376 G geometric objects 153–160 geometric transformat[...]

  • Seite 611

    Index 605 Inference app 69, 239–257 confidence interv als 253–257 functions 366–371 hypothesis tests 245–2 52 importing statistics 243 variables Numeric 568 Results 438 summary of 437 Info, Solve app 265 input form 29 insufficient memory 592 insufficient statistics data 592 integer 32 integer arithmetic 581 integer base 56 integer comma nds[...]

  • Seite 612

    606 Index matrix calculations 463 negating elemen ts 47 2 raised to a p ower 471 reduced-row e chelon 486 singular value decompositio n 485 storing 464, 468, 469 swap row 545 transposing 486 variables 428, 463 maximum real number 36 measurements See units 443 menu App 307 CAS 324–347 Catlg 378–421 context sensitive 20 Math 313–323 shortcuts 2[...]

  • Seite 613

    Index 607 physics constants 449 pinch 17 plot box-and-wh isker 220 cobweb 281 color of 85 defined in Geometry a pp 160 functions 346–347 line 220 one-variable sta tistics 219 pareto 221 stairsteps 281 statistical data one-variable 219 two-variable 234 Plot and Numeric views together 106 Plot Gallery 134 Plot Setup view 76 common operations in 96?[...]

  • Seite 614

    608 Index Sequence app 70 , 281–286 graph types 281 variables 442 settings 30, 428 CAS 30, 55 sharing data 44 shift keys 22 shortcut palettes 20 shortcuts in Geometry 147 in menus 28 Solve app 70, 259–266 functions 349 limitations 264 messages 265 one equation 260 several equation s 263 variables, su mmary of 431 solve functions 330–332 sort [...]

  • Seite 615

    Index 609 T tables, custom 103 template key 24 templates 20 test mode See exam mode text 23 textbook entry 32, 33, 36, 47 theme 34 time 16, 34 time-value-of-mo ney problems 287 title bar 14 Toolbox menus 29, 307 touch options 16 trace 94–95, 129 transformations, geometric 161–164 Triangle Solver app 70, 295–298 functions 374–376 variables N[...]

  • Seite 616

    610 Index views definition of 589 in apps 73 Numeric 77 Numeric Setup 78 Plot 75 Plot Setup 76 Symbolic 73 Symbolic Setup 74 Views menu 91, 521 W wireless network 34 wordsize 58 3 Z Z-Intervals 253–255 zoom examples of 91 –94 factors 88 in Numeric view 100–102 in Plot view 88–94 keys for 89, 101 types of 89–90, 102[...]