HP F2229AA 50g Bedienungsanleitung

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

Zur Seite of

Richtige Gebrauchsanleitung

Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung HP F2229AA 50g an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von HP F2229AA 50g, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.

Was ist eine Gebrauchsanleitung?

Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung HP F2229AA 50g die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.

Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung HP F2229AA 50g. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.

Was sollte also eine ideale Gebrauchsanleitung beinhalten?

Die Gebrauchsanleitung HP F2229AA 50g sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts HP F2229AA 50g
- Den Namen des Produzenten und das Produktionsjahr des Geräts HP F2229AA 50g
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts HP F2229AA 50g
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen

Warum lesen wir keine Gebrauchsanleitungen?

Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von HP F2229AA 50g zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von HP F2229AA 50g und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service HP finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von HP F2229AA 50g zu überspringen, wie es bei der Papierform passiert.

Warum sollte man Gebrauchsanleitungen lesen?

In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts HP F2229AA 50g, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.

Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von HP F2229AA 50g widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.

Inhaltsverzeichnis der Gebrauchsanleitungen

  • Seite 1

    HP  g gr aphing calc ulator user ’s guide H Ed it i on 1 HP part number F2 2 2 9AA-900 06[...]

  • Seite 2

    Notice REG ISTER Y OUR PRODUCT A T: w ww .regis ter .hp .com THI S MANUAL AND ANY EX AMPLES CONT AINED H EREIN ARE PRO VIDED “ AS IS” AND A RE SUBJECT T O CHANGE WITHOUT NOTICE. HEWLET T-P A CKAR D COMP ANY MAKES N O W ARR ANTY OF ANY KIND WIT H REGA RD T O THI S MANU AL , I NCL UDIN G, BUT NOT LIMITED T O, THE IMPLIE D W ARR ANTIE S OF MERCHAN[...]

  • Seite 3

    Pref ace Y o u hav e in your hands a compact s ymbolic and numer ical computer that w ill fac ilitate calc ulation and mathematical anal ysis o f pr oblems in a var iety of disc iplines, fr om elementary mathematic s to adv anced engineering and s c ience subjec ts. Although r ef err ed to as a calc u lator , because of its compact fo rmat r esembl[...]

  • Seite 4

    F or sy mbolic oper ations the calc ulator includes a po we rful C omputer A lgebr aic S ystem (CA S) that lets you select diff er ent modes o f oper ation , e.g . , comple x numbers v s. r eal numbers , or ex act (sy mbolic) vs . appro ximat e (numer ical) mode . The displa y can be adjus ted to pr ov ide te xtbook-type e xpres sions , which ca n [...]

  • Seite 5

    Pa g e TO C - 1 T able of contents Chapter 1 - Getting started ,1-1 Basic Operations ,1-1 Batteries ,1-1 Turning the calculator on and off ,1-2 Adjusting the display contrast ,1-2 Contents of the calculator’s display ,1-2 Menus ,1-3 SOFT menus vs. CHOOSE boxes ,1-4 Selecting SOFT menus or CHOOSE boxes ,1-5 The TOOL menu ,1-7 Setting time and date[...]

  • Seite 6

    Pa g e TO C - 2 Chapter 2 - Introducing the calculator ,2-1 Calculator objects ,2-1 Editing expressions on the screen ,2-3 Creating arithmetic exp ressions ,2-3 Editing arithmetic expressions ,2-6 Creating algebraic expressions ,2-7 Editing algebraic expressions ,2-8 Using the Equation Writer (EQW ) to create expressions ,2-10 Creating arithmetic e[...]

  • Seite 7

    Pa g e TO C - 3 Other flags of interest ,2-66 CHOOSE boxes vs. Soft M ENU ,2-67 Selected CHOOSE boxes ,2-69 Chapter 3 - Calculation with real numbers ,3-1 Checking calculators settings ,3-1 Checking calculator mode ,3-2 Real number calculations ,3-2 Changing sign of a number, variable, or expression ,3-3 The inverse function ,3-3 Addition, subtract[...]

  • Seite 8

    Pa g e TO C - 4 Physical constants in the calcula tor ,3-29 Special physical functions ,3-32 Function ZFACTOR ,3-32 Function F0 λ ,3-33 Function SIDENS ,3-33 Function TDELTA ,3-33 Function TINC ,3-34 Defining and using functions ,3-34 Functions defined by more than one expression ,3-36 The IFTE function ,3-36 Combined IFTE functions ,3-37 Chapter [...]

  • Seite 9

    Pa g e TO C - 5 FACTOR ,5-5 LNCOLLECT ,5-5 LIN ,5-5 PARTFRAC ,5-5 SOLVE ,5-5 SUBST ,5-5 TEXPAND ,5-5 Other forms of substitution in algebraic expressions ,5-6 Operations with transcendental functions ,5-7 Expansion and factoring using log-exp functions ,5-7 Expansion and factoring using trigonometric functions ,5-8 Functions in the ARITHMETIC menu [...]

  • Seite 10

    Pa g e TO C - 6 The PROOT function ,5-21 The PTAYL function ,5-21 The QUOT and REMAINDER functions ,5-21 The EPSX0 function and the CAS variable EPS ,5-22 The PEVAL function ,5-22 The TCHEBYCHEFF function ,5-22 Fractions ,5-23 The SIMP2 function ,5-23 The PROPFRAC function ,5-23 The PARTFRAC function ,5-23 The FCOEF function ,5-24 The FROOTS functi[...]

  • Seite 11

    Pa g e TO C - 7 Variable EQ ,6-26 The SOLVR sub-menu ,6-26 The DIFFE sub-menu ,6-29 The POLY sub-menu ,6-29 The SYS sub-menu ,6-30 The TVM sub-menu ,6-30 Chapter 7 - Solving multiple equations ,7-1 Rational equation systems ,7-1 Example 1 – Projectile motion ,7-1 Example 2 – Stresses in a thick wall cylinder ,7-2 Example 3 - System of polynomia[...]

  • Seite 12

    Pa g e TO C - 8 List size ,8-10 Extracting and inserting elements in a list ,8-10 Element position in the list ,8-11 HEAD and TAIL functions ,8-11 The SEQ function ,8-11 The MAP function ,8-12 Defining functions that use lists ,8-13 Applications of lists ,8-15 Harmonic mean of a list ,8-15 Geometric mean of a list ,8-16 Weighted average ,8-17 Stati[...]

  • Seite 13

    Pa g e TO C - 9 Changing coordinate sy stem ,9-12 Application of vector operations ,9-15 Resultant of forces ,9-15 Angle between vectors ,9-15 Moment of a force ,9-16 Equation of a plane in space ,9-17 Row vectors, column vectors, and lists ,9-18 Function OBJ  ,9-19 Function  LIST ,9-20 Function DROP ,9-20 Transforming a row vector into a col[...]

  • Seite 14

    Pa g e TO C - 1 0 Function VANDERMONDE ,10-13 Function HILBERT ,10-14 A program to build a matrix out of a number of lists ,10-14 Lists represent columns of the matrix ,10-15 Lists represent rows of the matrix ,10-17 Manipulating matrices by columns ,10-17 Function  COL ,10-18 Function COL  ,10-19 Function COL+ ,10-19 Function COL- ,10-20 Fun[...]

  • Seite 15

    Pa g e TO C - 1 1 Function TRAN ,11-15 Additional matrix operations (The matrix OPER menu) ,11-15 Function AXL ,11-16 Function AXM ,11-16 Function LCXM ,11-16 Solution of linear systems ,11-17 Using the numerical solver for linear systems ,11-18 Least-square solution (function LSQ) ,11-24 Solution with the inverse matrix ,11-27 Solution by “divis[...]

  • Seite 16

    Pa g e TO C - 1 2 Function QXA ,11-53 Function SYLVESTER ,11-54 Function GAUSS ,11-54 Linear Applications ,11-54 Function IMAGE ,11-55 Function ISOM ,11-55 Function KER ,11-56 Function MKISOM ,11-56 Chapter 12 - Graphics ,12-1 Graphs options in the c alculator ,12-1 Plotting an expression of the form y = f(x) ,12-2 Some useful PLOT operations for F[...]

  • Seite 17

    Pa g e TO C - 1 3 Fast 3D plots ,12-34 Wireframe plots ,12-36 Ps-Contour plots ,12-38 Y-Slice plots ,12-39 Gridmap plots ,12-40 Pr-Surface plots ,12-41 The VPAR variable ,12-42 Interactive drawing ,12-43 DOT+ and DOT- ,12-44 MARK ,12-44 LINE ,12-44 TLINE ,12-45 BOX ,12-45 CIRCL ,12-45 LABEL ,12-45 DEL ,12-46 ERASE ,12-46 MENU ,12-46 SUB ,12-46 REPL[...]

  • Seite 18

    Pa g e TO C - 1 4 The SYMBOLIC menu and graphs ,12-49 The SYMB/GRAPH menu ,12-50 Function DRAW3DMATRIX ,12-52 Chapter 13 - Calculus Applications ,13-1 The CALC (Calculus) menu ,13-1 Limits and derivatives ,13-1 Function lim ,13-2 Derivatives ,1 3-3 Functions DERIV and DERVX ,13-3 The DERIV&INTEG menu ,13-4 Calculating derivatives with ∂ ,13-4[...]

  • Seite 19

    Pa g e TO C - 1 5 Integration with units ,13-21 Infinite series ,13-22 Taylor and Maclaurin’s serie s ,13-23 Taylor polynomial and reminder ,13-23 Functions TAYLR, TAYLR0, and SERIES ,13-24 Chapter 14 - Multi-variate Calculus Applications ,14-1 Multi-variate functions ,14-1 Partial derivatives ,14-1 Higher-order derivatives ,14-3 The chain rule f[...]

  • Seite 20

    Pa g e TO C - 1 6 Checking solutions in the calc ulator ,16-2 Slope field visualization of solutions ,16-3 The CALC/DIFF menu ,16-3 Solution to linear and non-linear equations ,16-4 Function LDEC ,16-4 Function DESOLVE ,16-7 The variable ODETYPE ,16-8 Laplace Transforms ,16-10 Definitions ,16-10 Laplace transform and inverses in the calculator ,16-[...]

  • Seite 21

    Pa g e TO C - 1 7 Numerical solution of first-order ODE ,16-57 Graphical solution of first-order ODE ,16-59 Numerical solution of second-order ODE ,16-61 Graphical solution for a second-order ODE ,16-63 Numerical solution for stiff first-order ODE ,16-65 Numerical solution to ODEs with the SOLVE/DIFF menu ,16-67 Function RKF ,1 6-67 Function RRK ,1[...]

  • Seite 22

    Pa g e TO C - 1 8 Chapter 18 - Statistical Applications ,18-1 Pre-programmed statistical features ,18-1 Entering data ,18-1 Calculating single-variable statistics ,18-2 Obtaining frequency distributions ,18-5 Fitting data to a function y = f(x) ,18-10 Obtaining additional summary statistics ,18-13 Calculation of percentiles ,18-14 The STAT soft men[...]

  • Seite 23

    Pa g e TO C - 1 9 Paired sample tests ,18-41 Inferences concerning one proportion ,18-41 Testing the difference betw een two proportions ,18-42 Hypothesis testing using pre-programmed features ,18-43 Inferences concerning one variance ,18-47 Inferences concerning two variances ,18-48 Additional notes on linear regression ,18-50 The method of least [...]

  • Seite 24

    Pa g e TO C - 2 0 Custom menus (MENU and TMENU functions) ,20-2 Menu specification and CST variable ,20-4 Customizing the keyboard ,2 0-5 The PRG/MODES/KEYS sub-menu ,20-5 Recall current user-defined key list ,20-6 Assign an object to a user-defined key ,20-6 Operating user-defined keys ,20-7 Un-assigning a user-defined key ,20-7 Assigning multiple[...]

  • Seite 25

    Pa g e TO C - 2 1 “De-tagging” a tagged quantity ,21-33 Examples of tagged output ,21-34 Using a message box ,21-37 Relational and logical operators ,21-43 Relational operators ,21-43 Logical operators ,21-45 Program branching ,21-46 Branching with IF ,21-47 The IF…THEN…END construct ,21-47 The CASE construct ,21-51 Program loops ,21-53 The[...]

  • Seite 26

    Pa g e TO C - 22 Examples of program-generated plots ,22-17 Drawing commands for use in programming ,22-19 PICT ,22-20 PDIM ,22-20 LINE ,22-20 TLINE ,22-20 BOX ,22-21 ARC ,22-21 PIX?, PIXON, and PIXOFF ,22-21 PVIEW ,22-22 PX  C ,22-22 C  PX ,22-22 Programming examples using drawing functions ,22-22 Pixel coordinates ,22-25 Animating graphics [...]

  • Seite 27

    Pa g e T O C - 2 3 Chapter 24 - Calculator objects and flags ,24-1 Description of calculator objects ,24-1 Function TYPE ,24-2 Function VTYPE ,24-2 Calculator flags ,24-3 System flags ,24-3 Functions for setting and changing flags ,24-3 User flags ,24-4 Chapter 25 - Date and Time Functions ,25-1 The TIME menu ,25-1 Setting an alarm ,25-1 Browsing a[...]

  • Seite 28

    Pa g e TO C - 24 Storing objects on an SD card ,26-9 Recalling an object from an SD card ,26-10 Evaluating an object on an SD card ,26-10 Purging an object from the SD card ,26-11 Purging all objects on the SD card (by reformatting) ,26-11 Specifying a directory on an SD card ,26-11 Using libraries ,26-12 Installing and attaching a library ,26-12 L[...]

  • Seite 29

    Pa g e TO C - 2 5 Appendix F - The Applications (APPS) menu ,F-1 Appendix G - Useful shortcuts ,G-1 Appendix H - The CAS help facility ,H-1 Appendix I - Command catalog list ,I-1 Appendix J - MATHS menu ,J-1 Appendix K - MAIN menu ,K-1 Appendix L - Line editor commands ,L-1 Appendix M - Table of Built-In Equations ,M-1 Appendix N - Index ,N-1 Limit[...]

  • Seite 30

    Pa g e 1 - 1 Chapter 1 Get ting started This c hapter pr ov ides basi c inf ormatio n about the operati on of your calc ulator . It is designed to familiar iz e y ou w ith the basic oper ations and settings befo re y ou perfor m a calc ulation. Basic Operations The f ollow ing secti ons are desi gned to get y ou acquaint ed with the har dw are of y[...]

  • Seite 31

    Pa g e 1 - 2 b . Insert a new CR20 3 2 lithium battery . Make sur e its positi ve (+) si d e is fac ing up. c. Replace the plate and push it to the or iginal place . After installing the batter ies , pre ss [ON] to turn the pow er on. Wa rn i n g : When the lo w bat tery icon is dis play ed, y ou need to r eplace the batteri es as soon as possible [...]

  • Seite 32

    Pa g e 1 - 3 At the top of the displa y you w ill hav e two line s of inf ormati on that descr i be the settings of the calc ulator . T he first line sho ws the c har acter s: R D XYZ HEX R = 'X' F or details on the meaning of thes e s ymbo ls see Chapter 2 . The s econd line show s the char acter s: { HOME } indi cating that the HOME dir[...]

  • Seite 33

    Pa g e 1 - 4 E ach gr oup of 6 entr ies is called a Menu page . The c urr ent menu , know n as the T OOL menu (see be lo w) , has ei ght entri es arr anged in two page s. The ne xt page , containing the next tw o entries o f the menu is av ailable by pr essing the L (NeXT menu) k ey . T his ke y is the third k ey f r om the left in the third r ow o[...]

  • Seite 34

    Pa g e 1 - 5 This CHOO SE box is labeled B ASE MENU and pr ov ides a list of n u mber ed fun cti ons, from 1 . H EX x to 6. B  R. This dis play w ill constitute the f irst page of this CHOOSE bo x menu sho wing si x menu functi ons. Y o u can nav igate thr ough the menu b y using the up and do wn arr ow k ey s, —˜ , located in the upper ri gh[...]

  • Seite 35

    Pa g e 1 - 6 If y ou no w pres s ‚ã , instead of the CHOO SE box that y ou sa w earli er , the displa y will no w show si x soft men u labels as the f irst page o f the S T A CK menu: T o nav igate thr ough the functions of this me nu , pres s the L ke y to mov e to the ne xt page, o r „« (assoc iated w ith the L k e y ) t o m o v e t o t h e[...]

  • Seite 36

    Pa g e 1 - 7 The T OOL menu Th e soft men u ke ys f or the men u cur ren tly dis pla yed , kno wn as the T OO L menu , are a ssoc iated with oper ations r elated to manipulation of v ariable s (see pages for m ore info rmat ion o n variable s) : @EDIT A EDIT the contents of a v aria ble (see Chapter 2 and Appendi x L for mor e informati on on editi[...]

  • Seite 37

    Pa g e 1 - 8 9 ke y the TIME choo se bo x is acti vated . This oper ation can also be r epre sented as ‚Ó . Th e TI ME cho os e b ox i s s hown in th e figu re b el ow: As indicated a bov e, the T IME menu pr ov ides f our differ ent options, number ed 1 thr ough 4. Of inter est to us as this poin t is option 3 . Set time , date.. . U s ing the [...]

  • Seite 38

    Pa g e 1 - 9 Let’s c hange the m inute f ield to 2 5 , b y pressing: 25 !!@@OK#@ . T he seconds fi eld is now hi ghlighted . Suppose that y ou want to c hange the seconds fi eld to 4 5, use: 45 !!@@OK#@ The time f ormat f ield is no w highlighted . T o c h a n g e t h i s f i e l d f r o m i t s c u r r e n t sett ing you ca n either press the W [...]

  • Seite 39

    Pa g e 1 - 1 0 Setting the date After setting the time f ormat option , the SET T IME AND D A TE input f orm w ill look as fo llo ws: T o set the date , f irst s et the date f ormat . The def ault for mat is M/D/Y (month/ day/y ear). T o modif y this f ormat, pr ess the do wn arr o w k ey . This w ill highlight the date f ormat as show n below : Us[...]

  • Seite 40

    P age 1-11 Introducing the calc ulator ’s k eyboar d The f igur e below sho ws a diagr am of the calculator ’s k ey board w ith the numbering of its r ow s and columns. T h e f i g u r e s h o w s 1 0 r o w s o f k e y s c o m b i n e d w i t h 3 , 5 , o r 6 c o l u mn s . R o w 1 has 6 ke ys, r ow s 2 and 3 hav e 3 k eys eac h, and ro ws 4 thr[...]

  • Seite 41

    P age 1-12 shift ke y , k ey ( 9 ,1 ) , and the ALPHA k ey , ke y (7 ,1) , can be combined with some of the other k ey s to acti vate the alternati ve f unctions sho wn in the k ey board . F or ex ample , the P key , key (4,4) , has the f ollow ing six f unctions assoc iated wit h it : P Main functi on, to acti vate the S YMBolic menu „´ Left-sh[...]

  • Seite 42

    Pa g e 1 - 1 3 Pr ess the !!@@OK#@ s oft menu k ey to r eturn t o normal dis play . Examples o f se lecting diffe ren t calc ulator modes ar e show n next . Oper ating Mode The calc ulator offer s two oper ating modes: the Algebr aic mode , and the Re vers e P olish Notatio n ( RPN ) mode . The def ault mode is the Algebr aic mode (as indicat ed in[...]

  • Seite 43

    Pa g e 1 - 1 4 T o enter this e xpres sion in the calc ulator w e will f irst us e the equati on wr iter , ‚O . P lease identify the f ollo wing k ey s in the k ey board , besides the numer ic k ey pad k e ys: !@.#*+-/R Q¸Ü‚Oš™˜—` The eq uation w riter is a dis play mode in w hich y ou can build mathematical e xpre ssi ons using e xplic[...]

  • Seite 44

    Pa g e 1 - 1 5 Change the oper ating mode to RPN by f irst pr essing the H bu tton. S elect the RPN oper ating mode by either u sing the k ey , or pr essing the @CHOOS soft m e n u k e y . P r e s s t h e !! @@OK#@ soft men u k ey to co mplete the oper ation. T he displa y , f or the RPN mode looks as follo w s: Notice that the displa y show s se[...]

  • Seite 45

    Pa g e 1 - 1 6 3.` Ent er 3 in lev el 1 5.` Ent er 5 in lev el 1, 3 mov es to y 3.` Ent er 3 in lev el 1, 5 mov es to lev el 2 , 3 to lev el 3 3.* P lace 3 and multiply , 9 a ppears in le ve l 1 Y 1/(3 × 3), last v alue in le v . 1; 5 in le vel 2 ; 3 in le vel 3 - 5 - 1/(3 × 3) , occ upi es le vel 1 no w; 3 in lev el 2 * 3 × (5 - 1/(3 × 3)), oc[...]

  • Seite 46

    Pa g e 1 - 1 7 Notice ho w the expr ession is placed in stac k lev el 1 after pressing ` . Pr essing the EV AL k ey at this po int will e valuate the numer ical value of that e xpr essi on Note: In RPN mode, pr essing ENTER when ther e is no command line w ill ex ecute the DUP fu nction w hich cop ies the contents of stac k lev el 1 of the stac k o[...]

  • Seite 47

    Pa g e 1 - 1 8 mor e about r eals, see Cha pter 2 . T o illu str ate this and other number f ormats try the fo llo w ing ex erc ises: Θ Standard f ormat : This mode is the mos t used mode as it sho ws number s in the most famili ar notation . Pr ess the ! !@@OK# @ soft menu k ey , w ith the Number for mat set to St d , to r eturn to the calc ulato[...]

  • Seite 48

    Pa g e 1 - 1 9 Notice that the Number F ormat mode is set t o Fix follo wed b y a z er o ( 0 ). This n umber indicate s the number of dec imals to be sho wn after t he dec imal point in the calc ulator’s displa y . Pr ess the !!@@OK#@ soft menu k ey to r eturn to the calc ulator display . The number no w is show n as: This se t ting w ill f or ce[...]

  • Seite 49

    Pa g e 1 - 2 0 Press the !!@@OK#@ soft menu ke y to complete the selection: Pr ess the !!@@OK#@ s oft menu k ey r eturn to the calc ulator displa y . T he number now is sho wn as: Notice ho w the number is r ounded, not tr uncated . Thu s, the number 12 3 .45 6 7 89 012 34 5 6 , fo r this setting , is display ed as 12 3 .45 7 , and not as 12 3 .4 5[...]

  • Seite 50

    Pa g e 1 - 2 1 same fashi on that we c hanged the Fixe d number of dec imals in the exa mp l e a b ove ) . Pr ess the !!@@OK#@ soft menu ke y retur n to the calc ulator display . The number now is sho wn as: This r esult , 1.2 3E2 , is the calculator ’s versi on of po wer s-of-ten notatio n, i. e. , 1.2 3 5 x 10 2 . In this, s o -called, s c ient[...]

  • Seite 51

    Pa g e 1 - 22 Pr ess the !!@@OK#@ s oft menu k ey r eturn to the calc ulator displa y . T he number now is sho wn as: Becaus e this number has thr ee fi gur es in the intege r part, it is sho wn w ith four si gnificati ve f igur es and a zer o pow er of ten , while using the Engineer ing for mat. F or e xample , the number 0.00 2 56 , will be sho w[...]

  • Seite 52

    Pa g e 1 - 23 Θ Pr ess the !!@@OK#@ s oft menu k ey r eturn to the calc ulator displa y . T he number 12 3 .45 6 7 8 9 012 , enter ed earlier , now is sho wn as: Angle Me asure T ri gonometric functi ons, for e xample , requir e arguments r epre senting plane angles . The calc ulator pro vi des three diff erent A ngle Measure mode s fo r wor ki n [...]

  • Seite 53

    Pa g e 1 - 24 ke y . If using the latter appr oach, u se up and do wn arr ow k ey s, — ˜ , to selec t the pref err ed mode , and pr ess the !!@@OK#@ soft m enu key to complete the ope rati on. F or ex ample , in the follo wing s cr een, the R adians mode is select ed: Coordinate S y stem The c oordi na te system se lect ion a ffect s t he way ve[...]

  • Seite 54

    Pa g e 1 - 25 fr om the positi ve z ax is to the r adial distance ρ . The R ectangular and Spher ical coordinate s ys tems are r elated by the follo w ing quantities: T o change the coor dinate s ys tem in yo ur calculat or , f ollo w these st eps: Θ Pr ess the H bu tton. Ne xt, us e the dow n arr ow k ey , ˜ , thr ee times . Select the Angle Me[...]

  • Seite 55

    Pa g e 1 - 26 _La st St ack : K eep s the contents o f the last stac k entry for use w ith the functi ons UNDO and ANS (s ee Chapter 2). The _Beep option can be us eful t o adv ise the user abou t err ors. Y ou may want to deselec t this option if using y our calc ulator in a cla ssr oom or library . The _K ey Clic k option can be usef ul as an aud[...]

  • Seite 56

    Pa g e 1 - 27 Selecting Display modes The calc ulator display can be c ustomi z ed to your pr efer ence by selec ting different disp lay mod es. T o see t he opt ional disp lay setti ngs use t he follow ing: Θ F irst , pr ess the H button to ac tiv ate the CAL CULA T OR MODE S input fo rm . Within the CAL CULA T OR MODE S input for m, pre ss the @[...]

  • Seite 57

    Pa g e 1 - 28 Pr essing the @CH OOS soft men u k ey w ill pr ov ide a list of a vailable s yst em fo nts, as sho wn belo w: The opti ons availa ble ar e three standar d Sys t e m Fo n t s (siz es 8, 7 , and 6 ) and a Br ow se .. option . The latter w ill let yo u br ow se the calcul ator memory f or additional f onts that y ou may ha ve c reated (s[...]

  • Seite 58

    Pa g e 1 - 2 9 displa y the DISPLA Y MODE S input fo rm . Press the do wn ar r ow k ey , ˜ , tw ice , to get to the St ack line . This line sho ws tw o properties that can be modified . When these pr operties ar e select ed (chec ked) the fo llo wi ng effec ts are acti vated: _Small Changes f ont si ze to small . This max imi zed the amoun t of in[...]

  • Seite 59

    Pa g e 1 - 3 0 times , to get t o the EQW (E quation W r iter ) line. This line sho ws tw o pr operties that can be modifi ed. When these pr operties ar e select ed (chec k ed) the fo llow ing eff ects ar e activ ated: _Small Changes f ont si z e to small w hile using the equati on editor _Small S tac k Disp Sho ws small font in the s tack f or tex[...]

  • Seite 60

    Pa g e 1 - 3 1 ri ght arr ow k ey ( ™ ) to s elect the underline in f r ont of the options _Cloc k or _Analog . T oggle the @  @CHK@@ s oft menu k ey until the de sir ed setting is ac hie ved. If the _Clock opti on is selected , the time of the da y and date w ill be sho wn in the upper r ight corner of the display . If the _Analog opti on is [...]

  • Seite 61

    Pa g e 2 - 1 Chapter 2 Intr oducing the calc ulator In this chapter w e present a n umber of basic operati ons of the calculator including the u se of the E quation W r iter and the manipulation of data ob jects in the calc ulator . S tudy the ex amples in this chapte r to get a good gr asp of the capabi lities o f the calc ulator f or futur e appl[...]

  • Seite 62

    Pa g e 2 - 2 the CAS , it might be a good idea to sw itch dir ectl y into appr ox imate mode. Re fer t o Appendi x C for mor e det ails. Mi xing integers and reals together or mi staking an integer for a real is a common occ urre nce. Th e calc ulator w ill detect su ch mi xing o f objects and as k y ou if y ou want to s wit ch t o appr ox imate mo[...]

  • Seite 63

    Pa g e 2 - 3 Binary integers , obje cts of t ype 10 , are used i n some computer science applications . Graphics objec ts , ob jects o f t ype 11, s tor e graphi cs produced b y the calculator . T agged objec ts , obj ects of ty pe 12 , ar e used in the ou tput of man y progr ams to identify r esults . F or ex ample, in the t agged object: Mean: 2 [...]

  • Seite 64

    Pa g e 2 - 4 The r esulting e xpres sion is: 5.*(1.+1./7.5)/( √ 3.-2.^3). Press ` to get the e xpres sion in the display as f ollow s: Notice that , if your CA S is set to EXACT (s ee Appendix C) and y ou enter y our e xpr essi on using integer number s for in teger v alues, the r esult is a sy mbolic quantity , e . g ., 5*„Ü1+1/7.5™/ „ÜR[...]

  • Seite 65

    Pa g e 2 - 5 T o e valuate the e xpr essi on w e can use the EV AL f u ncti on, as f ollo ws: μ„î` As in the pre vi ous e xample , you w ill be ask ed to appr ov e changing the CAS setti ng to Appro x . Once this is done , you w ill get the same r esult as befo r e. An alter na ti ve w ay to e valuate the e xpres sion en ter ed earlier betw een[...]

  • Seite 66

    Pa g e 2 - 6 This latter r esult is pur ely numer ical , so that the t w o re sults in the stack , although r epre senting the same e xpres sion, seem diff erent . T o ver ify that they ar e not, w e subtr act the t w o values and ev alua te this diff er ence using f unction E V AL: - Subtr act le v el 1 fr om lev el 2 μ Evalua te using function E[...]

  • Seite 67

    Pa g e 2 - 7 The editing c ursor is sho wn as a blinking le ft arr ow o ver the f irst c harac ter in the line to be edited. Since the editing in this case consists of r emov ing some char acter s and replac ing them with other s, w e w ill use the r igh t and left arr o w keys, š™ , to mo ve the c ursor to the a ppropr iate place f or editing, [...]

  • Seite 68

    Pa g e 2 - 8 W e set the calc ulator operating mode t o Algebr aic, the CA S to Exact , and the displa y to T extbook . T o ent er this algebr aic e xpre ssion w e use the f ollo wing keyst ro kes : ³2*~l*R„Ü1+~„x/~r™/ „ Ü ~r+~„y™+2*~l/~„b Press ` to get the follo wing r esult: Enter ing this expr essi on when the calculator is s e[...]

  • Seite 69

    Pa g e 2 - 9 Θ Pr ess the r ight arr ow k ey , ™ , until the cursor is t o the right o f the x Θ Ty p e Q2 to enter the pow er 2 fo r the x Θ Pr ess the r ight arr ow k ey , ™ , until the cursor is t o the right o f the y Θ Pr ess the delet e ke y , ƒ , once to er ase the char acters y. Θ Ty p e ~„x to enter an x Θ Pr ess the r ight ar[...]

  • Seite 70

    Pa g e 2 - 1 0 Θ Pr essi ng ` once more to retur n to normal display . T o see the entir e expr essi on in the scr een, w e can c hange the option _Small Stack Disp in the DISP LA Y M ODE S input f orm (see Chapte r 1) . A fter effec ting this c hange , the display w ill look as follo ws: Using the Equation W riter (EQW) to create e xpressions The[...]

  • Seite 71

    Pa g e 2 - 1 1 The si x soft menu k ey s for the E quation W rit er acti vate the fo llow ing functi ons: @EDIT : lets the u ser edit an entry in the line editor (see e xample s abo ve) @CURS : highli ghts expr ession and adds a graphi cs cur sor to it @BIG : if selec ted (selecti on sho wn by the c harac ter in the label) the font us ed in the wr [...]

  • Seite 72

    Pa g e 2 - 1 2 The r esult is the e xpr essi on The cur sor is sho wn a s a left-fac ing ke y . T he curs or indicat es the c urr ent edition location . T yp ing a char acter , f unction name , or operation w ill enter the corr esponding char acter or c h ar acters in the c ursor location . F or ex ample, f or the cu rsor in the location indi cated[...]

  • Seite 73

    Pa g e 2 - 1 3 Suppos e that no w y ou want t o add the fr action 1/3 to this entir e expr ession , i .e., y ou wan t to ent er the expr ession: F irst , w e need to highli ght the entir e firs t ter m by using either the r ight ar ro w ( ™ ) or the upper arr ow ( — ) k ey s, r epeatedly , until the entire e xpre ssion is highli ghted , i.e ., [...]

  • Seite 74

    Pa g e 2 - 1 4 Show i ng the expr ession in smaller-si ze T o show the e xpres sion in a smaller -siz e fo nt (w hic h could be usef ul if the e xpre ssi on is long and con volut ed) , simply pr ess the @BIG soft men u k ey . F or this case, the scr e en looks as follo ws: T o r ecov er the larger -font displa y , pre ss the @BIG s oft menu k ey on[...]

  • Seite 75

    Pa g e 2 - 1 5 If y ou wan t a floating-point (n umerical) e valuation , use the  NUM fun ction (i .e., …ï ). T he r esult is as follo ws: Use the function UNDO ( …¯ ) o n c e mo re to re c ove r t he o ri gi n a l ex pre ss io n : Ev aluating a sub-expr ession Suppos e that yo u want t o ev aluate only the e xpres sion in par entheses in [...]

  • Seite 76

    Pa g e 2 - 1 6 A sy mbolic ev aluation once more . Suppose that , at this point , we w ant to ev aluate the left -hand side fr action onl y . Pre ss the upper ar r o w ke y ( — ) thr ee times to s elect that fr action , r esulting in: Then , press the @EVAL soft menu ke y to ob tain: Let ’s tr y a numer ical ev aluation of this t erm at this po[...]

  • Seite 77

    Pa g e 2 - 1 7 Editing arithmetic e x pr essions W e will sho w some of the editing featur es in the Equati on W riter as an e xer cis e. W e start by e ntering the f ollow ing expr essi on used in the pr ev ious e xe rc ises: And w i ll us e the editing featur es of the E quation E ditor to transf orm it into the follo w ing expr essio n: In the p[...]

  • Seite 78

    Pa g e 2 - 1 8 Pr ess the do wn ar ro w ke y ( ˜ ) to trigger the c lear editing c u r sor . T he scr een now looks lik e this: By using the left arr ow k ey ( š ) y ou can mov e the cur sor in the gener al left dir ecti on, bu t stopping at eac h indiv idual component of the e xpres sion . F or e xample , suppose that w e will f irst w ill trans[...]

  • Seite 79

    Pa g e 2 - 1 9 Ne xt, w e’ll con vert the 2 in front of the par enth eses in the denominator into a 2/3 by using: šƒƒ2/3 At this point the e xpr essi on looks as fo llow s: The f inal step is to r emov e the 1/3 in the ri ght -hand side o f the expr essi on. Thi s is accomplished by us ing: —————™ƒƒƒƒƒ The f inal ver sion w il[...]

  • Seite 80

    Pa g e 2 - 2 0 Use the follo wing k ey str okes: 2 / R3 ™™ * ~‚n+ „¸ ~‚m ™™ * ‚¹ ~„x + 2 * ~‚m * ~‚c ~„y ——— / ~‚t Q1/3 This r esults in the output: In this ex ample we us ed se ve ral lo we r- case English letter s, e . g ., x ( ~„x ), sev eral Gr eek letters, e .g., λ ( ~‚n ) , and e ven a co mbination of G[...]

  • Seite 81

    Pa g e 2 - 2 1 Editing algebraic e xpressions The editing of algebr aic equations f ollow s the same rules as the editing of algebrai c equations. Name ly : Θ Use the ar r ow k ey s ( š™—˜ ) to highli ght expr essions Θ Use the do wn arr o w ke y ( ˜ ) , repeat edly , t o trigger the cl ear editing c ursor . In this mode , use the left or [...]

  • Seite 82

    Pa g e 2 - 2 2 2. θ 3. Δ y 4. μ 5. 2 6. x 7. μ in the expone ntial func tion 8. λ 9. 3 i n t h e √ 3 ter m 10. the 2 in the 2/ √ 3 fr action At an y point we can c hange the clear editing cur sor into the insertio n cur sor by pr essing the delet e k ey ( ƒ ). Let’s use these tw o cursor s (the clear editing cu rsor and the inserti on c[...]

  • Seite 83

    Pa g e 2- 23 Ev aluating a sub-expr ession Since w e alread y have the sub-e xpre ssion highli ghted , let’s pre ss the @EVAL soft menu k ey to e valuate this sub-expr ession . The re sult is: Some algebr aic expr essions cannot be simplif ied any more . T r y the follo wing keyst ro kes : —D . Y o u will noti ce that nothing happens, othe r th[...]

  • Seite 84

    Pa g e 2- 24 3 in the fi rst ter m of the numerator . T hen, pr ess the r ight arr ow k ey , ™ , to nav igate through the e xp r ession . Simplifying an e xpression Pr ess the @BIG soft menu k ey to get the sc r een to look as in the pre vi ous f igur e (see abo ve). Now , pres s the @SIMP soft menu k ey , to see if it is possible to simplify thi[...]

  • Seite 85

    Pa g e 2- 25 Press ‚¯ to reco ver the or iginal expr ession . Next , enter the follo wing keyst ro kes : ˜˜˜™™™™™™™———‚™ to sele ct the last two ter ms in the e xpre ssion , i.e ., pr ess the @F ACTO soft menu k ey , to get Press ‚¯ to reco ver the ori ginal expr ession . Now , let’s select the entir e e xpre ssi [...]

  • Seite 86

    Pa g e 2 - 2 6 Ne xt, s elect the command DERVX (the de ri vati ve w ith r espec t to the var iable X, the c urr ent CAS independent v ariable) b y using: ~d˜˜˜ . Command DER VX will no w be sele ct ed: Pr ess the @@ OK@@ s oft men u k ey to get: Ne xt, pr ess the L k ey t o r ecov er the or iginal E quation W r iter menu , and pr ess the @E VAL[...]

  • Seite 87

    Pa g e 2- 27 Detailed explanati on on the u se of the help fac ilit y fo r the CA S is pr esented in Chapter 1. T o r eturn to the Eq uation W r iter , pr ess the @EXIT so f t menu k ey . Pre ss the ` k ey t o ex it the Eq uation W r iter . Using the editing func tions BEGIN, END , COP Y , CUT and P ASTE T o fac ilitate editing , whether w ith the [...]

  • Seite 88

    Pa g e 2 - 2 8 Ne xt, w e’ll cop y the fr actio n 2/ √ 3 from t he lef tm ost fa ctor in th e exp ression, and place it in the numerator o f the ar gument for the LN functi on. T ry the follo w ing k ey str ok es: ˜˜šš———‚¨˜˜ ‚™ššš‚¬ The r esulting sc r een is as f ollo ws: The f unctions BEGIN and END ar e no t necessa[...]

  • Seite 89

    Pa g e 2 - 2 9 W e can no w cop y this expr essio n and place it in the denominator o f the LN argume nt, as f ollow s: ‚¨™™ … (2 7 times ) … ™ ƒƒ … (9 times) … ƒ ‚¬ The li ne editor no w looks like this: Pr essi ng ` show s the expr ession in the E quation W r iter (in small-font fo rmat , pr ess the @B IG soft menu key) : P[...]

  • Seite 90

    Pa g e 2 - 3 0 T o see the corr esponding e xpres sion in the line editor , pres s ‚— and the A soft menu k ey , to show : This e xpres sion sho ws the gener al for m of a summation typed dir ectly in the stack or line editor : Σ ( inde x = starting_v alue , ending_value , summation e xpres sion ) Press ` to re turn to the E quation W riter . [...]

  • Seite 91

    Pa g e 2 - 3 1 and the var iable of diff erentiati on. T o f i ll thes e input locatio ns, us e the follo wing keyst ro kes : ~„t™~‚a*~„tQ2 ™™+~‚b*~„t+~‚d The r esu lting scr een is the follo wing: T o see the corr esponding e xpres sion in the line editor , pres s ‚— and the A soft menu k ey , to show : This indi cates that t[...]

  • Seite 92

    Pa g e 2- 32 Definite integr als W e wi ll use the E quation W r iter to ente r the follo wing def inite integr al: . Pr ess ‚O to ac tiv ate the E quation W r iter . T hen pr ess ‚ Á to enter the integr al sign. Notice that the si gn, w hen entered into the E quation W rit er scr een, pr ov ides input locations f or the limits of integr ation[...]

  • Seite 93

    Pa g e 2- 33 Double integr als are als o possible . F or ex ample, whi ch ev aluates to 3 6. P artial e valuati on is possible , fo r ex ample: This integr al ev aluates to 3 6. Organizing data in the calculator Y o u can organi z e data in your calc ulator by stor ing var iables in a dir ectory tr ee . T o underst and the calc ulator’s memo ry ,[...]

  • Seite 94

    Pa g e 2 - 3 4 @CHDIR : Change to s elected d ir e ct ory @CANCL : Cancel action @@OK@@ : Appr ov e a selecti on F or ex ample, to c hange directory to the CA SD IR, pr ess the do wn-arro w ke y , ˜ , and pre ss @CH DIR . This acti on close s the Fi l e M a n a g e r w indo w and r eturns us to nor mal calculator displa y . Y o u wi ll notice that[...]

  • Seite 95

    Pa g e 2 - 3 5 T o mov e between the differ ent soft men u commands, y ou can use not only the NEXT ke y ( L ), but also the PREV k ey ( „« ). The u ser is in vited to try these f uncti ons on his or her o wn . The ir applicati ons ar e strai ghtforw ard . The HOME dir ector y The HO ME direc tory , as point ed out earli er , is the bas e direc [...]

  • Seite 96

    Pa g e 2- 3 6 This time the CA SD IR is highlight ed in the scr een. T o see the contents of the dir ectory pr ess the @@ OK@@ soft m enu key or ` , to get the follo wing scr een: The s cr een sho w s a table des cr ibing the var iables cont ained in the CA SDIR dir ectory . T hese ar e v ar iables pr e -defined in the calc ulator memory that esta [...]

  • Seite 97

    Pa g e 2 - 37 Pr essing the L k ey sho ws one mor e var iable stor ed in this directory: • T o see the contents o f the var iable EPS , for e xam p le , use ‚ @EPS@ . This sho ws the va lue of EP S to be .00 00000001 • T o see the value of a numer ical var iable , we need to pre ss onl y the so ft menu k ey f or the v ari able . F or ex ample[...]

  • Seite 98

    Pa g e 2- 3 8 lock the alpha betic k ey board tempor aril y and enter a f ull name bef or e unloc king it again. T he follo w ing combination s of k ey str okes will lock the alphabetic k e yboar d: ~~ locks the alphabeti c ke yboar d in upper case . When lock ed in this fas hion, press in g th e „ bef ore a lette r k e y pr oduces a lo we r case[...]

  • Seite 99

    Pa g e 2- 39 Creating subdir ectories Subdir ector ies can be cr eated by using the FILES en vir onment or by using the co mm a nd CR D IR. Th e t wo ap proa che s fo r cre at i ng su b- di rect orie s a re pr esent ed next . Using the FILES menu Regar dless of the mode of oper ation of the calc ulator (Algebrai c or RPN) , we can cr eate a direc t[...]

  • Seite 100

    Pa g e 2 - 4 0 The Object input f ield, the f irst input f ield in the fo rm , is highlight ed by def ault. This input f ield can hold the contents of a new v ariable that is be ing cr eated. Since w e hav e no contents f or the new sub-dir ectory at this point, we simpl y skip this input fi eld by pr essing the do wn-arr o w ke y , ˜ , once. T he[...]

  • Seite 101

    Pa g e 2 - 4 1 T o mo ve into the MAN S direct ory , pr ess the co rr esponding so ft menu k ey ( A in this case), and ` if in algebr aic mode . T he direc tor y tr ee will be show n in the second line of the displa y as {HOME M NS} . Ho we ver , there w ill be no labels as soc iated w ith the soft me nu k ey s, as sho wn belo w , beca use ther e a[...]

  • Seite 102

    Pa g e 2- 42 Use the do wn ar ro w ke y ( ˜ ) to select the option 2. M E M O RY … , or j ust press 2 . Then, pr ess @@OK@@ . This w ill pr oduce the fo llow ing pull-dow n menu: Use the do wn arr ow k ey ( ˜ ) to s elect the 5 . DIRE CT OR Y opti on, or ju st press 5 . Then, pr ess @@OK@@ . T his will pr oduce the follo wing pull-do wn menu: U[...]

  • Seite 103

    Pa g e 2- 4 3 Pr ess the @@ OK@ soft menu ke y to activ ate the command, to cr eate the sub- dir ectory: Mov ing among subdirectories T o mov e dow n the dir ector y tr ee, y ou need to press the s oft menu ke y corr esponding to the sub-dir ectory you w ant to mo ve to . The list o f var iable s in a sub-dir ectory can be pr oduced by pr essing th[...]

  • Seite 104

    Pa g e 2 - 4 4 The ‘S2’ str ing in this f orm is the name o f the sub-direct ory that is being de leted . The s oft menu k ey s pro vi d e the f ollow ing options: @YES@ Pr oceed w ith deleting the sub-dir ectory (or var iable) @ALL@ Pr oceed w ith deleting all sub-dir ector ie s (or var iables) !ABORT Do not d elete sub-dir ectory (or var iabl[...]

  • Seite 105

    Pa g e 2 - 4 5 Use the do wn ar ro w ke y ( ˜ ) to select the option 2. M E M O RY … T h e n , press @@OK@@ . This w ill produce the f ollo w ing pull-do wn menu: Use the do wn ar r o w ke y ( ˜ ) to select the 5 . DIRE CT OR Y opti on. T hen, press @@OK@@ . This w ill produce the f ollo w ing pull-do wn menu: Use the do wn ar ro w k e y ( ˜ )[...]

  • Seite 106

    Pa g e 2 - 4 6 Press @@OK@@ , to get: Then , press ) @ @S3@@ to enter ‘S3’ as the ar gument to PGDIR. Press ` to delete the sub-direc tor y: Command PGDIR in RPN mode T o use the P GD IR in RPN mode y ou need to ha ve the name o f the direc tor y , between q uotes , alread y availa ble in the stac k befor e accessing the command. F or ex ample:[...]

  • Seite 107

    Pa g e 2- 47 Using the PURGE command fr om the TOOL menu The T OOL men u is av ailable by pr essing the I k ey (A lgebraic and RPN modes sho wn): The P URGE command is av ailable by pr essing the @PURGE s oft menu k e y . In the follo w ing e xample s w e want t o delete su b-dir ectory S1 : • A lgebraic mode: En ter @PURGE J )@@S1@@ ` • RP N m[...]

  • Seite 108

    Pa g e 2- 4 8 Using the FILES menu W e wi ll use the FILE S menu to enter the v ari able A. W e assume that w e are in the sub-dir ectory {HOME M NS IN TRO}. T o get to this sub-dir ectory , u se the fo llo wing: „¡ and sel ect the INTR O sub-direc tor y as sho wn in this scr e en: Press @@OK@@ t o enter the dir ectory . Y o u will get a f iles [...]

  • Seite 109

    Pa g e 2- 49 T o enter var iable A (see table abov e ), we fir st enter its contents , namely , the number 12 .5, and then its name , A, as follo ws: 12.5 @@OK@@ ~a @@OK@@ . Resulting in the f ollow ing scr een: Press @@OK@@ once more to cr eate the vari able. T he new var iable is show n in the follo w ing var iable listing: The lis ting indicate [...]

  • Seite 110

    Pa g e 2- 5 0 Using the ST O  command A simpler wa y to cr eate a var iable is by u sing the S T O command (i.e ., the K k ey). W e pr ov ide e xamples in both the A lgebrai c and RPN modes, b y cr eating the r emaining of the v ari ables suggested abo ve , namely : • Alge braic mo de Use the f ollo wing k ey str okes to s tor e the value o f [...]

  • Seite 111

    Pa g e 2 - 5 1 z1: 3+5*„¥ K~„z1` (if needed , accept change t o Comple x mode) p1: ‚å‚é~„r³„ì* ~„rQ2™™™ K~„p1` . The s cr een, at this po int, w ill look as follo ws: Y o u w ill see six o f the sev en var iables listed at the bottom of the scr een: p1, z1, R, Q, A12 , α . • RPN mode Use the f ollo w ing k ey str okes [...]

  • Seite 112

    Pa g e 2 - 52 z1: ³3+5*„¥ ³~„z1 K (if needed, accept c hange to Comple x mode) p1: ‚å‚é~„r³„ì* ~„rQ2™™™ ³ ~„p1™` K . The s cr een, at this po int, w ill look as follo ws: Y o u w ill see six o f the se ven v ari ables list ed at the bottom of the s cr een: p1, z1, R, Q, A12 , α . Chec king var iabl es contents As an[...]

  • Seite 113

    Pag e 2- 53 Pr essing the s oft menu k ey cor r esponding t o p1 w ill pr ov ide an err or message (try L @@@p1 @@ ` ): Note: By pre ss i ng @@@p1@@ ` we ar e trying to acti vate (run) the p1 pr ogram . Ho we ver , this progr a m e xpects a numeri cal input . T ry the follo wing e xer cise: $ @@@p1@ „Ü5` . The r esult is: The pr ogra m has the f[...]

  • Seite 114

    Pa g e 2 - 5 4 At this point , the scr een looks like this: T o see the contents o f A, use: L @@@A@@@ . To r u n p r o g r a m p1 w ith r = 5, use: L5 @@@p1@@@ . Notice that to run the progr am in RPN mode, y ou only need to enter the input (5) and pr ess the corr esponding soft menu k ey . (In algebraic mode , you need to place parenth eses to en[...]

  • Seite 115

    Pag e 2- 55 Notice that this time the contents o f pr ogr am p1 are liste d in t he scr een. T o see the r emaining var iables in this dir ectory , pr ess L : Listing the content s of all var iables in the screen Use the k ey str oke combinati on ‚˜ to list the contents of all var iables in the sc r een. F or ex ample: Press $ to retur n to norm[...]

  • Seite 116

    Pa g e 2- 56 follo wed b y the var iable ’s soft menu k ey . F or e xample , in RPN, if w e w ant to change the contents of v ariable z1 to ‘ a+b ⋅ i ’, u s e : ³~„a+~„b*„¥` This w ill place the algebrai c expr ession ‘ a+b ⋅ i ’ in le ve l 1: i n t h e st a ck. To e n t er this result into v aria ble z1 , use: J„ @@@z1@ @ T[...]

  • Seite 117

    Pa g e 2 - 5 7 Use th e up ar r o w ke y — to select the sub-dir ectory MANS and pres s @@OK@@ . If you no w press „§ , the scr een will sho w the contents of sub-directory MANS (notice that v ariable A is show n in this list, as e xp ect ed): Press $ @INTRO@ ` (Algebr aic mode), or $ @INTRO@ (RPN mode) to re turn to the INTRO dir ectory . Pr [...]

  • Seite 118

    Pa g e 2- 58 Ne xt, u se the delete k ey thr ee times, to r emo ve the las t three lines in the dis play : ƒ ƒ ƒ . At this poin t , the stac k is r eady to e xec ute the command ANS(1)  z1 . Pr ess ` to ex ecute this command . Then , use ‚ @@z1@ , to ver ify the contents of the v ariable . Using the stack in RPN mod e T o demonstr ate the u[...]

  • Seite 119

    Pa g e 2 - 59 Copy ing two or more v ariables using the stack in RPN mod e The f ollow ing is an ex erc ise to demonstr ate ho w to copy two or mor e var iables using the stac k when the calc ulator is in RPN mode. W e as sume, again, that w e are w ithin sub-dir ectory {HOME MANS INTRO} and that w e want t o copy the var iable s R and Q into sub-d[...]

  • Seite 120

    Pa g e 2- 6 0 The s cr een no w show s the ne w order ing of the var iables: RPN mode In RPN mode, the list o f r e -orde red v ariables is listed in the st ack bef ore apply ing the command ORDER. Su ppose that w e start fr om the same situation as abov e, but in RPN mode , i. e., Th e reo rd ere d l i st i s cre a t ed by us i n g : „ä )@INTRO[...]

  • Seite 121

    Pa g e 2 - 6 1 Notice that v ariable A12 is no longer ther e. If y ou no w press „§ , the sc r een w ill sho w the contents of sub-dir ectory MANS, inc luding vari able A12 : Deleting var iables V ari ables can be deleted using functi on PUR GE . T his fu nction can be accessed dir ectl y b y using the T OOLS menu ( I ), or by using the FILE S m[...]

  • Seite 122

    Pa g e 2 - 62 vari ab le p1 . Pr ess I @PURGE@ J @@p1@@ ` . The scr een will no w show vari ab le p1 re m ove d : Y o u can use the P URGE command to er ase mor e than one var iable b y placing their names in a lis t in the argument o f PUR GE. F or ex ample, if no w we w anted to purge v ariable s R and Q , simultaneou sly , w e can try the fo llo[...]

  • Seite 123

    Pa g e 2 - 6 3 the HIS T ke y: UNDO r esults fr om the ke ystr oke s equence ‚¯ , w hile CMD r esults fr om the k ey str oke se quence „® . T o illustr ate the us e of UNDO , try the follo w ing ex er c ise in algebr aic (AL G) mode: 5*4/3` . T h e UNDO command ( ‚¯ ) w ill simply er ase the re sult. T he same ex erc ise in RPN mode, w ill[...]

  • Seite 124

    Pa g e 2 - 6 4 As you can s ee, the number s 3, 2 , and 5, us ed in the fi rst calc ulation abov e, ar e listed in the se lecti on bo x, as w ell as the algebr a i c ‘SIN(5x2)’ , but not the SIN f u ncti on entered pr ev ious to the algebr aic. Flags A flag is a Boo lean value , that can be se t or clear ed (true or fals e), that spec ifies a g[...]

  • Seite 125

    Pa g e 2- 6 5 Ex ampl e of flag setting: general solutions v s. principal value F or ex ample, the def ault v a lue f or s yst em flag 01 is Gener al soluti ons . What this means is that, if an equati on has multiple soluti ons, all the s olutions w ill be r eturned b y the calculator , mo st lik ely in a lis t. B y pr essing the @  @CHK@@ soft [...]

  • Seite 126

    Pa g e 2- 6 6 ` (keepi ng a second cop y in the RPN stac k) ³~ „t` Use the follo wing k ey strok e sequence to enter the QU AD command: ‚N~q (use the up and do wn arr ow k ey s, —˜ , to s elect command QU AD) , pr ess @@OK@@ . The sc reen sho ws the princ ipal soluti on: No w , c hange the setting of flag 01 to Gener al soluti ons : H @FLAG[...]

  • Seite 127

    Pa g e 2 - 67 CHOOSE bo x es vs. So f t MENU In some of the e xer cises pr esented in this chapter w e ha ve seen men u lists of commands displa yed in the sc reen . Thes e menu lists ar e re fer red to as CHOOSE bo x es . F or ex ample, to us e the ORDE R command to r eorde r var iables in a dir ecto ry , w e use , in algebr aic mode: „°˜ Sho [...]

  • Seite 128

    Pa g e 2- 6 8 The s cr e en sh ow s flag 117 not s et ( CHOO SE box es ), as sho wn here: Pr ess the @  @CHK@@ soft menu k ey to s et flag 117 to s oft MENU . T he scr een will r efl ect that c hange: Press @@OK@@ twice to r eturn to normal calculator displa y . No w , w e’ll try to f ind the ORDER command using similar ke ystr oke s to those [...]

  • Seite 129

    Pa g e 2- 69 Note: most o f the e xam p les in this us er guide assume that the c urre nt setting of flag 117 is its de fault s etting (that is, not set). If yo u hav e set the flag but w ant to str ictly f ollow the e xam ples in this guide , you should c lear the flag be for e contin uing. Selected CHOOSE box es Some men us w ill only pr oduce CH[...]

  • Seite 130

    Pa g e 2- 70 • T he CMDS (CoMmanD S) menu , acti vated w ithin the E quation W r iter , i. e. , ‚O L @CMDS[...]

  • Seite 131

    Pa g e 3 - 1 Chapter 3 Calculation with real numbers This c hapter demonstr ates the use of the calc ulator for oper ations and func tions r elated to r eal numbers . Oper ations along the se lines ar e usef ul for mos t common calc ulations in the ph ysi cal sc iences and engineer ing. T he user should be acquainted w ith the ke yboar d to identif[...]

  • Seite 132

    Pa g e 3 - 2 2 . Co ordinate s ystem specifi cat ion (XYZ , R ∠ Z, R ∠∠ ). T he s y mb ol ∠ stands f or an angular coor dinate . XYZ: Cartesi an or rectangular (x ,y ,z) R ∠ Z: cylindr ical P olar co or dinates (r , θ ,z) R ∠∠ : Spher ical coordinat es ( ρ,θ,φ ) 3 . Number base s pecif ication (HE X, DE C, OCT , BIN) HEX: he xadec[...]

  • Seite 133

    Pa g e 3 - 3 Real n u mber calc ulations w ill be demonstr ated in both the Algebr aic ( AL G) and Re ver se P o lish Notation (RPN) mode s. Changing sign of a number , v ariable, or e xpression Use the ke y . In AL G mode , you can pr ess bef ore enter ing the number , e .g., 2.5` . Result = - 2 . 5 . In RPN mode, y ou need to enter at least [...]

  • Seite 134

    Pa g e 3 - 4 Alter nativ ely , in RPN mode , y ou can separat e the operands w ith a space ( # ) befo re pr essing the oper ator ke y . Example s: 3.7#5.2 + 6.3#8.5 - 4.2#2.5 * 2.3#4.5 / Using parentheses P arentheses can be used to gr oup operations , as well as to enc lose arguments of func tions . The par entheses ar e available thr ough the ke [...]

  • Seite 135

    Pa g e 3 - 5 Squares and squar e roots The s quar e function , SQ, is a vailable thr ough the ke ystr ok e combination: „º . When calc ulating in the stack in AL G mode , enter the func tion befo r e the argument , e.g ., „º2.3` In RPN mode, ent er the number f irst , then the functi on, e .g., 2.3„º The sq uar e root f unction, √ , is[...]

  • Seite 136

    Pa g e 3 - 6 Using po wers o f 10 in entering data P owe rs of te n, i.e. , n u mb e rs of th e for m - 4 .5 ´ 10 -2 , etc., ar e entered b y using the V ke y . F or ex ample, in AL G mode: 4.5V2` Or , in RPN mode: 4.5V2` Natural logar ithms and exponential function Natur al logarithms (i .e ., logarithms of base e = 2. 7 1 828 1 8282 ) are ca[...]

  • Seite 137

    Pa g e 3 - 7 the inv erse tr igonometri c functi ons repr esent angles, the ans w er fr om these func tions w ill be give n in the select ed angular measur e (DEG , RAD, GRD). Some e xamples ar e show n next: In AL G mode: „¼0.25` „¾0.85` „À1.35` In RPN mode: 0.25`„¼ 0.85`„¾ 1.35`„À All the func tions des cribed abo ve , namely , [...]

  • Seite 138

    Pa g e 3 - 8 combinati on „´ . With the def ault setting of CHOO SE box es fo r syst em flag 117 (see Chapter 2), the MTH menu is show n as the follo wing menu list: As the y are a gr eat number of mathematic f unctions a vailable in the calc ulator , the MTH menu is so rted by the ty pe of obj ect the fu nctio ns apply on . F or ex ample , opti[...]

  • Seite 139

    Pa g e 3 - 9 Hy perbolic func tions and their inverses Selecting Option 4. HYP ERBOLIC.. , in the MTH menu , and pres sing @@OK@@ , pr oduces the h yperboli c function men u: The h yperbolic f unctions ar e: Hy perbolic sine , SINH, and its inv erse , ASINH or sinh -1 Hy perbolic cosine , CO SH, and its inv erse , AC OSH or cosh -1 Hy perbolic t an[...]

  • Seite 140

    Pa g e 3 - 1 0 The r esult is: The ope rati ons show n abov e assume that you ar e using the defa ult setting for s ys tem flag 117 ( CHOO SE box es ) . If yo u hav e changed the se tting of this flag (see Chapter 2) to SO FT m e nu , the MTH menu w ill sho w as labels o f the soft menu k ey s, as fo llo ws (le f t-hand side in AL G mode, r ight ?[...]

  • Seite 141

    Pa g e 3 - 1 1 F or ex ample, to calc ulate tanh( 2 . 5), in the AL G mode, w hen using SOF T m en us over CHOO S E bo xe s , f ollow this pr ocedure: „´ Select MTH menu ) @@HYP@ Select the HYP ERBOLIC.. menu @@TANH@ Select the TA N H fu nct ion 2.5` Ev aluate tanh(2 . 5) In RPN mode, the s ame value is calc ulated using: 2.5` Enter ar gument in[...]

  • Seite 142

    Pa g e 3 - 1 2 Option 19 . MA TH.. r eturns the user to the MTH men u . T he r emaining func tions ar e gr ouped into si x differ ent grou ps descr ibed belo w . If s ys tem flag 117 is set to SO FT m e nu s , the REAL fu nctio ns menu w ill look like this (AL G mode u sed, the s ame soft menu k ey s will be a vailable in RPN mode): The v ery last [...]

  • Seite 143

    Pa g e 3 - 1 3 The r esult is sho wn ne xt: In RPN mode , recall that ar gument y is located in the second le ve l of the stac k, while ar gument x is located in the f irst le vel of the s tack . T his means, y ou should enter x firs t , and then, y , j ust as in AL G mode. T hus , the calculatio n of %T(15, 4 5) , in RPN mode , and w ith s yste m [...]

  • Seite 144

    Pa g e 3 - 1 4 P lease notice that MOD is not a function, but r ather an operator , i .e ., in AL G mode , MOD should be us ed as y MOD x , and not as MOD(y,x) . Th us, the oper ation of M OD is similar to that of + , - , * , / . As an e xer cise , ver ify that 15 MOD 4 = 15 mod 4 = r esidual o f 15/4 = 3 Absolute value , sign, ma ntissa, e xponent[...]

  • Seite 145

    Pa g e 3 - 1 5 G AMMA: The Gamma functi on Γ ( α ) P SI: N- th der iv ati ve o f the digamma functi on P si: Digamma f unction , deri vati ve of the ln(Gamma) The Gamma f unction is def ined by . This f unction has applicati ons in applied mathemati cs f or sc ience and engineering , as well as in pr obabil ity and statisti cs. The PSI fu nct ion[...]

  • Seite 146

    Pa g e 3 - 1 6 Example s of these s pec ial func tions ar e show n her e using both the AL G and RPN modes. As an e xe r c ise , verify that G AMMA(2 . 3) = 1.166 7 11…, PSI(1 .5, 3) = 1 .40909 .., and Psi ( 1 .5 ) = 3. 6 48997 39 .. E-2 . The se calc ulations ar e sho wn in the follo w ing sc r een shot: Calculator constants The f ollo wing ar e[...]

  • Seite 147

    Pa g e 3 - 1 7 Selecting an y of these en tri es will place the v alue select ed, w hether a sy mbol (e .g., e , i , π , MINR , o r MAXR ) or a v alue ( 2 .71.., (0,1) , 3 . 14.., 1E-4 99 , 9. 9 9. . E 4 9 9 ) in the st ack . P lease notice that e is a vailable f r om the k eyboar d as ex p (1 ) , i .e., „¸1` , in AL G mode , or 1` „¸ , in R[...]

  • Seite 148

    Pa g e 3 - 1 8 The u ser w ill recogni z e mos t of these units (s ome , e.g ., dy ne , are not u sed v ery often no wada ys) fr om his or her ph ysics c lasses: N = newtons, dyn = dyn es, gf = gr ams – for ce (to distinguish fr om gram-mas s, or plainly gr am, a unit of mass), kip = kilo -poundal (1000 pounds) , lbf = pound-f or ce (to distingui[...]

  • Seite 149

    Pa g e 3 - 1 9 A vailable units The f ollow ing is a list of the units av ailable in the UNI TS men u . T he unit s ymbo l is show n first f ollow ed by the unit name in parentheses: LENG TH m (meter), cm (centimeter), mm (millimeter), yd (y ar d) , ft (feet), in (inch) , Mpc (Mega parsec), p c (pars ec) , ly r (light -y ear) , au (astr onomical un[...]

  • Seite 150

    Pa g e 3 - 2 0 SPEED m/s (meter per se cond), cm/s (centimeter per second), ft/s (feet per second), kph (kilometer per hour ) , mph (mile per hour), knot (nautical mile s per hour), c (speed of li ght) , ga (accelerati on of gr av it y ) MA SS k g (kilogram), g (gram), Lb (av oirdu pois pound) , oz (ounce), slug (slug) , lbt (T r oy pound) , ton (s[...]

  • Seite 151

    Pa g e 3 - 2 1 ANGLE (planar and solid angle mea sur ements) o (se xage simal degree), r (radi an) , gr ad (gr ade) , arcmin (minut e of ar c) , arc s (second of ar c) , sr (ster adian) LIGHT (Illumination measur ements) fc (footcan dle) , flam (f ootlambert) , lx (lu x), ph (phot) , sb (stilb), lm (lumem), cd (candela), lam (lamber t) RADI A T IO [...]

  • Seite 152

    Pa g e 3 - 22 Conv er ting to base units T o conv ert an y of these units to the def ault units in the SI s yst em, u se the functi on UB ASE . F or e xample , to find out what is the v alue of 1 pois e ( unit of v iscosi ty) in the SI units , use the follo wing: In AL G mode , sy ste m flag 117 set t o CHOOSE bo xes : ‚Û Select the UNIT S menu [...]

  • Seite 153

    Pa g e 3 - 23 ` Con vert the units In RPN mode , s y stem flag 117 s et to SO FT m e nu s : 1 Enter 1 (no under line) ‚Û Select the UNIT S menu „« @) VISC Select the VISC OS ITY option @@@P@@ Select the unit P (pois e) ‚Û Select the UNIT S menu ) @TOOLS Select the T OOLS menu @UBASE Select the UB ASE functi on Attac hing units to numbers T[...]

  • Seite 154

    Pa g e 3 - 24 Notice that the under scor e is entered a utomati cally when the RPN mode is acti ve . The r esult is the fo llow ing scr een: As indicated earl ier , if s yste m flag 117 is set to SO F T m en u s , then the UNI T S menu w ill show up as labels f or the soft menu k eys . This set up is ve r y conv enient fo r extensi ve oper ations w[...]

  • Seite 155

    Pa g e 3 - 25 Yy o t t a + 2 4 dd e c i - 1 Z z etta +21 c centi - 2 E ex a +18 m milli -3 P pe ta +15 μ mi cr o - 6 T ter a +12 n n ano - 9 Gg i g a + 9 p p i c o - 1 2 Mm e g a + 6 f f e m t o - 1 5 k, K ki lo +3 a att o -18 h,H he cto +2 z zepto - 21 D(*) dek a +1 y yoct o - 2 4 _______________ ____________________ ________________ (*) In the S[...]

  • Seite 156

    Pa g e 3 - 26 whi ch sho ws as 6 5_(m ⋅ yd). T o conv ert to units of the SI s ys tem , use f unctio n UB ASE: T o calculat e a div ision, s ay , 3 2 50 mi / 5 0 h, enter it a s (3 2 50_mi)/(5 0_h) ` : whi ch transf ormed to S I units, w ith func tion UB ASE , pr oduces: Addition and su btrac tion can be perfor med, in AL G mode , without u sing [...]

  • Seite 157

    Pa g e 3 - 27 Stac k calculations in the RPN mode , do not r equir e y ou to enc lose the diff er ent terms in par enth eses, e.g . , 12_m ` 1.5_y d ` * 3 2 50_mi ` 5 0_h ` / The se oper ations pr oduce the follo wing outpu t: Also , tr y the f ollow ing operations: 5_m ` 32 0 0 _ m m ` + 12_mm ` 1_cm^2 `* 2_s ` / The se las t two oper ations pr od[...]

  • Seite 158

    Pa g e 3 - 2 8 UF A CT(x ,y): f actor s a unit y fr om unit objec t x  UNIT(x ,y): combines v alue of x w ith units of y The UB ASE f unction w as discu ssed in detail in an earli er secti on in this cha pter . T o access an y of these f unctions f ollow the e xamples pr ov ided earlier f or UB ASE . Notice that , while func tion UV AL r e quir [...]

  • Seite 159

    Pa g e 3 - 2 9 Ex amples of  UNI T  UNIT( 25,1_m) `  UNIT(11. 3,1_mph) ` Ph ysical constants in the calculator F ollow ing along the treatment of units , we dis cu ss the use of ph ysical const ants that are a vailable in the calc ulator’s memory . T hese ph ysi cal constants ar e contained in a co nstants libr ar y acti vated w ith the [...]

  • Seite 160

    Pa g e 3 - 3 0 The s oft menu k ey s corre sponding to this CONS T ANT S LIBR AR Y sc r een include the fo llo wing f unctions: SI when selec ted, constants v alues are sho wn in SI units ENGL w hen selec ted, cons tants value s ar e sho wn in English units ( *) UNIT when se lected, co nstants ar e sho wn w ith units attached (*) V AL UE w hen sele[...]

  • Seite 161

    Pa g e 3 - 3 1 T o see the v alues of the constants in the English (or Imper ial) s ys tem , pre ss the @ENGL optio n: If we de-select the UNIT S opti on (pre ss @UNITS ) only the values ar e shown (English units se lected in this case): T o cop y the value of Vm to the st ack , select the v ariable name , and pre ss ! , then, pr ess @QUIT@ . Fo r [...]

  • Seite 162

    Pa g e 3 - 32 Special phy sical func tions Menu 117 , trigge r ed by u sing MENU(117) in AL G mode, or 117 ` MENU in RPN mode , produce s the fol low ing menu (labels lis ted in the displa y by u sing ‚˜ ): The fun ct ion s i ncl ud e: ZF A CT OR: gas compr essibility Z fac tor function F AN NI NG : Fann in g frict ion fact or fo r fl uid flow D[...]

  • Seite 163

    Pa g e 3 - 3 3 ZF A CT OR(x T , y P ) , w here x T is the reduced te mper ature , i . e ., the rati o of actual temper ature to p seudo -cri tical temper ature , and y P is the r educed pr essur e, i .e ., the r atio of the actual pr essur e to the pseudo -cr itical pr essur e . The v alue of x T must be between 1. 05 and 3 .0, while the value of y[...]

  • Seite 164

    Pa g e 3 - 3 4 Function TINC F unction TI NC(T 0 , Δ T) calc ulates T 0 +D T . The oper ation of this f unction is similar to that of f uncti on TDEL T A in the se nse that it r eturns a r esult in the units of T 0 . Otherwise , it retur ns a simple addition of value s, e .g., Defining and using functions User s can def ine their o wn functi ons b[...]

  • Seite 165

    Pa g e 3 - 3 5 Pr ess the J k ey , and yo u will noti ce that there is a ne w var iable in y our soft menu k ey ( @@@H@@ ). T o see the contents of this var iable pr ess ‚ @@@H@@ . T he scr een wi ll s how now: Thu s, the var iable H contains a pr ogram def ined by : <<  x ‘LN(x+1) + EXP(x)’ >> This is a simple pr ogram in the [...]

  • Seite 166

    Pa g e 3 - 3 6 The cont ents of the v ari able K are: <<  α β ‘ α+β ’ >>. Functions defined b y more than one expr ession In this secti on we disc uss the tr eatment of f unctions that ar e def ined b y two or mor e expr essio ns. An e xample o f such f unctions w ould be The fun ctio n I FT E ( IF-Th en -E lse ) d escri bes [...]

  • Seite 167

    Pa g e 3 - 37 Combined IFTE functions T o pr ogram a mor e complicated f u ncti on such as y ou can combine se ver al leve ls of the IFTE func tion, i .e., ‘ g(x) = IFTE(x<- 2 , - x, IFTE(x<0 , x+1, IFTE(x<2 , x-1, x^2)))’ , Define this f unction b y an y of the means pr esented abo ve , and chec k that g(-3) = 3, g(-1) = 0, g(1) = 0, [...]

  • Seite 168

    Pa g e 4 - 1 Chapter 4 Calculations with complex numbers This c hapter sho ws e xam ples of calc ulations and applicati on of func tions to comple x numbers . Definitions A complex number z is a nu mber wr itten as z = x + iy , w here x and y ar e real numbers , and i is the imaginary unit defined b y i 2 = - 1. The complex n umber x+iy has a r eal[...]

  • Seite 169

    Pa g e 4 - 2 Press @@OK@@ , t w ice , to r eturn to the stack . Entering comple x numbers Comple x numbers in the calc ulator can be enter ed in either of the tw o Car tesian representations, nam ely , x+iy , or (x ,y) . The r esults in the calc ulator w ill be show n in the or der ed-p air for mat, i .e., (x ,y) . F or e xample , with the calc ula[...]

  • Seite 170

    Pa g e 4 - 3 Notice that the last entry sho ws a complex n umber in the for m x+iy . This is so because the n u mber w as enter ed between single quot es, w hich r eprese nts an algebrai c expr essi on. T o ev aluate this number use the EV AL k e y( μ ). Once the algebrai c expr ession is e valuated , y ou reco ver the comple x number (3. 5 ,1. 2)[...]

  • Seite 171

    Pa g e 4 - 4 On the other hand , if the coordinate s yste m is set t o cy lindrical coor dinates (use CYLIN), enter ing a complex number (x ,y) , wher e x and y are r eal numbers, w ill pr oduce a polar repr esentati on. F or e xample , in cy lindrical coor dinates, en ter the number (3 .,2 .). T he fi gur e belo w show s the RPN stack , bef ore an[...]

  • Seite 172

    Pa g e 4 - 5 Changing sign of a complex number Changing the sign o f a complex n umber can be accomplished b y using the ke y , e .g., -(5-3 i) = -5 + 3i Entering the unit imaginary number T o enter the unit imaginary number type : „¥ Notice that the n umber i is enter ed as the order ed pair (0,1) if the CA S is set to APP RO X mode . In EX A[...]

  • Seite 173

    Pa g e 4 - 6 CMP LX menu through the MTH menu Assuming that s yst em flag 117 is se t to CHOOSE bo xes (see Chapter 2), the CMPLX sub-men u within the MTH men u is acc essed by using: „´9 @@OK@@ . The follo wing sequence of scr een shot s illustrates these steps : The f irst menu (options 1 thr ough 6) show s the fo llo wing f unctions: RE(z) : [...]

  • Seite 174

    Pa g e 4 - 7 This f irst sc reen sho ws f unctions RE , IM, and C  R . Notice that the last f unction r eturns a list {3 . 5.} r epre senting the r eal and imaginar y components of the comple x number : The f ollow ing scr een show s functi ons R  C, ABS , and ARG . Notice that the ABS f unction gets tr anslated to |3.+5 .·i|, the notation o[...]

  • Seite 175

    Pa g e 4 - 8 The r esulting menu inc lude some of the f unctions alr eady intr oduced in the pr ev ious s ecti on , namely , ARG, ABS , CONJ, IM, NE G, RE , and S IGN. It also include s func tion i whi ch serve s the same pur pose as the k ey strok e combinati on „¥ , i .e., to enter the unit imaginary number i in an expr ession . The k ey board[...]

  • Seite 176

    Pa g e 4 - 9 Functions from the MTH menu The h yper bolic functi ons and their inv erses , as well as the Gamma, P SI, and P si functi ons (special f unctions) w er e introduced and appli ed to r eal numbers in Chapter 3 . Thes e functi ons can also be applied to comple x numbers by follo w ing the procedur es pre sented in Chapter 3 . Some e xampl[...]

  • Seite 177

    Pa g e 4 - 1 0 F unction DROI TE is found in the command catalog ( ‚N ). Using EV AL( ANS(1)) simplif ies the re sult to:[...]

  • Seite 178

    Pa g e 5 - 1 Chapter 5 Algebraic and arithmetic operations An algebr aic obj ect , or simply , algebr aic , is any number , v ari able name or algebrai c expr essi on that can be oper ated upon , manipulated , and combined accor ding to the rules o f algebr a. Ex amples of algebr aic ob jec ts ar e the fo llow ing: • A n umber: 12 . 3, 15 .2_m, ?[...]

  • Seite 179

    Pa g e 5 - 2 (e xponential , logarithmic , trigonometry , h yper bolic, etc .) , as y ou w ould any r eal or comple x number . T o demonstr ate basic oper ations w ith algebr aic obj ects , let’s cr eate a coup le of objects, say ‘ π *R^2’ and ‘ g*t^2/4’ , and stor e them in var iables A1 and A2 (See Chapter 2 to learn ho w to cr eate va[...]

  • Seite 180

    Pa g e 5 - 3 ‚¹ @@A1@@ „¸ @@ A2@@ The s ame r esults ar e obtained in RPN mode if using the follo w ing ke ys tr ok es: @@A1@@ @@A2@@ +μ @@A1@ @ @@A2@@ -μ @@A1@@ @@A2@@ *μ @@A1@@ @ @A2@@ /μ @@A1@@ ʳ ‚¹ μ @@A2@@ ʳ „¸ μ Functions in the AL G menu The AL G ( Algebr aic) menu is a vaila ble b y using the k ey str ok e sequence ‚×[...]

  • Seite 181

    Pa g e 5 - 4 W e notice that , at the bottom of the sc reen , the line See: E XP AND F A CT OR suggests links to other help fac ility entr ies , the f unctions E XP AND and F A CT OR . T o mov e direc tly to tho se entr ies, pr ess the soft men u ke y @SEE1! for E XP AND , and @SEE2! f or F A CT OR. Pr essing @SEE1! , for e xample , show s the foll[...]

  • Seite 182

    Pa g e 5 - 5 F A CT OR: LNCOLLE CT : LIN: P AR TFR A C: S OL VE: SUB S T: TEXP AND : Note : Re call that, to u se these , or any other f unctions in the RPN mode, y ou mus t enter the ar gument fi rst , and then the func tion . Fo r ex ample , the e xample f or TEXP AND , in RPN mode will be se t up as: ³„¸+~x+~y` At this point , select f uncti[...]

  • Seite 183

    Pa g e 5 - 6 Other forms of substitution in algebraic e xpressions F unctions SUB ST , sho wn abo ve , is us ed to substitute a v ariable in an e xpressi on. A second f orm of sub stitution can be accomplished b y using the ‚¦ (assoc iated w ith the I k e y) . F or e xample , in AL G mode , the fol low ing entry w ill subs titute the v alue x = [...]

  • Seite 184

    Pa g e 5 - 7 A differ ent approac h to subs titution consists in def ining the substitution e xpre ssi ons in calc ulator v ari ables and placing the name o f the var iables in the ori ginal expr ession . F or ex ample, in AL G mode , stor e the follo wing v aria bles: Then , enter the expr ession A+B: The las t expr essi on entered is aut omatical[...]

  • Seite 185

    Pa g e 5 - 8 LNCOLLE CT , and TEXP AND ar e also contained in the AL G menu pr esented earli er . Func tions LNP1 and EXP M wer e intr oduced in menu HYPERB OLIC, under the MTH menu (S ee Chapte r 2) . The onl y remai ning fu nct ion is EX PLN. Its desc ripti on is show n in the left-hand side , the ex ample fr om the help fac ility is sho wn to th[...]

  • Seite 186

    Pa g e 5 - 9 Functions in the ARITHME TIC menu The ARI THMET IC menu contains a number o f sub-menu s fo r spec ific appli c ati ons in number theo ry (integers , poly nomials , et c.), as w ell as a n umber of f unctions that appl y to gener al arithme tic ope rati ons. The AR ITHME TIC menu is tr igger ed through the k ey str ok e combinati on ?[...]

  • Seite 187

    Pa g e 5 - 1 0 L GCD (Greatest C ommon Denominator): PROPFRA C (proper f rac tion) SIM P2: The f unctions assoc iated w ith the ARI THMETIC submenu s: INTE GER, POL YNOMIAL, M ODUL O, and PERMUT A T ION, ar e the fo llow ing: INT EG ER men u EUL E R Num be r of int e ge rs < n, co -p ri me wit h n IABCUV Sol v es au + b v = c, w ith a,b ,c = int[...]

  • Seite 188

    Pa g e 5 - 1 1 F A CT OR Fact ori z es an integer number or a poly nomial FCOEF Gener ates fr action gi ven r oots and multipli city FROO T S Retur ns root s and multiplic ity giv en a fr action GCD G r e atest common di visor of 2 numbers or poly nomials HERMITE n -th degree Her mite poly nomial HORNER Hor ner e valuatio n of a poly nomial LAGRANG[...]

  • Seite 189

    Pa g e 5 - 1 2 Applications of the ARI THMET IC m enu This sec tion is inte nded to pr esent some of the back ground necessary for applicati on of the ARITHMET IC menu f unctions. Def initions ar e pres ented next r egarding the su bjec ts of poly nomials , poly nomial fr actions and modular arithme tic . The e xamples pr esented belo w ar e pr ese[...]

  • Seite 190

    Pa g e 5 - 1 3 multiply ing j times k in modulus n arithmetic is , in essence, the integer r emainder of j ⋅ k / n in infinite ar ithmetic , if j ⋅ k>n . F or ex ample, in modulu s 12 arithme tic we ha ve 7 ⋅ 3 = 21 = 12 + 9 , (or , 7 ⋅ 3/12 = 21/12 = 1 + 9/12 , i .e., the integer r eminder of 21/12 is 9). W e can no w wr ite 7 ⋅ 3 ≡[...]

  • Seite 191

    Pa g e 5 - 1 4 Notice that , whene ver a r esult in the ri ght-hand side of the “ congr uence” s ymbol pr oduces a r esult that is larger than the modulo (in this case , n = 6) , you can alw ay s subtr act a multiple of the modulo fr om that result and simplify it to a number smaller than the modulo. T hus, the r esults in the firs t case 8 (mo[...]

  • Seite 192

    Pa g e 5 - 1 5 [SPC ] entry , and the n pr ess the cor re sponding modular ar ithmetic f uncti on. F or e xam ple , using a modulus o f 12 , try the f ollo wing oper ations: ADDTMOD e xamples 6+5 ≡ -1 (mod 12) 6+6 ≡ 0 (mod 12) 6+7 ≡ 1 (mod 12) 11+5 ≡ 4 (mod 12) 8+10 ≡ -6 (mod 12) SUB TMOD ex amples 5 - 7 ≡ - 2 (mod 12) 8 – 4 ≡ 4 (mo[...]

  • Seite 193

    Pa g e 5 - 1 6 oper ating on them. Y o u can also conv er t an y number into a r i ng number b y using the func tion EXP ANDM OD . For e xample , EXP AN DMO D(1 2 5) ≡ 5 (mod 12) EXP AN DMOD (17 ) ≡ 5 (mod 12) EXP ANDMOD(6) ≡ 6 (mod 12) The modular inverse of a number Let a number k belong to a f inite arithmetic r ing of modulus n , then the[...]

  • Seite 194

    Pa g e 5 - 1 7 P ol ynomials P ol ynomials ar e algebraic e xpres sions consisting of one or mor e terms containing dec reasing po wer s of a giv en var iable . F or ex ample, ‘X^3+2*X^2 - 3*X+2’ is a third-o rder poly nomial in X, while ‘S IN(X)^2 - 2’ is a second-or d er poly nomial in SIN(X). A listing of pol ynomi al-r elated f uncti on[...]

  • Seite 195

    Pa g e 5 - 1 8 numbers (f unction ICHINREM). The input consists o f tw o vec tors [e xpressi on_1, modulo_1] and [e xpres sion_2 , modulo_2] . The o utput is a v ector cont aining [e xpre ssion_3, modulo_3] , wher e modulo_3 is related to the product (modulo_1) ⋅ (modulo_2) . Example: CHINREM([X+1, X^2 -1],[X+1,X^2]) = [X+1,-(X^4 -X^2)] Statement[...]

  • Seite 196

    Pa g e 5 - 1 9 An alter nate def inition of the Hermite pol yn omials is wher e d n /dx n = n -th deri vati ve w ith res pect to x . This is the definiti on used in the calculat or . Example s: The Hermit e poly nomials of or ders 3 and 5 ar e giv en by: HERMITE( 3) = ‘8*X^3-12*X’ , And HERMITE(5) = ‘3 2*x^5-160*X^3+120*X’ . The HORNER func[...]

  • Seite 197

    Pa g e 5 - 2 0 F or ex ample, f or n = 2 , we w ill wr ite: Check this r esult w ith your calc ulator: LAGRANGE([[ x1,x2],[y1,y2]]) = ‘((y1-y2)*X+(y2*x1-y1*x2))/(x1- x2)’ . Other e xam ples: L A GR ANGE([[1, 2 , 3][2 , 8 , 15]]) = ‘(X^2+9*X -6)/2’ LAGRANGE([[0. 5,1.5,2 . 5,3 . 5,4. 5][12 .2 ,13 . 5,19 .2 ,2 7 . 3, 3 2 . 5]]) = ‘ -( . 1 3 [...]

  • Seite 198

    Pa g e 5 - 2 1 The P COEF function Gi ven an arr ay con taining the r oots of a poly nomial , the functi on PC OEF gener a tes an ar ra y containing the coeff ic ients of the cor r esponding pol ynomial . The coe ffi cients cor respond t o decr easing order o f the independent vari able. F or ex ample: PCOEF([- 2 ,–1, 0,1,1,2]) = [1. –1. –5 .[...]

  • Seite 199

    Pa g e 5 - 22 The EP SX0 func tion and the CAS vari able EPS The va riab le ε (epsilon) is typi cally used in mathemati cal te xtbooks to repr esent a ve ry small number . The calculat or’s CA S cr eates a v ari able EP S, w ith default value 0. 000000000 1 = 10 -10 , when y ou use the EPSX0 f unction . Y ou can change this v alue , once cr eate[...]

  • Seite 200

    Pa g e 5 - 23 Frac ti on s F racti ons can be expanded and fact or ed by using func tions EXP A ND a nd F A CT OR, fr om the AL G menu (‚×) . F or ex ample: EXP A ND(‘(1+X)^3/((X-1)*(X+3))’) = ‘(X^3+3*X^2+3*X+1)/(X^2+2*X -3)’ EXP A ND(‘(X^2)*(X+Y)/( 2*X-X^2)^2)’) = ‘(X+Y)/( X^2 - 4*X+4)’ EXP A ND(‘X*(X+Y)/(X^2 -1)’) = ‘(X ^[...]

  • Seite 201

    Pa g e 5 - 24 If y ou hav e the Complex mode ac ti ve , the re sult will be: ‘2*X+(1/2/(X+i)+1/2/(X- 2 )+5/(X-5 )+1/2/X+1/2/(X-i))’ The FCOEF function The f unction FC OEF is used to obtain a r ational fr action, gi ven the roots and poles of the fr action . The in put for the func tion is a v ector listing the r oots follo wed b y their m ulti[...]

  • Seite 202

    Pa g e 5 - 25 mode selected , then the re sults wo uld be: [0 –2 . 1 –1. – ((1+i* √ 3)/2) –1. – ((1–i* √ 3)/2) –1. 3 1. 2 1.] . Step-b y-step operations w i th poly nomials and fractions By s et ting the CA S modes to Step/s tep the calculat or will sho w simplifi cations of fr actions or oper ations w ith poly nomials in a step-b[...]

  • Seite 203

    Pa g e 5 - 26 The CONVER T M enu and algebraic operations The C ONVERT menu is acti vated b y using „Ú ke y (the 6 key ) . Thi s menu summar iz es all con ver sion menus in the calc ulator . T he list of thes e menus is sho wn ne xt: The f unctions a vailable in eac h of the sub-menu s ar e show n next . UNIT S convert menu (Option 1) This men u[...]

  • Seite 204

    Pa g e 5 - 27 B ASE conv er t menu (Option 2) This men u is the same as the UNI T S menu obtained b y using ‚ã . The applicati ons of this menu ar e disc uss ed in detail in Chapter 19 . TRIGONOMETRIC convert menu (Option 3) This men u is the same as the TRIG men u obtained b y using ‚Ñ . The appli c ati ons of this menu ar e disc uss ed in d[...]

  • Seite 205

    Pa g e 5 - 2 8 Fu n ct i o n  NUM has the same effect a s the ke ys tr ok e combinati on ‚ï (assoc iated w ith the ` key) . Fun ct io n  NU M conve r ts a symbo lic res ul t i nt o its floating-poin t v alue . Func tion  Q conv erts a floating-po int value into a fr action. F unction  Q π conv er ts a floating-po int value into a fr[...]

  • Seite 206

    Pa g e 5 - 2 9 LIN LNCOLLE CT PO WEREXP AND SIMP LIFY[...]

  • Seite 207

    Pa g e 6 - 1 Chapter 6 Solution to single equations In this chapte r we f eature those f unctions that the calc u lator pr ov ides for s olv ing single equations of the for m f(X) = 0. Assoc iated with the 7 k e y ther e are two men us of eq uation-sol v ing functi ons, the S ymbolic S OL V er ( „Î ), and the NUMer ical SoL V er ( ‚Ï ) . F ol[...]

  • Seite 208

    Pa g e 6 - 2 Using the RPN mode, the soluti on is accomplished by enter ing the equation in the stac k, f ollo wed by the v ari able , befor e enter ing func tion I S OL. R ight bef ore the ex ecuti on of ISOL , the R PN st ack should look as in the fi gure to the left . After appl y ing IS OL, the r esult is sho wn in the f igure to the ri ght: Th[...]

  • Seite 209

    Pa g e 6 - 3 The sc reen shot sho wn abo ve dis plays tw o solutions . In the fir st one , β 4 -5 β =12 5, SOL VE pr oduces n o soluti ons { }. In the second one , β 4 - 5 β = 6, S OL VE pr oduces four s olutions , show n in the last output line . The v ery last solution is not visible becau se the r esult occ upies mor e charac ters than the w[...]

  • Seite 210

    Pa g e 6 - 4 In the fir st case S OL VEVX could not find a solu tion . In the second case , S OL VE VX f ound a single solu tion , X = 2 . The foll owing screen s sh ow th e R PN sta ck for solvin g t he t wo examp les shown abov e (befor e and after applicati on of SOL V EVX): The equati on used as ar gument for functi on SOL V EVX mus t be reduc [...]

  • Seite 211

    Pa g e 6 - 5 The S ymbolic So lv er functions pre sented abo ve pr oduce solutions to r ational equations (mainl y , poly nomial equations). If the equation to be so lv ed for has all numer ical coeffi ci ents, a numer ical solu tion is pos sible thr ough the use o f the Numer ical So lv er featur es of the calc ulator . Numerical sol ver menu The [...]

  • Seite 212

    Pa g e 6 - 6 P ol ynomial Equations Using the Solv e p ol y… option in the calc ulator’s SO L V E en vir onment you can: (1) f ind the solutions to a pol ynomial equati on; (2) obtain the coeff ic ien ts of the pol yno mial ha ving a n umber of gi ven r oots; (3) obtain an algebr aic e xpressi on for the poly nomial as a functi on of X. Finding[...]

  • Seite 213

    Pa g e 6 - 7 All the so lutions ar e complex n umbers: (0.43 2 ,-0. 38 9), (0.43 2 , 0.3 8 9) , (-0.7 66 , 0.6 3 2) , (-0.7 6 6 , -0.6 3 2) . Generating polynomial coe fficients giv en the polynomial's r oots Suppos e y ou want t o generate the pol ynomi al whose r oots are the nu mbers [1, 5, - 2 , 4]. T o us e the calculator for thi s purpos[...]

  • Seite 214

    Pa g e 6 - 8 Press ˜ to tri gger the line editor to see all the coeff ic ients. Generating an algebraic expr ession for the poly nomial Y o u can use the calc ulator to gener ate an algebr aic e x pr ession f or a poly nomial giv en the coeffi c ients or the r oots of the pol yno mial . The r esulting e xpre ssi on w ill be giv en in terms o f the[...]

  • Seite 215

    Pa g e 6 - 9 T o e xpand the produ cts, y ou can use the EXP A ND command. T he resul ting e xpr essi on is: ' X^4+-3*X^3+ - 3*X^2+11*X-6' . A differ ent approac h to obtaining an expr essi on for the poly nomial is to gener ate the coeffi c ients firs t , then gener ate the algebrai c ex pre ssi on wi th the coeff ic ients highli ghted. [...]

  • Seite 216

    Pa g e 6 - 1 0 Ex ample 1 – Calc ulating pay ment on a loan If $2 milli on ar e borr ow ed at an annual inter est r ate of 6 .5% to be r epaid in 6 0 monthly pa yments , what should be the monthly pa yment? F or the debt to be totall y repaid in 6 0 months, the fu tur e value s of the loan should be z ero . So , f or the purpos e of using the f i[...]

  • Seite 217

    Pa g e 6 - 1 1 pay ments. Suppose that w e use 2 4 per iods in the first line of the amorti zati on scr e en, i .e., 24 @@OK@@ . T hen, pr ess @@AMOR@@ . Y ou w ill get the f ollo wing res u l t : This s cr een is interpr eted as indicating that after 2 4 months o f pay i ng bac k the debt , the borr ow er has paid up US $ 7 2 3,211.4 3 into the pr[...]

  • Seite 218

    Pa g e 6 - 1 2 ˜ Skip P MT , since we w ill be sol v ing for it 0 @@OK@@ Enter FV = 0, the opti on End is highlight ed @@CHOOS ! — @@OK@@ Change pa yment opti on to Begin — š @@SOLVE! H ighlight P MT and sol ve f or it The s cr een now sho ws the v alue of P MT as –38 , 9 2 1.4 7 , i.e ., the borr ow er must pay the lender U S $ 38 , 9 21.4[...]

  • Seite 219

    Pa g e 6 - 1 3 ™ ‚í Enter a comma ³ ‚ @@PYR@ @ Enter name o f var iable P YR ™ ‚í Enter a comma ³ ‚ @@FV@@ . En ter name of v ar iable FV ` Exec ute P URGE command The follo w ing two s cr een shots sho w the P URGE co mmand for purging all the var iables in the dir ectory , and the r esult after e xec uting the command. In RPN mode[...]

  • Seite 220

    Pa g e 6 - 1 4 ³„¸~„x™-S„ì *~„x/3™‚Å 0™ K~e~q` Press J to see the ne wl y cr eated E Q vari able: Then , enter the SOL VE en vir onm ent and select Solv e equation… , by using: ‚Ï @@OK@@ . The corr esponding sc r een wi ll be sho wn as: The equati on we sto red in var iable E Q is alr eady loaded in the Eq f ield in the S O[...]

  • Seite 221

    Pa g e 6 - 1 5 This , ho we ver , is not the only pos sible soluti on for this equation . T o obtain a negativ e solutio n, f or e xampl e, ent er a negati ve number in the X: field be for e solv ing the equation. T ry 3 @@@OK@@ ˜ @SOLVE@ . The s olution is no w X: - 3.045. Solution procedur e for Equation Solve ... The n u mer ical sol ver f or [...]

  • Seite 222

    Pa g e 6 - 1 6 The equati on is her e e xx is the unit strain in the x -directi on, σ xx , σ yy , and σ zz , ar e the normal str esses on the particle in the dir ection s of the x -, y-, and z -axes , E is Y o ung’s modulus or modulus of elastic ity of the materi al, n is the P o isson r atio of the mater ial, α is the thermal e xpansion coef[...]

  • Seite 223

    Pa g e 6 - 1 7 With the ex: field hi ghlighted , pres s @SOLVE@ to solv e for ex : The s oluti on can be seen fr om within the S OL VE E QUA T ION input f orm by pr essing @EDI T whil e th e ex : field is hi ghlighted. The r esulting value is 2.47 0 833333333 E- 3. P r es s @@@OK@@ to e x it the EDIT f eatur e. Suppos e that y ou no w , w ant to de[...]

  • Seite 224

    Pa g e 6 - 1 8 Spec ifi c energ y in an open channel is def ined as the energ y per unit wei ght measur ed with r espect to the c hannel bottom. L et E = spec ific ene rg y , y = chann el depth, V = f low v eloc it y , g = accel er ation o f gra vity , then we w rite The f lo w veloc ity , in turn , is giv en b y V = Q/A, wher e Q = water disc harg[...]

  • Seite 225

    Pa g e 6 - 1 9 Θ Solv e for y . The r esult is 0.14 9 8 36 .., i.e ., y = 0.14 98 3 6 . Θ It is kno wn, how ev er , that ther e are ac tually two s oluti ons av ailable f or y in the spec ifi c energ y equation. T he soluti on we j ust found corr esponds to a numer ical soluti on with an initial v alue of 0 (the de faul t va lu e for y , i .e., w[...]

  • Seite 226

    Pa g e 6 - 2 0 In the ne xt e xample w e will u se the D ARCY f unction f or finding fr icti on fac tors in pipelines . Thus , we def ine the functi on in the fo llow ing fr ame. Special function for pipe flo w: DARC Y ( ε /D ,Re) The Dar cy- W eisbac h equation is used to calc ulate the ener g y loss (per unit wei gh t ) , h f , in a pipe flo w t[...]

  • Seite 227

    Pa g e 6 - 2 1 Ex ample 3 – Flow in a pipe Y o u may w ant to creat e a separat e sub-dir ectory (PIP E S) to tr y this ex ample. The main eq uation go vernin g flo w in a pipe is, of cour se, the Dar cy- W eisbac h equation . Thu s, type in the fo llow ing equation into E Q: Also , enter the follo w ing var iables (f , A, V , Re): In this case w[...]

  • Seite 228

    Pa g e 6 - 22 The comb ined equation has pr imitiv e v a r iables: h f , Q , L, g, D, ε , and Nu . Laun ch t he nume rical solver ( ‚Ï @@OK@ @ ) to see the primiti ve v ari ables listed in the S OL VE E QU A TION in put fo rm: Suppo se that w e use the v alues hf = 2 m, ε = 0. 00001 m , Q = 0. 05 m 3 /s, Nu = 0. 000001 m 2 /s, L = 20 m , and g[...]

  • Seite 229

    Pa g e 6 - 23 Ex ample 4 – Universal gr av itation Ne wton ’s law of uni versal gr av itation indi cates that the magnitude of the attrac ti ve fo r ce betw een tw o bodies of mass es m 1 and m 2 separ ated by a distance r is gi ven b y the equation Here , G is the uni versal gra vitati onal constant , who se value can be obtained thr ough the [...]

  • Seite 230

    Pa g e 6 - 24 Sol ve for F , and pre ss to r eturn to normal calc ulator display . The soluti on is F : 6. 6 7 2 5 9E -15_N , or F = 6 .6 7 2 5 9 × 10 -15 N. Different wa ys to enter equations into EQ In all the ex amples sho wn abo ve we ha ve enter ed the equation to be sol ved dir ectl y into v ari able EQ be for e acti vating the n umeri cal s[...]

  • Seite 231

    Pa g e 6 - 2 5 T y pe an equati on, sa y X^2 - 125 = 0, dir ectly on the s tack , and pres s @@@OK@@@ . At this point the equati on is r eady for so lution . Alter nati vel y , y ou can activ ate the equation w riter after pr essing @E DIT to enter y our equation. Pr ess ` to return to the numerical solv er scr e en. Another wa y to enter an equati[...]

  • Seite 232

    Pa g e 6 - 26 The S OL VE so ft menu The SOL VE sof t menu allows acc ess to som e of th e num erical solver funct ions thr ough the soft men u ke ys . T o access this menu us e in RPN mode: 7 4 MENU , or in AL G mode: MENU(7 4). Alter nativ ely , y ou can use ‚ (hold) 7 to acti vate the S OL VE soft men u . The sub-menu s pr ov ided b y the SOL [...]

  • Seite 233

    Pa g e 6 - 27 Example 1 - Sol ving the equati on t 2 -5t = - 4 F or ex ample, if y ou stor e the equation ‘t^2 -5*t=- 4’ into E Q, and pr ess @) SOLVR , it w ill acti vate the f ollo wing menu: This r esult indicates that y ou can solv e for a value o f t for the equati on listed at the top of the display . If y ou tr y , f or ex ample, „ [ t[...]

  • Seite 234

    Pa g e 6 - 28 Y o u can also solv e more than one equation b y sol ving one equation at a time , and repeating the pr ocess until a soluti on is found . F or ex ample , if y ou enter the follo w ing list of equati ons into var iable EQ: { ‘ a*X+b*Y = c’ , ‘k*X*Y=s ’}, the k ey str oke seq uence @) ROOT @ ) SOLVR , w ithin the S OL VE so ft [...]

  • Seite 235

    Pa g e 6 - 2 9 Using units with the SOL VR sub-menu The se are s ome rules o n the use o f units w ith the SO L VR su b-menu: Θ Enter ing a guess w ith units for a gi ven v ari able , will intr oduce the use of those units in the s olution . Θ If a ne w guess is gi ven w ithout units, the units pr ev iousl y sa ved f or that partic ular v ar iabl[...]

  • Seite 236

    Pa g e 6 - 3 0 This f unction pr oduces the coeff ic ients [a n , a n-1 , … , a 2 , a 1 , a 0 ] of a poly nomial a n x n + a n-1 x n-1 + … + a 2 x 2 + a 1 x + a 0 , g ive n a ve ct o r o f i t s roo t s [r 1 , r 2 , …, r n ]. F or ex ample, a v ector w hose r oots ar e giv en by [-1, 2 , 2 , 1, 0], will pr oduc e the follo wing coeff ic ients[...]

  • Seite 237

    Pa g e 6 - 3 1 Press J to ex it the S OL VR en vir onment . Find y our wa y back to the TVM sub- menu w ithin the S OL VE sub-me nu to try the other functio ns available . Function TVM ROO T This function requires as argument t he na me of one of the var iables in t he T VM pr oblem. T he functi on r eturns the s olutio n for that var iable , give [...]

  • Seite 238

    Pa g e 7- 1 Chapter 7 Solv ing multiple equations Many pr oblems of sc ience and engineer ing req uir e the simultaneous so lutions of mor e than one equation . The calculator pr ov ides se ve ral pr ocedure s for solv ing multiple equations as pr esented belo w . P lease notice that no discussi on of solv ing sy stems of linear equation s is pr es[...]

  • Seite 239

    Pa g e 7- 2 Use co mmand S OL VE at this po int (fr om the S . SL V men u: „Î ) After a bout 40 seconds , may be more , you get as r esult a list: { ‘t = (x- x0)/(COS( θ 0)*v0)’ ‘ y 0 = (2*C OS( θ 0)^2*v0^2*y+(g*x^2(2*x0*g+2*SIN( θ 0))*C OS( θ 0)*v0^2)*x+ (x0^2*g+2*SIN( θ 0)*CO S( θ 0)*v0^2*x0)))/(2*CO S( θ 0)^2*v0^2)’]} Press μ [...]

  • Seite 240

    Pa g e 7- 3 the conten ts of T1 and T2 to the stac k and adding and subtr acting them. Her e is how t o do it with the equati on writ er : Enter and st ore ter m T1: Enter and stor e term T2 : Notice that w e are using the RPN mode in this ex ample, ho we ver , the pr ocedur e in the AL G mode should be v ery similar . Cr eate the equation f or σ [...]

  • Seite 241

    Pa g e 7- 4 Notice that the r esult includes a v ector [ ] contained w ithin a list { }. T o remo ve the list s ymbol, u se μ . F inally , to decompo se the vec tor , use f unction OB J  . The r esult is: The se two e xamples constitut e sy stems of linear equatio ns that can be handled equall y we ll w ith functi on LINS OL VE (s ee Cha pter 1[...]

  • Seite 242

    Pa g e 7- 5 Ex ampl e 1 - Ex ampl e fr om the help facilit y As w ith all functi on entries in the help f acility , ther e is an ex ample at tac hed to the MSL V entr y as sho wn abo ve . Notice that f uncti on MSL V r equir es three argume nts: 1. A v ector cont aining the equati ons, i .e., ‘[S IN(X)+Y ,X+S IN(Y)=1]’ 2 . A vector containing t[...]

  • Seite 243

    Pa g e 7- 6 disc harge (m 3 /s or ft 3 /s), A is the cr oss-sec tional ar ea (m 2 or ft 2 ), C u is a coeff ic ient that depends on the s yst em of units (C u = 1. 0 for the SI , C u = 1.4 8 6 fo r the English sy stem of units), n is the Manning’s coe ffi cie nt , a measure o f the channel surface r oughness (e .g., for conc rete , n = 0.012), P [...]

  • Seite 244

    Pa g e 7- 7 μ @@@EQ1@@ μ @@@EQ2@@ . The equati ons ar e listed in the stac k as follo ws (small font opti on selected): W e can see that these equati ons are indeed gi ven in ter ms of the pr imitiv e var iables b, m , y , g , S o , n, C u, Q, and H o . In order to sol ve f or y and Q w e need to give v a lues to the other vari ables. Suppose w e[...]

  • Seite 245

    Pa g e 7- 8 Ne xt, w e’ll ente r var iable EQS: LL @ @EQS@ , follo wed b y vector [y ,Q]: ‚í„Ô~„y‚í~q™ and b y th e init ial guesses ‚í„Ô5‚í 10 . Bef ore pr essing ` , the sc r een will look lik e this: Press ` to solv e the sy stem of equations . Y o u may , if your angular measur e is not set to r adians, get the follo win[...]

  • Seite 246

    Pa g e 7- 9 The r esult is a list of thr ee v ectors. The f irst v ector in the list will be the equati ons sol ved . The second v e ctor is the list of unkno wns . The thir d vecto r repr esents the soluti on. T o be able to see the se v ector s, pr ess the do wn-arr ow k ey ˜ to acti vate the line editor . T he soluti on will be sho wn as f ollo[...]

  • Seite 247

    Pa g e 7- 1 0 The co sine la w indicate s that: a 2 = b 2 + c 2 – 2 ⋅ b ⋅ c ⋅ cos α , b 2 = a 2 + c 2 – 2 ⋅ a ⋅ c ⋅ cos β , c 2 = a 2 + b 2 – 2 ⋅ a ⋅ b ⋅ cos γ . In orde r to solv e any tr iangle , yo u need to know at leas t thr ee of the fol lo w ing si x v ari ables: a, b, c, α, β, γ . Then , you can use the equati [...]

  • Seite 248

    Pa g e 7- 1 1 ‘SIN( α )/a = S IN( β )/b’ ‘SIN( α )/a = S IN( γ )/c’ ‘SIN( β )/b = S IN( γ )/c’ ‘ c^2 = a^2+b^2 - 2*a*b*C OS( γ )’ ‘b^2 = a^2+c^2 - 2*a*c*CO S( β )’ ‘ a^2 = b^2+c^2 - 2*b*c*C OS( α )’ ‘ α+β+γ = 180’ ‘ s = (a+b+c)/2’ ‘A = √ (s*(s-a)*(s-b)*(s-c))’ Then , enter the number 9 , and c reat [...]

  • Seite 249

    Pa g e 7- 1 2 Press J , if needed , to get y our var iables me nu . Y our men u should sho w the vari ab le s @LVARI! !@TITLE @@ EQ@@ . Preparing to run t he ME S The ne xt step is to acti vate the ME S and try one sample solution . Befor e we do that, ho we ver , we want to set the angular units to DEGr ees, if the y are not alr eady s et to that [...]

  • Seite 250

    Pa g e 7- 1 3 Let ’s tr y a simple s oluti on of Case I, using a = 5, b = 3, c = 5 . Us e the follo w ing entr ies: 5 [ a ] a:5 is listed in the top left cor ner of the display . 3 [ b ] b: 3 is listed in the top left corner of the displa y . 5 [ c ] c:5 is listed in the top left corner of the display . T o sol ve f or the angles u se: „ [ α ][...]

  • Seite 251

    Pa g e 7- 1 4 Pr essi ng „ @@ALL@@ will sol ve f or a ll the v ariable s, te mpor aril y show ing the intermediate re sults. Press ‚ @@ALL@@ to see t he sol utions: When done , pres s $ to retur n to the MES en vir onment. Pr ess J to e xit the ME S env ir onment and r eturn to the normal calc ulator display . Org anizing the variabl es in the [...]

  • Seite 252

    Pa g e 7- 1 5 Progr amming t he MES triangle solution using User RP L T o fac ilitate acti vating the ME S for f utur e so lutions , we w ill cr eate a pr ogr am that w ill load the MES w ith a single ke ystr ok e . The pr ogram should look lik e this: << DEG MINI T T ITLE L V ARI MITM MS OL VR >>, and can be typed in b y using: ‚å O[...]

  • Seite 253

    Pa g e 7- 1 6 Use a = 3, b = 4 , c = 6. T he solution pr ocedure us ed her e consists of sol ving fo r all var iables at once , and then recalling the soluti ons to the stack: J @TRISO T o clear up data and r e -start ME S 3 [ a ] 4 [ b ] 6 [ c ] T o ent er data L T o mov e to the next v ariable s menu. „ @ ALL! S olv e for all the unkno w ns. ?[...]

  • Seite 254

    Pa g e 7- 1 7 Adding an I NFO but ton to your directory An inf ormati on button can be us eful f or your dir ectory to help y ou remember t he oper ation o f the functi ons in the direc tory . In this dir ectory , al l we need to r emember is to pr ess @ TRISO to get a tr iangle solution s tarted. Y o u may w ant to type in the fo llo w ing pr ogr [...]

  • Seite 255

    Pa g e 7- 1 8 An e xplanation of the v ari ables follo ws : SOL V EP = a progr am that tri g gers the m u ltiple equati on sol ver f or the partic ular set of equations s tor ed in var iable PEQ ; NAME = a var iable stor ing the name of the multiple equati on solv er , namely , "ve l. & acc . p olar coor d." ; LIST = a list of the v a[...]

  • Seite 256

    Pa g e 7- 1 9 Notice that after y ou enter a partic ular value , the calc ulator displa ys the var iable and its value in the upper left co rner of the dis play . W e have no w enter ed the kno wn v aria bles . T o calc ulate the unkno wns w e can proceed in tw o ways: a). Solv e for indi vidual v ariable s, f or ex a mple , „ [ vr ] giv es vr : [...]

  • Seite 257

    Pa g e 7- 2 0[...]

  • Seite 258

    Pa g e 8 - 1 Chapter 8 Operations w ith lists L ists ar e a type of calc ulator’s ob ject that can be u seful f or data pr ocessing and in pr ogramming . This Chapt er pr esents e xamples of oper ations w ith lists. Definitions A list , within the conte xt of the calculator , is a seri es of obj ects enclo sed between br aces and separated b y sp[...]

  • Seite 259

    Pa g e 8 - 2 The f igur e belo w show s the RPN stack be fo r e pre ssing the K key : Composing and decomposing lists Compo sing and decomposing lis ts mak es sense in RPN mode onl y . Under suc h oper ating mode , decomposing a list is achi ev ed by u sing functi on OBJ  . With this functi on, a list in the RPN stac k is decomposed into its ele[...]

  • Seite 260

    Pa g e 8 - 3 In RPN mode, the f ollow ing scr een show s the three lists and the ir names read y to be stor ed. T o stor e the lists in this case y ou need to pres s K three times . Changing sign The si gn -change k ey ( ) , whe n applied to a lis t of number s, w ill change the sign o f all elements in the list . Fo r exam ple: Addition, subtr a[...]

  • Seite 261

    Pa g e 8 - 4 Subtr action , multiplication, and di vision o f lists of numbers o f the same length pr oduce a list of the same length w ith term-by-ter m oper ations. Ex amples: The di visi on L4/L3 will pr oduce an infinity entry becaus e one of the eleme nts in L3 is z er o: If the lists in vo lv ed in the oper ation hav e diffe rent lengths , an[...]

  • Seite 262

    Pa g e 8 - 5 ABS E XP and LN L OG and ANTIL OG S Q and squar e root SIN, ASIN COS, ACOS T AN, A T AN INVER SE (1/x) Real number functions from the MTH menu F unctions of inter est fr om the MTH menu include , fr om the HYPERBOLIC men u: SINH , AS INH, CO SH, A COS H, T ANH , A T ANH, and f r om the REAL menu: %, %CH, %T , MIN , M AX, MOD , SIGN , M[...]

  • Seite 263

    Pa g e 8 - 6 T ANH , A T ANH SIGN , MANT , XPON IP , FP FL OOR, CEIL D  R, R  D Ex ampl es of functions that use two arguments The s cr een shots below sho w applications o f the functi on % to lis t arguments . F unction % r equires two ar g uments. T he first tw o ex amples sho w c ases in w hich only one of the tw o ar guments is a list . [...]

  • Seite 264

    Pa g e 8 - 7 %({10,20, 30},{1,2 , 3}) = {%(10,1),%(20,2),%(3 0, 3)} This de sc ripti on of func tion % for lis t ar guments sh o ws the gener al pattern of ev aluation of an y functi on w ith two ar guments when one or both ar guments are lists . Example s of appli cations of f unctio n RND ar e show n next: Lists o f comple x numbers The f ollo wi[...]

  • Seite 265

    Pa g e 8 - 8 The f ollow ing ex ample sho ws appli cations o f the functi ons RE(Real part) , IM(imaginary par t), AB S(magnitude), and ARG(argument) of comple x numbers . The r esults are lists of r eal numbers: Lists o f algebraic objects The f ollow ing are e xamples o f lists of algebr aic obj ects w i th the func tion SIN appl ied t o them: Th[...]

  • Seite 266

    Pa g e 8 - 9 This me nu cont ains the fo llo w ing func tions: Δ LIS T : Calculate incr ement among consecu tiv e elements in list Σ LIS T : Calc ulate summation o f elemen ts in the list Π LIS T : Calculate pr oduct of elements in the list S ORT : Sorts elements in inc reasing or der REVLIS T : Re ver ses orde r of list ADD : Oper ator for term[...]

  • Seite 267

    Pa g e 8 - 1 0 M anipulating elements of a list The P RG (pr ogramming) men u includes a LI ST su b-menu w ith a number o f func tions to mani pulate ele ments of a li st . With s ys tem f lag 117 set to CHOOSE bo x es: Item 1. ELEMENT S.. con tains the fol low ing func tions that can be us ed for the manipulation o f elements in lists: List si ze [...]

  • Seite 268

    Pa g e 8 - 1 1 F unctions GET I and P UTI , als o av ailable in sub-menu PR G/ ELEMENT S/, can also be used to extr act and place elements in a list . Thes e two f unctions , ho we ver , ar e usef ul mainly in pr ogr amming. F uncti on GET I uses the same argume nts as GET and r eturns the list , the element locati on plus one , and the element at [...]

  • Seite 269

    Pa g e 8 - 1 2 SEQ is u seful to pr oduce a list of v alues gi ven a partic ular expr essi on and is desc r ibed in more de tail her e . The SE Q functi on tak es as arguments an e xpressi on in terms of an inde x, the name of the index , and starting, ending , and inc rement v alues for the inde x, and re turns a list consis ting of the ev aluatio[...]

  • Seite 270

    Pa g e 8 - 1 3 In both cases , you can either ty pe out the M AP command (as in the e xamples abo ve) or s elect the command from the CA T men u . The f ollow ing call to func tion MAP us es a pr ogram instead o f a functi on as second argument: Defining functions t hat use lists In Chapter 3 w e intr oduced the use of the DEFINE functi on ( „à [...]

  • Seite 271

    Pa g e 8 - 1 4 to r eplace the plus sign (+) w ith ADD: Ne xt, w e stor e the edited expr ession in to v ari able @@@G@@@ : Ev alua ting G(L1,L2) no w produces the f ollow ing result: As an alternati ve , yo u can define the f unction w ith ADD rather than the plus sign (+), fr om the start, i .e ., use DEFINE(' G(X,Y)=(X DD 3)* Y') : Y o[...]

  • Seite 272

    Pa g e 8 - 1 5 Applications of lists This sec tion show s a couple of applications o f lists to the calc ulation of statisti cs of a samp le. B y a sample we un derstand a list of valu es, say , {s 1 , s 2 , …, s n }. Suppos e that the sampl e of inter est is the list {1, 5, 3, 1, 2, 1, 3, 4, 2, 1} and that we st or e it into a var iable called S[...]

  • Seite 273

    Pa g e 8 - 1 6 3 . Di vi de the r esult abov e b y n = 10: 4. A pply the INV() functi on to the latest r esult: Thu s, the harmonic mean of lis t S is s h = 1.6 34 8… Geometric mean of a list The geometr ic mean of a sample is def ined as T o find the geometr ic mean of the list stor ed in S, we can u se the follo wing pr ocedur e: 1. A pply func[...]

  • Seite 274

    Pa g e 8 - 1 7 Thu s, the geometri c mean of list S is s g = 1. 003 20 3… W eighted aver age Suppos e that the data in list S , defined a bo ve , namely : S = {1,5,3,1,2 ,1,3,4,2,1} is affec ted b y the we ights , W = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} If w e define the w eight list as W = {w 1 ,w 2 ,…,w n }, w e notice that the k -th element in l[...]

  • Seite 275

    Pa g e 8 - 1 8 3. U se f u n ct i on Σ LIS T , once more , to calc ulate the denominator of s w : 4. Use the expr essi on ANS( 2)/ANS(1) to cal culat e the w eigh ted av er age: Thu s, the wei ghted av er age of list S w i th w eights in list W is s w = 2 .2 . Statistics of grouped data Gr ouped data is ty pi call y giv en by a t able sho wing the[...]

  • Seite 276

    Pa g e 8 - 1 9 The c lass mark dat a can be stor ed in var iable S , whi le the fr equency coun t can be stored in v ariable W , as follow s: Giv en the list of class marks S = {s 1 , s 2 , …, s n }, and the list of f r equenc y counts W = {w 1 , w 2 , …, w n }, the we ighted a ver age of the data in S w ith we ights W r epre sents the mean val[...]

  • Seite 277

    Pa g e 8 - 2 0 T o calc ulate this last r esult , we can us e the fo llow ing: The s tandar d dev iation o f the gr ouped data is the squar e r oot of the var iance: N s s w w s s w V n k k k n k k n k k k ∑ ∑ ∑ = = = − ⋅ = − ⋅ = 1 2 1 1 2 ) ( ) ([...]

  • Seite 278

    Pa g e 9 - 1 Chapter 9 V ectors This Cha pter pr ov ides e xamples o f enter ing and oper ating with v ectors , both mathematical ve ctors o f many e lements, as w ell as ph ysi cal vectors of 2 and 3 components . Definitions F rom a mathematical po int of v ie w , a vec tor is an arr ay of 2 or mor e elements arr anged into a r ow or a column . Th[...]

  • Seite 279

    Pa g e 9 - 2 wher e θ is the angle between the two v ectors . The cr oss pr oduct pr oduces a vec tor A × B whose magnitude is | A × B | = | A || B |sin( θ ) , and its dir ection is gi ven b y the so -called right-hand rule (consult a te xtbook on Math, Ph ysi cs, or Mechani cs to see this oper ation illustr ated gra phically). In terms of Ca r[...]

  • Seite 280

    Pa g e 9 - 3 Stor ing vectors into v ariables V ectors can be stor ed into var iables . The sc reen shots belo w show the vec tors u 2 = [1, 2] , u 3 = [-3, 2, -2] , v 2 = [3,-1] , v 3 = [1, -5, 2] stored into var iabl es @ @@u2@@ , @@@u3@@ , @@@v2@@ , and @@@v3@@ , r especti vel y . F irst , in AL G mode: Then , in RPN mode (bef ore pr essing K , [...]

  • Seite 281

    Pa g e 9 - 4 The ← WID ke y is used to dec r ease the w idth of the columns in the spr eadsheet . Pr ess this k ey a couple of time s to see the column w idth decr ease in y our Matri x W riter . The @ W I D → k ey is used to inc rease the w idth of the columns in the spr eadsheet . Pr ess this k ey a couple of time s to see the column w idth i[...]

  • Seite 282

    Pa g e 9 - 5 The @+ROW@ k ey w ill add a ro w full of z er os at the location o f the selec ted cell of the s pr eadsheet . The @-ROW ke y will dele te the ro w corr esponding to the selec ted cell of the spr eadsheet. The @+COL@ k ey w ill add a column full of z er os at the location of the select ed cell of the spr eadsheet . The @-COL@ ke y will[...]

  • Seite 283

    Pa g e 9 - 6 Building a vector with  ARR Y The fun ct ion → ARR Y , a vailable in the f unction catalog ( ‚N‚é , us e —˜ to locate the f unction), can also be used to build a ve ctor or arr ay in the f ollo wing wa y . In AL G mode , enter  ARR Y( vector elem ents, number of elements ), e.g., In RPN mode: (1) Enter the n elements of[...]

  • Seite 284

    Pa g e 9 - 7 In RPN mode, the f unction [ → ARR Y] tak es the objec ts fr om stac k lev els n+1, n, n-1 , …, dow n to stack le vels 3 and 2 , and conv erts them into a vec tor of n elements . The ob ject or iginally at s tack le vel n+1 becomes the f irst element , the objec t ori gina ll y at lev el n becomes the second element, and so on . Id[...]

  • Seite 285

    Pa g e 9 - 8 Highli ghting the entire e xpr essio n and using the @ EVAL@ so ft menu k e y , w e get the res u l t : -15 . T o r eplace an element in an arr ay use f unctio n PUT (y ou can find it in the func tion catalog ‚N , or in the P RG/LI S T/ELEMENTS su b-menu – the later wa s intr oduced in Chapter 8). In AL G mode , you need to use f u[...]

  • Seite 286

    Pa g e 9 - 9 Simple operations w it h vectors T o illustr ate oper atio ns wi th vec tors w e will u se the ve ctor s A, u2 , u3, v2 , and v3, stor ed in an earli er ex er cise . Changing sign T o change the si gn of a v ector u se the k ey , e .g., Addition, subtr ac tion Addition and subtr action o f vec tors r equir e that the two v ector oper[...]

  • Seite 287

    Pa g e 9 - 1 0 Absolute value function The ab solute v alue functi on (ABS), when appli ed to a vec tor , pr oduces the magnitude of the vec tor . F or a vector A = [ A 1 ,A 2 ,…,A n ], the magnitude is def ined as . In the AL G mode, ent er the functi on name follo wed b y the vector ar gument . F or ex ample: BS([1,-2,6]) , BS( ) , BS(u3) , wil[...]

  • Seite 288

    Pa g e 9 - 1 1 Dot pr oduc t F unction DO T is used to calc ulate the dot produc t of two vect ors o f the same length. So me ex amples of applicati on of functi on DO T , using the v ectors A, u2 , u3, v2 , and v3, stor ed earlier , are sho wn ne xt in AL G mode. Attem p ts to calc ulate the dot pr oduct of tw o v ectors of diff erent length pr od[...]

  • Seite 289

    Pa g e 9 - 1 2 In the RPN mode , application o f func tion V  w ill list the components of a vec tor in the stac k, e .g., V  (A ) will pr oduce the fo llo w ing output in the RPN stack (vector A is listed i n stack lev el 6:) . Building a two -dimensional vector Fu n ct i o n  V2 is used in the RPN mode to build a vector w ith the values [...]

  • Seite 290

    Pa g e 9 - 1 3 When the r ectangular , o r Cartesian , coordinate s yst em is select ed, the top line of the displa y will sho w an XY Z fi eld, and an y 2 -D or 3-D vector e nter ed in the calculator is r eproduced as the (x ,y ,z) components of the vec tor . T hus, to enter the vec tor A = 3 i +2 j -5 k , w e use [3,2 ,-5], and the v ector is sho[...]

  • Seite 291

    Pa g e 9 - 1 4 The f igur e belo w show s the tr ansfor mation of the v e ct or fr om spheri cal to Cartesi an coor dinates , with x = ρ sin( φ ) cos( θ ), y = ρ sin ( φ ) cos ( θ ), z = ρ cos( φ ). F or this cas e , x = 3 .204 , y = 1.4 9 4 , and z = 3. 5 36 . If the CYLINdr ical s yst em is selected , the top line of the display w ill sho[...]

  • Seite 292

    Pa g e 9 - 1 5 equi valent (r , θ ,z) with r = ρ sin φ , θ = θ , z = ρ cos φ . F or ex ample, the f ollo wi ng fi gure sho ws the v ector enter ed in spheri cal coordinat es, and tr ansformed to polar coor dinates . F or this case, ρ = 5, θ = 2 5 o , and φ = 4 5 o , while the transf ormation sho ws that r = 3. 5 6 3, and z = 3. 5 36 . (Ch[...]

  • Seite 293

    Pa g e 9 - 1 6 Suppose that y ou want t o find the angle between v ectors A = 3 i -5 j +6 k , B = 2 i + j -3 k , y ou could try the f ollo wing oper ation (angular measur e set to degr ees) in AL G mode: 1 - Enter vect ors [3,-5, 6], press ` , [2 ,1,-3], pres s ` . 2 - DO T(ANS(1),ANS(2)) calc ulates the dot product 3 - ABS( ANS(3))*ABS(( ANS(2)) c[...]

  • Seite 294

    Pa g e 9 - 1 7 Thus, M = (10 i +2 6 j +2 5 k ) m ⋅ N. W e kno w that the magnitude of M is suc h that | M | = | r || F |sin( θ ) , w here θ is the angle betw een r and F . W e can find this angle as, θ = si n -1 (| M | /| r || F |) b y the follo wing ope rati ons: 1 – ABS( ANS(1))/(AB S(ANS( 2))*ABS( ANS(3)) calc ulates sin( θ ) 2 – A SIN[...]

  • Seite 295

    Pa g e 9 - 1 8 Ne xt, w e calculate v e ct or P 0 P = r as ANS(1) – AN S(2), i.e ., F inally , w e tak e the dot pr oduct of AN S(1) and ANS( 4) and make it equal to z ero to complete the operatio n N • r =0: W e can no w use f unctio n EXP AND (in the AL G menu) to expand this ex pre ss io n : Thu s, the equation of the plane thr ough point P [...]

  • Seite 296

    Pa g e 9 - 1 9 In this secti on w e will sho wing y ou wa ys to transf orm: a column vec tor into a r o w vect or , a r o w vec tor into a co lumn vect or , a lis t into a vect or , and a v ector (or matr ix) into a list . W e fir st demonstr ate these tr ansfor mations using the RPN mode. In this mode , w e wi ll use func tions OB J  ,  LIST[...]

  • Seite 297

    Pa g e 9 - 2 0 If w e no w apply f uncti on OB J  once more , the list in stac k lev el 1:, {3.}, w ill be decomposed as f ollows: Function  LIS T This f uncti on is used to c reate a list gi ven the elements o f the list and the list length or si ze . In RPN mode , the list si ze , sa y , n , should be placed in stac k lev el 1:. The ele men[...]

  • Seite 298

    Pa g e 9 - 2 1 3 - Use f u ncti on  ARR Y to build the column vec tor The se thr ee steps can be put toge ther into a U serRP L progr am, e nter ed as follo ws (in RPN mode , still): ‚å„° @) TYPE! @ OBJ  @ 1 + !  ARRY@ `³~~rxc` K A ne w var iabl e , @@RX C@@ , w ill be av ailable in the soft menu labels after pr essing J : Press ‚[...]

  • Seite 299

    Pa g e 9 - 22 2 - Use f u ncti on OBJ  to deco mpose the list i n stack level 1: 3 - Pr ess the delet e k ey ƒ (also kno wn as f unction DROP) t o eliminate the number in stac k lev el 1: 4 - Use f u ncti on  LIST to cr eate a list 5 - Use f u ncti on  ARR Y to c r eate the r ow v ector The se f i ve s teps can be put toge ther into a Use[...]

  • Seite 300

    Pa g e 9 - 23 Thi s va riab le, @@CXR@@ , can no w be used to dir ectly tr ansfor m a column v ector to a r ow v ector . In RPN mode , enter the column vec tor , and then pre ss @@CXR@ @ . T ry , for e xample: [[1],[2], [3]] ` @@CXR@@ . After ha ving def ined var iable @@CXR@@ , we can use it in AL G mode t o transf orm a r ow v ector into a column[...]

  • Seite 301

    Pa g e 9 - 24 A ne w var iabl e , @@LX V@@ , w ill be av ailable in the soft menu labels after pr essing J : Press ‚ @@LXV@@ t o see the pr ogram con tained in the var iable LXV : << OBJ  1  LIST  RRY >> Thi s vari ab le, @@LXV@@ , can no w be used to dir ectly tr ansfor m a list into a vec tor . In RPN mode , enter the list [...]

  • Seite 302

    Pa g e 1 0 - 1 Chapter 10 ! Creating and manipulating matr ices This c hapter sho ws a number of e xamples aimed at cr eating matri ces in the calc ulator and demonstrating manipulati on of matri x elements. Definitions A matri x is simpl y a rec tangular arr ay of ob ject s (e.g ., numbers , algebr aics) hav ing a number of r ow s and columns. A m[...]

  • Seite 303

    Pa g e 1 0 - 2 Entering matr ices in the stac k In this secti on w e pre sent tw o differ ent methods to enter matr ices in the calc ula tor s tack: (1) using the Matr ix W r iter , and (2) ty ping the matri x direc tly in to th e s ta ck. Using the M atri x Wr iter As with th e case of vectors, di sc ussed in Chapter 9 , matrices can be entered in[...]

  • Seite 304

    Pa g e 1 0 - 3 If y ou hav e selected the te xtbook display opti on (using H @) DISP! and c hecking off  Textbook ), the matri x will look lik e the one sho wn abo ve . Other w ise, the displa y w ill sho w: The dis play in RPN mode w ill look very similar to these . T y ping in t he matri x directly into the stack The s ame r esult as abo ve ca[...]

  • Seite 305

    Pa g e 1 0 - 4 or in the MA TR ICE S/CREA TE me nu av ailable thr ough „Ø : The MTH/MA TR IX/MAKE sub menu (let’s call it the MAKE menu) contains the fo llo w ing func tio ns: while the MA TR ICES/CRE A TE sub-menu (let’s call it the CREA TE men u) has the fo llo w ing func tio ns:[...]

  • Seite 306

    Pa g e 1 0 - 5 As yo u can see f rom e xploring these men us (MAKE and CREA TE), the y both hav e the same functi ons GET , GE TI , PUT , P U T I, S UB, REPL , RDM, R ANM, HILBERT , V A NDERMONDE , IDN, CON, → DIA G , and DIA G → . T he CREA TE menu inc ludes the C OL UMN and RO W sub-menus , that are also av ailable under the MTH/MA TR IX menu[...]

  • Seite 307

    Pa g e 1 0 - 6 Functions GET and P UT F unctions GET , GETI , PUT , and P UTI, ope rate w ith matrice s in a similar manner as w ith lists or vec tors , i.e ., you need to pr ov ide the locati on of the element that y ou want to GE T or PUT . How ev er , w hile in lists and ve ctors onl y one index is r equired to identify an element , in matr ices[...]

  • Seite 308

    Pa g e 1 0 - 7 Notice that the s cr een is prepar ed for a su bseq uent appli cation o f GET I or GET , by inc reasing the column index o f the original r efer ence by 1, (i .e., fr om {2 ,2} to {2 , 3}) , whil e sho wing the ex trac ted value , namely A(2 ,2) = 1.9 , in stack le vel 1. No w , suppo se that y ou want to insert the value 2 in elemen[...]

  • Seite 309

    Pa g e 1 0 - 8 If the ar gument is a real matr ix , TRN simply pr oduces the tr anspose of the r eal matri x. T ry , f or ex ample, TRN( A), and compare it w ith TRAN(A). In RPN mode, the tr ansconjugat e of matri x A is c alc ulated by using @@@A@@@ TRN . Function CON The f unction tak es as ar gument a list of tw o elements, corr esponding to the[...]

  • Seite 310

    Pa g e 1 0 - 9 In RPN mode this is accomplished by u sing {4,3} ` 1.5 ` CON . Function IDN F unction IDN (IDeNtit y matri x) cr eates an identity matri x giv en its si ze . Recall that an identity matr i x has to be a squar e matri x, ther efor e, onl y one value is r equir ed to des cr ibe it completely . For e xample , to cr eate a 4 × 4 ident[...]

  • Seite 311

    Pa g e 1 0 - 1 0 vec tor ’s dimension , in the latter the number of r ow s and columns of the matri x. The f ollow ing ex amples illus tr ate the use o f functi on RDM: Re-dim ensioning a vector into a matri x The f ollow ing ex ample show s how to r e -dimension a vec tor of 6 ele ments into a matri x of 2 r ow s and 3 columns in AL G mode: In R[...]

  • Seite 312

    Pa g e 1 0 - 1 1 If using RPN mode , we as sume that the matr ix is in the st ack and u se {6} ` RDM . Function RANM F unction RANM (R ANdom Matr ix) w ill gener ate a matri x with r andom integer elements gi ven a list w ith the number of r ow s and columns (i .e., the dimensions of the matr i x) . F or ex ample, in AL G mode , t w o diff er ent 2[...]

  • Seite 313

    Pa g e 1 0 - 1 2 In RPN mode , assuming that the ori ginal 2 × 3 matr ix is alr eady in the stack , use {1,2} ` {2 ,3} ` SUB . Function REP L F unction REPL r eplaces or inserts a sub-matr ix int o a larger one . The input for this func tion is the matr i x wher e the r eplacement w ill tak e place, the location wher e the replacement begins , and[...]

  • Seite 314

    Pa g e 1 0 - 1 3 In RPN mode, w ith the 3 × 3 matri x in the stack , we simpl y have to acti vate fun ctio n  DI G to obtain the same r esult as above . Function DIA G → Fu n ct i o n D I AG → tak es a vect or and a list of matri x dimensions {r o ws , columns}, and cr eates a diago nal matri x wi th the main diagonal r eplaced with the pr [...]

  • Seite 315

    Pa g e 1 0 - 1 4 F or ex ample, the f ollo wing command in AL G mode f or the list {1,2 , 3, 4}: In RPN mode, enter {1, 2,3,4} ` V ND ERMONDE . Function HILBERT F unction HILBERT c reates the Hilbert matr i x corr esponding to a dimension n . By def inition , the n × n Hilbe rt matri x is H n = [h jk ] n × n , so that The H ilber t matri x has ap[...]

  • Seite 316

    Pa g e 1 0 - 1 5 enter ed in the display as y ou perform tho se ke ystr ok es . F irst , we pres ent the steps ne cessar y to produce program CRMC. Lists r epresent columns of the matri x The p rogra m @CRMC allo ws y ou to put together a p × n matri x (i .e., p r o ws , n columns) out of n lists of p elements each . T o cr eate the progr am enter[...]

  • Seite 317

    Pa g e 1 0 - 1 6 ~„n # n „´ @)MATRX! @ )COL! @COL!  COL  ` Pr ogram is dis play ed in lev el 1 To s a v e t h e p r o g r a m : ! ³~~crmc~ K T o see the contents o f the progr am use J ‚ @CRMC . T he progr am listing is the fo llo w ing: « DUP → n « 1 SWAP FOR j OBJ →→ RRY IF j n < THEN j 1 + ROLL END NEXT IF n 1 > THEN [...]

  • Seite 318

    Pa g e 1 0 - 1 7 Lists r epresent ro ws of the matrix The pr ev ious pr ogram can be easil y modified to c reate a matr ix w hen the input lists w ill become the r ow s of the r esulting matri x. The onl y change to be perfor med is to change C OL → for ROW → in the pr ogram listing . T o per f orm this change u se: ‚ @CRMC L ist pr ogram CRM[...]

  • Seite 319

    Pa g e 1 0 - 1 8 Both appr oaches w ill show the same f unctions: When s ystem f lag 117 is set to S OFT menus , the COL menu is acces sible thr ough „´ !) MATRX ) ! )@@COL@ , or thr ough „Ø !) @CREAT@ ! ) @@COL@ . Both appr oaches w ill sho w the same set of f unctions: The operation of these functions is presented be lo w . Function → COL[...]

  • Seite 320

    Pa g e 1 0 - 1 9 In this re sult, the f irst column occ upies the highe st stac k lev el after decompositi on, and st ack le vel 1 is occ upied b y the number of co lumns of the ori ginal matri x. T he matri x does not survi ve decompositi on, i .e., it is no longer av ailable in the stack . Function COL → Fu n ct i o n C O L → has the opposite[...]

  • Seite 321

    Pa g e 1 0 - 2 0 In RPN mode, ent er the matr i x fir st , then the v ector , and the column n umber , bef or e apply ing func tion COL+. T he fi gure belo w show s the RPN stack be fo re and after apply ing functi on COL+. Function COL- F unction COL - tak es as ar gument a matri x and an integer number r epr esenting the positi on of a column in [...]

  • Seite 322

    Pa g e 1 0 - 2 1 In RPN mode, f unction CS WP lets you s wap the columns of a matr ix listed in stac k lev el 3, who se indices ar e listed in stac k lev els 1 and 2 . F or ex ample , the fo llow ing fi gure sho ws the RPN st ack bef ore and after a pply ing functi on CS WP to matr i x A in or der to s wap columns 2 and 3: As yo u can see , the col[...]

  • Seite 323

    Pa g e 1 0 - 2 2 When s yst em flag 117 is set to S OFT menus , the RO W menu is acces sible thr ough „´ !) MATRX ! )@@ROW@ , or thr ough „Ø !) @CREAT@ ! ) @@ROW@ . Both appr oaches w ill sho w the same set of f unctions: The operation of these functions is presented be lo w . Function → ROW Fu n ct i o n → RO W tak es as argument a matr [...]

  • Seite 324

    Pa g e 1 0 - 23 matri x does not survi ve decompo sition , i.e ., it is no longer av ailable in the stack. Function RO W → Fu n ct i o n R OW → has the opposite eff ect of the func tio n → RO W , i.e ., giv en n vec tor s of the same le ngth, and the number n , func tion R OW  builds a matri x by plac ing the input v ectors as r o ws o f t[...]

  • Seite 325

    Pa g e 1 0 - 24 Function RO W- F unction RO W - tak es as argument a matr ix and an in teger number r epre senting the position o f a r ow in the matri x. T he functi on returns the or iginal matr ix , minus a r o w , as w ell as the e xtracted r ow sh o wn as a v ector . H ere is an e xam ple in the AL G mode using the matr ix st or ed in A: In RP[...]

  • Seite 326

    Pa g e 1 0 - 2 5 As y ou can see , the ro ws that or iginally occ upi ed positions 2 and 3 ha ve been s wapped . Function RCI F unction R CI stands f or multipl y ing R ow I by a C ons tant v alue and r eplace the r esulting r ow at the same location . The follo wi ng ex ample, w ritten in AL G mode , tak es the matri x stor ed in A, and multiplies[...]

  • Seite 327

    Pa g e 1 0 - 26 In RPN mode, ent er the matr ix f irst , follo wed by the const ant value , then by the r o w to be multiplied b y the constant value , and finall y enter the ro w that will be r eplaced. T h e f ollo wing f igure sho ws the RPN stac k befor e and after apply ing func tion R CIJ under the same conditi ons as in the AL G ex ample sho[...]

  • Seite 328

    P age 11-1 Chapter 11 M atr ix Operations and L in ear Algebr a In Chapter 10 w e introduced the concept of a matr ix and pr esent ed a number of func tions f or enter ing, c r eating, o r manipulating matri ces. In this Chapt er w e pr esent e xamples o f matr ix oper ations and applicatio ns to pr oblems of linear algebra . Operations with matr i[...]

  • Seite 329

    P age 11-2 Addition and subtr action Consi der a pair of matr ices A = [a ij ] m × n and B = [b ij ] m × n . Addition and subtr action of thes e t w o matri ces is only pos sible if the y have the s ame number of r ow s and columns. The r esulting matr i x, C = A ± B = [c ij ] m × n has elem ents c ij = a ij ± b ij . Some e xample s in AL G mo[...]

  • Seite 330

    P age 11-3 By comb ining add ition and subtr action w ith multiplicatio n by a scalar w e can fo rm linear combinati ons of matr ices o f the same dimensions , e.g ., In a linear combinati on of matr ices, w e can multiply a matr i x by an imaginary number to obtain a matr ix o f complex n umbers, e .g., Matrix -vector multipli cation Matri x -vec [...]

  • Seite 331

    P age 11-4 Matrix multiplication Matri x multiplicati on is defined b y C m × n = A m × p ⋅ B p × n , wher e A = [a ij ] m × p , B = [b ij ] p × n , and C = [c ij ] m × n . Notice that matr ix multipli cation is onl y possible if the number of columns in the f irst oper and is equal to the number o f r o ws of the second oper and. T he gene[...]

  • Seite 332

    P age 11-5 (another r ow vect or). Fo r the calculator to identify a ro w vector , y ou must use double br acke ts to enter it: T erm -b y-term multiplication T erm-b y-term multiplication o f two matri ces of the same dimensions is possible thr ough the us e of func tion HAD AMARD . The r esult is, o f cours e , another matr i x of the same dime n[...]

  • Seite 333

    P age 11-6 In algebr aic mode , the k eys trok es are: [enter or s elect the matri x] Q [enter the po wer] ` . In RPN mode, the k ey str ok es ar e: [enter or select the matr ix] † [enter the po we r] Q` . Matri ces can be r aised to negativ e po we rs . In this case , the result is equi valent to 1/[matr i x]^ABS(po we r). The identity matrix In[...]

  • Seite 334

    P age 11-7 T o ver ify the pr operties of the in verse matr ix , consider the follo wing multiplications: Characteri zing a matrix (T h e matr ix NORM menu) The matr ix NORM (NORMALI ZE) menu is accessed thr ough the k ey str oke sequenc e „´ (sy stem flag 117 s et to CHOO SE box es): This me nu cont ains the fo llo w ing func tions: Thes e func[...]

  • Seite 335

    P age 11-8 Function ABS F unction ABS calc ulates what is kno wn as the F robeniu s norm of a matr ix . For a matri x A = [a ij ] m × n , the F r obenius nor m of the matr ix is de fined as If the matri x under consider ation in a ro w vec tor or a column vector , then the F robeniu s norm , || A || F , is simply the v ector ’s magnitude . F unc[...]

  • Seite 336

    P age 11-9 Functions RNRM and CNRM F unction RNRM r eturns the Ro w NoRM of a matr i x , while f unction CNRM r eturns the C olumn NoRM of a matri x. Ex amples, Singular value decomposition T o underst and the oper ation of F uncti on SNRM, w e need to introduce the concept of matri x decompositi on. Ba sicall y , matr ix decompo sition in volv es [...]

  • Seite 337

    P age 11-10 Function SRAD F unction SRAD determine s the Spectr al R ADius o f a matri x, def ined as the large st of the ab solute v alues of its eigen values . F or ex ample, Function COND F unction COND deter mines the condition number of a matr i x: Definition of eigenvalues and eigen vec tors of a matri x The e igenv alues of a sq uare matr i [...]

  • Seite 338

    P age 11-11 T ry the follo wing e xer cis e fo r matri x condition nu mber on matr i x A3 3. T he condition number is C O ND( A3 3 ) , r o w norm, and column norm for A3 3 are sho wn to the left . The cor r esponding numbers f or the inv erse matr ix , INV(A3 3) , ar e show n to th e r ight: Since RNRM(A3 3) > CNRM(A3 3) , then w e tak e ||A3 3|[...]

  • Seite 339

    P age 11-12 F or ex ample, try finding the r ank for the matr ix: Y o u w ill find that the r a nk is 2 . T hat is because the second r o w [2 , 4, 6 ] is equal to the f irst r ow [1,2 , 3] multiplied b y 2 , thu s, ro w two is linear ly dependent o f r o w 1 and the max imum number of linearl y independent r o ws is 2 . Y o u can chec k that the m[...]

  • Seite 340

    P age 11-13 The determinant of a matri x The de ter minant of a 2x2 and o r a 3x3 matri x ar e r e pr esented b y the same arr angement of elements o f the matr ices, but enc losed betw een ve rtical lines , i. e. , A 2 × 2 deter minant is calcul ated b y multiply ing the elements in its di agonal and adding those pr oducts accompanied b y the pos[...]

  • Seite 341

    P age 11-14 Function TRACE F unction TRA CE calculates the tr ace of squar e matri x, def ined as the sum of the elements in its main diagonal , or . Example s: F or squar e matrice s of hi gher or der determinants can be calc ulated by using smaller or der determinant called cof actors . The gener al idea is to "expand" a determinant o f[...]

  • Seite 342

    P age 11-15 Function TRAN F unction TRAN re turns the tr anspose o f a r eal or the conj ugate transpo se of a comple x matri x. TRAN is equi valent t o TRN. The oper ation of func tion TRN wa s pr esent ed in Chapter 10. Additional matri x operations (T h e matri x OPER menu) The matr ix OP ER (OPERA TION S) is availa ble through the k e y str oke[...]

  • Seite 343

    P age 11-16 MAD and RSD ar e related t o the soluti on of s yste ms of linear equati ons and wil l be pr esent ed in a subsequen t sec tion in this Cha pter . In this sec tion w e’ll disc uss only f unctions AXL and AXM. Function AXL F unction AXL conv erts an arra y (ma tr ix) into a list , and vi ce ver sa: Note : the latte r oper ation is simi[...]

  • Seite 344

    P age 11-17 The im plementation of functi on L CXM f or this case r equires y ou to enter : 2`3`‚ @@P1@@ LCXM ` The f ollow ing fi gure sho ws the RPN st a c k befo r e and after apply ing func tion LC X M : In AL G mode , this ex ample can be obtained b y using: The pr ogram P1 mu st still ha ve been c reated and stor ed in RPN mode. Solution of[...]

  • Seite 345

    P age 11-18 , , Using the numerical solv er for linear s ystems Ther e are man y way s to solv e a sy stem of linear equations w ith the calculator . One possib ility is through the numer ical sol v er ‚Ï . Fr om the numer ical sol ver s cr een, sho wn belo w (left) , select the opti on 4. So lv e lin sy s.., and pr ess @@@OK@@@ . The f ollo win[...]

  • Seite 346

    P age 11-19 This s yst em has the same number of equations as of unknow ns, and will be r efer red to as a squar e sy stem. In gener al, there sho uld be a unique soluti on to the s ystem . The soluti on will be the po int of intersec tion o f the thr ee planes in the coor dinate sy stem (x 1 , x 2 , x 3 ) r epr esented b y the three equati ons. T [...]

  • Seite 347

    P age 11-20 T o chec k that the solution is cor r ect , ent er the matri x A and multiply times this soluti on vector (e xample in algebr aic mode) : Under-deter mined sy stem The s ys tem of linear eq uations 2x 1 + 3x 2 –5x 3 = -10, x 1 – 3x 2 + 8x 3 = 8 5, can be wr itten as the matri x equation A ⋅ x = b , if This s yst em has mor e unkno[...]

  • Seite 348

    P age 11-21 T o see the details of the so lution v ector , if needed , pres s the @EDIT! button . This w ill acti vate the Matr ix W r iter . Within this en vir onment, u se the r ight- and left- arr ow k e ys t o mov e about the vec tor: Thu s, the solution is x = [15 .3 7 3, 2 .46 2 6 , 9 . 6 2 6 8] . T o re turn to the numer ical solv er env i r[...]

  • Seite 349

    P age 11-22 Let’s stor e the latest result in a v ari able X, and the matr i x into var iable A, as fo llow s: Press K~x` to stor e the solution vect or into var iable X Press ƒ ƒ ƒ to clear thr ee lev els of the stac k Press K~a` to stor e the matri x into var iable A No w , let ’s ve rify the so lution by using: @@@A@@@ * @@@X@@@ ` , whi c[...]

  • Seite 350

    P age 11-2 3 can be wr itten as the matri x equation A ⋅ x = b , if This s ystem has mo r e equations than unkno wns (an ov er-determined s yst em) . The s ys tem does not hav e a single solution . E ach of the linear equati ons in the sy stem presented abo ve r e pr esen ts a straig ht line in a t w o -dimensional Cartesian coor dinate s ys tem [...]

  • Seite 351

    P age 11-2 4 Press ` to retur n to the numer ical sol ver env ironment . T o check that the soluti on is correc t, try the follo wing: • Pr ess —— , to highlight the A: field . • Pr ess L @CALC@ ` , to cop y matri x A onto the stack. • Pr ess @@@OK@@@ to r eturn to the numer ical solv er env ir onment . • Pr ess ˜ ˜ @CALC@ ` , to copy[...]

  • Seite 352

    P age 11-2 5 • If A is a squar e matri x and A is non -singular (i .e ., it’s inv erse matr ix e xis t , or its determinant is non- z ero), LSQ r eturns the ex act soluti on to the linear s y stem . • If A has less than full r ow r ank (underde termined s yst em of equatio ns) , LS Q retur ns the soluti on with the minimum E uclidean le ngth [...]

  • Seite 353

    P age 11-2 6 Under-deter mined sy stem Consider the s yst em 2x 1 + 3x 2 –5x 3 = -10, x 1 – 3x 2 + 8x 3 = 8 5, wi th The s oluti on using LS Q is sho wn ne xt: Over-determin ed s ystem Consider the s yst em x 1 + 3x 2 = 15, 2x 1 – 5x 2 = 5, -x 1 + x 2 = 2 2 , wi th The s oluti on using LS Q is sho wn ne xt: . 85 10 , , 8 3 1 5 3 2 3 2 1 ⎥ ?[...]

  • Seite 354

    P age 11-2 7 Compar e these thr ee soluti ons w ith the ones calculated w ith the numer ical solver . Solution with the in verse matri x The s olution t o the sy stem A ⋅ x = b , w here A is a squar e matri x is x = A -1 ⋅ b . This r esults fr om multiply ing the firs t equation b y A -1 , i .e., A -1 ⋅ A ⋅ x = A -1 ⋅ b . By def inition ,[...]

  • Seite 355

    Pa g e 1 1 - 2 8 The pr ocedure f or the case of “ di viding ” b by A is illustr ated belo w for the cas e 2x 1 + 3x 2 –5x 3 = 13, x 1 – 3x 2 + 8x 3 = -13, 2x 1 – 2x 2 + 4x 3 = -6 , The pr ocedure is show n in the follo wing s cr een shots: The s ame soluti on as found abo ve w ith the inv erse matr i x. Solv ing multiple set of equations[...]

  • Seite 356

    P age 11-29 [[14,9,-2] ,[2,-5,2],[5, 19,12]] ` [[1,2,3],[3, -2,1],[4,2,- 1]] `/ The r esult of this oper ation is: Gaussian and Gauss-Jordan elimination Gaussi an elimination is a pr ocedure b y whi ch the squar e matri x of coeff ic ients belonging to a sy stem of n linear equati ons in n unkno wns is r e duced to an upper - tri angular matri x ( [...]

  • Seite 357

    P age 11-30 T o start the pr ocess of f orwar d elimination , we di vi de the firs t equation (E1) b y 2 , and st or e it in E1, and sho w the three eq uatio ns again to pr oduce: Next , we r eplac e the second equati on E2 by (equation 2 – 3 × equation 1, i .e ., E1-3 × E2) , and the thir d by (equati on 3 – 4 × equation 1), to get: Ne xt, [...]

  • Seite 358

    P age 11-31 an expr ession = 0. T hus, the las t set of equati ons is interpr eted to be the follo w ing equiv alent set of equatio n s: X +2Y+3Z = 7 , Y+ Z = 3, - 7Z = -14. The pr ocess of backw ard subs titution in Gaussi an elimination consis ts in finding the value s of the unknow ns, starting fr om the last equation and w orking upw a r d s. T[...]

  • Seite 359

    P age 11-3 2 T o obtain a solution to the s yst em matr ix equati on using Gaussian eliminati on, we f i rs t c re a t e w h a t i s k n ow n a s t h e augmented matri x corr esponding to A , i . e ., The matr ix A aug is the same as the or iginal matri x A with a ne w ro w , corr esponding to the elements o f the vec tor b , added (i.e ., augmente[...]

  • Seite 360

    P age 11-3 3 Multiply r ow 2 by –1/8: 8Y2 @ RCI! Multiply r ow 2 by 6 add it to r ow 3, r eplacing it: 6#2#3 @RCIJ! If y ou we r e perfor ming these oper ations by hand , you w ould wr ite the fo llow ing: The symb ol ≅ (“ is eq uiv alent to ”) indicate s that what f ollo ws is equi valent to the pr ev ious matr ix w ith some r ow (or colu[...]

  • Seite 361

    P age 11-34 Multiply r ow 3 by –1/7 : 7Y 3 @ RCI! Multiply r ow 3 b y –1, add it to ro w 2 , r eplac ing it: 1 # 3 #2 @RCIJ! Multiply r ow 3 by –3, add it to r ow 1, r eplacing it: 3#3#1 @RCIJ! Multiply r ow 2 b y –2 , add it to ro w 1, replac ing it: 2#2#1 @RCIJ! W riting this pr ocess b y hand will r esult in the follo wing step s: Pi[...]

  • Seite 362

    Pa g e 1 1 - 3 5 While perfo rming pi voting in a matr ix elimination pr ocedure , yo u can impr ov e the numer ical solutio n e ven more b y selecting as the pi vot the ele ment wi th the large st absolute v alue in the column and r ow o f inter est . This oper ation ma y r equir e e xc hanging not only r ow s, but also columns, in s ome pi voting[...]

  • Seite 363

    Pa g e 1 1 - 3 6 No w we ar e read y to start the Gauss-Jor dan elimination w ith full pi vo ting. W e will need to k eep track of the per mutation matri x by hand, s o take y our notebook and w rite the P m at rix s h own ab ove. F irst, w e check the piv ot a 11 . W e notice that the element w ith the large st absolu te value in the f irst r ow a[...]

  • Seite 364

    P age 11-3 7 Hav ing f illed up w ith zer os the elements o f column 1 belo w the pi vot , now w e pr oceed to chec k the piv ot at position (2 ,2). W e find that the number 3 in position ( 2 ,3) w ill be a bet ter pi vot , thus, w e ex change columns 2 and 3 by using: 2#3 ‚N @@@OK@@ Checking the p iv ot at position ( 2 ,2) , we no w find that th[...]

  • Seite 365

    P age 11-38 2 Y #3#1 @RCIJ F inally , w e eliminate the –1/16 fr om position (1,2) b y using: 16 Y # 2#1 @RCIJ W e now ha ve an identity matri x in the por tion o f the augmented matr ix corr esponding to the or iginal coeff ici ent matri x A, thu s w e can proceed to obtain the soluti on while accounting f or the ro w and column ex changes code[...]

  • Seite 366

    P age 11-3 9 Then , for this partic ular ex ample , in RPN mode , use: [2,-1,41] ` [[1,2,3 ],[2,0,3],[8 ,16,-1]] `/ The calc ulator sho ws an a ugmented matr ix consis ting of the coeff ic ients matr ix A and the identity matr ix I , w hile, at the same time , show ing the next pr ocedure to calculate: L2 = L2 - 2 ⋅ L1 stands fo r “ r eplace ro[...]

  • Seite 367

    P age 11-40 T o see the int ermedi ate steps in calc ulating and inv erse , jus t ente r the matri x A fr om abov e, and pr ess Y , w hile keep ing the step-b y-step option acti ve in the calc ulator’s CA S. Use the f ollow ing: [[ 1,2,3],[3,- 2,1],[4,2,-1 ]] `Y After going thr ough the differ ent steps , the solu tion r eturned is: What the calc[...]

  • Seite 368

    P age 11-41 The r esult ( A -1 ) n × n = C n × n / det ( A n × n ), is a gener al result that appli es to any non -singular matr i x A . A general f orm for the elements o f C can be wr itten based on the Gaus s-Jor dan algorithm . Based on the equation A -1 = C /det( A ), sketc hed abo ve , the inve rse matr ix , A -1 , is not def ined if det ([...]

  • Seite 369

    P age 11-4 2 LINSOLVE([X- 2*Y+Z=-8,2*X+ Y-2*Z=6,5*X-2 *Y+Z=-12], [X,Y,Z]) to pr oduce the solution: [X=-1, Y=2,Z = -3]. F unction LINS OL VE w orks w ith s ymboli c expr essions . F unctions REF , rr ef , and RREF , work w ith the augment ed matri x in a Gaussi an elimination a ppr oach . Functions REF , rr ef, RREF The u pper tr iangular f orm to [...]

  • Seite 370

    P age 11-43 The di agonal matr ix that r esults f r om a Gaus s -Jor dan elimination is called a r o w-reduced ec helon for m. F unction RREF ( R ow-R educed E che lon F orm) The r esult of this f unction call is to pr oduce the r o w-r educed echelon f orm so that the matri x of coeff ici ents is r educed to an identity matri x. The e xtra column [...]

  • Seite 371

    P age 11-44 The r esult is the augmented matr i x corr esponding to the sy stem of equations: X+Y = 0 X- Y =2 Residual err ors in linear sy stem solutions (Function RSD) F unction R SD calculate s the Re SiDuals or error s in the so lution of the matri x equation A ⋅ x = b , repr esenting a sy stem of n linear equati ons in n unkno wns. W e can t[...]

  • Seite 372

    P age 11-45 Eigenv alues and eig env ec tors Gi ven a sq uare matr ix A , w e can wr ite the eigen value equation A ⋅ x = λ⋅ x , wher e the values of λ that satisfy the equation ar e know n as the eigen values of matri x A . F or each value o f λ , w e can find , fr om the same equation , values of x that satisfy the ei genvalue equati on. T[...]

  • Seite 373

    Pa g e 1 1 - 4 6 Using the var iable λ to r eprese nt eigen values , this char acter istic pol ynomial is t o be interpr eted as λ 3 -2 λ 2 -2 2 λ +21=0. Function EG VL F unction E GVL ( E iGenV aL ues) pr oduces the ei gen value s of a sq uar e matri x. F or e xam ple , the eigen values o f the matri x sho wn belo w are calc ulated in AL G mod[...]

  • Seite 374

    P age 11-4 7 of a matri x, w hile the cor r esponding ei genv alues are the compone nts of a vec tor . F or ex ample, in AL G mode , the e igen vector s and ei genv alues of the matr i x listed belo w are f ound by a pply ing func tion E G V: The r esult sho ws the e igen values as the columns of the matr ix in the r esult list . T o see the ei gen[...]

  • Seite 375

    P age 11-48 • A lis t with the e igen vect ors cor r espo nding to each ei genv alue of matr ix A (stack lev el 2) • A v ector w ith the eige nv ector s of matr i x A (stack le ve l 4) F or ex ample, try this ex erc ise in RPN mode: [[4,1,-2],[1 ,2,-1],[-2,-1 ,0]] JORD N The ou tput is the fo llo w ing: 4: ‘X^3+-6*x^2+2*X+8’ 3: ‘X^3+-6*x^[...]

  • Seite 376

    P age 11-4 9 Notice that the equati on ( x ⋅ I - A ) ⋅ p( x )=m( x ) ⋅ I is similar , i n for m, to the eige nvalue equati on A ⋅ x = λ⋅ x . As an e xample , in RPN mode , tr y: [[4,1,-2] [1, 2,-1][-2,-1,0 ]] M D The r esult is: 4: -8. 3: [[ 0.13 –0.2 5 –0.3 8][-0.25 0. 50 –0.2 5][-0.38 –0.2 5 –0.88]] 2: {[[1 0 0][0 1 0][0 0 1][...]

  • Seite 377

    P age 11-50 Function L U F unction L U tak es as input a s quar e matri x A , and r eturns a lo wer -triangular matri x L , an upper tr iangular matri x U , and a perm utation matri x P , in stac k lev els 3, 2 , and 1, respec ti ve ly . T he r esults L , U , and P , satisfy the equation P ⋅ A = L ⋅ U . W hen y ou call the L U functi on, the ca[...]

  • Seite 378

    P age 11-51 decomposition , while the v ector s r epresents the main di agonal of the matr ix S used earli er . F or ex ample, in RPN mode: [[5,4 ,-1],[2,-3,5 ],[7,2,8]] S VD 3: [[-0.2 7 0.81 –0. 5 3][-0. 3 7 –0. 5 9 –0.7 2][-0.8 9 3 . 09E -3 0.46]] 2 : [[ -0.68 –0.14 –0.7 2][ 0.4 2 0.7 3 –0.5 4][-0. 6 0 0.6 7 0.44]] 1: [ 12 .15 6.88 1.[...]

  • Seite 379

    Pa g e 1 1 - 52 Function QR In RPN, f unction QR pr oduces the Q R fact oriz at ion of a matrix A n × m r eturning a Q n × n orthogonal matri x, a R n × m upper tr apez oi dal matri x, and a P m × m permut ation matri x, in s tack le ve ls 3, 2 , and 1. T he matri ces A , P , Q and R are rel a te d by A ⋅ P = Q ⋅ R . F or e xample , [[ 1,-2[...]

  • Seite 380

    Pa g e 1 1 - 5 3 This menu inc ludes functi ons AXQ, CHOLE SKY , GA U S S, QX A, and S YL VE S TER. Function AX Q In RPN mode , function AXQ pr oduces the quadr atic f orm cor responding t o a matri x A n × n in stac k le vel 2 using the n var iables in a v ector placed in stack lev el 1. F unction r eturns the quadr atic f orm in stac k lev el 1 [...]

  • Seite 381

    P age 11-54 suc h that x = P ⋅ y , b y using Q = x ⋅ A ⋅ x T = ( P ⋅ y ) ⋅ A ⋅ ( P ⋅ y ) T = y ⋅ ( P T ⋅ A ⋅ P ) ⋅ y T = y ⋅ D ⋅ y T . Function S YL VE STER F unction S YL V ES TER tak es as ar gument a s ymme tri c squar e matri x A and retur ns a vec tor cont aining the diagonal ter ms of a diagonal matr ix D , and a mat[...]

  • Seite 382

    Pa g e 1 1 - 5 5 Infor mation on the func tions list ed in this menu is pr esented belo w by using the calc ulator’s o w n help fac ility . The f igure s show the help f acility entry and the attached e xamples . Function IMAGE Function ISOM[...]

  • Seite 383

    P age 11-5 6 Function KER Function MKISOM[...]

  • Seite 384

    Pa g e 1 2 - 1 Chapter 12 Gr aphi c s In this chapt er we intr oduce some of the gr aphics capab ilities o f the calc ulator . W e wi ll pre sent graphi cs of functi ons in Cartesian coor dinates and polar coor dinates , parametr ic plots , gr aphics of co nics , ba r plots, s cat ter plots, and a var iety of thr ee -dimensi onal gr aphs. Graphs op[...]

  • Seite 385

    Pa g e 1 2 - 2 The se gr aph options ar e desc ri bed bri efl y next . Fu n ct i o n : f or equations of the f orm y = f(x) in plane Cartesi an coordinates P olar : for equations o f the f ro m r = f( θ ) in polar coordinate s in the plane Pa r a m e t r i c : for plotting equati ons of the for m x = x(t) , y = y(t) in the plane Diff E q : f or pl[...]

  • Seite 386

    Pa g e 1 2 - 3 Θ Enter the PL O T en vir onment by pr essing „ñ (pr ess th em simultaneou sly if in RPN mode). Pr ess @ADD to get y ou into the equati on wr iter . Y o u will be pr ompted to fill the ri ght -hand side of an equati on Y1(x) =  . T y pe the f unction t o be plotted so that the E quation W rit er sho ws the f ollow ing: Θ Pres[...]

  • Seite 387

    Pa g e 1 2 - 4 Θ Enter the PL O T WINDO W env ir onment b y enter ing „ò (pr ess them simultaneously if in RPN mode). Use a r ange of –4 to 4 for H- VIEW , then pres s @AUTO to generate the V -VIEW automatically . The PL O T WINDO W scr een looks as f ollow s: Θ Pl ot t he g rap h : @ERASE @D RAW (w ait till the calculator f inishes the gra [...]

  • Seite 388

    Pa g e 1 2 - 5 Some useful PL O T operations fo r FUNCTION plots In orde r to disc uss these P L O T options , w e'll modif y the func tion to f or ce it to hav e some real r oots (Since the curr ent curve is totall y contained abov e the x axis , it has no real r oots.) Pr ess ‚ @@@Y1@@ to list the contents of the f unction Y1 on the stac k[...]

  • Seite 389

    Pa g e 1 2 - 6 ROO T : 1.66 3 5... T he calculator indicated , befor e show ing the root , that it wa s found thr ough SIGN REVER SAL . Press L to r ecover the menu . Θ Pres sing @ ISECT w ill giv e y ou the intersecti on of the curve w ith the x-ax is, whi ch is esse ntiall y the roo t . Place the c ursor e xac tly at the r oot and press @ISECT .[...]

  • Seite 390

    Pa g e 1 2 - 7 Θ Enter the PL O T env i r onment by pres sing, simultaneousl y if in RPN mode, „ñ . Notice that the highlighted f ield in the PL O T en v ir onment now contains the deri vati ve of Y1(X) . Pr ess L @@@OK@@@ to return to r eturn to nor mal calculator dis play . Θ Press ‚ @@EQ@@ to check the conte nts of E Q. Y o u will notice [...]

  • Seite 391

    Pa g e 1 2 - 8 T o r eturn t o nor mal calculato r func tion , pres s @) PICT @CAN CL . Graphics of tr anscendental func tions In this secti on we us e some of the gr aphics f eatures of the calc ula tor t o sho w the typi cal beha vior of the natur al log, e x ponenti al, tr igonometr ic and h yperboli c functi ons. Y o u w ill not see mor e gr ap[...]

  • Seite 392

    Pa g e 1 2 - 9 10 by us i ng 1 @@@OK@@ 10 @@@OK@@@ . Ne xt , pr ess the soft k ey labeled @AUTO to let the calc ulator determine the cor r esponding v er ti cal range . After a co uple of seconds this r ange w ill be shown in the P L O T WINDO W-FUNCT ION w indo w . At this point w e are r eady to pr oduce the graph of ln(X). Pre ss @ERASE @DRAW t[...]

  • Seite 393

    Pa g e 1 2 - 1 0 Graph of the e x ponential function F irst , loa d the f unction e xp(X) , by pr essing , simultaneousl y if in RPN mode , the left-shif t k ey „ and the ñ ( V ) k ey to acce ss the PL O T -FUNCTION windo w . Pr ess @@DEL@@ to remo ve the f unction LN( X) , if y ou didn’t dele te Y1 as suggested in the pr ev ious no te . Pr es[...]

  • Seite 394

    Pa g e 1 2 - 1 1 The P P AR v ariable Press J to reco ver y our var iables menu , if needed . In your v ariables me nu y ou should ha ve a v ar iable labe led PP AR . Pr es s ‚ @PPAR to get the contents of this var iable in the stack . Pres s the dow n -arr o w key , , to lau nch the st ack editor , and use the up- and do wn-arr ow k ey s to v ie[...]

  • Seite 395

    Pa g e 1 2 - 1 2 As indicated earl ier , the ln(x) and e xp(x) functi ons are in ver se of each other , i .e., ln(e xp(x)) = x, and e xp(ln(x)) = x. This can be v erif ied in the calculato r b y typing and e valuating the f ollow ing expr essi ons in the Eq uation W r iter: LN(EXP(X)) and EXP(LN(X)). The y should both ev aluate to X. When a func ti[...]

  • Seite 396

    Pa g e 1 2 - 1 3 Summary of FUNCTION plot oper ation In this secti on w e pre sent inf ormati on regar d ing the PL O T SE TUP , PL O T - FUNCTION , and P L O T WINDOW sc reens accessible thr ough the left-shif t k ey combined w ith the soft-menu k ey s A thr ough D . Ba sed on the gr aphing e xam ples pr esented abo ve , the procedur e to follo w [...]

  • Seite 397

    Pa g e 1 2 - 1 4 Θ Use @CANCL to cancel an y changes to the PL O T SE TUP windo w and re turn to nor mal calc ulator displa y . Θ P r ess @@@OK@@@ to save changes to the options in the PL O T SETUP window and r eturn t o normal calc ulator display . „ñ , simultaneously if in RPN mode: Access to the PL O T w i ndo w (in this case it w ill be ca[...]

  • Seite 398

    Pa g e 1 2 - 1 5 Θ Enter lo wer and u pper limits f or hor i zo ntal v ie w (H- Vi ew), and pr ess @AUTO , whi le the cur sor is in one of the V - Vie w fi elds, to gener ate the verti cal vie w (V- Vie w) range automatically . O r , Θ Enter lo we r and upper limits f or v er tical v ie w (V -V iew), and pr ess @AUTO , whi le the cur sor is in on[...]

  • Seite 399

    Pa g e 1 2 - 1 6 „ó , simultaneou sly if in RPN mode: Plots the gr aph based on the setting s stor ed in var iable P P AR and the cur rent func tions def ined in the PL O T – FUNCTION s cr een. If a gr aph, diff eren t fr om the one y ou ar e plotting, alr eady ex ists in the graphi c display s cr een, the ne w plot w ill be superimpos ed on t[...]

  • Seite 400

    Pa g e 1 2 - 1 7 Generating a table of v alues for a function The co mbinati ons „õ ( E ) and „ö ( F ) , pr essed simultaneously if in RPN mode , let’s the us er pr oduce a table of values o f functi ons. F or ex ample, w e will pr oduce a table of the f unction Y(X) = X/(X+10), in the r ange -5 < X < 5 fo llow ing these instru ctio n[...]

  • Seite 401

    Pa g e 1 2 - 1 8 the corr esponding values o f f(x) , listed as Y1 b y default . Y ou can us e the up and do wn ar ro w k ey s to mo ve abou t in the table . Y ou w ill notice that w e did not hav e to indicate an ending value f or the independent var iable x. T hus, the table contin ues bey ond the maximum v alue for x sugges ted earl y , namel y [...]

  • Seite 402

    Pa g e 1 2 - 1 9 W e wi ll try to plot the f unction f( θ ) = 2(1-sin( θ )), as follow s: Θ F irst , mak e sure that y our calculator ’s angle measure is s et to r adians. Θ Press „ô , simultaneousl y if in RPN mode, to access to the PL O T SETUP w indo w . Θ Chang e TYPE to Polar , b y pres sing @CHOOS ˜ @@@OK@@@ . Θ Press ˜ and t y p[...]

  • Seite 403

    Pa g e 1 2 - 2 0 Θ P r ess L @CANCL to re tu rn t o t he PL OT W IN DOW scree n. P ress L @@@OK@@@ to r eturn t o normal calc ulator display . In this ex erc ise w e ent er ed the equation to be plotted dir e ctl y in the PL O T SETUP w indo w . W e can also enter equati ons fo r plotting using the PL O T w indow , i.e ., simultaneous ly if in RPN[...]

  • Seite 404

    Pa g e 1 2 - 2 1 The calc ulator has the ability of plotting one or more coni c curv es b y selecting Con ic as the functi on TYPE in the PL O T en vir onment . Make sur e to delete the var iables PP AR and EQ be for e continuing . F or ex ample, let's st or e the list of equations { ‘(X-1)^2+(Y - 2)^2=3’ , ‘X^2/4+Y^2/3=1’ } into the v[...]

  • Seite 405

    Pa g e 1 2 - 2 2 Θ T o see labels: @EDIT L @) LABEL @MENU Θ T o reco ver the menu: LL @) PICT Θ T o estimate the coor dinates of the point of in tersection , press the @ ( X,Y ) @ menu k ey and mo ve the c ursor as c lose as pos sible to those points using the arr ow k ey s. The coor dinates of the c ursor ar e show n in the display . F or e xam[...]

  • Seite 406

    Pa g e 1 2- 23 whi ch inv olve constant values x 0 , y 0 , v 0 , and θ 0 , we need to s tor e the values of those par ameters in v ari ables . T o de ve lop this ex ample, c reate a sub-dir ectory called ‘PR OJM’ for P RO J ectile Moti on, and w ithin that sub-direc tory stor e the follo w ing var iables: X0 = 0, Y0 = 10, V0 = 10 , θ 0 = 30, [...]

  • Seite 407

    Pa g e 1 2 - 24 Θ P r ess @AUTO . This will gener ate automatic v alues of the H-Vi ew and V- Vie w r anges based on the v alues of the independent v ariable t and the def initions o f X(t) and Y(t) us ed. The r esult w ill be: Θ P r ess @ERASE @DRAW to dr aw the par ametri c plot . Θ P r ess @EDIT L @LABEL @MENU to see the gr aph with la bels. [...]

  • Seite 408

    Pa g e 1 2 - 2 5 parameter s. The other v ariables contain the v alues of constants us ed in the def initions of X(t) and Y(t). Y o u can stor e differ ent values in the var iables and pr oduce new par ametri c plots of the pr ojectile equati ons used in this ex ample. If y ou want to er ase the c urr ent pic ture contents bef ore pr oducing a ne w[...]

  • Seite 409

    Pa g e 1 2 - 26 P lot ting the solution to simpl e differ ential equations The plot o f a simple differ ential equati on can be obtained by selecting Diff Eq in the TYPE fi eld of the PL O T SETUP en vir onment as follo ws: su ppose that w e want t o plot x(t) fr om the differ ential equati on dx/dt = e xp(- t 2 ), w it h i ni ti al conditi ons: x [...]

  • Seite 410

    Pa g e 1 2- 27 Θ P r ess L to r ec o ver the menu . Press L @) PICT to r ecov er the original graphi cs menu. Θ When we ob served the gr aph being plotted, yo u'll notice that the gr aph is not v er y smooth . That is becau se the plotter is u sing a time step th at is too lar ge . T o r ef ine the gr aph and make it smoothe r , us e a step [...]

  • Seite 411

    Pa g e 1 2 - 28 T ruth plots T ruth plots ar e used to pr oduce two -dimensi onal plots of r egions that satisfy a certain mathematical co ndition that can be eithe r true or fals e. F or ex ample , suppos e that y ou want to plot the r egion f or X^2/3 6 + Y^2/9 < 1, pr oceed as fo llow s: Θ P r ess „ô , simult aneousl y if in RPN mode , to[...]

  • Seite 412

    Pa g e 1 2 - 2 9 Θ P r ess „ô , simult aneousl y if in RPN mode , to access to the P L O T SETUP wi nd ow . Θ P r ess ˜ and type ‘(X^2/3 6+Y^2/9 < 1) ⋅ (X^2/16+Y^2/9 > 1)’ @@@OK@@@ to def ine the conditions to be plotted . Θ P r ess @E RASE @DRAW to dr aw the truth plot . Again , y ou hav e to be patient while the calc ulator pro[...]

  • Seite 413

    Pa g e 1 2 - 3 0 [4. 5,5.6 ,4.4],[4.9 , 3 .8 ,5 .5],[5 .2 ,2 .2 , 6.6]] ` to stor e it in Σ D A T , use the f unction S T O Σ (av ailable in the func tion catalog, ‚N ) . Pr ess V AR to reco ve r your v ariable s menu . A soft menu ke y labeled Σ D A T should be av ailable in the stac k. T he figur e below sho ws the stor age of this matri x i[...]

  • Seite 414

    Pa g e 1 2 - 3 1 accommodate the max imum value in column 1 of Σ D A T . Bar plots ar e use ful when plotting categori cal (i .e., non -numer ical) data. Suppos e that y ou want t o plot the data in column 2 of the Σ DA T m a t r ix: Θ P r ess „ô , simult aneousl y if in RPN mode , to access to the P L O T SETUP wi nd ow . Θ P r ess ˜˜ to [...]

  • Seite 415

    Pa g e 1 2- 32 Θ P r ess @ERASE @DRAW t o dr a w the bar plot . Pr ess @EDIT L @LABEL @MENU to see the plot unenc umber ed by the menu and w i th ide ntifying la bels (the c ursor w i ll be in the middle of the plot , how ev er ): Θ P r ess LL @) PICT to lea ve the EDIT e nv iro nment . Θ P r ess @CANCL to r eturn to the PL O T WINDO W env ironm[...]

  • Seite 416

    Pa g e 1 2- 3 3 Slope fields Slope fi elds ar e us ed to vi suali z e the solutions to a diffe r ential equation of the fo rm y’ = f(x ,y) . Basi cally , w hat is pres ented in the plot ar e segmen ts tangenti al to the soluti on curve s, since y’ = d y/dx, e valuated at an y point (x,y), repr esents the slope of the tangent line at point (x ,y[...]

  • Seite 417

    Pa g e 1 2 - 3 4 of y(x ,y) = constant , for the soluti on of y’ = f(x,y). Thus , slope fi elds ar e usef ul tools f or v isualizing parti cul arl y diffic ult equations to sol ve . T ry also a slope field plot f or the functi on y’ = f(x ,y) = - (y/x) 2 , by u sing: Θ P r ess „ô , simult aneousl y if in RPN mode , to access to the P L O T [...]

  • Seite 418

    Pa g e 1 2 - 35 Θ P r ess @ERASE @DRAW t o dr aw the thr ee -dimensional surf ace . The r esult is a w i r efr ame pi ctur e of the surface w ith the r efer ence coor dinate s y stem sho wn at the lo wer le ft corner of the sc reen . B y using the arr o w k ey s ( š™— ˜ ) you can c hange the or ientation of the surf ace. T he orientati on of[...]

  • Seite 419

    Pa g e 1 2 - 36 Θ P r ess „ô , simultaneou sly if in RPN mode , to access the PL O T SE TUP wi nd ow . Θ P r ess ˜ and t y pe ‘SIN(X^2+Y^2)’ @@@OK@@@ . Θ P r ess @ERASE @DRAW to dr aw the plot. Θ When done, pr ess @ EXIT . Θ P r ess @CANCL to retur n to PL O T WINDO W . Θ P r ess $ , or L @@@OK@@@ , to retur n to normal calc ulator di[...]

  • Seite 420

    Pa g e 1 2 - 37 Θ P r ess @EDIT L @LABEL @MENU t o see the gr aph with la bels and r anges . This partic ular v ersio n of the gr aph is limited to the lo we r part of the display . W e can change the v ie wpoint to see a differ ent versi on of the graph . Θ P r ess LL @) PICT @CANCL to r eturn to the PL O T WINDOW en v iro nment . Θ Change the [...]

  • Seite 421

    Pa g e 1 2 - 3 8 T ry also a Wir efr ame plot for the surface z = f(x ,y) = x 2 +y 2 Θ P r ess „ô , simultaneou sly if in RPN mode , to access the PL O T SE TUP wi nd ow . Θ P r ess ˜ and t ype ‘X^2+Y^2’ @@@OK@@@ . Θ P r ess @ERASE @DRAW to dr aw the slope f ield plot . Pre ss @EDIT L @) MENU @LAB EL to see the plot unenc umbered b y the[...]

  • Seite 422

    Pa g e 1 2 - 3 9 Θ P r ess @EDIT ! L @LABEL @MENU to see the gr aph w ith labels and r anges. Θ P r ess LL @) PICT@CANCL to r eturn to the PL O T WINDOW env ironment . Θ P r ess $ , or L @@@OK@@@ , to retur n to normal calc ulator display . T ry also a P s-Contour plot f or the sur face z = f(x ,y) = sin x cos y . Θ P r ess „ô , simultaneou [...]

  • Seite 423

    Pa g e 1 2 - 4 0 Θ Make sur e that ‘X’ is select ed as the Indep: and ‘Y ’ as the Depnd: varia bl es. Θ P r ess L @@@O K@@@ to r eturn to normal calc ulator display . Θ P r ess „ò , simultaneousl y if in RPN mode , to access the P L O T WINDO W scr e en . Θ Change the def ault plot w indo w range s to r ead: X-Le ft:-1, X-Righ t:1, Y[...]

  • Seite 424

    Pa g e 1 2 - 4 1 Θ P r ess „ô , simult aneousl y if in RPN mode , to access to the PL O T SETUP w indow . Θ Ch ang e TYPE to Gr idmap . Θ P r ess ˜ and t ype ‘S IN(X+i*Y)’ @@@OK@@@ . Θ Make sur e that ‘X’ is select ed as the Indep: and ‘Y ’ as the Depnd: varia bl es. Θ P r ess L @@@O K@@@ to r eturn to normal calc ulator displa[...]

  • Seite 425

    Pa g e 1 2 - 42 F or ex ample, to pr oduce a Pr- Sur fa ce plot for the surf ace x = x(X,Y) = X sin Y , y = y(X,Y) = x co s Y , z=z(X,Y)=X, use the follo wing: Θ P r ess „ô , simult aneousl y if in RPN mode , to access to the PL O T SETUP w indow . Θ Ch ang e TYPE to Pr -Surfa ce . Θ P r ess ˜ and t ype ‘{X*S IN(Y) , X*CO S(Y), X}’ @@@OK[...]

  • Seite 426

    Pa g e 1 2 - 4 3 Interactiv e draw ing Whene ve r we pr oduce a two-dimensional gr aph, w e find in the gr aphics s cr een a soft menu k e y label ed @) EDIT . Pr essing @) EDIT pr oduces a menu that inc lude the fo llow ing options (pr ess L to see additio nal functi ons) : Thr ough the ex amples abov e , y ou have the opportunity to try out funct[...]

  • Seite 427

    Pa g e 1 2 - 4 4 Ne xt, w e illustr ate the use o f the differ ent dra w ing functi ons on the resulting gr aphic s sc reen . The y requir e use of the c ursor and the arr ow k ey s ( š™— ˜ ) to mo ve the c ursor about the gr aphics s cr een. DO T+ and DO T- When DO T+ is selec ted , pi xels w ill be activ ated wher ev er the cursor mov es le[...]

  • Seite 428

    Pa g e 1 2 - 4 5 should hav e a str aight angle tr aced by a hor iz on tal and a ve rtical segmen ts. The c ursor is still acti ve . T o deacti vate it , without mo ving it at all , pre ss @LINE . The c ursor r eturns to its n ormal shape (a c ro ss) and the LINE f unction is no longer acti ve . TLINE (T oggle LINE) Mo ve the c ursor to the se cond[...]

  • Seite 429

    Pa g e 1 2 - 4 6 DEL This command is us ed to remo ve parts of the gr aph betw een two MARK positions . Mov e the cur sor to a point in the gr aph, and pre ss @MARK . Mov e the cu rsor to a diff er ent point , press @MARK again. T hen, pr ess @@DEL@ . T he section of the gr aph bo xed betw een the two marks w ill be deleted. ERASE The f unction ERA[...]

  • Seite 430

    Pa g e 1 2- 47 X,Y  This command copi es the coordinates o f the cur r ent cur sor position, in us er coor dinates , in the stac k . Zooming in and out in the gr aphics display Whene ve r y ou produce a tw o -dimensional FUNCT ION gr aphic in ter activ ely , the fir st soft-menu k ey , labeled @) ZOOM , lets you acce ss functi ons that can be us[...]

  • Seite 431

    Pa g e 1 2 - 4 8 Y o u can alw ay s return to the v er y last z oom windo w by using @ZLAST . BO XZ Z ooming in and out of a gi ven gr aph can be perfor med by u s ing the so ft-menu ke y BO XZ . With BO XZ you selec t the rect angular sector (the “bo x ”) that y ou want to z oom in into. Mov e the cursor to one of the corners of the bo x (usin[...]

  • Seite 432

    Pa g e 1 2 - 4 9 cu rsor at the center of the scr een, the w indow gets z oomed so that the x -ax is extends f rom –64. 5 to 6 5 . 5 . ZSQR Z ooms the graph s o that the plotting scale is maintained at 1:1 b y adjus ting the x scale , keeping the y s c ale f ix ed, if the w indow is w ider than taller . T his for ces a pr oportional z ooming. ZTR[...]

  • Seite 433

    Pa g e 1 2- 5 0 S OL VER .. „Î (the 7 key) Ch . 6 TRIGONO METRIC. . ‚Ñ (the 8 key ) Ch . 5 EXP&LN .. „Ð (the 8 key ) Ch. 5 The S YMB/GRAPH menu The GRAP H sub-men u w ithin the S YMB menu inc ludes the follo w ing func tions: DEFINE: same as the ke ystr oke s e quence „à (the 2 key) GROB ADD: paste s two GR OBs fir st ov er the seco[...]

  • Seite 434

    Pa g e 1 2 - 5 1 T AB V AL(X^2 -1,{1, 3}) produ ces a list of {min max} v alues of the f u ncti on in the interval {1, 3}, w hile SIGNT AB(X^2 -1) sho ws the sign o f the func tion in the interval ( - ∞ ,+) , w ith f(x) > 0 in (- ∞ ,-1) , f(x) <0, in (-1,1), and f(x) > 0 in (1,+ ∞ ). T AB V AR(LN(X)/X) pr oduces the f ollo wing t abl[...]

  • Seite 435

    Pa g e 1 2 - 52 of F . The question marks indicates uncer tainty or non -definition. F or example , for X<0, LN(X) is not def ined, thu s the X lines sho ws a que stion mark in that interval . Ri ght at z er o (0+0) F is inf inite, f or X = e, F = 1/e. F inc reas es bef ore r eaching this v alue , as indicated by the u p war d arr ow , and decr [...]

  • Seite 436

    P age 13-1 Chapter 13 Calculus Applications In this Chapter w e discu ss applicati ons of the calculator ’s functions to oper ations r elated to Calc ulus, e .g., limits , der iv ativ es, integr als, pow er ser ies, etc. The CAL C (Calculus) m enu Many o f the functi ons pres ented in this Chapter ar e contained in the calc ula tor ’s CAL C men[...]

  • Seite 437

    P age 13-2 Function lim The calc ulator pro vi des functi on lim t o ca l cu l a t e l im i t s o f fu n ct i on s . Th i s fu n c ti o n uses a s input an expr ession r epr esenting a fu nction and the v alue wher e the limit is to be calculated . Functi on lim is av ailable thro ugh the command catalog ( ‚N~„l ) or thr ough option 2 . LIMIT S[...]

  • Seite 438

    P age 13-3 T o calculat e one -sided limits, add +0 or -0 to the v alue to the vari able. A “+0” means limit fr om the ri ght , w hile a “-0” means limit fr om the left . F or ex ample , the limit of as x appr oa c hes 1 fr om the left can be deter mined with the follo w ing k ey str ok es (AL G mode): ‚N~„l˜ $OK$ R!ÜX- 1™@íX@Å1+0[...]

  • Seite 439

    P age 13-4 in AL G mode . R ecall that in RPN mode the arguments mu st be en ter ed befor e the functi on is applied. The DERI V&INTEG menu The f unctions a vailable in this sub-me nu ar e listed belo w: Out of thes e functi ons D ERIV and DER VX ar e used for der iv ati ve s. T he other functi ons include functi ons r elated to anti-deri vati [...]

  • Seite 440

    P age 13-5 be differ entiated . Thus , to calculate the deri vati ve d(sin(r ) ,r), use , in AL G mod e: ‚¿~„r„ÜS~„r` In RPN mode , this expr ession mu st be enclos ed in quot es befo re ente ring it in to th e sta ck. Th e re su lt in ALG mo d e i s: In the E quati on W r iter , w hen y ou pr ess ‚¿ , the calc ulator pr ov ides the fo[...]

  • Seite 441

    P age 13-6 T o ev aluate the deri vati ve in the E quation W r iter , pr ess the u p-arr ow k ey — , fo ur times, to s elect the entir e expr essi on, then , pr ess @EVAL . The der ivati ve w ill be ev aluated in the E quation W r iter as: The chain rule The c hain rule for der ivati ves appli es to deri vati ves of composit e functi ons. A gener[...]

  • Seite 442

    P age 13-7 Deri vati ves of equations Y o u can use the calc ulator to calc ulate der i vati ves of eq uations , i .e., e xpre ssions in whi ch deri vati ves w ill e xist in both side s of the equal sign . Some ex amples ar e sho wn belo w: Notice that in the e xpressi ons wher e the deri vati ve sign ( ∂ ) or f unction DERIV was u sed , the equa[...]

  • Seite 443

    P age 13-8 Analyzing gr aphic s of functions In Chapter 11 w e pres ented some functi ons that ar e a vailable in the gr ap hic s sc r een f or anal yzing gr aphics of f unctions of the for m y = f(x) . The se functi ons include (X,Y ) and TRACE f or determining point s on the gra ph, a s wel l as functi ons in the Z OOM and FCN menu . The f unctio[...]

  • Seite 444

    P age 13-9 Θ Press L @PIC T @CANCL $ t o r eturn to nor mal calculator dis play . Notice that the slope and tangent line that y ou reques ted ar e listed in the stac k. Function DOMAIN F unction DOMAIN , av ailable through the command catalog ( ‚N ), pr o vi des the domain of def inition of a func tion as a list of numbers and spec ificati ons. [...]

  • Seite 445

    P age 13-10 This r esult indicat es that the r ange of the functi on corr esponding to the domain D = { -1,5 } is R = . Function SIGNT AB F unction SIGNT AB , av ailable thr ough the command catalog ( ‚N ), pro vides informa tion on th e sign of a function th r ou gh it s domai n . For e xample, for the T A N(X) function , SIGNT AB indi cates tha[...]

  • Seite 446

    P age 13-11 Θ Le vel 3: the f uncti on f(VX) Θ T w o lists, the f irst one indicates the v ariati on of the functi on (i .e., w here it incr eases or dec reas es) in ter m s of the independent v ari able VX, the second one indicate s the var iation of the f unction in ter ms of the dependent v ariable . Θ A gr aphi c obj ect sho w ing ho w the v[...]

  • Seite 447

    P age 13-12 The interpr etation of th e var iation table show n abo ve is as f ollow s: the functi on F(X) incr eases f or X in the interval (- ∞ , -1), reac hing a maxim um equal to 36 at X = -1. Then, F(X) dec reas es until X = 11/3, reac hing a minimum of –400/2 7 . After that F(X) inc reas es until r eaching + ∞. Also, at X = ±∞ , F(X)[...]

  • Seite 448

    P age 13-13 W e find tw o cr itical po ints, one at x = 11/3 and one at x = -1. T o ev aluate the second der iv ativ e at each point use: The last sc reen sho ws that f ”(11/3) = 14, thus , x = 11/3 is a r elativ e minimum. F or x = -1, we ha ve the f ollow ing: This r esult indi cates that f ” (-1) = -14, thu s, x = -1 is a r elativ e max imum[...]

  • Seite 449

    P age 13-14 Anti-deri vativ es and integrals An anti-der iv ative o f a func tion f(x) is a func tion F(x) such that f(x) = dF/dx. F or e xam ple , since d(x 3 ) /dx = 3x 2 , an anti-de ri vati ve of f(x) = 3x 2 is F(x) = x 3 + C, wher e C is a constant. One wa y to represent an anti-deri vati ve is as a indefinite integral , i .e., , if and only i[...]

  • Seite 450

    P age 13-15 abo ve . Their r esult is the so -called discr ete der iv ativ e, i .e., one de fined f or integer number s only . Definite integr als In a def inite integr al of a f unction , the resulting an ti-der i vati ve is ev aluated at the upper and lo wer limit of an interv al (a,b) and the e valuated v a lues subtr acted . S ymbolicall y , wh[...]

  • Seite 451

    P age 13-16 This is the gener al format f or the definite integr al when typed dir ectly into the stack , i .e., ∫ (low er limit , upper limit , integrand , var iable of in tegr ation) Pr essi ng ` at this point w ill evaluate the integr al in the stac k: The integr al can be ev aluated also in the E quation W r iter by se lecting the entir e e x[...]

  • Seite 452

    P age 13-17 The f ollow ing ex ample sho ws the ev aluation of a def inite integral in the E quation W r iter , step-by-s tep: ʳʳʳʳʳ Notice that the step-b y-step pr ocess pr ov ides infor mation on the inter mediate steps f ollow ed by the CAS to solv e this integral . F irst , CAS ide ntif ies a squar e r oot integral , next , a rational f r[...]

  • Seite 453

    P age 13-18 T echniques of integration Se ver al techni ques of integr ation can be implemented in the calc ulators, as sho wn in the f ollo wing e xamples . Substitution or chang e of v ariables Suppose w e w ant to calculate the integral . If w e use step-by- step calc ulation in the Eq uation W r iter , this is the seq uence of var iable substit[...]

  • Seite 454

    P age 13-19 Integration b y par ts and differentials A differ ential of a f unction y = f(x), is defined as d y = f’(x) dx , wher e f’(x) is the deri vati ve of f(x). Differ entials ar e used to repr esent small inc r ements in the var iables . The differ ential o f a produc t of tw o functions , y = u(x)v(x) , is gi ven b y dy = u(x)d v(x) +du[...]

  • Seite 455

    P age 13-20 Integration b y par tial fr actions F unction P AR TFRAC, presented in Chapter 5, pr ovi d es the decomposition of a fr action into partial f rac tions. This t echni que is use ful to r educe a complicated fr action into a sum of simple fr actio ns that can then be integrated t erm b y te rm . F or ex ample , to integr ate w e can decom[...]

  • Seite 456

    P age 13-21 Using the calc ulator , w e pr oceed as follo ws: Alternati vel y , you can e valuate the integra l to inf inity from the start , e.g . , Integration w it h units An integr al can be calculated w ith units incorporat ed into the limits of integr ation , as in the e xample sh o wn belo w that uses AL G mode , with the CAS set to Appr ox [...]

  • Seite 457

    P age 13-22 Some no tes in the us e of units in the limits of integr ations: 1 – The units of the lo wer limit o f integrati on will be the ones used in the f inal r esult , as illustr ated in the two e xamples belo w: 2 - Upper limit units mus t be consiste nt w ith lo we r limit units . Otherwise , the calc ulator simply r eturns the unev aluat[...]

  • Seite 458

    Pa g e 1 3 - 23 T ay lor and M aclaurin’s series A func tion f(x) can be e xpanded into an infinit e ser ies ar ound a point x=x 0 by using a T a ylor ’s ser ies, namel y , , wher e f (n) (x) repr esen ts the n - th der iv ativ e of f(x) with r esp ect to x , f (0) (x) = f(x). If the value x 0 is z ero , the ser ies is r efer r ed to as a Macla[...]

  • Seite 459

    P age 13-2 4 wher e ξ is a number near x = x 0 . Since ξ is ty picall y unknow n, inst ead of an estimate o f the residual , we pr ov ide an estimate of the or der of the re sidual in ref e ren c e t o h , i. e., we s ay t h a t R k (x) has an err or of order h n+1 , or R ≈ O(h k+1 ). If h is a small number , s ay , h<<1, then h k+1 w ill[...]

  • Seite 460

    P age 13-2 5 incr ement h. T he list r eturned as the fir st output objec t includes the f ollow ing items: 1 - Bi-dir ectional limit o f the funct ion at po int of e xpansion , i .e., 2 - An equi valent v alue of the functi on near x = a 3 - Expr essi on for the T ay lor poly nomial 4 - Or der of the r esidual or r emainder Becaus e of the r elati[...]

  • Seite 461

    Pa g e 1 4 - 1 Chapter 14 Multi-var iate Calculus Applications Multi-vari ate calculus re fers to functi ons of two or mor e vari ables. In this Chapter w e discu ss the basi c concepts of multi-v ari ate calculu s including partial deri vati ves and multiple int egrals . Multi-var iate functions A functi on of two or mor e vari ables can be define[...]

  • Seite 462

    Pa g e 1 4 - 2 . Similarl y , . W e wi ll use the multi-var iate functi ons def ined earlier to calc ulate partial deri vati ves using the se def initions. Her e are the der iv ative s of f(x,y) w ith r espect to x and y , r especti vely : Notice that the def inition of partial der i vati ve w ith r espect t o x, f or e xample , r equir es that we [...]

  • Seite 463

    Pa g e 1 4 - 3 ther ef or e , w ith DERVX y ou can only calculate der iv ativ es with r espect to X. Some e xamples of f irst-order partial der iv ative s are sho wn ne xt: ʳʳʳʳʳ Hi gh er- ord e r d erivat ives The f ollo wing s e cond-or der deri vati ves can be def ined The la st two e xpre ssions r epres ent cr oss-der iv ativ es, the parti[...]

  • Seite 464

    Pa g e 1 4 - 4 Thir d-, fourth-, and higher or der der i vati ves ar e def ined in a similar manner . T o calc ulate higher o rde r der iv ativ es in the calculator , simply r epeat the deri vati ve func tion as man y times as needed. So me e xample s are sho wn belo w: The chain rule for partial deriv atives Consi der the func tion z = f(x ,y) , s[...]

  • Seite 465

    Pa g e 1 4 - 5 A diffe r ent ver sion of the c hain rule appli es to the case in whi ch z = f(x ,y) , x = x(u ,v) , y = y(u ,v), so that z = f[x(u, v) , y(u ,v)]. The f ollow ing form ulas r epre sent the chain r ule for this situatio n: Determining e xtrema in functions of t w o variables In or der fo r the functi on z = f(x,y) to hav e an extr em[...]

  • Seite 466

    Pa g e 1 4 - 6 W e find c riti cal points at (X,Y) = (1, 0) , and (X,Y) = (-1, 0) . T o calculate the disc riminant , we pr oceed to calculate the second der iv ativ es, fXX(X,Y) = ∂ 2 f/ ∂ X 2 , fXY(X,Y) = ∂ 2 f/ ∂ X/ ∂ Y , and fYY(X,Y ) = ∂ 2 f/ ∂ Y 2 . The la st r esult indicat es that the disc riminant i s Δ = -12X, thus , for (X[...]

  • Seite 467

    Pa g e 1 4 - 7 Applicati ons of function HE S S are easi er to visuali z e in the RPN mode . Consi der as an ex ample the function φ (X,Y ,Z) = X 2 + XY + XZ , we ’ll apply fun ctio n H E SS to fu nct ion φ i n t h e f o l l owi n g e xa m p l e. T h e s cr e e n s h o ts s h ow t h e RPN stac k befo re and after appl y ing functi on HES S . Wh[...]

  • Seite 468

    Pa g e 1 4 - 8 The r esulting matri x has elements a 11 = ∂ 2 φ / ∂ X 2 = 6. , a 22 = ∂ 2 φ / ∂ X 2 = - 2 ., and a 12 = a 21 = ∂ 2 φ / ∂ X ∂ Y = 0. The discr iminant , for this c riti cal point s2(1, 0) is Δ = ( ∂ 2 f/ ∂ x 2 ) ⋅ ( ∂ 2 f/ ∂ y 2 )- [ ∂ 2 f/ ∂ x ∂ y] 2 = (6.)(- 2 . ) = -12 .0 < 0, indicating a sadd[...]

  • Seite 469

    Pa g e 1 4 - 9 Jacobian of coordinate tr ansformation Consi der the coordinate tr ansfor mation x = x(u ,v) , y = y(u ,v) . The Jacobi an of this tr ansfor mation is def ined as . When calc ulating an integr al using suc h transf ormation , the e xp r ession to us e is , whe re R’ is the r egion R expr essed in (u ,v) coordinates . Double integra[...]

  • Seite 470

    Pa g e 1 4 - 1 0 wher e the region R’ in polar coor dinates is R ’ = { α < θ < β , f( θ ) < r < g( θ )}. Double integr als in polar coordinat es can be enter ed in the calculator , making sur e that the Jacobian |J| = r is inc luded in the integrand. T h e f ollo w ing is an e xam ple of a double int egr al calculat ed in polar[...]

  • Seite 471

    P age 15-1 Chapter 15 V ector Analy sis Applications In this Chapter w e pres ent a number of functio ns fr om the CAL C menu that apply t o the analy sis of scalar and vec tor fields . The CAL C menu w as pr esent ed in detail in Chapter 13 . In par tic ular , in the DERIV & INTE G menu we identif ied a number of functi ons that have appli cat[...]

  • Seite 472

    P age 15-2 At an y partic ular point , the maximum r ate of change of the functi on occurs in the dir ection o f the gradien t , i .e ., along a unit vec tor u = ∇φ /| ∇φ |. The v alue of that directi onal deri vativ e is equal to the magnitu de of the gr adient at any po int D max φ (x ,y ,z) = ∇φ •∇φ /| ∇φ | = | ∇φ | The eq u[...]

  • Seite 473

    P age 15-3 as the matri x H = [h ij ] = [ ∂φ / ∂ x i ∂ x j ], the gr adient o f the func tion w ith re spect t o the n-vari ables, gr ad f = [ ∂φ / ∂ x 1 , ∂φ / ∂ x 2 , … ∂φ / ∂ x n ], and the list of vari ab le s [ ‘ x 1 ’ ‘ x 2 ’…’x n ’]. Consi der as an e xample the f unction φ (X,Y ,Z) = X 2 + XY + XZ , we[...]

  • Seite 474

    P age 15-4 not hav e a potential functi on asso c iated with it , sinc e , ∂ f/ ∂ z ≠∂ h/ ∂ x. The calcula tor response in th is case is shown below : Div ergence The di ver gence of a vector f unction , F (x ,y ,z) = f(x ,y ,z) i +g(x,y ,z) j +h(x ,y ,z) k , is defi ned by t aking a “ dot-product ” of the del oper ator with the func [...]

  • Seite 475

    P age 15-5 Cur l The c url of a v ector field F (x ,y ,z) = f(x ,y ,z) i +g(x ,y ,z ) j +h(x ,y ,z) k , is def ined b y a “ c r oss-pr oduct” of the del oper ator with the v ector fi eld, i .e. , The c url of v ector fi eld can be calc ulated with f unction C U RL . For e xample , for the func tion F (X,Y ,Z) = [XY ,X 2 +Y 2 +Z 2 ,YZ], the c ur[...]

  • Seite 476

    P age 15-6 As an ex ample, in an ear lier ex ample w e attempted to f ind a potenti al func tion for the vect or fie ld F (x,y ,z) = (x+y) i + (x-y+z) j + xz k , and got an err or mess age back f r om functi on PO TENT IAL. T o v erify that this is a r otational f ield (i .e., ∇× F ≠ 0) , w e use func tion CURL on this fi eld: On the other han[...]

  • Seite 477

    P age 15-7 pr oduces the v ector potential f unction Φ 2 = [0, ZYX- 2YX, Y -( 2ZX-X)], w hic h is differ ent fr om Φ 1 . The las t command in the scr een shot show s that indeed F = ∇× Φ 2 . Thu s, a v ector potential f unction is not uniquel y determined . The compone nts of the giv en vect or fi eld, F (x ,y ,z) = f(x ,y ,z) i +g(x,y ,z) j [...]

  • Seite 478

    Pa g e 1 6 - 1 Chapter 16 Differential Equations In this Chapter w e pres ent e xample s of sol ving or dinary differ ential equati ons (ODE) using calc ulator functi ons. A differ ential equatio n is an equati on inv olv ing deri vativ es of the independent var iable . In most cases , we seek the dependent func tion that satisf ies the differ enti[...]

  • Seite 479

    Pa g e 1 6 - 2 ( H @) DISP ) is not select ed. Pr ess ˜ to see the equation in the E quatio n Wr i t e r. An alter native no tation fo r deri vati ves typed dir ectly in the s tack is to use ‘ d1’ f or the deri vati ve w ith respect t o the firs t independent vari able, ‘ d2’ f or the deri vati ve w ith res pect to the s econd independent [...]

  • Seite 480

    Pa g e 1 6 - 3 EV AL( ANS(1)) ` In RPN mode: ‘ ∂ t( ∂ t(u(t)))+ ω 0^2*u(t) = 0’ ` ‘ u(t)=A*SIN ( ω 0*t)’ ` SUBST EVAL The r esult is ‘0=0’ . F or this ex ample, yo u could also use: ‘ ∂ t( ∂ t(u(t))))+ ω 0^2*u(t) = 0’ to enter the differ ential equation . Slope field visuali zation of solutions Slope fi eld plots, introdu[...]

  • Seite 481

    Pa g e 1 6 - 4 The se func tions ar e brief ly desc ribed next . The y will be desc ribed in mor e detail in later parts of this Chapte r . DE SOL V E: Differ ential E quati on S OL VEr , pr o vi des a soluti on if possible IL AP: Inv erse LAPlace transf orm, L -1 [F(s)] = f(t) LA P: LAPlace tr ansform , L[ f(t)]=F(s) LDEC: so lv es Linear Diff ere[...]

  • Seite 482

    Pa g e 1 6 - 5 Both of these inputs mu st be giv en in terms of the def ault independent v ari able for the calc ulator’s CAS (ty pi cally ‘X’). The output fr om the functi on is the gener al solution o f the ODE . The functi on LDEC is av ailable thr ough in the CAL C/DIFF menu . The e xample s are sho wn in the RPN mode , how ev er , transl[...]

  • Seite 483

    Pa g e 1 6 - 6 The s olution , show n partially her e in the Equati on W riter , is: Replac ing the combination o f constants accompan ying the e xponential ter ms with sim pler values , the e xpres sion can be simplifi ed to y = K 1 ⋅ e –3x + K 2 ⋅ e 5x + K 3 ⋅ e 2x + ( 4 50 ⋅ x 2 +3 30 ⋅ x+2 41)/13 500. W e re cogni z e the firs t thr[...]

  • Seite 484

    Pa g e 1 6 - 7 2x 1 ’(t) + x 2 ’(t) = 0. In algebr aic fo rm , this is wr it te n as: A ⋅ x ’(t) = 0, wher e . T he s ys tem can be so lv ed by using fu nctio n LDEC w ith argumen ts [0, 0] and matri x A, as sho wn in the f ollo wing sc reen u sing AL G mode: The s oluti on is giv en as a vect or containing the func tions [x 1 (t) , x 2 (t)[...]

  • Seite 485

    Pa g e 1 6 - 8 Example 2 -- Sol ve the second-o rde r ODE: d 2 y/dx 2 + x (dy/dx) = e x p(x). In the calculator u se: ‘ d1d1y(x)+x*d 1y(x) = EXP(x) ’ ` ‘ y(x) ’ ` DESO LVE The r esult is an e xpr essi on hav ing two impli c it integrations , namely , F or this par tic ular equation , how ev er , w e reali z e that the left -hand side of the[...]

  • Seite 486

    Pa g e 1 6 - 9 P erf orming the int egr ation b y hand, we can onl y get it as far as: because the in tegr al of exp(x)/x is no t av ailable in c losed f orm. Example 3 – Sol v ing an equatio n w ith initial conditi ons. Sol ve d 2 y/dt 2 + 5y = 2 cos(t/2), w ith initial conditions y(0) = 1.2 , y’(0) = -0. 5. In the calculator , us e: [‘ d1d1[...]

  • Seite 487

    Pa g e 1 6 - 1 0 Press J @ODETY to get the str ing “ Linear w/ cst coeff ” for the ODE type in this case . Laplace T ransf orms The L aplace transf orm o f a functi on f(t) pr oduces a functi on F(s) in the image domain that can be utili zed t o find the solu tion of a linear diff erential eq uation inv olv ing f(t) thr ough algebr aic me thods[...]

  • Seite 488

    Pa g e 1 6 - 1 1 Laplace tr ansform and in verses in the calc ulator The calc ulator pr o vi des the f uncti ons LAP and IL AP to calc ulate the L aplace transf orm and the in verse L aplace transf orm, r especti vel y , of a f unction f(VX), wher e VX is the CAS def ault independent var iable, w hich y ou should set to ‘X’ . Thu s, the calcula[...]

  • Seite 489

    Pa g e 1 6 - 1 2 Example 3 – Deter mine the in ver se Laplace tr ansfor m of F(s) = sin(s). Use: ‘SIN(X)’ ` ILAP . The calc ulator tak es a fe w seconds to re turn the r esult: ‘ILAP(SIN(X))’ , meaning that ther e is no clos ed-form e xpres sion f(t), such that f(t) = L -1 {sin(s)}. Example 4 – Determine the in ve rse L aplace tr ansfor[...]

  • Seite 490

    Pa g e 1 6 - 1 3 Θ Differ entiati on theore m for the n-th deri vati v e . Let f (k) o = d k f/dx k | t = 0 , and f o = f(0) , then L{d n f/dt n } = s n ⋅ F(s) – s n-1 ⋅ f o − …– s ⋅ f (n- 2) o – f (n-1) o . Θ Linear it y theor em . L{af(t)+bg(t)} = a ⋅ L{f(t)} + b ⋅ L{g(t)}. Θ Differ entiati on theorem f or the image functi [...]

  • Seite 491

    Pa g e 1 6 - 1 4 Θ Shift theorem f or a shift to the ri ght . Let F(s) = L{f(t)}, then L{f(t-a)}=e –as ⋅ L{f(t)} = e –as ⋅ F(s) . Θ Shift theorem f or a shif t to the left . Le t F(s) = L{f(t)}, and a >0, then Θ Similarity theor em . Let F(s) = L{f(t)}, and a>0, then L{f(a ⋅ t)} = (1/a) ⋅ F(s/a) . Θ Damping theor em . Let F(s)[...]

  • Seite 492

    Pa g e 1 6 - 1 5 Dirac’s delta function and Heaviside’s step function In the analy sis of contr ol s ys tems it is cu stomary to utili ze a ty pe of functi ons that r epre sent certain ph ysi cal occurr ences suc h as the sudden acti vati on of a sw itch (Heav iside’s s tep func tion , H(t)) or a sudden , instantaneou s, peak in an input to t[...]

  • Seite 493

    Pa g e 1 6 - 1 6 Y o u can pr o ve that L{H(t)} = 1/s , from whi ch i t fol lows th at L {U o ⋅ H(t)} = U o /s, wher e U o is a constant . Also , L -1 {1/s}=H(t), and L -1 { U o /s}= U o ⋅ H(t) . Also , using the shift theor em for a shift to the ri ght , L{f(t -a)}=e –as ⋅ L{f(t)} = e –as ⋅ F( s ) , we c an wri te L { H( t - k )} = e ?[...]

  • Seite 494

    Pa g e 1 6 - 1 7 Applications of Laplace tr ansform in the solution of linear ODEs At the beginning of the se ction on L aplace transf orms w e indicated that y ou could us e these tr ansfor ms to conv er t a linear ODE in the time domain into an algebrai c equation in the image domain . The r esulting equati on is then solv ed for a f unction F(s)[...]

  • Seite 495

    Pa g e 1 6 - 1 8 The r esult is ‘H=((X+1)*h0+a)/(X^2+(k +1)*X+k)’ . T o fi nd the soluti on to the ODE , h(t) , w e need to use the inv erse L aplace transf orm, as f ollow s : OB J  ƒ ƒ Isolate s ri ght-hand side of last e xpres sion ILAP μ Obt ains the inv erse La place transf orm The r esult is . R eplac ing X w ith t in this e xpr ess[...]

  • Seite 496

    Pa g e 1 6 - 1 9 With Y(s) = L{y(t)}, and L{d 2 y/dt 2 } = s 2 ⋅ Y(s) - s ⋅ y o – y 1 , wher e y o = h(0) and y 1 = h ’(0), the transf ormed eq uation is s 2 ⋅ Y(s) – s ⋅ y o – y 1 + 2 ⋅ Y(s) = 3/(s 2 +9) . Use the calculator to solve f or Y (s), b y wr iting: ‘X^2*Y -X*y0 -y1+2*Y=3/(X^2+9)’ ` ‘Y’ I SOL The r esult is ‘Y[...]

  • Seite 497

    Pa g e 1 6 - 2 0 Example 3 – Consider the equati on d 2 y/dt 2 +y = δ (t-3) , wher e δ (t) is Dir ac’s delta functi on. Using Laplace tr ansforms , we can wr ite: L{d 2 y/dt 2 +y} = L{ δ (t-3)}, L{d 2 y/dt 2 } + L{y(t)} = L{ δ (t-3)}. Wit h ‘ Delta(X-3) ’ ` L AP , the calculator pr oduces EXP(-3*X), i.e ., L{ δ (t- 3)} = e –3s . With[...]

  • Seite 498

    Pa g e 1 6 - 2 1 Check w hat the solution t o the ODE would be if y ou use the f unction LDEC: ‘Delta(X- 3)’ ` ‘X^2+1’ ` LDEC μ Notes : [1]. An alter nativ e wa y to obtain the in ver se Laplace tr ansform of the e xpr essi on ‘(X*y0+(y1+EXP(-(3*X))))/(X^2+1)’ is b y separating the e xpr essi on into partial f r actions , i.e ., ‘ y0[...]

  • Seite 499

    Pa g e 1 6 - 2 2 The r esult is: ‘SI N(X-3)*Heav iside(X-3) + cC1*SIN(X) + cC0*CO S(X)’ . P lease notice that the var iable X in this expr essi on actuall y re presents the var iable t in the ori ginal ODE . Thu s, the translati on of the soluti on in paper may be wr itten as: When compar ing this result w ith the pre vio us r esult for y(t), w[...]

  • Seite 500

    Pa g e 1 6 - 23 Use of the func tion H(X) w ith LD E C, L AP , or ILAP , is not allow ed in the calc ulator . Y o u hav e to use the main r esults pro vided ear lier w hen dealing with the Heav iside step f unction , i .e ., L{H(t)} = 1/s, L -1 {1/s}=H(t) , L{H(t-k)}=e –ks ⋅ L{H(t)} = e –ks ⋅ (1/s) = ⋅ (1/s) ⋅ e –ks and L -1 {e –as [...]

  • Seite 501

    Pa g e 1 6 - 24 wher e H(t) is Heavisi de’s step f u ncti on. Using L aplace transfo rms, w e can writ e: L{ d 2 y/dt 2 +y} = L{H(t- 3)}, L{d 2 y/dt 2 } + L{y(t)} = L{H(t-3)}. The last t erm in this expr essi on is: L{H(t- 3)} = (1/s) ⋅ e –3s . W ith Y(s) = L{y(t)}, and L{d 2 y/dt 2 } = s 2 ⋅ Y(s) - s ⋅ y o – y 1 , wher e y o = h(0) and[...]

  • Seite 502

    Pa g e 1 6 - 2 5 Example 4 – P lot the solution to Ex ample 3 using the same v alues of y o and y 1 used in the plot of Example 1, abo ve . W e no w plot the functi on y(t) = 0. 5 cos t –0.2 5 sin t + (1+sin(t-3)) ⋅ H(t -3) . In the r ange 0 < t < 20, and c hanging the vertical r ange to (-1,3), the graph should look lik e this: Again ,[...]

  • Seite 503

    Pa g e 1 6 - 26 f(t) = U o ⋅ [1-(t-a)/(b-1)] ⋅ [H(t-a) -H(t -b)]. Example s of the plots generated b y these functi ons, fo r Uo = 1, a = 2 , b = 3, c = 4, hor iz ontal r ange = (0,5) , and verti cal range = (-1, 1. 5) , ar e show n in the fig ures b el ow: Four ier series F ourie r ser ies are s eri es inv olv ing sine and cosine fu nctions ty[...]

  • Seite 504

    Pa g e 1 6 - 27 The f ollow ing ex erc ises ar e in AL G mode, w ith CAS mode s et to Ex act . (When y ou pr oduce a gr aph, the CA S mode wi ll be re set to A ppr o x. Mak e sure to s et it back to Ex act after pr oduc ing the gr aph .) Suppose , for e xample , that the functi on f(t) = t 2 +t is peri odic with per iod T = 2 . T o determine the co[...]

  • Seite 505

    Pa g e 1 6 - 28 Function FOURIER An alter nati ve w ay to def ine a F ouri er ser ies is by using comple x numbers as fo llow s: whe re F unction FOURIER pr ov ides the coeff ic ient c n of the comple x-f orm o f the F ourier ser ies giv en the functi on f(t) and the value of n . The f unction FOURIER r equir es y ou to sto r e the value of the per[...]

  • Seite 506

    Pa g e 1 6 - 2 9 Next , we mo ve to the CASDIR sub-dir ectory under HOME to change the value of var iable PERIOD, e .g., „ (hold ) §`J @) CASDI `2 K @ PERIOD ` Retur n to the sub-dir ectory wher e you def ined functions f and g , and calculate the coeff ic ients (A ccept change to C omplex mode w hen requ ested): Thu s, c 0 = 1/3, c 1 = ( π⋅ [...]

  • Seite 507

    Pa g e 1 6 - 3 0 The f itting is somew hat acceptable for 0<t<2 , alt hough not as good as in the pr ev ious e xample . A general expr ession for c n The f unction FO URIER can pro vi de a gener al expr ession for the coe ffi cien t c n of the comple x F our ier ser ies e xpansion. F or ex ample , using the same functi on g(t) as befor e, the[...]

  • Seite 508

    Pa g e 1 6 - 3 1 The r esult is c n = (i ⋅ n ⋅π +2)/(n 2 ⋅π 2 ). P utting t ogether the comple x Fou rier series Hav ing determined the gener al expr ession f or c n , w e can put together a finit e comple x Fo uri er seri es b y using the summati on functi on ( Σ ) in the calculator as fo llow s: Θ Fir st, de fine a f unction c(n) r epre[...]

  • Seite 509

    Pa g e 1 6 - 32 Or , in the calc ulator entr y line as: DEFINE(‘F(X,k,c0) = c0+ Σ (n=1,k ,c(n)*EXP(2*i* π *n*X/T)+ c(-n)*EXP(-( 2*i* π *n*X/T))’), wher e T is the period , T = 2 . The f ollo wing sc reen shots sho w the definiti on of func tion F and the stor ing of T = 2 : The fun ct ion @@@F@@@ can be us ed to gener ate the expr ession f o[...]

  • Seite 510

    Pa g e 1 6 - 3 3 Accept change t o Approx mode if reque sted . The re sult is the value –0.40 46 7… . T he actual value o f the func tion g(0.5 ) is g(0.5) = -0.2 5 . T he fo llow ing calc ulations sho w ho w well the F our ier se ri es appr o ximat es this value as the number of componen ts in the ser ies, gi ven b y k , inc reas es: F (0. 5, [...]

  • Seite 511

    Pa g e 1 6 - 3 4 peri odic ity in the graph of the ser ies. T his periodi city is eas y to v isuali ze b y expanding the hori z ontal range of the plot to (-0.5, 4) : Four ier series for a triangular w ave Consider the f unction whi ch we assume to be per iodic w ith per iod T = 2 . This f uncti on can be def ined in the calc ula tor , in AL G mode[...]

  • Seite 512

    Pa g e 1 6 - 3 5 The calc ulator r eturns an int egr al that cannot be evaluat ed numer icall y because it depends on the parame ter n . The coeff ic ient can still be calc ulated by typing its def inition in the calc ulator , i .e ., wher e T = 2 is the perio d. T he value of T can be st or ed using: T y ping the firs t integral a bo ve in the E q[...]

  • Seite 513

    Pa g e 1 6 - 3 6 Press `` to copy this r esult to the scr een. T hen , re acti vat e the Eq uation W rit er to calc ulate the second integral de fining the coeff ic ient c n , namely , Once again, r eplacing e in π = (-1) n , and using e 2in π = 1, we get: Press `` to cop y this second re sult to the sc reen . Now , add ANS(1) and ANS( 2) to get [...]

  • Seite 514

    Pa g e 1 6 - 37 This r esult is used to def ine the functi on c(n) as follo ws: DEFINE(‘ c(n) = - (((-1)^n-1)/(n^2* π ^2*(-1)^n)’) i. e. , Next , we def ine function F(X,k,c0) to calculate the F ourie r series (if y ou completed e xample 1, yo u already ha ve this functi on stor ed): DEFINE(‘F(X,k,c0) = c0+ Σ (n=1,k ,c(n)*EXP(2*i* π *n*X/T[...]

  • Seite 515

    Pa g e 1 6 - 3 8 F rom the plot it is very diffi cult to distinguish the or iginal f unction f rom the F ourier ser ies appr ox imation . Using k = 2 , or 5 terms in the seri es, show s not so good a f itting: The F our ier s eri es can be used to gener ate a peri odic tri angular wa ve (or sa w tooth w av e) by changin g the hor iz ontal ax is r a[...]

  • Seite 516

    Pa g e 1 6 - 3 9 In thi s case, the peri od T , is 4. Make sure to c hang e the valu e of var iabl e @@@T@@@ to 4 (use: 4K @@@T@@ ` ) . F unction g(X) can be def ined in the calculator by u s in g DEFINE(‘ g(X) = IFTE((X>1) AND (X<3),1, 0)’) The function plot ted as follo ws (hori zontal r ange : 0 to 4, vertical range: 0 to 1.2 ): Using [...]

  • Seite 517

    Pa g e 1 6 - 4 0 Th e s i mp l i fica t io n o f th e rig ht -h a nd s id e of c (n ) , a bove, i s ea si er d on e on p ap e r (i .e., b y hand). Then, r etype the e x pr ession f or c(n) as sho wn in the f igure to the left abo ve , to define fu ncti on c(n). The F ourie r ser ies is calculat ed with F(X,k,c0), as in ex amples 1 and 2 abo ve , w [...]

  • Seite 518

    Pa g e 1 6 - 4 1 W e can use this r esult as the firs t input to the f unction LDE C when used to obt ain a soluti on to the s yste m d 2 y/dX 2 + 0.2 5y = SW(X), wher e S W(X) stands for Squar e W av e function o f X. The second inpu t item w ill be the char acter istic equation cor responding t o the homogeneous ODE sho wn abo ve , i.e ., ‘X^2+[...]

  • Seite 519

    Pa g e 1 6 - 4 2 The s olution is sho wn belo w: Four ier T ransfor ms Befor e presen ting the concept of F our ier tr ansforms , we ’ll discus s the general def i nitio n of an integr al transf orm. In gener al, an int egr al transf orm is a transf ormation that r elates a functi on f(t) to a ne w function F(s) b y an integratio n of the f orm T[...]

  • Seite 520

    Pa g e 1 6 - 4 3 The am plitudes A n w ill be r efer red to as the spectr um of the f unction and w ill be a measure of the magnitude of the component of f(x) with f requency f n = n/T . The basi c or fundamental fr equency in the F ouri er ser ies is f 0 = 1/T , th us, all other fr equenc ies ar e multiples o f this basic fr equenc y , i .e ., f n[...]

  • Seite 521

    Pa g e 1 6 - 4 4 and The continuous spectrum is giv en by The fun ct ion s C ( ω ), S ( ω ), and A( ω ) are continuous f unctions of a var iable ω , whi ch becomes the tr ansfor m vari able for the F ourier tr ansforms de fined below . Example 1 – Determine t he coeffic ients C( ω ), S ( ω ), and the continuous spectr um A( ω ), f or the f[...]

  • Seite 522

    Pa g e 1 6 - 4 5 Define this expr essio n as a f unction by u s ing func tion DEFINE ( „à ) . T hen, plot the continuou s spectr um, in the r ange 0 < ω < 10, as: Definition of F ourier transfor ms Differ ent types of F our ier tr ansforms can be def ined. The f ollow ing are the def i nitio ns of the sine , cosine , and full F ourie r tr[...]

  • Seite 523

    Pa g e 1 6 - 4 6 The continuous spectrum, F( ω ) , is calculated w ith the integral: This r esult can be r ationali z ed b y multiply ing numer a to r and denominator b y the conjugate o f the denominator , namel y , 1-i ω . The result is no w: which is a co mpl ex fun ct ion. The ab solute v alue of the real and imaginary par ts of the func tion[...]

  • Seite 524

    Pa g e 1 6 - 47 Properties of the F ourier transf orm L inearity: If a and b ar e constants , and f and g functi ons, then F{a ⋅ f + b ⋅ g} = a F{f }+ b F{g}. T r ansfor mation of partial deri vati ves . Let u = u(x ,t) . If the F ouri er transf orm transf orms the var iable x , then F{ ∂ u/ ∂ x} = i ω F{u}, F{ ∂ 2 u/ ∂ x 2 } = - ω 2 [...]

  • Seite 525

    Pa g e 1 6 - 4 8 the number o f oper ations using the FF T is reduced b y a factor of 10000/66 4 ≈ 15 . The FFT operates on t he sequenc e {x j } by partitio ning it into a number o f shorter sequence s. The DFT ’s of the shorter seq uences ar e calculated and later combined t ogether in a highl y effi c ient manner . F or details on the algor [...]

  • Seite 526

    Pa g e 1 6 - 4 9 The f igur e belo w is a box plot o f the data pr oduced. T o obtain the gra ph, f irst copy the arr ay ju st cr eated, then tr ansform it into a column vector b y using: OB J  1 +  ARR Y (F unctions OB J  and  ARR Y are a vailable in the command catalog , ‚N ). Stor e the arr ay int o var iable Σ DA T by us i ng fun[...]

  • Seite 527

    Pa g e 1 6 - 5 0 Example 2 – T o pr oduce the signal gi ven the s pectrum, w e modify the progr am GD A T A to inc lude an abso lute v alue, so that it r eads: <<  m a b << ‘2^m ’ EV AL  n << ‘(b-a)/(n+1)’ EV AL  Dx << 1 n F OR j ‘ a+(j-1)*Dx ’ EV AL f AB S NEXT n  ARR Y >> >> >> &[...]

  • Seite 528

    Pa g e 1 6 - 5 1 Except f or a large peak at t = 0, the signal is mo stl y noise . A smaller vertical scale (-0. 5 to 0.5) sho ws the si gnal as follo ws: Solution to specific second-order diff erential equations In this secti on w e pre sent and sol ve spec ifi c types of or dinar y differ ential equations w hose solu tions ar e defined in te rms [...]

  • Seite 529

    Pa g e 1 6 - 52 wher e M = n/2 or (n -1)/2 , whi chev er is an integer . Legendr e’s pol ynomials ar e pre -pr ogrammed in the calculat or and can be r ecalled by us ing the func tion LE GEND RE gi ven the or der of the poly nomial , n. The f unction LEGENDRE can be obtained fr om the command catalog ( ‚N ) or thr ough the menu ARITHME TIC/POL [...]

  • Seite 530

    Pa g e 1 6 - 53 wher e ν is not an integer , and the f unction Gamma Γ ( α ) is defined in Chapter 3. If ν = n, an int eger , the Bes sel functi ons of the f irst kind for n = intege r ar e def ined by Regar dless of whether we use ν (non-intege r) or n (int eger) in the calc ulator , we can def i ne the Bes sel f uncti ons of the f irst kind [...]

  • Seite 531

    Pa g e 1 6 - 5 4 Y ν (x) = [J ν (x) cos νπ – J −ν (x)]/sin νπ , for n on-integer ν , and fo r n integer , w ith n > 0, by wher e γ is the Euler constant , def ined by and h m r epr esents the har monic s er ies F or the case n = 0, the Bess el f unction o f the seco nd kind is def ined as With these def initions, a gener al solution[...]

  • Seite 532

    Pa g e 1 6 - 55 The modif ied Bessel f unctions o f the second kind, K ν (x) = ( π /2) ⋅ [I - ν (x) − I ν (x)]/sin νπ , ar e also solu tions of this ODE . Y o u can implement func tions repr esenting Bes sel’s f unctions in the calc ulator in a similar manner to that used to def ine Bessel’s f unctions of the f irst kind, but k eeping[...]

  • Seite 533

    Pa g e 1 6 - 5 6 Laguerr e’s equation Laguer re ’s equation is the second-o rde r , linear ODE of the fo rm x ⋅ (d 2 y/dx 2 ) +(1 − x) ⋅ (d y/dx) + n ⋅ y = 0. Laguer re poly nomials, de fined as , ar e soluti ons to L aguerr e’s equati on. Laguerr e’s po ly nomials can also be calc ulated with: The te rm is the m-th coeffi ci ent of[...]

  • Seite 534

    Pa g e 1 6 - 57 L 2 (x) = 1- 2x+ 0. 5x 2 L 3 (x) = 1-3x+1.5x 2 - 0. 1 6666 …x 3 . W eber ’s equation and Hermite poly nomials W eber’s equati on is defined as d 2 y/dx 2 +(n+1/2 -x 2 /4)y = 0, for n = 0, 1, 2 , … A partic ular solutio n of t his equatio n is gi ven b y the functi on , y(x) = ex p( -x 2 /4)H * (x/ √ 2) , wher e the functio[...]

  • Seite 535

    Pa g e 1 6 - 5 8 F irst , cr eate the e xpressi on defi ning the der iv ativ e and stor e it into var iable E Q. The f igur e to the left sho ws the AL G mode command, w hile the ri ght -hand side fi gure sho ws the RPN s tack be for e pre ssing K . Then , enter the NUMERICAL SOL V ER env ironment and s elect the differ ential equation sol ver : ?[...]

  • Seite 536

    Pa g e 1 6 - 59 @@OK@@ @INIT+ — .7 5 @@OK@@ ™™ @SOLVE (wai t) @EDIT (Changes initial v alue of t to 0.5, and f inal value of t to 0.7 5, s olv e for v(0.7 5 ) = 2 . 066…) @@OK@@ @INIT+ — 1 @@OK@@ ™ ™ @SO LVE (wai t) @EDIT (Changes initial v alue of t to 0.7 5, and f inal value of t to 1, s olv e for v(1) = 1. 5 6 2…) Repeat f or t =[...]

  • Seite 537

    Pa g e 1 6 - 6 0 Θ „ô (simultaneously , if in RPN mode) to ente r PL O T en vir onment Θ Highligh t the fi eld in fr ont of TYPE , using the —˜ k ey s. T hen, pr ess @CHOOS , and highlight Diff Eq , u sing the —˜ k ey s. Pre ss @@OK@@ . Θ Change fi eld F: to ‘EXP(- t^2)’ Θ Make sur e that the f ollo wing par ameters ar e set to: H-[...]

  • Seite 538

    Pa g e 1 6 - 6 1 LL @) PICT T o rec ove r m en u an d re tu rn t o PI CT e nvi ron m en t. @ ( X,Y ) @ T o determine coor dinates of an y point on the gr aph . Use the š™ k eys to mov e th e cur sor around the p lot area . At the bot tom of the sc r een yo u w ill see the coor dinates of the c ursor as (X,Y ) , i .e., the calc ulator uses X and [...]

  • Seite 539

    Pa g e 1 6 - 62 time t = 2 , the input for m for the diff erenti al equati on sol ver sho uld look as fo llow s (notice that the Init: v alue for the Soln: is a v ector [0, 6]): Press @SOLVE (wai t) @EDIT to so lv e f or w(t=2). The solution r eads [.16 716… - .6 2 71…], i .e ., x(2) = 0.16 716, and x'( 2) = v(2 ) = -0.6 2 71. Pr ess @CANC[...]

  • Seite 540

    Pa g e 1 6 - 6 3 (Changes initial v alue of t to 0.7 5, and final v alue of t to 1, solv e again for w(1) = [-0.4 6 9 -0.6 0 7]) Repeat f or t = 1.2 5, 1.5 0, 1.7 5, 2 . 00. Pre ss @@OK@@ after v ie wing the last r esult in @EDIT . T o r eturn to normal calc ulator display , pr ess $ or L @@OK@@ . T he differ ent soluti ons will be sho wn in the s [...]

  • Seite 541

    Pa g e 1 6 - 6 4 Notice that the opti on V- V ar : is set to 1, indicating that the fi rst element in the vec tor so lution , namely , x ’ , is to be plotted against the independent var iable t . Accept c hanges to PL O T SE TUP by pr essing L @@OK@@ . Press „ò (simultaneousl y , if in RPN mode) to enter the P L O T WINDO W env iro nment . Mod[...]

  • Seite 542

    Pa g e 1 6 - 65 Press LL @PICT @C ANCL $ to r etur n to nor mal calc ulator displ ay . Numerical solution for stiff first-order ODE Consi der the ODE: dy/dt = -100y+100t+101, sub ject t o the initial conditi on y(0) = 1. Ex act solution This equati on can be wri tten as dy/dt + 100 y = 100 t + 101, and sol ved using an integr ating factor , IF(t) =[...]

  • Seite 543

    Pa g e 1 6 - 6 6 Here w e are try ing to obtain the value of y( 2) giv en y(0) = 1. With the Soln: Final fi eld highlighted , pres s @SOLVE . Y o u can check that a so lution tak es about 6 s ec on ds, whi le in t he previous fir st - orde r exa mp le th e s olu tio n wa s a lm ost instantaneous . Press $ to cancel the calc ulation. This is an e xa[...]

  • Seite 544

    Pa g e 1 6 - 67 Note: T he option Stiff is also av ailable for gr aphical soluti ons of differ ential equations . Numerical solution to ODEs with the S OL VE/DIFF menu The S OL VE s oft menu is ac tiv ated by u sing 7 4 MENU in RPN mode . This menu is pre sented in detail in Cha pter 6 . One of the sub-menu s, DIFF , con tains functi ons for the nu[...]

  • Seite 545

    Pa g e 1 6 - 6 8 The value o f the solu tion , y fin a l , w i ll be a vailable in v ari able @@@y@@@ . This f unctio n is appr opriate f or progr amming since it leav es the differ ential equation spec ificati ons and the tolerance in the stac k read y for a ne w solution . Notice that the soluti on uses the initi al conditions x = 0 at y = 0. If [...]

  • Seite 546

    Pa g e 1 6 - 6 9 contain only the v alue of ε , and the s tep Δ x w ill be taken as a small def ault value . After running func tion @@RKF@@ , the stack w ill show the lines: 2 : {‘ x’ , ‘ y’ , ‘f(x,y)’ ‘ ∂ f/ ∂ x’ ‘ ∂ f/vy’ } 1: { εΔ x } The v alue of the soluti on, y fin al , w ill be availa ble in var iable @@@y@@@ [...]

  • Seite 547

    Pa g e 1 6 - 70 The se r esults indicate that ( Δ x) ne xt = 0. 340 4 9… Function RRKS TEP This f unction u ses an input list similar to that o f functi on RRK, as w ell as the toler ance for the sol ution , a possible step Δ x , and a number (L A S T) specify ing the last method u sed in the soluti on (1, if RKF was used , or 2 , if RRK was us[...]

  • Seite 548

    Pa g e 1 6 - 7 1 The se r esults indicate that ( Δ x) ne xt = 0. 005 5 8… and that the RKF method (CURRENT = 1) should be used. Function RKFERR This f unction r eturns the abs olute er r or estimate f or a gi ven s tep w hen sol v ing a pr oblem as that desc ribed f or func tion RKF . The input s tack looks a s follo ws: 2: ʳʳ ʳ {‘ x’ , ?[...]

  • Seite 549

    Pa g e 1 6 - 72 The f ollow ing scr een shots sho w the RPN stack be for e and after applicati on of functi on RSBERR: The se r esults indicate that Δ y = 4.1514… and err or = 2 .7 6 2 ..., f or Dx = 0.1. Chec k that , if Dx is reduced t o 0. 01, Δ y = -0. 003 0 7… and e rr or = 0. 0005 4 7 . Note : As yo u ex ecut e the commands in the D IFF[...]

  • Seite 550

    Pa g e 1 7- 1 Chapter 17 Pr obability Applications In this Chapter we pr ov ide ex amples of appli cations of calc ulator’s func tions to pr obabil ity distribu tions . The MTH/P ROB ABILITY .. sub-menu - par t 1 The MTH/P ROB ABI LI TY .. su b-menu is accessible thr ough the k ey str oke s equence „´ . With s ys tem flag 117 set to CHOOSE bo [...]

  • Seite 551

    Pa g e 1 7- 2 T o simplify notation , use P(n ,r) fo r p er mutations , and C(n,r ) for combinati ons. W e can calculate comb inations , perm utations , and factor ials with f unctions COMB , PERM, and ! fr om the MTH/PROB ABILITY .. sub-menu . T he oper ation of those f unctions is desc ribed next: Θ COMB(n ,r): Combinati ons of n items tak en r [...]

  • Seite 552

    Pa g e 1 7- 3 Random n u mber gene rat ors , in gener al, oper ate b y taking a v alue, called the “ seed” of the gener ator , and perfor ming some mathematical algor ithm on that “ seed” that gener ates a ne w (pseudo)r andom number . If y ou wan t to gener ate a sequence of n umber and be able to r epeat the same sequence later , y ou can[...]

  • Seite 553

    Pa g e 1 7- 4 fun ctio n (pmf) is r e pr esente d by f (x) = P[X=x], i .e., the pr obability that the ran d om vari ab le X ta kes th e va l ue x. The mas s distr ibution func tion mu st satisfy the conditions that f(x) >0, f or all x , and A cu mulativ e distributi on fu nctio n (cdf) is def ined as Next , we w ill define a number of f unctions[...]

  • Seite 554

    Pa g e 1 7- 5 P oisson distribution The probabilit y mass function of the P oisson di stribution is g i ven by . In this expr ession , if the random var iable X r epresen ts the number of occur rences of an ev ent or observati on per unit time, length , area , vo lume , etc., then the par ameter l repr esents the a ver age number of occ u rr ences [...]

  • Seite 555

    Pa g e 1 7- 6 Continuous probability distr ibutions The pr obability distributi on for a continuou s random v ari able , X, is char acter i zed b y a function f(x) kno wn as the pr obability density functi on (pdf) . The pdf ha s the follo wing pr operties: f(x) > 0, f or all x , and Pr obabiliti es ar e ca lc ulated using the cum ulati ve dis t[...]

  • Seite 556

    Pa g e 1 7- 7 , while its cdf is gi ven b y F(x) = 1 - exp(- x/ β ) , fo r x>0, β >0. The beta distr ibution The pdf f or the gamma distributi on is giv en by As in the case of the gamma distr ibution , the corres pond ing cdf f or the beta distr ibution is also gi ven b y an integr al wi th no clo sed-f orm soluti on. The W eibull distribu[...]

  • Seite 557

    Pa g e 1 7- 8 Exponential pdf: 'epdf(x) = EXP(-x/ β )/ β ' Exponential cdf: 'ecdf(x ) = 1 - EXP(-x/ β )' W eibull pdf: 'Wpdf(x) = α * β *x^( β -1)*EXP(- α *x^ β )' W eibull cdf: 'Wcdf(x) = 1 - EXP(- α *x^ β )' Use f uncti on DEFINE to define all the se func tions . Ne xt, ente r the values of α and[...]

  • Seite 558

    Pa g e 1 7- 9 Continuous distributions f o r statistical infer ence In this secti on we dis cu ss f our continu ous pr obability distr ibutions that ar e commonl y used f or pr oblems relat ed to statis tical infer ence . These distr ibutions ar e the normal distr ibution , the Student ’s t distr ibutio n, the C hi-squar e ( χ 2 ) distr ibution,[...]

  • Seite 559

    Pa g e 1 7- 1 0 wher e μ is the mean , and σ 2 is the var iance of the dis tributi on. T o calc ulate the val ue of f( μ , σ 2 ,x) for the nor mal distr ibution , use func tion NDIS T w ith the follo w ing arguments: the mean , μ , the v ari ance, σ 2 , and, the v alue x , i .e., NDIS T( μ , σ 2 ,x). For e xample , check that f or a normal [...]

  • Seite 560

    Pa g e 1 7- 1 1 wher e Γ ( α ) = ( α -1)! is the G AMM A func tion defined in Cha pter 3 . The calc ulator pro vi des for v alues of the upper - tail (cumulati ve) distr ibution functi on for the t-distr ibution , functi on UTPT , gi ven the par ameter ν and the value of t , i .e., UTPT( ν ,t). The def inition of this func tion is , theref ore[...]

  • Seite 561

    Pa g e 1 7- 1 2 The calc ulator pro vi des for v alues of the upper - tail (cumulati ve) distr ibution fun ctio n for th e χ 2 -distr ibution usi ng [UTPC] gi ven the v alue of x and the paramet er ν . T he definiti on of this func tion is , ther ef or e , T o use this f u ncti on, w e need the degrees o f fr eedom, ν , and the v alue of the chi[...]

  • Seite 562

    Pa g e 1 7- 1 3 The calc ulator pro vi des for v alues of the upper - tail (cumulati ve) distr ibution functi on for the F distr ibution, f unction UTPF , gi ven the paramet ers ν N and ν D, and t he value of F . T h e definition of this function is, theref ore , F or ex ample, to calc ulate UTPF(10,5, 2 .5 ) = 0.1618 34… Diffe rent pr obabilit[...]

  • Seite 563

    Pa g e 1 7- 1 4 Exponential: W eibull: F or the Gamma and Beta distr ibutions the e x pr essions to sol ve w ill be mor e compli cated due to the pr esence of in tegr als, i . e ., • Gamma , • Beta , A numer ical soluti on w ith the numerical s olv er will n ot be feasible beca use of the integr al sign in vo lv ed in the expr ession . How ev e[...]

  • Seite 564

    Pa g e 1 7- 1 5 Ther e are two r oots of this functi on found b y using function @ROOT w ithin the plot env iro nment . Becaus e of the integr al in the equation , the r oot is appr o ximated and w ill not be sho wn in the plot sc reen . Y o u will o nly get the mes sage Constant? Sho wn in the sc reen. Ho we ver , if yo u pres s ` at this poin t ,[...]

  • Seite 565

    Pa g e 1 7- 1 6 Notice that the second par ameter in the UTPN functi on is σ 2, n o t σ 2 , r epre senting the var iance of the distr ibution . Also , the s ymbol ν (the lo wer -case Gr eek letter no) is not a vailable in the calc ulator . Y o u can us e , for e xample , γ (gamma) instead o f ν . T he letter γ is availa ble thought the char a[...]

  • Seite 566

    Pa g e 1 7- 1 7 Thu s, at this point, y ou will hav e the f our equations av ailable for solution . Y ou needs ju st load one of the equations into the E Q f ield in the numer ical sol ver and proceed w ith solv ing fo r one of the var iables . Examples of the UTP T , UTPC, and UPTF ar e show n below : Notice that in all the e xamples sho wn abo ve[...]

  • Seite 567

    Pa g e 1 7- 1 8 With thes e four equati ons, w henev er you launch the n u mer ical solv er you hav e the fo llo w ing cho ices: Example s of soluti on of equations E QNA, E QT A, E QCA, and EQ F A ar e show n belo w: ʳʳʳʳʳ[...]

  • Seite 568

    P age 18-1 Chapter 18 Statistical Applications In this Chapter w e introdu ce statisti cal applicati ons of the calc ulator including statisti cs of a sample , fr equency dis tributi on of data, simple r egre ssi on, conf idence int ervals , and hy pothesis te sting . Pre-programmed statistical featur es The calc ulator pr ov ides pr e -progr ammed[...]

  • Seite 569

    P age 18-2 Stor e the progr am in a var iable called LX C. After s tor ing this pr ogram in RPN mode yo u can also use it in AL G mode . T o stor e a column vec tor into v ariable Σ D A T use f unction S T O Σ , a vaila ble thr ough the catalog ( ‚N ) , e .g., S T O Σ (AN S(1)) in AL G mode . Example 1 – Using the pr ogram LX C, defi ned abo[...]

  • Seite 570

    P age 18-3 Example 1 -- F or the data stor ed in the pr ev ious ex ample, the single -v ari able statis tics re sults ar e the f ollo wing: M e a n : 2. 1 3333333333 , S t d D e v: 0 . 96 42 0 79 49 4 0 6 , Va r i a n c e : 0 . 9 2969696969 7 T otal: 2 5 .6, Max imum: 4.5, Minimum: 1.1 Definitions The d efi ni tio n s used f or these quantities are[...]

  • Seite 571

    P age 18-4 Example s of calculati on of these measur es, using lis ts, ar e available in C hapter 8. The medi an is the value that splits the dat a set in the middle w hen the elements ar e placed in incr easing order . If you ha ve an odd number , n , of or der ed elements, the medi an of this sample is the v alue located in position (n+1)/2 . If [...]

  • Seite 572

    P age 18-5 The ran ge of the sample is the differ ence between the max imum and minimum value s of the sample . Since the calculat or , thr ough the pr e -pr ogrammed statisti cal functi ons pro vides the max imum and minimum v alues of the sample , y ou can easily calculate the r ange. Coefficient of variation The coe ffi cient o f var iation of a[...]

  • Seite 573

    P age 18-6 Definitions T o unders tand the meaning of thes e paramet ers w e pre sent the f ollow ing def initions : Gi ven a set of n data v alues: {x 1 , x 2 , …, x n } listed in no partic ular or der , it is o ften r equir ed to group thes e data into a s eri es of clas ses by counting the f requenc y or number of v alues corre sponding to eac[...]

  • Seite 574

    P age 18-7 Θ Generate the list of 200 numbe r by u sing RDLIS T(200) in AL G mode , or 200 ` @ RDLIST@ in RPN mode . Θ Use pr ogram LX C (see abov e) to conv ert the list thus gener ated into a column vec tor . Θ Stor e the column vector into Σ DA T, b y us i n g f u n c t io n STO Σ . Θ Obtain single -var iabl e infor mation using: ‚Ù @@@[...]

  • Seite 575

    P age 18-8 to calculate f or uniform-si ze classes (or b ins) , and the class mark is j ust the av erage of the c lass boundari es for eac h class . F inally , the cumulati ve fr equency is obtained by adding to eac h value in the last column , ex cept the fir st, the f requenc y in the next r o w , and re plac ing the r esult in the last column of[...]

  • Seite 576

    P age 18-9 « DUP S IZE 1 GET  f req k « {k 1} 0 CON  cfr eq « ‘freq(1,1)’ EV AL ‘ cfr eq(1,1)’ S T O 2 k FOR j ‘ cf r eq(j-1,1) +fr eq(j,1)’ EV AL ‘ cfr eq (j,1)’ ST O NE X T cfr eq » » » Sa ve it unde r the name CFREQ. Use this pr ogram t o gener ate the list of cu mulativ e fr equenc ies (pr ess @CFREQ wi th the column[...]

  • Seite 577

    P age 18-10 Θ P r ess @CANCEL to r eturn to the pr ev ious sc reen . Change the V-v iew and Bar Wi dth once mor e, n o w to r ead V - Vi ew: 0 3 0, Bar Width: 10. T he new histogr am, based on the same dat a set , now looks lik e this: A plot of fr equency count , f i , vs . class marks , xM i , is kno wn as a f r equency poly gon. A plot of the c[...]

  • Seite 578

    P age 18-11 Θ Fir st , enter the two r ow s of data into column in the v ari able Σ DA T b y us i n g the matri x wr iter , and f unction S T O Σ . Θ T o access the progr am 3. Fit data.. , us e the follo w ing k ey strok es: ‚Ù˜˜ @@@OK@@@ The input f orm w ill show the c urr ent Σ DA T , already loaded. If needed , change y our set up s [...]

  • Seite 579

    P age 18-12 Wher e s x , s y ar e the standar d dev iations of x and y , resp ecti vel y , i .e . The va lu es s xy and r xy are the "C ovar iance" and "Corr elation ," respec tiv ely , obtained by u sing the "F it data" featur e of the calc ulator . Lineari zed relationships Many c urvilinear r elatio nships "str[...]

  • Seite 580

    P age 18-13 The ge neral f orm of the r egressi on equation is η = A + B ξ . Best data fitting The calc ulator can determine w hich one of its linear or lineari z ed relati onship offer s the best fitting f or a set of (x ,y) data points. W e w ill illustrate the u se of this featur e wit h an e xample . Suppose y ou wan t to f ind whi ch one of [...]

  • Seite 581

    P age 18-14 X-Col, Y -C ol: these options appl y only whe n yo u have mor e than t w o columns in the matr ix Σ D A T . B y def ault, the x co lumn is column 1, and the y column is co lumn 2 . _ Σ X _ Σ Y… : summary statisti cs that you can c hoose as r esults of this pr ogram b y chec king the appropr iate f ield using [  CHK] when that f [...]

  • Seite 582

    P age 18-15 B. If n ⋅ p is an integer , s ay k, calc ulate the mean of the k - th and (k -1) th or der ed observati ons. This algor ithm can be implemented in the fo llo w ing pr ogr am typed in RPN mode (See C hapter 21 for pr ogr amming informati on) : « S ORT DUP S IZE  p X n « n p *  k « IF k CEIL k FL OOR - NO T THEN X k GET X k 1 +[...]

  • Seite 583

    P age 18-16 The D A T A sub-menu The D A T A su b-menu contains f unctions used t o manipulate the statis tics matri x Σ DA TA : The oper ation of thes e func tions is as f ollo ws: Σ + : add ro w in lev el 1 to bottom of Σ DA T A m a tr ix. Σ - : r emo ve s last r ow in Σ D A T A matr ix and places it in lev el of 1 of the s tac k. The modifi[...]

  • Seite 584

    P age 18-17 Σ P AR: sho ws statisti ca l par ameters. RE SET : r eset parameter s to default v alues INFO: sho ws s tatist ical par ameter s The MODL sub-menu within Σ PA R This sub-me nu cont ains func tio ns that let yo u change the data-fitting model t o LINFIT , L O GFIT , E XPFIT , P WRFIT or BE S TFIT by pr essing the appr opri ate button .[...]

  • Seite 585

    P age 18-18 The f unctions inc luded ar e: B A RP L: pr oduces a bar plot with dat a in Xcol column of the Σ D ATA m a t r i x . HIS TP: produce s histogr am of the data in Xcol column in the Σ DA T A m a t rix, using the def ault width cor res ponding to 13 bins unle ss the bin si z e is modifi ed using functi on BINS in the 1V AR sub-menu (see [...]

  • Seite 586

    P age 18-19 Σ X^2 : pr ov ides the sum of s quar es of values in Xcol column . Σ Y^2 : pro vi des the sum of squar es of values in Ycol column . Σ X*Y : pr ov ides the sum of x ⋅ y , i .e . , the pr oducts of data in columns Xcol and Ycol. N Σ : pro vi des the number of column s in the Σ DAT A m a t rix. Ex ampl e of S T A T menu oper ations[...]

  • Seite 587

    P age 18-20 @) STAT @ ) £PAR @RESET re sets statis tical par ameters L @) STAT @PLOT @SCA TR pr oduce s scatter plot @STATL dr aws data f it as a strai ght line @CANCL r eturns to main display Θ Determine the f itting equati on and some of its s tatisti cs: @) STAT @ ) FIT@ @£LINE produces '1.5+2*X' @@@LR@@@ produce s Intercept: 1.5, S[...]

  • Seite 588

    P age 18-21 Θ Fit dat a using columns 1 (x) and 3 (y) using a logar ithmic f it ting: L @) STAT @ ) £PAR 3 @YCOL select Ycol = 3, and @) MODL @ LOGFI select Model = Logfit L @) STAT @PLOT @ SCATR pr oduce scatter gram o f y vs. x @STATL sho w line for log f itting Obv iousl y , the log-f it is not a good choi ce. @CANCL r eturns to normal dis pla[...]

  • Seite 589

    P age 18-22 L @) STAT @PLOT @ SCATR pr oduce scatter gram o f y vs. x @STATL sho w line for log f itting Θ T o return to S T A T menu use: L @) STAT Θ T o get your v ari able menu back use: J . Confidence inter vals Statis tical infer ence is the proces s of making conclusi ons about a population based on info rmation f rom sample dat a. In or de[...]

  • Seite 590

    P age 18-2 3 Θ P oint es timation: w hen a single value o f the par ameter θ is pro vided . Θ Conf idence interval: a numer ical interval that contains the par ameter θ at a giv en leve l of pr obability . Θ Estimato r: r ule or method of estimati on of the parameter θ . Θ Estimate: v alue tha t the estimator y ields in a particu lar applica[...]

  • Seite 591

    P age 18-2 4 Θ The parameter α is know n as the signif icance le vel . T y pical v alues of α ar e 0.01, 0. 05, 0.1, corr esponding to conf idence lev els of 0.99 , 0.9 5 , and 0.90, r espectiv ely . Confidence intervals for the population mean when the population var iance is know n Let ⎯ X be the mean of a random sample of siz e n, dra wn fr[...]

  • Seite 592

    P age 18-2 5 Small samples and large samples The beha vi or of the Student’s t distr ibution is such that f or n>30, the distr ibution is indistinguishable fr om the standar d normal distributi on. Th us, for sample s larger than 3 0 elements when the population v ariance is unkno wn , y ou can use the same conf idence interval as when the pop[...]

  • Seite 593

    P age 18-2 6 Es timators for the mean and s tandar d dev iation o f the diff er ence and sum of the statisti cs S 1 and S 2 ar e gi v en b y: In t hese expressions, ⎯ X 1 and ⎯ X 2 ar e the values o f the statisti cs S 1 and S 2 from samples tak en fr om the t w o populations, and σ S1 2 and σ S2 2 ar e the var iances of the populations o f t[...]

  • Seite 594

    P age 18-2 7 In this case , the centered conf idence intervals fo r the sum and difference o f the mean value s of the populations , i .e., μ 1 ±μ 2 , ar e giv en by : wher e ν = n 1 +n 2 - 2 is the number of degr ees of fr eedom in the Student’s t distr ibution . In the last tw o options we spec ify that the population var iances, although u[...]

  • Seite 595

    P age 18- 28 These options are to be interpr eted as follow s : 1. Z -I NT : 1 μ .: Single sample conf idence interval f or the population mean, μ , w ith know n population var iance , or for lar ge samples with unkno wn populatio n var iance . 2. Z - I N T : μ1−μ2 .: Conf idence interval f or the differe n ce of the populati on means, μ 1 -[...]

  • Seite 596

    P age 18-29 Press @HELP to obtain a sc reen e xpla ining the meaning of the conf idence interval in terms o f random number s generated b y a calculator . T o s cr oll dow n the r esulting sc r een use the do wn-arr ow k ey ˜ . Pres s @@@OK@@@ whe n done with the help sc ree n. T his w ill retur n you to the sc reen sho wn abo ve . T o calculate t[...]

  • Seite 597

    P age 18-30 Example 2 -- Data f r om two s amples (sample s 1 and 2) indicate that ⎯ x 1 = 5 7 .8 and ⎯ x 2 = 60. 0. The sample si z es ar e n 1 = 4 5 and n 2 = 7 5 . If it is kno wn that the populations ’ standar d dev iations ar e σ 1 = 3 .2 , and σ 2 = 4. 5, determine the 9 0% confi dence interval f or the differ ence of the population m[...]

  • Seite 598

    P age 18-31 When done , pres s @@@OK@@@ . The r esults, as t ext and gr aph, are sho wn be lo w: Example 4 -- Determine a 90% conf idence interval for the diff er ence between two pr oportions if sample 1 sho ws 20 succe sses out of 120 tr ials, and sample 2 shows 15 s uccesses out of 1 00 trial s. Press ‚Ù— @@@OK@@@ to access the confidence i[...]

  • Seite 599

    P age 18-3 2 Example 5 – Determine a 9 5% confi dence interval f or the mean of the population if a sample of 5 0 elements has a mean of 15 .5 and a standar d dev iatio n of 5 . The population ’s standar d dev iation is unkno wn . Press ‚Ù— @@@OK@@@ to access the confidence inte rval featur e in the calc ulator . Pr ess —— @@@OK@@@ to [...]

  • Seite 600

    P age 18-3 3 The se re sults assume that the v alues s 1 and s 2 ar e the population standar d dev iations . If these v alues actually r eprese nt the samples ’ standar d d e viati ons, y ou should enter the same v alues as befor e, but w ith the option _pooled selected . T he re sults no w become: Confidence intervals for the var iance T o dev e[...]

  • Seite 601

    P age 18-34 The conf idence interv al for the populati on var iance σ 2 is t heref ore , [(n -1) ⋅ S 2 / χ 2 n-1 , α /2 ; (n-1) ⋅ S 2 / χ 2 n-1,1- α /2 ]. wher e χ 2 n-1 , α /2 , and χ 2 n-1,1- α /2 are the v alues that a χ 2 varia bl e, wit h ν = n -1 degr ees of f reedom , e x ceeds with pr obabiliti es α /2 and 1- α /2 , res pec[...]

  • Seite 602

    P age 18-35 Hy pot hesis testing A h ypo thesis is a declar ation made about a population (f or instance , w ith r espect t o its mean) . Acceptance o f the h ypothesis is bas ed on a statis tical te st on a sample tak en fr om the population . The consequent acti on and decision- making ar e called h ypo thesis testing . The pr ocess of h ypothesi[...]

  • Seite 603

    Pa g e 1 8 - 3 6 Err ors in h ypothesis testing In hy pothesis testing w e use the ter ms err ors of T y pe I and T y pe I I to def ine the cases in w hich a true h ypothesis is r ejec ted or a false h ypothe sis is accepted (not rejected) , respect i vely . Let T = valu e of test sta tistic, R = rejection region, A = acceptance r egion , thus , R [...]

  • Seite 604

    P age 18-3 7 The va lu e of β , i .e ., the pr obability of making an err or of T y pe II, depends on α , the sample si z e n, and on the true v alue of the paramete r tested . Thus , the val ue of β is determined after the h ypothesis te sting is perfor med. It is c usto mar y to dr aw gr aphs show ing β , or the po wer of the te st (1- β ), [...]

  • Seite 605

    P age 18-38 The c riter ia to us e for h ypothesis t esting is: Θ Re je ct H o if P -value < α Θ Do not r ej ect H o if P -value > α . The P -value fo r a two-sided test can be calculat ed using the pr obability func tio ns in the calc ulator as f ollo ws: Θ If using z , P -value = 2 ⋅ UTPN(0,1,|z o |) Θ If using t , P -value = 2 ⋅ [...]

  • Seite 606

    P age 18-3 9 Next , we us e the P -value assoc iated with eithe r z ο or t ο , and compare it to α to dec ide whether or no t to r ej ect the nul l hy pothesis. T he P -value f or a two-sided test is def ined as either P -value = P(z > |z o |), or , P - value = P(t > |t o |). The c riter ia to us e for h ypothesis t esting is: Θ Re je ct [...]

  • Seite 607

    P age 18-40 val ue s ⎯ x 1 and ⎯ x 2 , and standar d dev iations s 1 and s 2 . If the populations standar d dev iati ons cor re sponding to the samples, σ 1 and σ 2 , ar e kno wn , or if n 1 > 30 and n 2 > 30 (la rge samples) , th e test stat istic to be used is If n 1 < 30 or n 2 < 30 (at least one small s a mple), use the f ollo[...]

  • Seite 608

    P age 18-41 The c riter ia to us e for h ypothesis t esting is: Θ Re je ct H o if P -value < α Θ Do not r ej ect H o if P -value > α . P aired sample tests When w e deal with two s a mple s of si ze n w ith paired data po ints, inst ead of test ing the null h ypothesis , H o : μ 1 - μ 2 = δ , u sing the mean values and standar d dev ia[...]

  • Seite 609

    P age 18-4 2 wher e Φ (z) is the c umulativ e distributi on func tion (CDF) o f the standard nor mal distr ibution (see Cha pter 17). Re ject the null hy pothesis, H 0 , if z 0 >z α /2 , or if z 0 < - z α /2 . In other w ords , the r ejecti on regi on is R = { |z 0 | > z α /2 }, whil e the acceptance r egion is A = {|z 0 | < z α /2[...]

  • Seite 610

    P age 18-43 T w o - tail ed test If using a two- tailed test w e will f ind the v alu e of z α /2 , fr om Pr[Z> z α /2 ] = 1- Φ (z α /2 ) = α /2 , or Φ (z α /2 ) = 1- α /2 , wher e Φ (z) is the c umulativ e distributi on func tion (CDF) o f the standard nor mal distr ibution . Re ject the null hy pothesis, H 0 , if z 0 >z α /2 , or [...]

  • Seite 611

    P age 18-44 1. Z - T est: 1 μ .: Single sample h ypothesis te sting f or the population mean, μ , w ith kno wn populati on var iance , or for lar ge samples w ith unknow n populatio n var iance . 2. Z - Te s t : μ1−μ2 .: Hy pothesis tes ting for the diff erence o f the population means, μ 1 - μ 2 , w ith either kno wn population v ariances [...]

  • Seite 612

    P age 18-45 Then , we r ejec t H 0 : μ = 150 , against H 1 : μ ≠ 150 . The tes t z value is z 0 = 5. 656854. T he P- va l u e i s 1. 54 × 10 -8 . Th e crit ica l va l ues of ± z α /2 = ± 1.9 5 99 64 , corr esponding to c ritical ⎯ x range o f {14 7 .2 15 2 .8}. This inf ormati on can be observed gr aphically b y pres sing the so ft -menu [...]

  • Seite 613

    P age 18-46 W e re ject the null h ypothe sis, H 0 : μ 0 = 15 0, against the alter nativ e hy pothesis , H 1 : μ > 150. T he test t va lue is t 0 = 5 .6 5 68 54 , w ith a P -value = 0. 0000003 9 35 2 5 . The c riti cal value of t is t α = 1.6 7 65 51, corr esponding to a crit ica l ⎯ x = 15 2 . 3 71. Press @GRAPH to see the results gr aphic[...]

  • Seite 614

    P age 18-4 7 Th us, w e accept (mor e accurat el y , w e do not r ejec t) the hy pothesis: H 0 : μ 1 −μ 2 = 0 , or H 0 : μ 1 =μ 2 , against the alter nati ve h ypothesis H 1 : μ 1 −μ 2 < 0 , or H 1 : μ 1 =μ 2 . The test t value is t 0 = -1. 3417 7 6 , w i th a P -value = 0. 09130 9 61, and cr itical t is –t α = -1.6 5 9 7 8 2 . Th[...]

  • Seite 615

    P age 18-48 The t est c r iter ia are the s ame as in h ypothesis te sting of means, name ly , Θ Re je ct H o if P -value < α Θ Do not r ej ect H o if P -value > α . P lease notice that this pr ocedure is v alid only if the populati on fr om whic h the sample wa s tak en is a Nor mal population . Example 1 -- Consi der the case in w hic h[...]

  • Seite 616

    P age 18-4 9 The f ollow ing table sho ws ho w to select the n umer ator and denominator f or F o depending on the alternati ve h ypothe sis cho sen: _______________ ____________________ _____________________ ____________ Alternat i ve T est Degrees h ypothesis s tatistic o f freedom _______________ ____________________ _____________________ ______[...]

  • Seite 617

    P age 18-50 Ther efor e, the F test statistics is F o = s M 2 /s m 2 =0.3 6/0.25=1.44 The P -v alue is P -value = P(F>F o ) = P(F>1.44) = UTPF( ν N , ν D ,F o ) = UTPF(20, 3 0,1.44) = 0.17 8 8… Since 0.17 8 8… > 0.0 5, i .e ., P -value > α , ther efor e , we cannot r eject the null h ypothesis that H o : σ 1 2 = σ 2 2 . Additio[...]

  • Seite 618

    P age 18-51 W e get the, s o -called, nor mal equations: This is a s ys tem o f linear equati ons w ith a and b as the unkno wns , whi ch can be sol ved u sing the linear equation featur es of the calculator . There is , ho we ver , no need to bother w ith these calc ulations because y ou can use the 3. Fit Data … option in the ‚Ù men u as pr [...]

  • Seite 619

    Pa g e 1 8 - 52 F rom w hic h it fo llow s that the standar d dev iations o f x and y , and the cov ariance of x ,y are giv en, r especti ve ly , by , , and Also , the sample corr elation coeff ici ent is In ter ms of ⎯ x, ⎯ y, S xx , S yy , and S xy , the soluti on to the normal eq uations is: , Prediction error The r egr essi on curve o f Y o[...]

  • Seite 620

    Pa g e 1 8 - 5 3 Θ Confi d ence limits f or r egr essi on coeffi ci ents: F or the slope ( Β ): b − (t n- 2 , α /2 ) ⋅ s e / √ S xx < Β < b + (t n- 2 , α /2 ) ⋅ s e / √ S xx , F or the inter cept ( Α ): a − (t n- 2 , α /2 ) ⋅ s e ⋅ [(1/n)+ ⎯ x 2 /S xx ] 1/2 < Α < a + (t n- 2 , α /2 ) ⋅ s e ⋅ [(1/n)+ ⎯ x [...]

  • Seite 621

    P age 18-54 a+b ⋅ x+(t n- 2 , α /2 ) ⋅ s e ⋅ [1+(1/n)+(x 0 - ⎯ x) 2 /S xx ] 1/2 . Procedur e for inference statistics f or linear regression using the calculator 1) Enter (x ,y) as columns of data in the statis tical matr ix Σ D AT. 2) Pr oduce a scatterplot f or the appr opri ate columns o f Σ D A T , and us e appr opri ate H- and V -VI[...]

  • Seite 622

    Pa g e 1 8 - 5 5 1: Covariance: 2.025 The se r esults are int erpr eted as a = -0.8 6 , b = 3 .2 4 , r xy = 0.9 89 7 2 02 2 9 7 4 9 , and s xy = 2 . 02 5 . The corr elation coeff ic ient is clo se enough to 1.0 t o conf irm the linear tr end obse rved in the gr aph . Fro m t h e Single-var… opti on of the ‚Ù menu w e fi nd: ⎯ x = 3, s x = 0.[...]

  • Seite 623

    P age 18-5 6 Example 2 -- Su ppose that the y-data used in Ex ample 1 repr esent the elongation (in h undr edths of an inc h) of a me tal w ire w hen sub jec ted to a f orce x (in tens of pounds) . T he phy sical phenomenon is suc h that we e xpect the inter cept, A, to be z er o. T o c heck if that should be the case, w e test the null h ypothes i[...]

  • Seite 624

    P age 18-5 7 Multiple lin ear fitting Consi der a data set of the for m Suppos e that w e searc h for a data f itting of the fo rm y = b 0 + b 1 ⋅ x 1 + b 2 ⋅ x 2 + b 3 ⋅ x 3 + … + b n ⋅ x n . Y o u can obtain the least -squar e appro ximati on to the values of the c oeffic ients b = [b 0 b 1 b 2 b 3 … b n ], by pu tting together the ma[...]

  • Seite 625

    P age 18-5 8 With the calc ulator , in RPN mode , yo u can pr oceed as fo llo ws: F irst , w ithin your HO ME direc tory , c r eate a sub-dir ectory to be called MPFIT (Multiple linear and P o ly nomial data FI Tting) , and enter the MPFI T sub- dir ectory . W ithin the sub-direct ory , type this pr ogram: «  X y « X TRAN X * INV X TRAN * y * [...]

  • Seite 626

    P age 18-5 9 Compar e these f itted values w ith the ori ginal data as sho wn in the ta ble belo w: P ol ynomial fitting Consider the x -y data set {(x 1 ,y 1 ), (x 2 ,y 2 ), …, (x n ,y n )}. Suppose that w e want to fit a po ly nomial or order p to this data s et . In other wor ds, w e seek a f it ting of the f orm y = b 0 + b 1 ⋅ x + b 2 ⋅ [...]

  • Seite 627

    P age 18-60 If p > n-1 , then add columns n+1, …, p-1, p+1 , to V n to for m matr ix X . In step 3 f r om this lis t , w e hav e to be aw are that column i ( i = n+1, n+2 , …, p+1 ) is the vec tor [x 1 i x 2 i … x n i ]. If we w ere to u se a list of data value s for x rathe r than a vec tor , i .e ., x = { x 1 x 2 … x n }, w e can easil[...]

  • Seite 628

    P age 18-61 « Open pr ogram  x y p E nter lists x and y , and p (le vels 3,2 ,1) « Open subpr ogram 1 x SI ZE  n Determine si z e of x list « Open subpr ogram 2 x V ANDERMONDE P lace x in stack , obtain V n IF ‘ p<n -1’ THEN This IF implements step 3 in algor ithm n P lace n in stac k p 2 + Calculate p+1 FOR j Start loop j = n -1, n[...]

  • Seite 629

    P age 18-6 2 Becaus e w e w ill be using the same x -y data for f itting poly nomials of diff er ent or ders , it is adv isable to sav e the lists of data v alues x and y into var iables xx and yy , r especti vel y . This w ay , we w ill not have to ty pe them all o ver again in each a pplicati on of the pr ogram P OL Y . T hus , pr oceed as follo [...]

  • Seite 630

    P age 18-63 Θ The cor relation coe ffi cient , r . T h is value is constr ained to the range –1 < r < 1. The clo ser r is to +1 or –1, the better the data fitting . Θ The sum o f squar ed erro rs, S SE . This is the quantity that is to be minimi zed b y least-squar e approac h. Θ A plot of r esiduals . This is a plot of the err or corr[...]

  • Seite 631

    P age 18-64 x V ANDERMONDE P lace x in st ack , obtain V n IF ‘ p<n -1’ THEN T his IF is step 3 in algor ithm n P lace n in stac k p 2 + C alculate p+1 FOR j Start loop, j = n-1 to p+1, step = -1 j COL − D R OP Remo ve column, dr op from s tack -1 S TEP C lose F OR-S TEP loop ELSE IF ‘ p>n -1’ THEN n 1 + C alculate n+1 p 1 + Calc ul[...]

  • Seite 632

    P age 18-65 “SSE”  T A G T ag r esult as S SE » Close sub-pr ogram 4 » Close sub-pr ogram 3 » Clo se sub-pr ogram 2 » Clo se sub-pr ogram 1 » Clos e main progr am Sa ve this pr ogram unde r the name PO L Y R , to emphasi z e calculati on of the correlation c oeffic ient r . Using the POL Y R progr am for values o f p between 2 and 6 pr [...]

  • Seite 633

    P age 19-1 Chapter 19 Numbers in Different Bases In this Chapter w e pre sent e xamples o f calculati ons of number in base s other than the dec ima l basis . Definitions Th e nu m b e r sys t e m u s e d fo r e ve r yd a y a ri t h m e t ic i s k n own a s t h e decimal syst em fo r it uses 10 (L atin, deca) di gits, namely 0-9 , t o wr ite out an[...]

  • Seite 634

    P age 19-2 With s yst em flag 117 set to S OFT menus , the B ASE men u show s the follo wing: With this f ormat , it is ev ident that the L OGIC, BIT , and B YTE entr ies w ithin the B ASE menu a r e themselves sub-menus. These me nus are discussed later in this Chapter . Functions HEX, DEC, OCT , and B IN Numbers in non-decimal sy stems ar e wr it[...]

  • Seite 635

    P age 19-3 As the deci mal (DEC) s ystem has 10 di gits (0,1,2 , 3,4 ,5, 6, 7 ,8 , 9 ) , the hex adecimal (HEX) s yst em has 16 digits (0,1,2 , 3, 4,5, 6, 7 , 8, 9 ,A,B ,C,D,E ,F), the octal (OCT) sy stem has 8 digits (0,1,2 , 3,4 ,5,6 , 7) , and the binary (BIN) sy stem has only 2 digits (0,1). Conv ersion bet ween number s ystems Whatev er the nu[...]

  • Seite 636

    P age 19-4 The onl y effect o f selecting the DEC imal sy stem is that dec imal number s, w hen started w ith the sy mbol #, are w ritten with the suff ix d . W ordsi ze The w ordsi z e is the number of bits in a binary obj ect . By defa ult , the wor dsiz e is 64 bites . F unction RCW S (ReC all W ordSi z e) shows the c urr ent wor d si z e. F unc[...]

  • Seite 637

    P age 19-5 The L OGIC m enu The L OGIC men u, a vaila ble thr ough the B ASE ( ‚ã ) pr ov ides the f ollow ing fun ctio ns : The f unctions AND , OR, X OR (ex clusi ve OR), and NO T ar e logical f uncti ons. The in put to these f unctions ar e two v alues or e xpre ssi ons (one in the case of NO T) that can be e xpressed as b inary logical resul[...]

  • Seite 638

    P age 19-6 AND (BIN) OR (BIN) XO R (BIN) NO T (HEX) The BI T menu The BI T menu , available thr ough the BA SE ( ‚ã ) pro vide s the follo wing fun ctio ns : F unctions RL, SL , ASR , SR, RR , contained in the BI T menu , are u sed to manipulate bits in a b inar y integer . The def inition of the se fu ncti ons ar e sho wn belo w: RL: R otate Le[...]

  • Seite 639

    P age 19-7 The B YTE menu The B Y TE menu , av ailable thr ough the BA SE ( ‚ã ) pr ov ides the fo llo w ing fun ctio ns : F unctions RLB, SLB , SRB, RRB, co ntained in the BIT menu , ar e used to manipulate bits in a b inar y integer . The def inition of the se fu ncti ons ar e sho wn belo w: RLB: Rotate L eft one byte , e.g ., #110 0b  #110[...]

  • Seite 640

    Pa g e 2 0 - 1 Chapter 20 Customi zing menus and k ey board Thr ough the use of the man y calculator menu s yo u hav e become familiar w ith the oper ation of men us f or a var iety of a pplicatio ns. Also , you are f amiliar w ith the man y functi ons availa ble by u sing the ke ys in the k ey board , whether thr ough their main f unction , or by [...]

  • Seite 641

    Pa g e 2 0 - 2 Menu numbers (RCLMENU and MENU func tions) E ach pr e -defined men u has a number attached to it . F or e xample , suppose that y ou acti vate the MTH menu ( „´ ). Then , using the functi on catalog ( ‚N ) find f u ncti on RCLMENU and acti vate it. In AL G mode simple pr ess ` after RCLMENU() sh ow s up in the sc reen . The r es[...]

  • Seite 642

    Pa g e 2 0 - 3 T o acti vate an y of those f unctions y ou simply need to enter the function argume nt (a number ) , and then pr ess the corr esponding soft menu k ey . In AL G mode , the list to be en ter ed as argument of func tion TMENU or MENU is mor e complicated: {{“ e xp” , ”E XP( “},{“ln ” , ”LN(“},{“Gamma” , ”G AMMA(?[...]

  • Seite 643

    Pa g e 2 0 - 4 Y o u can try using this list wi th TMENU or MENU in RPN mode to ver if y that y ou get the same menu as obt ained earli er in AL G mode. Menu spec ification and CST v ariable F rom the tw o ex erc ises sho wn abo ve w e notice that the most gener al menu spec ificati on list include a n umber of sub-lists equal to the number of item[...]

  • Seite 644

    Pa g e 2 0 - 5 Customizing the k e yboard E ach k ey in the k ey board can be iden tifi ed by two n umbers r e pr esenting their r o w and column. F or ex ample , the V AR k ey ( J ) is located in ro w 3 of column 1, and w ill be r eferr ed to as k ey 31. Now , since each k ey has up to ten functi ons assoc iated w i th it , each f uncti on is spec[...]

  • Seite 645

    Pa g e 2 0 - 6 The f unctions av ailable are: AS N: Assi gns an object to a k ey spec ifie d by XY .Z S T OK E Y S: Stores user -defined key list RCL KEYS: Ret urn s curren t use r-defi ne d key li st DELKEY S: Un-assigns one or mor e ke ys in the cur rent us er -d ef ined ke y list, the ar guments are e ither 0, to un-assign all use r -def ined k [...]

  • Seite 646

    Pa g e 2 0 - 7 Operating user-defined ke ys T o operate this us er -defined k ey , enter „Ì bef ore pr essing the C key . Notice that after pr essing „Ì the sc reen sho ws the spec ificati on 1USR in the second displa y line. Pr essing f or „Ì C f or this e xample , you should r ecove r the PL O T menu as foll o ws: If y ou hav e more than[...]

  • Seite 647

    Pa g e 2 0 - 8 T o un -assign all user-def ined k eys use: AL G mode: DELKEYS (0) RPN mode: 0 DELKEYS Chec k that the user -k e y def initions w ere r emov ed by using f u ncti on RCLKEY S .[...]

  • Seite 648

    P age 21-1 Chapter 21 Pr ogramming in User RP L language Use r RPL language is the pr ogramming language mo st commonl y used to pr ogram the calc ulator . T he progr am components can be put together in the line editor by inc luding them bet w een progr a m containers « » in the appr opriat e orde r . Becau se there is mor e exper ience among ca[...]

  • Seite 649

    P age 21-2 „´ @LIST @ADD@ ADD Calc ulate (1+x 2 ), / / the n div ide ['] ~„x™ 'x' „° @) @MEM@@ @ ) @DIR@@ @ PURGE PURGE Purg e va riab l e x ` Pr ogram in le vel 1 _______________ ________ ____ ______ _________________ ____ T o sa ve the pr ogram u se: ['] ~„gK Press J to reco ver y our vari able menu , and ev aluate[...]

  • Seite 650

    P age 21-3 use a local v ari able within the pr ogram that is only de fined f or that progr am and w ill not be availa ble fo r use after pr ogram e xec ution. T he pre vi ous pr ogram could be modif ied to r ead: « → x « x SINH 1 x SQ ADD / »» The ar ro w sy mbol ( → ) is obtained b y combining the r ight-shift k ey ‚ w ith the 0 key , i[...]

  • Seite 651

    P age 21-4 Global V ariable Scope An y vari able that you def ine in the HOME direc tory or any o ther dir ectory or sub-dir ectory will be consider ed a global var iable fr om the point of v iew o f pr ogram de velopment . How ev er , the scope of such v ariable , i .e ., the location in the dir ectory tr ee wher e the var iable is accessible , w [...]

  • Seite 652

    P age 21-5 Local V ariable Scope Local v ariable s are ac tiv e only w ithin a progr am or sub-pr ogr am. The ref ore , their s cope is limited to t he pr ogram or sub-pr ogram w her e the y’r e defined . An e xam ple of a local var iable is the inde x in a FOR loop (desc ribed later in this chapter ) , for e xample « → n x « 1 n FOR j x NEXT[...]

  • Seite 653

    P age 21-6 S T ART : ST AR T -NEXT-S TEP constru ct f or br anching FOR: FOR-NE XT- STEP constr uct for loops DO: DO-UNT IL -END constru ct f or loops WHILE: WHILE -REPEA T -END cons truc t f or loops TE S T : Compar ison operator s, logical oper ators, f lag testing f unctions TYPE: F unctions f or conv er ting obj ect types , splitting objects, e[...]

  • Seite 654

    P age 21-7 Functions listed b y sub-menu The f ollow ing is a listing of the func tions w ithin the PRG sub-me nus list ed by sub- menu . ST A CK MEM/DIR BR CH/IF BRCH/WHILE TYP E DUP P UR GE IF WHILE OB J  SW A P RC L TH E N R E PE A T  ARR Y DRO P S T O ELSE END  LIST O V ER P A TH END  ST R RO T CRDIR TES T  TAG UNRO T PGDIR BRCH/[...]

  • Seite 655

    P age 21-8 LIST/ELEM GROB CHARS MODES/FLAG MO DES/MISC GET  GROB SU B SF BEEP GET I BLANK REPL CF CLK PUT GO R POS F S? S Y M PUTI GX OR SIZ E FC ? S T K SI ZE S UB NUM F S?C ARG PO S REPL CHR F S?C CMD HEAD  LC D O B J  FC?C INFO TA I L LC D  STR ST O F SIZE H EAD RC LF IN LIS T/PR OC ANIMA TE T AIL RE SET INFORM DOLIS T SREPL N O V[...]

  • Seite 656

    P age 21-9 Shortc uts in the PR G menu Many o f the functi ons listed abo ve f or the PRG menu ar e readil y av ailable thr ough other means: Θ Compar ison operators ( ≠ , ≤ , <, ≥ , >) are a vailable in the k eyboar d. Θ Many f unctions and s ettings in the MODE S sub-menu can be acti vated by u s ing the input f unctions pr ov ided [...]

  • Seite 657

    P age 21-10 „ @) @IF@@ „ @CASE@ „ @) @IF@@ „ @CASE@ „ @) START „ @) @FOR@ „ @) START „ @) @FOR@ „ @)@@DO@@ „ @WHILE Notice that the inse rt prompt (  ) is a vaila ble after the k ey w ord f or each constr uct so y ou can start typing at the r ight location. K e ystr oke sequence f or commonly used commands The f ollow ing are[...]

  • Seite 658

    P age 21-11 @) STACK DUP „° @) STACK @@DUP@ @ SW A P „° @) STACK @S WAP@ DRO P „° @) STACK @DROP@ @) @MEM@@ @ ) @DIR@@ PUR GE „° @) @MEM@@ @ ) @DIR@ @ @PURGE ORDER „° @) @MEM @@ @ ) @DIR@ @ @ORDER @) @BRCH@ @ )@IF@@ IF „° @) @BRCH@ @ ) @IF@@ @@@IF@@@ THEN „° @) @BRCH@ @ ) @IF@@ @THEN@ ELSE „° @) @B RCH@ @ ) @ IF@@ @ELSE @ EN[...]

  • Seite 659

    P age 21-12 @) @BRCH@ @ ) WHILE@ WHILE „° @) @BRCH@ @ ) WHILE@ @WHILE REPE A T „° ) @BRCH@ @ ) WHILE@ @REP EA END „° ) @BRCH@ @ ) WHILE@ @@ END@ @) TEST@ == „° @) TEST@ @@@ ≠ @@@ AND „° @) TEST@ L @@AND@ OR „° @) TEST@ L @@@OR@@ XOR „° @) TEST@ L @@XOR@ NO T „° @) TEST@ L @@NOT@ SA M E „° @) TEST@ L @SAME SF „° @) TE[...]

  • Seite 660

    P age 21-13 @) LIST@ @ ) PRO C@ REVLI S T „° @) LIST@ @ ) PROC@ @REVL I@ SO RT „° @) LIST@ @ ) PROC@ L @SORT@ SEQ „° @) LIST@ @ ) PROC@ L @@SEQ@@ @) MODES @ ) ANGLE@ DE G „°L @) MODES @ ) ANGLE@ @@ DEG@@ RAD „°L @) MODES @ ) ANGLE@ @ @RAD@@ @) MODES @ ) MENU@ CST „°L @) MODES @ ) MENU@ @@CST@@ MENU „°L @) MODES @ ) MENU@ @@MENU[...]

  • Seite 661

    P age 21-14 fun ction s from the MT H m enu. Specific ally , you ca n use fun ctio ns for li st oper ations such as S ORT , Σ LI ST , et c., a vaila ble throug h the MTH/LIS T menu . As additional pr ogramming e xer cise s, and to try the ke ystr ok e sequences lis ted abo ve , we pr esent her ein thr e e pr ograms f o r c r eating or manipulating[...]

  • Seite 662

    P age 21-15 Ex amples of sequential progr amming In gener al, a pr ogram is an y sequence o f calculato r instructi ons enclosed between the pr ogram container s and ». Subprogr ams can be inc luded as part of a progr am. The e xamples pr esented pr ev iousl y in this guide (e.g ., in Chapte rs 3 and 8) 6 can be cla ssif ied basi cally into tw o t[...]

  • Seite 663

    P age 21-16 wher e C u is a constant that depends on the sy stem of units used [C u = 1. 0 for units of the International S ys tem (S.I .) , and C u = 1.4 8 6 f or units of the English S yste m (E .S .)], n is the Ma nning ’s re sistance coeff ic ient, w hich depends on the type of c hannel lining and other f actor s, y 0 is the flo w depth, and [...]

  • Seite 664

    P age 21-17 Y o u can also separ ate the input data w ith spaces in a single stac k line rathe r than using ` . Progr ams that simulate a sequence of stac k operations In this case , the terms to be inv olv ed in the sequence of oper ations are assumed to be pr esent in the stac k. The pr ogram is ty ped in by f irst opening the pr ogram cont ainer[...]

  • Seite 665

    P age 21-18 As yo u can see , y is used fir st, then w e use b , g, and Q, in that or der . Ther efor e, f or the purpose of this calc ulation we need to enter the v ariables in the inv erse or der , i .e., (do not ty pe the fo llo w ing): Q ` g ` b ` y ` F or the spec ifi c values under consider ation w e use: 23 ` 32. 2 ` 3 ` 2 ` The pr ogram its[...]

  • Seite 666

    P age 21-19 Sav e the progr am into a v ari able called hv: ³~„h~„v K A ne w var iable @@@hv @@@ should be a vailable in y our soft k ey men u . (Pre ss J to see y our var iable list .) The pr ogram le f t in the s tack can be e valuated b y using functi on EV AL. T he re sult should be 0.2 2817 4…, as befo r e. A lso , the pr ogram is av ai[...]

  • Seite 667

    P age 21-20 it is alw ay s pos s ible to r ecall the pr ogr am def inition into the s tack ( ‚ @@@q@@@ ) to see the or der in whic h the v ariabl es mus t be enter ed, namel y , → Cu n y0 S0 . Ho we ver , for the case of the pr ogram @@hv@@ , its def inition « * SQ * 2 * S W AP SQ S W AP / » does not pr ov ide a clue of the or der in whi ch t[...]

  • Seite 668

    P age 21-21 whi ch indicates the positi on of the differ ent stack in put lev els in the form ula. B y compar ing this r esult with the or iginal f ormula that w e progr ammed, i .e., w e find that w e must enter y in st ack lev el 1 (S1) , b in stac k lev el 2 (S2), g in stac k leve l 3 (S3), and Q in stack le ve l 4 (S4) . Prompt w ith an input s[...]

  • Seite 669

    P age 21-22 The r esult is a stac k prom pting the user for the value o f a and placing the c ursor ri ght in fr ont of the pr ompt :a: Enter a value fo r a, sa y 35, then pr ess ` . The r esult is the input str ing :a:35 in stack lev el 1. A function with an input string If y ou w er e to use this p iece of code to calc ulate the func tion , f(a) [...]

  • Seite 670

    P age 21-2 3 @SST ↓ @ Result: e mpt y stac k, e xec uting → a @SST ↓ @ Result: empty stac k, ente ring subpr ogram « @SST ↓ @ Re sult: ‘2*a^2+3’ @SST ↓ @ Result: ‘2*a^2+3’ , leav ing subpr ogram » @SST ↓ @ Result: ‘2*a^2+3’ , leav ing main progr am» F ur ther pr essing the @SST ↓ @ soft menu k ey pr oduces no mor e outp[...]

  • Seite 671

    P age 21-2 4 Fi xing the program The onl y possible explanati on fo r the failur e of the pr ogram to pr oduce a numer ical re sult seems to be the lac k of the command  NUM after the algebrai c expr ession ‘2*a^2+3’ . L et’s edit the pr ogram by adding the missing EV AL f u ncti on. T he pr ogram , after editing, should r ead as follo ws:[...]

  • Seite 672

    P age 21-2 5 Input string pr ogram for two input v alues The in put str ing pr ogram for tw o input values, sa y a and b, looks as f ollo ws: « “ Enter a and b: “ { “  :a:  :b: “ {2 0} V } INPUT OBJ → » This pr ogram can be easil y cr eated by modify ing the contents of INP T a. Sto r e this pr ogr am into v ari able INPT2 . Appli[...]

  • Seite 673

    P age 21-2 6 ` . The r esult is 4 9 88 7 . 06_J/m^3 . The units of J/m^3 are equi valent to P ascals (P a), the pre fer red pr essur e unit in the S.I . s ystem . In put stri ng progra m for thre e i npu t valu es The in put str ing progr am for thr ee input v alues, sa y a ,b, and c , looks as fo llow s: « “ Enter a, b and c: “ { “  :a: [...]

  • Seite 674

    P age 21-2 7 Enter v alues of V = 0. 01_m^3, T = 300_K , and n = 0.8_mol. Be fo r e pre ssing ` , the stack w ill look like this: Press ` to get the result 19 9 54 8.2 4_J/m^3, or 199 54 8.2 4_P a = 199 .5 5 kP a . Input through input f orms F unction INFORM ( „°L @) @@IN@ @ @INFOR@ .) c an be used t o cr eate detailed input fo rms for a pr ogra[...]

  • Seite 675

    Pa g e 2 1 - 2 8 The lis ts in items 4 and 5 can be em pty lists. A lso , if no value is t o be selected f or these options y ou can use the NO V AL command ( „°L @) @@IN@@ @NOVAL@ ). After f unction INF ORM is a cti vated y ou will get as a r esult either a z er o, in case the @CANCEL opti on is enter ed, or a lis t with the v a lues ent er e d[...]

  • Seite 676

    P age 21-29 3 . F ield for m at info rmati on: { } (an empty list , thus , defa ult value s used) 4. List of reset values: { 120 1 .0001} 5 . Lis t of initial v alues: { 110 1.5 .00001} Save th e prog ram in to vari ab le IN FP 1 . P ress @INFP1 t o run the pr ogram . The input fo rm, w ith initial values loaded , is as follo ws: T o see the eff ec[...]

  • Seite 677

    P age 21-30 Th us , we demons tr ated the us e of f unction INF ORM. T o see how t o use thes e input v alues in a calculati on modif y the pr ogram as fo llo ws: « “ CHEZY’S EQN” { { “C:” “Chezy’s coe fficient” 0} { “R:” “Hydraulic radius” 0 } { “S:” “Channel bed slope” 0} } { } { 120 1 .0001} { 110 1.5 .00001 } I [...]

  • Seite 678

    P age 21-31 « “ CHEZY’S EQN” { { “C :” “Chezy’s coefficient” 0} { “R:” “Hydraulic radius” 0 } { “S:” “Channel bed slope” 0} } { 2 1 } { 120 1 .0001} { 110 1.5 .00001 } INFORM IF THEN OBJ  DROP  C R S ‘C*(R*S)’  NUM “Q”  TAG ELSE “Operation cancelled” MSGBOX END » R unning pr ogr am @INFP2 pr[...]

  • Seite 679

    P age 21-3 2 Acti vati on of the CHOO SE function w ill r eturn e ither a ze r o , if a @CANCEL ac tion is used , or , if a ch oice is made , the cho ice selected (e .g., v) and the numbe r 1, i . e ., in the RPN stack: Example 1 – Manning’s equati on f or calc ulating the veloc it y in an open cha n nel flow in clu de s a co ef ficient, C u , [...]

  • Seite 680

    P age 21-3 3 commands “Operation cancelled” MSGBOX w ill sho w a message bo x indicating that the oper ation wa s cancelled. Identif y ing output in progr ams The simple st wa y to identify numer ical progr am output is to “tag” the pr ogram r esults . A tag is simply a str ing at tac hed to a number , or to an y object . The str i ng w ill[...]

  • Seite 681

    P age 21-34 Ex ampl es of tagged output Example 1 – tagging output fr om function FUNC a Let ’s modify the function FUNCa , defined ear lier , t o produce a t agged output . Use ‚ @FUNCa to r ecall the contents of FUNCa to the stac k. The or iginal functi on progr am reads « “ Enter a: “ { “  :a: “ {2 0} V } INPU T OBJ →→ a «[...]

  • Seite 682

    Pa g e 2 1 - 3 5 « “ Enter a: “ { “  :a: “ {2 0} V } INPUT OBJ →→ a « ‘ 2*a^2+3 ‘ EVAL ” F ” → TAG a SWAP »» (Recall that the f uncti on S W AP is availa ble by u sing „° @) STACK @SWAP@ ). Stor e the progr am back into FUNCa b y using „ @FUNCa . Next , run the pr ogram b y pres sing @FUNCa . Enter a v alue of 2 wh[...]

  • Seite 683

    Pa g e 2 1 - 3 6 Example 3 – tagging input and output f rom func tion p(V , T) In this ex ample we modify the pr ogram @@@p@@@ so that the o utput tagged inpu t value s and tagged r esult . Use ‚ @@@p@@@ to r ecall the contents of the pr ogram to the stac k: « “ Enter V, T, and n: “ { “  :V :  :T:  :n : “ {2 0} V } INPUT OBJ ?[...]

  • Seite 684

    P age 21-3 7 Stor e the progr am back into var iable p by using „ @@@p@@@ . Ne xt , run the pr ogram b y pres sing @@@p@@@ . Ent er v alues of V = 0. 01_m^3, T = 3 00_K, and n = 0.8_mol, w hen prom pted . Befor e pre ssing ` for input , the stack w ill look lik e this: After e xec uti on of the pr ogram , the stac k w ill look like this: Using a [...]

  • Seite 685

    P age 21-38 The r esult is the f ollo wing message bo x: Press @@@OK@@@ to cancel the mes sage bo x. Y o u could use a me ssage bo x for outpu t fr om a progr am by using a tagged output , conv erted to a str ing, as the output st ring f or MS GBOX . T o con ve rt any tagged r esult , or any algebr aic or non- tagged v alue , to a string , use the [...]

  • Seite 686

    P age 21-3 9 Press @@@OK@@@ to can cel message box output. T he stack will now look lik e this: Including input and output in a m essage bo x W e could modify the p r ogram so that not onl y the output , but also the input , is included in a mes sage bo x. F or the case of pr ogram @@@p@@@ , the modifi ed pr ogram w ill look lik e: « “ Enter V, [...]

  • Seite 687

    P age 21-40 Y o u wi ll notice that after typ ing the ke ystr ok e sequence ‚ë a ne w line is gener ated in the stack . The las t modificati on that needs to be included is to type in the plus si gn three times after the call to the f unction at the v ery end of the sub-pr ogram . T o see the pr ogr am oper ating: Θ Stor e the progr am back int[...]

  • Seite 688

    P age 21-41 Incorporating units w ithin a program As yo u have bee n able to obse rve fr om all the ex amples fo r the diffe r ent vers ion s of prog ram @@@p@@@ pr esented in this cha pter , attaching units to input value s may be a tedi ous proce ss. Y o u could hav e the pr ogram itself attac h those units to the in put and output v alues. W e w[...]

  • Seite 689

    P age 21-4 2 2. ‘ 1_m^3 ’ : The S .I. units cor r esponding to V ar e then placed in stac k lev el 1, the tagged input f or V is mo ved to stack lev el 2 . 3 . * : By multipl y ing the contents of s tack le vels 1 and 2 , we gen er a te a nu mber wi th units (e .g ., 0. 01_m^3), but the tag is lo st . 4. T ‘ 1_K ’ * : C alculating v alue of[...]

  • Seite 690

    P age 21-43 Press @@@OK@@@ to cancel mes sage box ou tput . Messag e bo x output without units Let ’s modify the progr am @@@p@@@ once mor e to eliminate the u se of units thr oughout it . T he unit-less progr am will look lik e this: « “ Enter V,T,n [S.I.]: “ { “  :V:  :T:  :n: “ {2 0} V } INPUT OBJ →→ V T n « V DTAG T DTA[...]

  • Seite 691

    P age 21-44 oper ators ar e used to mak e a statement r egarding the r elativ e position of tw o or mor e real number s. Depending on the actual numbers used , such a st atement can be true (r epres ented b y the numer ical value o f 1. in the calc ulator), or false (r epr esented b y the numeri cal value of 0. in the calc u lator ) . The r elation[...]

  • Seite 692

    P age 21-45 Logical oper ators Logi cal oper ators ar e logical partic les that are u sed to jo in or modify simple logical stat ements. T he logical operat ors a vailable in the calc ulator can be easily accessed thr ough the ke ystr ok e sequence: „° @) TEST@ L . The a vailable logi cal oper ator s ar e: AND , OR , XOR (e xc lusiv e or), NO T [...]

  • Seite 693

    Pa g e 2 1 - 4 6 The calc ulator include s also the logi cal oper ator S AME . This is a non-standar d logical oper ator used t o determi ne if two ob jects ar e identical . If they ar e identi cal, a v alue of 1 (true) is r eturned, if not , a value of 0 (f alse) is r eturned. F or ex ample, the f ollow ing ex erc ise , in RPN mode , r eturns a v [...]

  • Seite 694

    P age 21-4 7 Branching with IF In this secti on w e pre sents ex amples using the constr ucts IF…THEN…END and IF…THEN…ELSE…END . The IF…THEN…END construct The IF…THEN…END is the simple st of the IF pr ogram constr ucts . T he general for mat of this construc t is: IF logical_statement THEN program_statements END . The ope rati on [...]

  • Seite 695

    P age 21-48 With the c ursor  in fr ont of the IF stat ement pr ompting the user f or the logical statement that w ill acti vate the IF constr uct w h en the pr ogram is e xecu ted. Example : T y pe in the follo w ing progr am: « → x « IF ‘ x<3 ’ THEN ‘ x^2 ‘ EVAL END ” Done ” MSGBOX » » and sa ve it under the name ‘f1 ’[...]

  • Seite 696

    P age 21-4 9 Example: T y pe in the follo wing pr ogram: « → x « IF ‘ x<3 ’ THEN ‘ x^2 ‘ ELSE ‘ 1-x ’ END EVAL ” Done ” MSGBOX » » and sa ve it under the name ‘f2 ’ . Pr ess J and ver if y that v ari able @@@f2@@@ is indeed av ailable in your v aria ble menu . V erify the f ollow ing results: 0 @@@f2@@@ Result: 0 1.2 @@[...]

  • Seite 697

    P age 21-50 IF x<3 THEN x 2 ELSE 1-x END While this simple constr uct w orks f ine when y our functi on has only tw o branc hes, y ou may need to nes t IF…THEN…ELSE…END constru cts to deal with func tion w ith three or mor e branc hes . F or ex ample, co nsider the functi on Her e is a possible w ay t o ev aluate this functi on using IF…[...]

  • Seite 698

    P age 21-51 A comple x IF construct lik e this is called a set of neste d IF … THEN … ELSE … END constr ucts . A possible w ay to e valuate f3(x), based on the nested IF constr uct show n abov e, is to wr ite the pr og r am: « → x « IF ‘ x<3 ‘ THEN ‘ x^2 ‘ ELSE IF ‘ x<5 ‘ THEN ‘ 1-x ‘ ELSE IF ‘ x<3* π ‘ THEN [...]

  • Seite 699

    Pa g e 2 1 - 52 pr ogram_s tatements , and passes pr ogr am flo w to the statement follo wing the END statement . The CA SE , THEN, and END stat ements ar e available f or selecti ve typ ing by using „° @) @BRCH@ @ ) CASE@ . If y ou are in the BR CH menu, i .e., ( „° @) @ BRCH@ ) y ou can use the f ollo wing shortcuts t o type in yo ur CASE c[...]

  • Seite 700

    Pa g e 2 1 - 5 3 5. 6 @@f3c@ Re s ul t : - 0.6 312 66… (i .e., sin(x), with x in r adians) 12 @@f3c@ Re su l t : 16 2 7 5 4.7 91419 (i.e ., exp(x)) 23 @@f3c@ Re s ul t - 2 . (i.e ., - 2) As yo u can see, f3c pr oduces ex actly the same r esults as f3. The onl y diffe rence in the pr ogr ams is the branc hing constructs u sed . For the cas e of fu[...]

  • Seite 701

    P age 21-54 Commands in volv ed in the ST AR T constru ct ar e available thr ough: „° @) @BRCH@ @ ) START @START Within the BRCH men u ( „° @) @BRCH@ ) the follo wing k ey str ok es are a vaila ble to gener ate S T AR T construc ts (the s ymbol indi ca tes c ursor positi on) : Θ „ @START : St ar ts the S T ART…NE X T constr uct: S T AR T[...]

  • Seite 702

    Pa g e 2 1 - 5 5 1. This pr ogr am needs an integer numbe r as inpu t . Th us , bef or e e xec ution , that number (n) is in stac k lev el 1. T he progr am is then e xec uted . 2 . A z ero is enter ed, mo ving n to s tack le vel 2 . 3 . The command DUP , w hich can be typed in a s ~~dup~ , copi es the contents of st ack le ve l 1, mov es all the st[...]

  • Seite 703

    P age 21-5 6 „°LL @) @RUN@ @ @DBG@ Start the debugger . SL1 = 2 . @SST ↓ @ SL1 = 0., SL2 = 2 . @SST ↓ @ SL1 = 0., SL2 = 0., SL3 = 2 . (DUP) @SST ↓ @ Empty stac k (-> n S k) @SST ↓ @ Empty stac k ( « - start su bpr ogr am) @SST ↓ @ SL1 = 0., (start v alue of loop inde x) @SST ↓ @ SL1 = 2 .(n), SL2 = 0. (end v alue of loop inde x) [...]

  • Seite 704

    P age 21-5 7 @SST ↓ @ SL1 = 1. (S + k 2 ) [Sto re s value of SL2 = 2 , into SL1 = ‘k ’] @SST ↓ @ SL1 = ‘S’ , SL2 = 1. (S + k 2 ) @SST ↓ @ Empty stac k [St or es value o f SL2 = 1, into SL1 = ‘S’] @SST ↓ @ Empty stack (NE X T – end of loop) --- loop e xec ution nu mber 3 f or k = 2 @SST ↓ @ SL1 = 2 . (k) @SST ↓ @ SL1 = 4. ([...]

  • Seite 705

    P age 21-5 8 3 @@@S1@@ Resul t: S:14 4 @@@S1@@ Res ul t: S:30 5 @@@S1@@ Resul t: S:55 8 @@@S1@@ Res ul t: S:204 10 @@@S1@@ Resu lt : S:385 20 @@@S1@@ Res ul t: S:2870 30 @@@S1 @@ Res ul t: S:9455 100 @@@S1@@ Res u l t: S:338350 The ST AR T…STEP construct The ge neral f orm of this statemen t is: start_value end_value START program_statements incr[...]

  • Seite 706

    P age 21-5 9 J 1 # 1.5 # 0.5 ` E nter parameters 1 1. 5 0.5 [ ‘ ] @GLIST ` En ter the progr am name in leve l 1 „°LL @) @RUN@ @ @DBG@ St art the debugger . Use @SST ↓ @ to step into the pr ogram and see the detailed ope rati on of each command . The F OR construct As in the case of the S T AR T command, the F O R command has tw o var iati on[...]

  • Seite 707

    P age 21-60 T o av oid an infinit e loop , make sur e that start_value < end_value . Ex am ple – calculate the summati on S using a FOR…NEXT construct The f ollow ing progr am calculat es the summation Using a FOR…NEXT loop: « 0 → n S « 0 n FOR k k SQ S + ‘ S ‘ STO NEXT S “ S ” → TAG » » Stor e this progr am in a var iable [...]

  • Seite 708

    P age 21-61 Example – gene rat e a list of numbers u sing a FOR…S TEP construc t T y pe in the progr am: « → xs xe dx « xe xs – dx / ABS 1. + → n « xs xe FOR x x dx STEP n → LIST » » » and stor e it in var iable @GLI S2 . Θ Check out that the pr ogram call 0. 5 ` 2. 5 ` 0. 5 ` @ GLIS2 pr oduces the list {0. 5 1. 1.5 2 . 2 . 5}. ?[...]

  • Seite 709

    P age 21-6 2 The f ollow ing progr am calculat es the summation Using a DO…UNTIL…END loop: « 0. → n S « DO n SQ S + ‘ S ‘ STO n 1 – ‘ n ‘ STO UNTIL ‘ n<0 ‘ END S “ S ” → TAG » » Stor e this progr am in a var iable @@S3@@ . V er if y the f ollo w ing ex erc ises: J 3 @@@S3@@ Res ul t: S:14 4 @@@S3@@ Res ul t: S:30 5 [...]

  • Seite 710

    Pa g e 2 1 - 6 3 The WHILE const ruct The ge ner al stru ctur e of this command is: WHILE logical_statement REPEAT program_statements END The WHILE st atement w ill r epeat the program_statements whi l e logical_statement is true (n on z er o ). If not , pr ogram contr ol is passed to the stateme nt right afte r END . T he program_statements must i[...]

  • Seite 711

    P age 21-64 and stor e it in var iable @GLI S4 . Θ Check out that the pr ogram call 0. 5 ` 2. 5 ` 0. 5 ` @ GLIS4 pr oduces the list {0. 5 1. 1.5 2 . 2 . 5}. Θ T o see step-by-step oper ation use the pr ogram DBUG fo r a short list, f or e xample: J 1 # 1.5 # 0.5 ` E nter parameters 1 1. 5 0.5 [‘] @GLIS4 ` Enter the pr ogram name in le vel 1 „[...]

  • Seite 712

    P age 21-65 If y ou enter “ TR Y A GAIN” ` @DOER R , pr oduces the following message: TR Y AGA I N F inally , 0` @ DOERR , pr oduces the messa ge: In terrupted ERRN This f unction r eturns a number r epres enting the most r ecent err or . F or e xample , if y ou try 0Y$ @ERRN , y ou get the number #30 5h. T h is is the binary integer r epr esen[...]

  • Seite 713

    P age 21-66 The se ar e the components of the IFERR … THEN … END construc t or o f the IFERR … THEN … ELSE … END construc t. Both logical cons truc ts ar e used f or tra pping er ror s dur ing pr ogram e xec ution . W ithin the @) ERROR su b-menu , enter ing „ @) IFERR , or ‚ @) IFERR , will place the IFERR struc tur e components in t[...]

  • Seite 714

    P age 21-6 7 User RP L progr amming in alg ebr aic mode While all the pr ograms pr esent ed earlier ar e pr oduced and run in RPN mode, y ou can alw ay s type a pr ogram in U ser RP L when in algebr aic mode by us ing functi on RPL>. T his functi on is availa ble thr ough the command catalog . As an e xam ple , tr y cr eating the follo w ing pr [...]

  • Seite 715

    P age 21-68 Wher eas, using RP L, ther e is no proble m when loading this pr ogram in algebrai c mode:[...]

  • Seite 716

    Pa g e 2 2- 1 Chapter 2 2 Pr ograms f or graphics manipulation This c hapter includes a n u mber o f ex amples show ing how to u se the calc ulator’s func tions f or manipulating graphi cs inte rac tiv ely or thr ough the us e of pr ograms . As in Chapt er 21 w e recommend u sing RPN mode and setting s yst em flag 117 to S OFT menu labels. « » [...]

  • Seite 717

    Pa g e 2 2- 2 T o user -def ine a k ey y ou need to add to this list a command or pr ogram fo llow ed by a r efer ence to the k ey (see det ails in Chapter 20). T ype the lis t { S << 81.01 MEN U >> 13.0 } in the stac k and use f unction S T OKEY S ( „°L @) MODES @ ) @K EYS@ @@STOK @ ) to user-define k ey C as the access to the PL O [...]

  • Seite 718

    Pa g e 2 2- 3 LABEL (10) The f unction LABEL is used to label the axe s in a plot including the v ari able names and minimum and max imum values of the axes . The var iable names ar e selected f rom info rmation con tained in the var iable PP AR . AU TO ( 1 1 ) The functi on A UT O (A UT Oscale) calculat es a display r ange for the y-ax is or for b[...]

  • Seite 719

    Pa g e 2 2- 4 EQ (3 ) The v ariable name E Q is res erved b y the calc ulator to stor e the c urren t equatio n in plots or soluti on to equations (see c hapter …). The soft menu k ey la beled E Q in this menu can be used a s it wo uld be if you ha ve y our var iable menu av ailable, e .g., if y ou pres s [ E Q ] it will lis t the curr ent conten[...]

  • Seite 720

    Pa g e 2 2- 5 The f ollow ing diagr am illustr ates the functi ons available in the P P AR menu . The letters attac hed to each f unction in the di agram ar e used for r efe r ence purpo ses in the desc ription o f the functi ons show n below . INFO (n) and PP AR (m) If y ou pr ess @INFO , or enter ‚ @PPAR , w hile in this men u , yo u w ill get [...]

  • Seite 721

    Pa g e 2 2- 6 INDEP (a) The command INDEP spec ifie s the independent var iable and its plotting r a nge . The se spec ificati ons are st or ed as the third par ameter in the var iable P P AR. T he def ault value is 'X'. T he values that can be as signed to the independen t var iable spec ificati on are: Θ A var iable name , e.g ., &apos[...]

  • Seite 722

    Pa g e 2 2- 7 CENTR (g) The command CENTR tak es as ar gument an order ed pair (x,y) or a v alue x, and adjus ts the f irst tw o elements in the var iable P P AR, i .e ., (x min , y min ) and (x max , y max ) , so that the center of the plot is (x,y) or (x , 0) , res pecti vel y . S CALE (h) The S CALE command determines the plotting scale r epres [...]

  • Seite 723

    Pa g e 2 2- 8 A list of tw o binary integers {#n #m}: sets the ti ck annotations in the x - and y- axes t o #n and #m pix els, r espectiv ely . AXE S (k) The in put value f or the axes command consis ts of either an order ed pair (x,y) or a list {(x ,y) atick "x -axis la bel" "y-axis la bel"}. The par ameter atick st ands for th[...]

  • Seite 724

    Pa g e 2 2- 9 The PTYP E menu within 3D (IV) The P TYPE menu under 3D contains the f ollow ing functi ons: The se fu nctions cor res pond to the gr aphics options Slope field , Wir efr ame, Y - Slice , Ps-C ontour , Gridmap and Pr -Sur face pr esented ear lier in this c hapter . Pr essing one o f these s oft menu k ey s, whil e typing a pr ogram , [...]

  • Seite 725

    Pag e 22- 1 0 XV OL (N) , YV OL (O) , and ZVOL (P) The se func tions tak e as input a minimum and maxi mum value and ar e used to spec ify the extent of the par allelepiped wher e the graph w ill be generated (the vi ew ing parallelepiped). Thes e v alues ar e stor ed in the var iable VP AR . The defa ult values f or the ranges XV OL, YV OL, and ZV[...]

  • Seite 726

    Pag e 22- 1 1 The ST A T menu w ithin PL O T The S T A T menu pr ov ides access t o plots re lated to st atistical anal ysis . Within this menu w e find the fo llow ing menus: The di agr am belo w show s the branc hing of the S T A T menu wi thin PL O T . T he numbers and letter s accompany ing each func tion or men u are us ed f or r efe r ence in[...]

  • Seite 727

    Pag e 22- 1 2 The PTYP E m enu within ST A T (I) The P TYPE menu pr ov ides the follo w ing func tions: Thes e ke ys corr espond to the plot t y pes Bar (A ) , Histogr am (B) , and Scatter(C ) , pr esented ear lier . Pr essing one of these s oft menu ke ys, w h ile typi ng a pr ogram , will pl ace the corr esponding f uncti on call in the pr ogram [...]

  • Seite 728

    Pag e 22- 1 3 XC OL (H) The command X COL is used to in dicate w hich o f the columns of Σ DA T , if more than one , w ill be the x - column or independent var iable column. YC O L ( I ) The command Y C OL is us ed to indicate w hich of the columns o f Σ DA T , i f mo re than one , w ill be the y- column or dependent v ari able column. MODL (J) T[...]

  • Seite 729

    Pag e 22- 1 4 Θ S IMU: w hen selec ted, and if mor e than one gr aph is to be plotted in the same set o f axe s, plots all the gr aphs simultaneousl y . Press @) PLOT to retur n to the PL O T menu . Generating plots with pr ograms Depending on whe ther w e are deal ing w ith a two-dimensional gr aph defined by a fun ctio n, by d at a from Σ D A T[...]

  • Seite 730

    Pag e 22- 1 5 Thr ee -dimensional graphics The thr ee -dimensional gr aphics a vaila ble , namely , opti ons Slopef ield, Wir efr ame , Y -Slice , P s -Co ntour , Gr idmap and Pr- Sur face , use the VP AR v ar iable w ith the follo wing f ormat: { x left , x right , y near , y far , z low , z high , x min , x max , y min , y max , x eye , y eye , z[...]

  • Seite 731

    Pag e 22- 1 6 @) PPAR Show plot par ameters ~„r` @INDEP D ef i ne ‘ r’ as the indep . vari able ~„s` @DEPND D efine ‘ s ’ as the dependent v ari able 1 # 10 @XRNG De fine (- 1, 10) as the x -r ange 1 # 5 @YRNG L De fine (-1, 5) as the y-r ange { (0, 0) {.4 .2} “Rs ” “Sr”} ` Ax es def inition list @AXES D ef i ne axes center , [...]

  • Seite 732

    Pag e 22- 1 7 @) PPAR Show plot par ameters { θ 0 6.2 9} ` @INDEP Def ine ‘ θ ’ as the indep. V ari ab le ~y` @DEPND Def ine ‘Y ’ as the depe ndent v ariable 3 # 3 @XRNG Def ine (-3, 3) as the x -range 0. 5 # 2.5 @YRNG L D ef ine (-0. 5,2 . 5) as the y-range { (0, 0) {.5 . 5} “ x ” “ y”} ` Ax es definiti on list @AXES D efine ax[...]

  • Seite 733

    Pag e 22- 1 8 « St art pr ogram {PPAR EQ} PURGE P urge c urr ent P P AR and E Q ‘ √ r’ STEQ Store ‘ √ r’ into EQ ‘r’ INDEP S et independent v ari able to ‘ r’ ‘s’ DEPND S et dependent v ariable t o ‘ s ’ FUNCTION Select FUNCT ION as the plot type { (0.,0.) {.4 .2} “Rs” “Sr” } AXES Set ax es inf or matio n –1. [...]

  • Seite 734

    Pag e 22- 1 9 Example 3 – A polar plot . Enter the follo wing pr ogram: «S t a r t p r o g r a m RAD {PPAR EQ} PURGE Change to r adians, pur ge vars . ‘1+SIN( θ )’ STEQ St ore ‘ f( θ )’ into E Q { θ 0. 6.29} INDEP Set indep . var iable to ‘ θ ’ , with r ange ‘Y’ DEPND S et dependent v ariable t o ‘ Y’ POLAR S elect P OL A[...]

  • Seite 735

    Pag e 22- 2 0 PICT This so ft ke y re fer s to a v ari able called PICT that stor es the c urr ent contents of the gr aphic s w indow . This var iable name , how ev er , cannot be placed w ithin quotes, and ca n only store graph ics obje cts. In tha t sen se, PICT i s li k e n o oth er calc ulator va ri ables. PDI M The f unction P DIM tak es as in[...]

  • Seite 736

    Pag e 22- 2 1 BO X This command t ake s as input two or dered pair s (x 1 ,y 1 ) (x 2 , y 2 ) , or two pair s of pi xel coor dinates {#n 1 #m 1 } {#n 2 #m 2 }. It dr aws the bo x who se diagonals ar e r epre sented b y the t w o pairs of coor dinates in the input. ARC This command is us ed to dr aw an arc . ARC tak es as input the f ollow ing obj e[...]

  • Seite 737

    Pag e 22- 22 Θ PI X? Checks if pi xel at locati on (x,y) or {#n , #m} is on. Θ PI XOFF turns o ff pi xel at location (x ,y) or {#n, #m}. Θ PI XON turns on p ix el at location (x ,y) or {#n, #m}. PVIEW This command tak es as input the coor dinates of a point as use r coor dinates (x,y) or p ix els {#n, #m}, and places the conte nts of PICT w ith [...]

  • Seite 738

    Pa g e 22- 23 (5 0., 50.) 12 . –18 0. 180. ARC Dra w a c i r cle cente r (5 0,50), r= 12 . 1 8 FOR j D ra w 8 lines w ithin the cir cle (50., 5 0.) D UP L ines ar e centered as (5 0,5 0) ‘12*COS( 45*(j-1))’  NUM Calculate x , other end at 50 + x ‘12*SIN( 45*(j-1))’  NUM Calc ulates y , other end at 5 0 + y R  C Con vert x y to (x[...]

  • Seite 739

    Pa g e 22 - 24 It is suggested that y ou cr eate a separate sub-dir ectory to stor e the progr ams. Y o u could call the sub-dir ectory RIVER , since we ar e dealing w ith irr egular open channel c r oss-s ectio ns, typ ical of ri ver s. T o see the pr ogram XSE CT in action , use the f ollow ing data sets . Enter them as matri ces of two columns, [...]

  • Seite 740

    Pa g e 22 - 2 5 P ixel coor dinates The f igur e belo w show s the graphi c coordinat es fo r the t yp ical (minimum) scr e en of 131 × 64 pix els. P ix els coordinates ar e measured fr om the top left corner of the screen {# 0 h # 0h}, w hich corresponds to user-defined c oordinates Data set 1 Data set 2 xy x y 0.4 6 .3 0.7 4.8 1. 0 4.9 1 .0 3 .0[...]

  • Seite 741

    Pag e 22- 26 (x min , y max ) . The max imum coordinate s in terms of pi xels cor r espond to the lo wer r ight corner of the sc reen {# 8 2h #3Fh}, whic h in user-coor dinates is the point (x max , y min ) . The coor dinates of the two other corners both in pi xel as well as in user-defined coordinates ar e show n in t he fi gure . Animating graph[...]

  • Seite 742

    Pa g e 22- 27 Animating a collection of graphics The calc ulator pr ov ides the func tion ANIMA TE t o animate a n umber of gr aphic s that hav e been placed in the stac k. Y o u can generate a gr aph in the gra phics sc r een by u sing the commands in the PL O T and PICT menu s. T o place the gener a ted gr aph in the stack , use P I CT RCL . When[...]

  • Seite 743

    Pag e 22- 28 ANIMA TE is a vailable b y using „°L @) GROB L @ANIMA ) . T he animation will be r e -started. Pr ess $ to stop the animati on once mor e. Noti ce that the number 11 w ill still be list ed in stac k leve l 1. Pr ess ƒ to dr op it fr om the stack. Suppose that y ou want t o keep the f igures that compo se this animation in a var iab[...]

  • Seite 744

    Pa g e 2 2- 2 9 Example 2 - Animating the plotting of differ ent po wer f unctions Suppose that y ou want t o animate the plotting of the functi ons f(x) = x n , n = 0, 1, 2 , 3, 4, in the same set of ax es. Y o u could us e the follo wing pr ogram: «B e g i n p r o g r a m RAD Set angle units to r adians 131 R  B 64 R  B PD IM Set PI CT scr[...]

  • Seite 745

    Pag e 22- 3 0 pr oduced in the calculator ’s scr een. T here for e, w hen an image is converted into a GR OB, it becomes a s equence of binary digits ( b inary dig its = bits ), i . e . , 0’s and 1’s . T o illus trate GR OBs and con ve rsi on of image s to GR OBS consider the fo llo w ing ex er c ise . When w e pr oduce a graph in the calc ul[...]

  • Seite 746

    Pag e 22- 3 1 1` „°L @) GROB @  GRO B . Y o u w ill no w have in le vel 1 the GR OB desc r ibed as: As a gra phic obj ect this equation can no w be placed in the graphi cs display . T o re cov er the graphic s display pr ess š . Then , mov e the c u rs or to an empty sector in the gr aph, and pr ess @) EDIT LL @REPL . The equation ‘X^2 -5?[...]

  • Seite 747

    Pa g e 2 2- 32 BLANK The f unction BLANK, w ith arguments #n and #m , cr eates a blank gra phics objec t of w idth and height spec ifie d by the v alues #n and #m, r especti vely . This is similar to the functi on PDIM in the GR APH menu . GOR The fun ctio n GO R ( Graph ics O R) takes as in put gr ob 2 (a target GROB) , a set of coor dinates , and[...]

  • Seite 748

    Pa g e 2 2- 3 3 An ex ample of a progr am using GROB The f ollow ing progr am produ ces the gr aph of the sine f unctio n inc luding a fr ame – dra wn w ith the func tion B OX – and a GROB to label the gr aph. Her e is the listing of the pr ogram: «B e g i n p r o g r a m RAD Set angle units t o radi ans 131 R  B 64 R  B PD IM Set PI CT [...]

  • Seite 749

    Pa g e 2 2- 3 4 sho ws the state of s tres ses w hen the element is r otated b y an angle φ . In this case, the normal st r esses are σ ’ xx and σ ’ yy , while the shear str esses are τ ’ xy and τ ’ yx . The relationshi p between the origina l state of str esses ( σ xx , σ yy , τ xy , τ yx ) and the state o f stres s w hen the ax e[...]

  • Seite 750

    Pa g e 22- 35 The stress condit ion for which the she ar stress, τ ’ xy , is ze ro , indicated by segment D’E’ , produ ces the so -called princ ipal stresses , σ P xx (at point D’) and σ P yy (at point E’). T o obtai n the pr incipal str esses y ou need to r otate the coor dinate s y stem x ’-y’ by an angle φ n , counter clockw is[...]

  • Seite 751

    Pag e 22- 3 6 separ ate vari ables in the calculator . T hese sub-pr ograms ar e then link ed by a main pr ogram , that we w ill call MOHRCIRCL . W e will fir st cr eate a sub- dir ectory called MOHRC w ithin the HOME dir ectory , and mo ve into that dir ectory to type the pr ograms . The ne xt step is to c reat e the main pr ogram and sub-pr ogram[...]

  • Seite 752

    Pa g e 2 2- 37 At this point the pr ogram MOHR CI RC L starts calling the sub-progr ams to pr oduce the fi gure . Be patient. T he resulting Mohr’s c ir cle will loo k as in the pic ture to the left . Becaus e this v ie w of P ICT is invo ked thr ough the function PVIEW , we cannot get any othe r infor mation out of the plot besides the f igur e [...]

  • Seite 753

    Pa g e 22 - 3 8 infor mation tell us is that some where betw een φ = 5 8 o and φ = 5 9 o , the shear stress, τ ’ xy , becomes z er o. T o f ind the actual v alue of φ n, press $ . T hen type the list corr esponding to the value s { σ x σ y τ xy}, f or this case, it w ill be { 25 75 50 } [ENTER] Then , press @ CC&r . T he last r esult i[...]

  • Seite 754

    Pa g e 22 - 3 9 necess ary to plot the c irc le. It is suggest that w e r e -order the v ari ables in the sub-dir ectory , s o that the progr ams @MOHRC and @PRNST ar e the two f irst v ari ables in the soft-menu k ey labels. T his can be accomplished b y cr eating the list { MOHRCIRCL PRNS T } using: J„ä @MOHRC @PRNS T ` And then , order ing th[...]

  • Seite 755

    Pag e 22- 4 0 T o find the v alues of the str esse s corr esponding to a ro tation of 3 5 o in the angle of th e stressed pa rticle, we use: $š Clear screen , s ho w PICT in graphics screen @TRACE @ ( x,y ) @ . T o mov e curs or ov er the cir cle show ing φ and (x ,y) Ne xt, pr ess ™ until y ou read φ = 3 5. T he corr esponding coordinat es ar[...]

  • Seite 756

    Pag e 22- 4 1 Since pr ogr a m IND A T is us ed also f or pr ogr am @PRNST (P RiNc ipal ST r esses) , running that partic ular progr a m w ill now us e an input fo rm , f or e xample , The r esult , after pres sing @@@OK@@@ , is the fo llow ing:[...]

  • Seite 757

    Pa g e 2 3 - 1 Chapter 2 3 Character strings Char acter strings ar e calculator ob jects enc losed betw een double quotes . The y ar e tr eated as te xt by the calculat or . F or e xample , the str ing “SINE FUNCTION” , can be transf ormed into a GR OB (Gr aphics Ob jec t) , to labe l a gr aph, o r can be used as output in a pr ogr am. S ets of[...]

  • Seite 758

    Pa g e 2 3 - 2 String concatenation Str ings can be concatenated (j oined together ) by using the plus sign +, f or exa mp le : Concatenating s tring s is a prac tical w ay to cr eate output in pr ogr ams. F or e xample , concatenating "Y OU ARE " A G E + " YEAR OLD" cr eates the str ing "Y OU ARE 2 5 YEAR OLD", wher e[...]

  • Seite 759

    Pa g e 2 3 - 3 The ope rati on of NUM, CHR, OB J  , and  S TR was pr esent ed earlie r in this Chapter . W e ha ve also seen the f u ncti ons SUB and REP L in r elation t o gr aphics earli er in this chapter . Functi ons SUB , REPL , POS , SIZE , HE AD , and T AIL ha ve similar eff ects as in lists , namely: SI ZE: number of a sub-str ing in [...]

  • Seite 760

    Pa g e 2 3 - 4 scr een the ke ystr oke sequence to get suc h char acter (  . f or this case) and the numer ical code corr esponding to the char acter (10 in this cas e) . Char acters that ar e not def ined appear as a dark squar e in the charac ter s list (  ) and sho w ( None ) at the bottom of the displa y , ev en though a numer ical code e[...]

  • Seite 761

    Pa g e 24 - 1 Chapter 2 4 Calculator objec ts and flags Numbers , lists, v ectors, matr ices, algebr aics, etc ., are calc ulator objects . The y ar e classif ied accor ding to its nature into 30 diff erent ty pes, w hic h are desc r ibed belo w . F lags ar e var iable s that can be used to contr ol the calculat or properties. Flags wer e introduce[...]

  • Seite 762

    Pa g e 24 - 2 Number T y pe Ex ample _______________ ____________________ _____________________ ____________ 21 Extended R eal Number Long Real 2 2 Extended Comple x Number L ong Complex 2 3 Link ed Arr ay Linked rray 2 4 Char acter Obj ect Character 25 Co d e O b j e ct Code 2 6 Libr ar y Data L ibrary Data 2 7 External Ob ject External 28 I n t e[...]

  • Seite 763

    Pa g e 24 - 3 Calculator flags A flag is a v ariable that can e ither be set or unse t . The statu s of a flag affec ts the behav ior of the calc ulator , if the flag is a s ys tem flag , or of a pr ogr am, if it is a user f lag. T hey ar e descr ibed in mor e detail next . S ystem flags S yste m flags can be accesse d by using H @) FLAGS! . Pr ess[...]

  • Seite 764

    Pa g e 24 - 4 The f unctions contained w ithin the FL A G menu are the f ollow ing: The oper ation of thes e func tions is as f ollo ws: SF Set a flag CF C lear a flag F S? Retur ns 1 if flag is set, 0 if not set FC? Returns 1 if flag is clear (not set), 0 if flag is set F S?C T ests flag as F S does, then c lears it FC?C T ests flag as FC does, th[...]

  • Seite 765

    Pa g e 25 - 1 Chapter 25 Date and T ime Functions In this Chapter w e demonstr ate some of the func tions and calc ulations using times and dates . The T I ME menu The T IME menu , av ailable thro ugh the ke ystr ok e sequence ‚Ó (the 9 k ey) pr o vi des the follo wing f uncti ons, w hich ar e desc ribed ne xt: Setting an alarm Option 2 . S et a[...]

  • Seite 766

    Pa g e 25 - 2 Bro wsing alarms Option 1. Br o ws e alarms... in the TIME me nu lets yo u r ev iew your c urr ent alarms . F or ex ample, after ente ring the alarm u sed in the e xample abo ve , this option w ill show the fo llo w ing scr een: This sc reen pr ov ides f our soft menu ke y labels: EDIT : F or editing the selected alar m, pr ov iding a[...]

  • Seite 767

    Pa g e 25 - 3 The appli cation of these f u ncti ons is demonstrated belo w . D A TE: P lace s cur rent date in the st ack  D A TE: Set sy stem date to specif ied value TIME: Places c urr ent time in 2 4 -hr HH .MMS S for mat  TIME: S et s y stem time to spec ifi ed value in 2 4-hr HH.MM. SS f ormat TICK S: Pro vides s ys tem time as b inary [...]

  • Seite 768

    Pa g e 25 - 4 Calculating with tim es The fun ct ion s  HMS , HMS  , HMS+, and HM S - are us ed to manipulate value s in the HH.MM SS f ormat . This is the same f ormat us ed to calc ulate with angle measur es in degree s, minu tes , and seconds. T hus , these oper ations ar e usef u l not onl y fo r time calculati ons, but also for angular c[...]

  • Seite 769

    Pa g e 2 6 - 1 Chapter 2 6 Managing memor y In Chapter 2 w e intr oduced the basic concepts of , and oper ations f or , cr eating and managing var iables and dir ector ies . In this Chapter w e disc uss the management of the calc ulator’s memory , inc luding the par tition o f memory and techni ques for backing u p data. Mem ory St r uct ur e The[...]

  • Seite 770

    Pa g e 2 6 - 2 P ort 1 (ERAM ) can contain up to 12 8 KB of data. P o rt 1, together w ith P ort 0 and the HOME direc tory , constitut e the calculator ’s R AM (R andom Access Memory) segment of calc ulator’s memory . T he RAM memor y segment r equires contin uous elec tri c pow er supply f r om the calculat or batter ies to operate . T o av oi[...]

  • Seite 771

    Pa g e 2 6 - 3 Chec king objec ts in memory T o see the obj ects stor ed in memory you can u se the FILE S functi on ( „¡ ). Th e scre e n be l ow sh ows th e H OM E d i rec to r y wi th five d ire c to ri es, n a m ely , TRIANG , MA TRX , MPFIT , GRP HS, and CA SD IR. Additional dir ector ies can be vi ew ed by mo ving the c u r sor do wnw ards[...]

  • Seite 772

    Pa g e 2 6 - 4 Bac k up objec ts Back up obj ects ar e used to copy dat a fr om your home dir ectory into a memory port. T he purpose o f bac king up objects in me mory port is to pr eserve the contents of the ob jects f or futur e usage . Ba c k up obj ects hav e the follo wing cha ra cte rist ic s: Θ Back up obj ects can onl y ex ist in port mem[...]

  • Seite 773

    Pa g e 2 6 - 5 Bac king up and restor ing HOME Y o u can back up the contents o f the cu rr ent HOME dir ectory in a single back up obje ct . This ob jec t w ill contain all v ari ables , k ey as signments , and alarms c urr ently def ined in the HOME direc tory . Y o u can also res tor e the contents of y our HOME dir ectory fr om a back up ob jec[...]

  • Seite 774

    Pa g e 2 6 - 6 Stor ing, deleting, and rest oring bac k up objec ts T o cr eate a back up obj ect us e one of the f ollow ing appr oache s: Θ Use the F ile Manager ( „¡ ) t o c o p y t h e o b j e c t t o p o r t . U s i n g t h i s appr oach, the bac kup obj ect will ha ve the same name as the o ri ginal object . Θ Use the S T O command to co[...]

  • Seite 775

    Pa g e 2 6 - 7 Using data in backup objects Although y ou cannot directl y modif y the contents of back up objec ts, y ou can use thos e contents in calculat or oper ations. F or ex ample, y ou can run pr ograms stor ed as back up objec ts or use dat a fr om back up objects t o run pr ograms . T o run back up-obj ect pr ograms or use data f rom bac[...]

  • Seite 776

    Pa g e 2 6 - 8 T o re move an SD car d, turn o f f the HP 5 0g, pr ess gentl y on the expo sed edge of the car d and push in . The car d should spring out of t he slot a small distance , allo w ing it now to be easil y r emov ed fr om the calculator . For m atting an SD card Most SD car ds will alr eady be for mat ted , but they ma y be formatted w[...]

  • Seite 777

    Pa g e 2 6 - 9 Accessing objects on an SD card Acces sing an obj ect fr om the SD car d is similar to w hen an object is located in ports 0, 1, or 2 . Ho we ver , P ort 3 will not appear in the menu w hen using the LIB func tion ( ‚á ). T he SD file s can only be managed using the F iler , or F ile M anager ( „¡ ). When starting the F iler , [...]

  • Seite 778

    Pa g e 2 6 - 1 0 Note that if the name of the object y ou intend to stor e on an SD card is longer than ei ght char acters , it will appear in 8. 3 DOS f ormat in port 3 in the Filer once it is stor ed on the card . Recalling an object from an SD car d T o recall an obj e ct f r om the SD card onto the sc reen, u se func tion RCL , as fo llow s: Θ[...]

  • Seite 779

    Pa g e 2 6 - 1 1 Note that in the case of obj ects with long f iles names , you can s pecify the full name of the ob ject , or its truncate d 8. 3 name , when ev aluating an objec t on an SD car d. P urging an object from the SD card T o pur ge an obj ect fr om the SD card onto the s creen , use f unction P URGE , as fo llow s: Θ In algebraic mode[...]

  • Seite 780

    Pa g e 2 6 - 1 2 This w ill stor e the objec t pr ev iou sly on the stac k onto the SD card into the dir ectory named PR OGS into an objec t named PR OG1. Note: If PR OGS does not ex ist, the dir ectory will be au tomaticall y cr eated. Y o u can spec if y an y number of nested subdir ector ies. F or ex ample, to re fer to an objec t in a thir d-le[...]

  • Seite 781

    Pa g e 2 6 - 1 3 Libr ar y numbers If y ou use the LIB men u ( ‚á ) and pr ess the soft menu k ey cor r esponding to port 0, 1 or 2 , you w ill see library numbers lis ted in the soft menu k ey labe ls. E ach libr ar y has a thr ee or four -digit number ass oc iated with it . (F or e xam p le , the two libr aries that mak e up the Eq uation L ib[...]

  • Seite 782

    Pa g e 2 6 - 1 4 w ill indicate w hen this battery needs r eplacement. T he diagram belo w sho ws the location of the bac kup battery in the top compartment at the back of the calc ulator .[...]

  • Seite 783

    Pa g e 27- 1 Chapter 2 7 T he Equation Libr ar y The E quation L ibrary is a collection o f equations and commands that enable y ou to sol ve simple s c ience and engin eer ing pr oblems. T he library consists o f mor e than 300 equations gr ouped into 15 techni cal subj ects containing mor e than 100 pr oblem titles . Eac h p r oblem title contain[...]

  • Seite 784

    Pa g e 27- 2 7 . F or each kno wn v ari able, ty pe its value and pr ess the corr esponding menu k ey . If a v ari able is not show n, pr ess L to display fur th er variables. 8. Opti onal: supply a gues s fo r an unknow n var iable . This can speed up the soluti on pr ocess or help to f o c us on one of se ver al solutions . Enter a guess ju st as[...]

  • Seite 785

    Pa g e 27- 3 Using the menu ke ys The ac tions of the unshifted and shifted var iable menu k ey s for both s olv ers ar e identi cal. Noti ce that the Multiple E quation S olver u ses tw o for m s of men u labels: black and whit e . The L ke y display s additional menu labels , if r equir ed. In additi on, each s olv er has spec ial menu k ey s, w [...]

  • Seite 786

    Pa g e 27- 4 Bro wsing in the Equation L ibrary When y ou select a sub ject and title in the E quation L ibrary , yo u spec if y a set o f one or mor e equati ons. Y o u can get the follo wing inf ormation abou t the equation s et from the E quatio n Libr ary catalogs:  The equations themsel ves and the number of equations .  The var iables u[...]

  • Seite 787

    Pa g e 27- 5 Vie wing var iables and selec ting units After y ou select a subj ect and title , y ou can vi e w the catalog of names , desc r iptions , and units for the v ari ables in the equation s et b y pre ssing #VARS# . The t able belo w summari ze s the oper ations av ailable to y ou in the V ar iable catalogs . Oper ation s in V a riable c a[...]

  • Seite 788

    Pa g e 27- 6  Press to s tor e the pi ctur e in PIC T , the graphi cs memory . T hen y ou can use © PIC T (or © PICTURE) to v iew the p ic tur e again after y ou hav e quit the Equati on Libr ar y .  Press a menu k ey or to v iew other equatio n informati on. Using the M ultiple-Equation Solver The E quation L ibrary starts the Multiple-Equ[...]

  • Seite 789

    Pa g e 27- 7 The men u labels for the v ariable k ey s are w hite at fir st, but c hange during the soluti on proces s as des cr ibed below . Becaus e a soluti on inv olv es man y equations and man y var iable s, the Multiple- E quation S olver mu st keep tr ack of var iables that ar e user -def ined and not def ined—those it can ’t change and [...]

  • Seite 790

    Pa g e 27- 8 Meani ngs of Menu Labe ls Defining a set of equations When y ou design a s et of eq uations , you sh ould do it w ith an understanding o f ho w the Multiple -Equati on Solv er uses the equati ons to sol ve pr oblems. The Mul tiple -E quation S olv er uses the same pr ocess y ou’d us e to solv e f or an unkno wn v ariable (a ssuming t[...]

  • Seite 791

    Pa g e 27- 9 F or ex ample, the f ollo wing thr ee equations def ine initial v elocity and acceler a ti on based on tw o observed dis tances and times. T he firs t two equations alone ar e mathematicall y suffi c ient f or solv ing the problem , but each equation con tains tw o unkno wn v aria bles. A dding the third equati on allo ws a succes sful[...]

  • Seite 792

    Pa g e 27- 1 0 6. P ress !MSOLV! to launc h the sol ver w ith the new se t of equati ons. T o chang e the title and menu for a set of equations 1. Mak e sur e that the set o f equati ons is the curr ent set (a s the y ar e used w hen the Multiple -E quation Sol ver is launc hed) . 2 . Enter a te xt stri ng containing the ne w title onto the stac k.[...]

  • Seite 793

    Pa g e 27- 1 1  Constant? The initi al value o f a var iable may be leading the r oot - finder in the w rong dir ection . Supply a guess in the oppo site dir e cti on fr om a cr itical v alue. (If negati ve value s are v alid, try one . ) Chec king solutions The va riab les h avin g a š mark in their menu la bels ar e re lated for the mo st r e[...]

  • Seite 794

    Pa g e 27- 1 2  Not related . A v ari able may not be in vol ved in the soluti on (no mark in the label), so it is not compatible w ith the var iables that w ere in volv ed.  W rong dir ection . T he initial value of a var iable may be leading the r oot - finder in the w rong dir ection . Supply a guess in the oppo site dir e cti on fr om a c[...]

  • Seite 795

    Pa g e A - 1 Appendix A Using input forms This e xample o f setting time and date illu str ates the use o f input f orms in the calc ulator . S ome general r ules: Θ Use the arr ow k ey s ( š™˜— ) to mov e from one field to the ne xt in the input f orm. Θ Use an y the @CHOOS soft m enu k ey to see the opt ions av ailable for an y gi ven f i[...]

  • Seite 796

    Pa g e A - 2 In this particular ca se w e can giv e v alues to all but one of the var iables, sa y , n = 10, I%YR = 8. 5, PV = 10000, FV = 1000, and s ol ve f or var iable P MT (the meaning of thes e var iables w ill be pre sented later ) . T r y the f ollow ing: 10 @@OK@@ Enter n = 10 8. 5 @@OK@ @ Enter I%Y R = 8. 5 10000 @@ OK@@ Enter PV = 10000 [...]

  • Seite 797

    Pa g e A - 3 !CALC Pr ess to access the stac k for calc ulations !TYPES Press to determine the t ype of object in highlighted field !CANCL Cancel operation @@OK@@ Ac cep t en tr y If y ou pre ss !RESET y ou w ill be ask ed to se lect between the tw o options: If y ou select R eset value onl y the highlighted v alue w ill be rese t to the defa ult v[...]

  • Seite 798

    Pa g e A - 4 (In RPN mode , we w ould hav e used 113 6.2 2 ` 2 `/ ). Press @@OK@@ to enter this ne w value . The input f orm w ill no w look lik e this: Press !TYPES to see the type of data in the P MT f ield (the highligh ted fi eld) . As a r esult , y ou get the follo wing spec ifi cation: This indi cates that the v alue in the P MT field mu st b[...]

  • Seite 799

    Pa g e B - 1 Appendix B T he calc ulator ’s ke y board The f igur e belo w show s a diagram o f the calc ulator ’s ke yboar d w ith the number ing of its ro ws and columns . The f igure sho ws 10 r ow s of ke ys combined w ith 3, 5, or 6 columns. Ro w 1 has 6 k ey s, ro ws 2 and 3 hav e 3 ke ys eac h, and r o ws 4 thr ough 10 hav e 5 ke ys eac [...]

  • Seite 800

    Pa g e B - 2 fi ve f uncti ons. T he main ke y f uncti ons ar e sho wn in the fi gure belo w . T o oper ate this main k ey func tions simpl y press the cor responding k ey . W e will r efer to the k ey s b y the r ow and column w here the y are located in the sk etc h abo ve , thus , ke y (10,1) is the ON key . Main key functions in the calc ulator[...]

  • Seite 801

    Pa g e B - 3 Main ke y functions Key s A thr ough F ke ys ar e assoc iated w ith the soft menu options that appear at the bottom of the calculat or’s displa y . Th us, these k e ys w ill acti vate a var iety of func tions that change acco rding t o the acti ve menu .  Th e arrow keys, —˜š™ , ar e used to mo ve one char acter at a time in[...]

  • Seite 802

    P age B-4  Th e left- shift ke y „ and the right-shift key … are combined w ith other ke ys to ac ti vate menu s, enter char acters , or calc ulate functi ons as descr ibed else wher e.  Th e numeri cal ke ys ( 0 to 9 ) are us ed to enter the digits of the dec imal number sy stem.  Ther e is a deci mal poin t k ey (.) and a space ke y [...]

  • Seite 803

    P age B-5 the other three f unctions is ass oci ated with the left-shif t „ ( MT H ), right-shift … ( CA T ) , and ~ ( P ) k eys . Diagr am s sho w ing the function or c haracter r esulting fr om combining the calculator k ey s with the left-shift „ , ri ght-shift … , ALP HA ~ , ALPHA-left- shift ~„ , and ALPHA-r ight-shif t ~… , are pr[...]

  • Seite 804

    Pa g e B - 6  Th e CMD function sho ws the most r ecent commands, the PRG fu nc tion acti vates the pr ogramming men us, the MTR W functi on acti vates the Matri x Wr i t e r, Left-shift „ func tions of th e calculator ’s ke yboard  Th e CMD function sho ws the most r ecent commands.  Th e PRG func tion acti vates the pr ogramming menu[...]

  • Seite 805

    Pa g e B - 7  Th e e x k ey cal cul ates the e xponential func tion of x .  Th e x 2 ke y calculat es the squar e of x (this is ref err ed to as the SQ fun ctio n) .  The AS IN, A CO S, and A T AN functi ons calculate the ar csine , ar ccosine, and ar ctangent f unctions, r especti vel y .  Th e 10 x func tion calc ulates the anti-logar[...]

  • Seite 806

    Pa g e B - 8 Righ t-s hif t … func tions of the calculator ’s ke yboard Right-shift functions The sk etch abo ve sho ws the functi ons, char acters, or menus ass o c iated w i th the differ ent calculator k ey s when the r ight-shift ke y … is activ ated.  Th e fun ctio ns BE GIN, END , COP Y , CUT and PA S T E are u sed fo r editing purpo[...]

  • Seite 807

    Pa g e B - 9  Th e CA T functi on is used to activ ate the command catalog.  Th e CLEAR functi on clears the s cr een.  Th e LN func tion calc ulates the natur al logar ithm.  The functi on calculates the x – th r oot of y .  Th e Σ functi on is used to ent er summations (or the upper case Gr eek letter sigma).  Th e ∂ functi[...]

  • Seite 808

    Pa g e B - 1 0 is used mainl y to enter the upper -case letter s of the English alphabet ( A through Z ) . T he numbers, mathematical s ymbols ( - , + ), decimal poin t ( . ), and the space ( SPC ) ar e the same as the main functions of the se k ey s. The ~ fun ctio n pr oduces a n aster isk ( * ) whe n combined w ith the times k ey , i .e ., ~* . [...]

  • Seite 809

    Pa g e B - 1 1 Notice that the ~„ combinatio n is used ma inly to enter the lo wer -c ase letters of the English alphabet ( A thr ough Z ) . T he numbers, mathe matical sym bo l s ( - , +, × ), dec imal point ( . ) , and the space ( SP C ) are the same as the main functi ons of these ke ys . The ENTER and CONT k ey s also w ork as their main fun[...]

  • Seite 810

    Pa g e B - 1 2 Alpha-right-shift c har ac ters The f ollow ing sketc h show s the c har acter s assoc iated w ith the differ ent calc ulator k ey s when the ALP HA ~ is combined w ith the right-shift ke y … . Alpha ~… functions of the calculator ’s ke yboar d Notice that the ~… combination is used mainl y to enter a number of spec ial char [...]

  • Seite 811

    Pa g e B - 1 3 ~… combination inc lude Greek letters ( α, β, Δ, δ, ε, ρ, μ, λ, σ, θ, τ , ω , and Π ) , other c harac ters gener ated by the ~… co mbinati on ar e |, ‘ , ^, =, <, >, /, “ , , __, ~, !, ?, <<>>, and @.[...]

  • Seite 812

    Pa g e C - 1 Appendix C CAS settings CA S stands f or C omputer A lgebraic S ys tem . This is the mathemati cal cor e of the calc ulator wher e the sy mbolic mathematical oper ations and func tions ar e pr ogrammed . The CA S offe rs a number of settings can be adj usted accor ding to the type of oper ation of inter est . T o see the optional CA S [...]

  • Seite 813

    Pa g e C - 2 Θ T o reco ver the or iginal men u in the CAL CULA T OR MODE S input box , pres s the L ke y . Of inter est at this point is the c hanging of the CAS settings . This is accompli shed by pr essing the @@ CAS@@ soft menu k e y . The def ault value s of the CA S setting ar e sho wn belo w: Θ T o nav igate thr ough the many options in th[...]

  • Seite 814

    Pa g e C - 3 A var iable called VX ex ists in the calc ulator’s {HO ME CASDIR} directory that take s, by def ault , the value of ‘X’ . This is the name of the pr eferr ed independent v ari able fo r algebr aic and calculu s applicati ons. F or that reason , most e xamples in this C hapter us e X as the unknow n var iable . If y ou use other i[...]

  • Seite 815

    Pa g e C - 4 The s ame e xample , corr esponding to the RPN oper ating mode , is show n next: Appr o ximate v s. Ex act CAS mode When t he _ Appro x is selected, s ymbolic oper ations (e.g ., def inite integrals, squar e roots , etc .) , will be calc ulated numeri cally . Whe n the _Appr ox is unselect ed (Ex a ct mode is ac tiv e) , s ymboli c ope[...]

  • Seite 816

    Pa g e C - 5 The k ey str ok es necessary for ent er ing these v alues in Algebrai c mode are the follo wing: …¹2` R5` The s ame calculati ons can be pr oduced in RPN mod e . Stack le vels 3: and 4: sho w the case of Ex act CAS setting (i .e ., the _Numeri c CAS optio n is unselect ed) , while s tack lev els 1: and 2: show the cas e in whic h th[...]

  • Seite 817

    Pa g e C - 6 It is r ecommended that y ou se lect EXA CT mode as default CA S mode, and change t o APP ROX mode if r equested b y the calcul ator in the perfor mance of an oper ation . F or additional infor mation on real and integer n umbers , as we ll as other ca lcul ato r’s obje cts, refer to Cha pte r 2 . Comple x vs . Real CAS mode A comple[...]

  • Seite 818

    Pa g e C - 7 If y ou pre ss the OK soft menu ke y () , then the _Comple x op ti on is for ced, and the r esult is the f ollo wing: The k ey str okes us ed abov e ar e the fo llo w ing: R„Ü5„Q2+ 8„Q2` When ask ed to change to C OMP LEX mode , use: F . If yo u dec ide not to accept the change to C OMPLE X mode , yo u get the follo wing er r or[...]

  • Seite 819

    Pa g e C - 8 F or ex ample, ha v ing selec ted the St ep/step optio n, the f ollow ing scr eens show the step-b y-step di visi on of two pol ynomials , namely , (X 3 -5X 2 +3X- 2)/(X - 2) . Th is is accomplished by u sing functi on DIV2 a s sho wn belo w . Pr ess ` to sho w the fir st step: The s cr een infor m us that the calc ulator is operating [...]

  • Seite 820

    Pa g e C - 9 . Increasing-po wer CA S mode When t he _Incr po w CA S option is se lected , polynomi als will be list ed so that the ter ms will ha ve incr easing po wer s of the independent var iable . If the _Incr po w CAS option is not s elected (defa ult value) then pol yn omials w ill be listed so that the terms w ill hav e decr easing po we rs[...]

  • Seite 821

    Pa g e C - 1 0 Rigor ous CAS set ting When t he _Rigor ous CAS option is se lected , the algebrai c expr essi on |X|, i.e ., the absolute v alue, is not simplif ied to X . If the _R igor ous CA S option is not select ed, the algebr aic e xpressi on |X| is simplifi ed to X . The CAS can s ol ve a lar ger var iety of pr oblems if the r igorou s mode [...]

  • Seite 822

    Pa g e C - 1 1 Notice that , in this instance, s oft menu k ey s E and F ar e the only one w ith ass oci ated commands , namely : !!CANCL E CANCeL the help f ac ilit y !!@@OK#@ F OK to acti vate help fac ility fo r the selected command If y ou pr ess the !!CAN CL E k e y , the HELP f acility is skipped , and the ca lc ulator r eturns t o normal dis[...]

  • Seite 823

    Pa g e C - 1 2 Notice that ther e are si x commands assoc iated w ith the soft menu k ey s in this case (y ou can chec k that there ar e only si x command s because pr essing the L produce s no additional menu it ems) . The s oft menu k ey commands ar e the fo llo w ing: @EXIT A EXI T the help fac ilit y @ECHO B Cop y the e xample command to the st[...]

  • Seite 824

    Pa g e C - 1 3 T o nav igate quic kly to a partic ular command in the help f ac ility list w ithout hav ing to use the arr o w k e ys all the time , we can us e a shortcu t consisting of typing the f irst letter in the command’s name . Suppose that w e want to find infor mation on the co mmand IBP (Integr ation B y P arts) , once the help f ac il[...]

  • Seite 825

    Pa g e C - 1 4 In no ev ent unless r equired b y appli cable law w ill any cop yr ight holder be liable to y ou for damage s, inc luding any gene ral , speci al, inc idental or conseq uential damage s arising ou t of the use or ina bility to use the CA S Softwar e (including but not limited to lo ss of data or data being r ender ed inaccur ate or l[...]

  • Seite 826

    Pa g e D - 1 Appendix D Additional character set While y ou can use an y of the upper -case and low er -case English letter fr om the ke yboar d, ther e are 2 5 5 char acters usable in the calc ulator . Including spec ial cha ract ers li ke θ , λ , etc ., that that can be used in algebr aic e xpressi ons. T o access thes e char acters w e use the[...]

  • Seite 827

    Pa g e D - 2 functi ons ass oc iated w ith the soft menu k ey s, f4, f5, and f6. T h ese f unctions ar e: @MODIF : Opens a gra phics s creen w here the u ser can modify highlighted char acter . Use this opti on car ef ully , since it w ill alter the modified c haracte r up to the ne xt r eset o f the calc ulator . (Imagine the effect of changing th[...]

  • Seite 828

    Pa g e D - 3 Gr ee k lett ers α (alpha) ~‚a β (beta) ~‚b δ (delta) ~‚d ε (epsilon) ~‚e θ (theta) ~‚t λ (lambda) ~‚n μ (m u) ~‚m ρ (rho) ~‚f σ (sigma) ~‚s τ (tau) ~‚u ω (omega) ~‚v Δ (upper -case delta) ~‚c Π (upper -case pi) ~‚p Other c har acters ~( t i l d e ) ~‚1 !( f a c t o r i a l ) ~‚2 ? (question m[...]

  • Seite 829

    Pa g e E - 1 Appendix E The Selec tion T r ee in t he Equation W riter The e xpre ssion tr ee is a diagr am sho wing h o w the E quation W r iter interpr ets an ex pre ss io n. The fo rm of th e exp re ss io n t re e i s de t erm i ne d by a n u mb er o f r ul es kno wn as the hie rar ch y of oper ation . The rules ar e as fo llo ws: 1. Oper ations[...]

  • Seite 830

    Pa g e E - 2 Step A1 Ste p A2 Step A3 Ste p A4 Step A5 Ste p A6 W e notice the appli cation of the hier arc hy-of-oper ation rules in this selecti on. F irst the y (Step A1) . Then , y- 3 (S tep A2 , par entheses ). Then , (y-3)x (Step A3, multiplicati on) . T h en (y-3)x+5, (Ste p A4, additi on) . Then , ((y-3)x+5)(x 2 +4) (Step A5, multipli catio[...]

  • Seite 831

    Pa g e E - 3 Step B1 Step B2 Step B3 Step B4 = Step A5 Step B5 = S tep A6 W e can also follo w the ev aluation o f the expr essi on starting fr om the 4 in the argume nt of the SIN func tion in the denominator . Press the do wn arr ow k e y ˜ , continuously , until the c lear , editing c ursor is tri ggered ar ound the y , once mor e . T hen, pre [...]

  • Seite 832

    Pa g e E - 4 Step C3 Step C 4 Ste p C5 = Step B5 = S tep A6 The expr ession tree for the expression presented above is show n next: The s teps in the e valuation of the thr ee terms ( A1 through A6 , B1 thro u gh B5, and C1 thr ough C5) ar e sho wn ne xt to the c irc le containing number s, var iables , or oper ators .[...]

  • Seite 833

    Pa g e F - 1 Appendix F T he Applications (APP S) menu The A pplicati ons (AP PS) men u is av ailable through the G key ( fi rs t key i n second r o w fr om the ke yboard’s top). The G ke y show s the follo w ing applications: The diff erent appli cations ar e desc ribed ne xt. P lot func tions.. Selecting opti on 1. Plot f u ncti ons.. in the AP[...]

  • Seite 834

    Pa g e F - 2 I/O functions.. Selecting opti on 2 . I/O f uncti ons .. in the APP S menu w ill produce the f ollow ing menu list o f input/output func tions The se appli cations ar e descr ibed next: Send to C alculat or S end data to another calc ulator (or to a PC w ith an infr ared port) Get fr om Calculator R e cei ve data f rom another calc ula[...]

  • Seite 835

    Pa g e F - 3 The C onstants Libr ar y is disc ussed in detail in C hapter 3 . Numeric solv er .. Selecting opti on 3. C onstants lib .. in the APP S menu pr oduces the numer ical solver menu : This oper ation is equi valent to the k ey strok e sequence ‚Ï . The nu meri cal sol ver men u is present ed in detail in Chapt ers 6 and 7 . Time & d[...]

  • Seite 836

    Pa g e F - 4 Equation wr iter .. Selecting opti on 6.E quation w riter .. in the APP S menu opens the equation writ er: This oper ation is eq ui val ent to the k ey str oke s equence ‚O . The eq uation wr iter is intr oduced in detail in Chapte r 2 . Examples that u se the equatio n wr iter are a vailable thr oughout this guide. F ile manager . .[...]

  • Seite 837

    Pa g e F - 5 M atr ix W riter .. Selecting opti on 8.Matri x W riter .. in the APP S menu launches the matr ix w r iter : This oper ation is eq ui val ent to the k ey str oke s equence „² .T he Matri x W rit er is pre sent ed in detail in Chapter 10. T e xt editor .. Selecting opti on 9 . T ext edito r .. in the APP S menu launc hes the line tex[...]

  • Seite 838

    Pa g e F - 6 This oper ation is eq ui val ent to the k ey str oke s equence „´ . T he MTH menu is intr oduced in Chapte r 3 (real n umb er s) . Other f uncti ons fr om the MTH menu ar e presented in Chapters 4 (comple x numbers) , 8 (lists) , 9 (vec tors) , 10 (matri x cr eation), 11 (matri x operatio n), 16 (f ast F our ier tr ansfor ms), 17 (p[...]

  • Seite 839

    Pa g e F - 7 Note that flag –117 should be set if y ou are go ing to use the E quatio n Libr ary . Note too that the E quation L ibrary will onl y appear on the APP S menu if the two E quation L ibrary files ar e stor ed on the calculator . The E quation L ibrary is explained in det ail in chapter 2 7 .[...]

  • Seite 840

    P age G-1 Appendix G Useful shortc uts Pr esented her ein ar e a number of k eyboar d shortcuts commonl y used in the calc ulator : Θ Adjust di splay co ntrast: $ (hold) + , or $ (hold) - Θ T oggle between RPN and AL G modes: H @@@OK@@ or H` . Θ Set/c lear sy stem flag 9 5 (AL G v s. RPN oper ating mode) H @) FLAGS —„—„—„ — @@CHK[...]

  • Seite 841

    P age G-2 Θ Set/clear s yst em flag 117 (CHOO S E bo xes vs . SOFT menu s): H @) FLAGS —„ —˜ @@CHK@ Θ In AL G mode , SF(-117) selects S OFT menus CF(-117) se lects CHOO SE BOXE S . Θ In RPN mode, 117 ` SF selec ts SOFT men us 117 ` CF selects S OFT menus Θ Change angular measur e: o T o degrees: ~~d eg` o T o r adian: ~~rad` Θ Spec ia[...]

  • Seite 842

    P age G-3 Θ S ystem-lev el op er ation (H old $ , re lease it after enter ing second or thir d k e y): o $ (hold) AF : “Cold” r estart - all memory eras ed o $ (hold) B : Cancels k ey strok e o $ (hold) C : “W arm ” re start - memor y pr eserv ed o $ (hold) D : Starts inter acti ve self-test o $ (hold) E : Starts continuou s self- test o $[...]

  • Seite 843

    P age H-1 Appendix H T he CAS help facilit y The CA S help fac ility is available thr ough the ke ystr oke seq uence I L @HELP ` . T he fo llow ing scr een shots sho w the f irst menu page in the listing of th e CAS help fac ili ty . The commands ar e listed in alphabeti cal or der . U sing the verti cal arr ow k ey s —˜ one can na vigat e thr o[...]

  • Seite 844

    P age H-2 Θ Y ou can type two or more letters of t he comm and of interest , by locking the alphabeti c ke yboar d. T his will t ake y ou to the command of int eres t , or to its neighbor hood. Afterwar ds, y ou need to unlock the alpha k ey board , and use the ve r tical ar r o w ke ys —˜ to locate the command , if needed. Pr ess @@OK@@ to loc[...]

  • Seite 845

    Pa g e I - 1 Appendix I Command catalog list This is a list o f all commands in the command catalog ( ‚N ) . Those commands that belong to the CA S (C omputer A lgebrai c Sy stem) ar e listed also in Appendi x H. CAS help fac ility entrie s are av ailable for a gi ven command if the soft menu k ey @HELP sho ws up w hen yo u highligh t that partic[...]

  • Seite 846

    Pa g e J - 1 Appendix J T he MA THS menu The MA TH S menu , accessible thr ough the command MA THS (av ailable in the catalog N ), contains the follo wing sub-me nus: The CMP LX sub-menu The CMP L X sub-men u contains functi ons per tinent to oper ations with comple x numbers: The se fu nctions ar e descr ibed in Chapter 4. The CONS T ANT S sub-men[...]

  • Seite 847

    Pa g e J - 2 The HYP ERBOLI C sub-menu The HYP ERBOLIC sub-menu co ntains the h yperboli c functi ons and their in ver ses . The se func tions ar e descr ibed in Chapter 3 . The INTEGER sub-menu The INTE GER sub-menu pr ov ides functi ons f or manipulating integer numbers and some poly nomials. T hese functi ons are pr esent ed in Chapter 5: The MO[...]

  • Seite 848

    Pa g e J - 3 The P OL YNOMIAL sub-menu The P OL YNO MIAL sub-menu inc ludes func tions for gener ating and manipulating poly nomials . The se func tions ar e pres ented in Chapt er 5: The TE ST S sub-m enu The TE S TS su b-menu inc ludes r elational oper ators (e .g., ==, <, etc .) , logical oper ators (e .g., AND , OR, etc .) , the IFTE functio[...]

  • Seite 849

    Pa g e K- 1 Appendix K Th e M A I N m en u The MAIN men u is av ailable in the command catalog . This men u include the fo llow ing sub-menu s: The CA SCF G command This is the f irst entry in the MAIN menu . This command conf igure s the CAS . F or CAS conf igur ation inf ormatio n see Appendi x C. The AL GB sub-menu The AL GB sub-men u includes t[...]

  • Seite 850

    Pa g e K- 2 The DIFF sub-menu The DIFF sub-menu contains the fo llo w ing funct ions: The se func tions ar e also av ailable thr ough the CAL C/DIFF sub-menu (start with „Ö ). T hese f uncti ons ar e desc r ibed in Chapter s 13, 14 , and 15, ex cept fo r functi on TRUNC, whi ch is desc ribed next u sing its CAS help f acility entry: The MA THS s[...]

  • Seite 851

    Pa g e K- 3 The se fu nctions ar e also av ailable in the TRIG menu ( ‚Ñ ) . Description of these f unctions is incl uded in Chapter 5 . The S OL VER sub-menu The S OL VER men u includes the follo w ing functi ons: The se fu nctions ar e av ailable in the CAL C/S OL VE menu (st art with „Ö ). The f unctions ar e descr ibed in Chapter s 6 , 11[...]

  • Seite 852

    Pa g e K- 4 The su b-menus INTE GER, MODULAR, and POL YNOMIAL are pr esented in detail in Appendi x J. The E XP &LN sub-menu The EXP &L N menu contains the f ollow ing functi ons: This men u is also acces sible thr ough the k eyboar d by using „Ð . T he functi ons in this menu are pr esented in Chapter 5 . The MA TR sub-m enu The MA TR m[...]

  • Seite 853

    Pa g e K- 5 The se f unctio ns are av ailable through the C ONVERT/REWR ITE me nu (start w ith „Ú ) . T h e f unctio ns ar e pres ented in Chapt er 5, e xcept f or func tions XNUM and XQ, w hich ar e descr ibed next u sing the corr esponding entr ies in the CAS help f acility ( IL @HELP ): XNUM X Q[...]

  • Seite 854

    Pa g e L- 1 Appendix L L ine editor commands When y ou trigger the line editor b y using „˜ in the RPN stack or in AL G mode , the follo w ing soft menu f u ncti ons ar e pro vided (pr ess L to see the r emaining func tions): The f unctions ar e brief ly desc ribed as fo llo ws:  SKIP: Skip s char acters to beginning o f wor d. SKIP  : Ski[...]

  • Seite 855

    Pa g e L- 2 The it ems sho w in this scr een are self-e xplanatory . F or ex ample , X and Y positions mean the positi on on a line (X) and the line number (Y). Stk Size means the number of obj ects in the AL G mode history or in the RPN stac k. Mem(KB) means the amount of fr ee memory . Clip Siz e is the number of char acter s in the clipboar d. S[...]

  • Seite 856

    Pa g e L- 3 The SE ARCH sub-menu The f unctions of the SE ARCH sub-me nu ar e: Fi n d : Use this functi on to find a str ing in the command line. The input f orm pr o vi ded w ith this command is show n next: Rep la c e : Use this command t o fi nd and replace a str ing. T he input f orm pr o vi ded for this command is: F ind next .. : Finds the ne[...]

  • Seite 857

    Pa g e L- 4 The GO T O sub-menu The f unctions in the GO T O sub-men u are the f ollow ing: Goto L ine: to mo ve to a spec ifie d line. T he input fo rm pr ov ided w ith this command is: Goto P o sition : mov e to a spec ified positi on in the command line . The input for m pro vided f or this command is: Labe ls : mo ve t o a spec ified label in t[...]

  • Seite 858

    Pa g e L- 5[...]

  • Seite 859

    Pa g e M - 1 Appendix M T able of Built-In Equations The E quation L ibrary consists o f 15 subj ects corr esponding to the s ections in the table belo w) and more than 100 titles. T he numbers in par entheses below indicate the n u mber of eq uations in the set and the number of v ariables in the set . Ther e are 315 equations in total us ing 3 9 [...]

  • Seite 860

    Pa g e M - 2 3: Fluids (29 , 2 9 ) 1: Pr essur e at D epth (1, 4) 3: F lo w w ith Los ses (10, 17) 2 : Bernoulli E quation (10, 15) 4: Flo w in Full P ipes (8 , 19) 4 : Forces and Energy ( 3 1 , 3 6) 1: L inear Mechanics (8 , 11) 5 : ID Elastic Collisi ons (2 , 5 ) 2 : Angular Mec hanics (12 , 15) 6: Dr ag F orce (1, 5 ) 3: Centripe tal Fo rce ( 4,[...]

  • Seite 861

    Pa g e M - 3 9: Op tics ( 1 1 , 1 4 ) 1: La w of Ref racti on (1, 4) 4: Spher ical Ref lection (3, 5) 2 : Criti cal Angle (1, 3) 5: Spheri cal Refr action (1, 5) 3: Bre wst er’s L aw (2 , 4) 6: Thin Le ns (3, 7) 1 0: Oscillations (1 7 , 1 7 ) 1: Mass–S pring S ys tem (1, 4) 4: T o rsi onal P endulum (3, 7) 2 : Simple P e ndulum (3, 4) 5: Simple[...]

  • Seite 862

    Pa g e N - 1 Appendix N Inde x A ABCUV 5-10 ABS 3-4, 4-6, 11-8 ACK 25-4 ACKALL 25-4 ACOS 3-6 ADD 8-9, 12-20 Additional character set D-1 ADDTMOD 5-11 Alarm functions 25-4 Alarms 25-2 ALG menu 5-3 Algebraic objects 5-1 ALOG 3-5 ALPHA characters B-9 ALPHA keyboard lock-unlock G-2 Alpha-left-shift characters B-10 Alpha-right-shift characters B-12 ALRM[...]

  • Seite 863

    Pa g e N - 2 Bar plots 12-29 BASE menu 19-1 Base units 3-22 Beep 1-25 BEG 6-31 BEGIN 2-27 Bessel’s equation 16-52 Bessel’s functions 16-53 Best data fitting 18-13, 18-62 Best polynomial fitting 18-62 Beta distribution 17-7 BIG 12-18 BIN 3-2 Binary numbers 19-1 Binary system 19-3 Binomial distribution 17-4 BIT menu 19-6 BLANK 22-32 BOL L-4 BOX 1[...]

  • Seite 864

    Pa g e N - 3 Clock display 1-30 CMD 2-62 CMDS 2-25 CMPLX menus 4-5 CNCT 22-13 CNTR 12-48 Coefficient of variation 18-5 COL+ 10-19 COL  10-19 "Cold" calculator restart G-3 COLLECT 5-4 Column norm 11- 7 Column vectors 9-18 COL- 10-20 COMB 17- 2 Combinations 17-1 Command catalog list I-1 Complex CAS mode C-6 Complex Fourier series 16-26 C[...]

  • Seite 865

    Pa g e N - 4 Dates calculations 25-4 DBUG 21-35 DDAYS 25-3 Debugging programs 21-22 DEC 19-2 Decimal comma 1-22 Decimal numbers 19-4 decimal point 1-22 Decomposing a vector 9-11 Decomposing lists 8-2 Deep-sleep shutdown G-3 DEFINE 3-36 Definite integrals 13-15 DEFN 12-18 DEG 3-1 Degrees 1-23 DEL 12-46 DEL L L-1 DEL  L-1 DELALARM 25-4 Deleting su[...]

  • Seite 866

    Pa g e N - 5 DISTRIB 5-28 DIV 15-4 DIV2 5-10 DIV2MOD 5-11, 5-14 Divergence 15-4 DIVIS 5-9 DIVMOD 5-11, 5-14 DO construct 21-61 DOERR 21-64 DOLIST 8-11 DOMAIN 13-9 DOSUBS 8-11 DOT 9-11 Dot product 9-11 DOT+ DOT- 12-44 Double integrals 14-8 DRAW 12-20, 22-4 DRAW3DMATRIX 12-52 Drawing functions pr ograms 22-22 DRAX 22-4 DROITE 4-9 DROP 9-20 DTAG 23-1 [...]

  • Seite 867

    Pa g e N - 6 ERRN 21-65 Error trapping in programming 21-64 Errors in hypothesis testing 18-36 Errors in programming 21-64 EULER 5-10 Euler constant 16-54 Euler equation 16-51 Euler formula 4-1 EVAL 2-5 Exact CAS mode C-4 EXEC L-2 EXP 3-6 EXP2POW 5-28 EXPAND 5-4 EXPANDMOD 5-11 EXPLN 5-8, 5-28 EXPM 3-9 Exponential distribution 17-6 Extrema 13-12 Ext[...]

  • Seite 868

    Pa g e N - 7 Function, table of values 12-17, 12-25 Functions, multi-variate 14-1 Fundamental theorem of algebra 6-7 G GAMMA 3-15 Gamma distribution 17-6 GAUSS 11-54 Gaussian elimination 11-14, 11-29 Gauss-Jordan elimination 11-33, 11-38, 11-40, 11 -43 GCD 5-11, 5-18 GCDMOD 5-11 Geometric mean 8-16, 18-3 GET 10-6 GETI 8-11 Global variabl e 21-2 Glo[...]

  • Seite 869

    Pa g e N - 8 HELP 2-26 HERMITE 5-11, 5-18 HESS 15-2 Hessian matrix 15-2 HEX 3-2, 19-2 Hexadecimal numbers 19-7 Higher-order derivatives 13-13 Higher-order partial derivatives 14-3 HILBERT 10-14 Histograms 12 -29 HMS- 25-3 HMS+ 25-3 HMS  25-3 HORNER 5-11, 5-19 H-VIEW 12-19 Hyperbolic functions graphs 12-16 Hypothesis testing 18-35 Hypothesis test[...]

  • Seite 870

    Pa g e N - 9 Integrals step-by-step 13-16 Integration by partial fractions 13-20 Integration by parts 13-19 Integration change of variable 13-19 Integration substitution 13-18 Integration techniques 13-18 Interactive drawing 12-43 Interactive input programming 21-19 Interactive plots with PLOT menu 22-15 Interactive self-test G-3 INTVX 13-14 INV 4-[...]

  • Seite 871

    Pa g e N - 1 0 Left-shift functions B-5 LEGENDRE 5-11, 5-20 Legendre’s equation 16-51 Length units 3-19 LGCD 5-10 lim 13-2 Limits 13-1 LIN 5-5 LINE 12-44 Line editor commands L-1 Line editor properties 1-28 Linear Algebra 11-1 Linear Applications 11-54 Linear differenti al equations 16-4 Linear regression additional notes 18- 50 Linear regression[...]

  • Seite 872

    Pa g e N - 1 1 Mass units 3-20 Math menu.. F-5 MATHS menu G-3, J-1 MATHS/CMPLX menu J -1 MATHS/CONSTANTS menu J-1 MATHS/HYPERBOLIC menu J-2 MATHS/INTEGER menu J-2 MATHS/MODULAR menu J-2 MATHS/POLYNOMIAL menu J-3 MATHS/TESTS menu J-3 matrices 10-1 Matrix "division" 11-27 Matrix augmented 11-32 Matrix factorization 11-49 Matrix Jordan-cycle[...]

  • Seite 873

    Pa g e N - 1 2 Multiple integrals 14-8 Multiple linear fitting 18-57 Multiple-Equation Solver 27-6 Multi-variate calculus 14-1 MULTMOD 5-11 N NDIST 17-10 NEG 4-6 Nested IF...THEN..ELSE..END 21-49 NEW 2-34 NEXTPRIME 5-10 Non-CAS commands C-13 Non-linear differential equations 16-4 Non-verbose CAS mode C-7 NORM menu 11-7 Normal distribution 17-10 Nor[...]

  • Seite 874

    Pa g e N - 1 3 Partial fractions integration 13-20 Partial pivoting 11-34 PASTE 2-27 PCAR 11-45 PCOEF 5-11, 5-21 PDIM 22-20 Percentiles 18-14 PERIOD 2-37, 16-34 PERM 17-2 Permutation matrix 11-50, 11-51 Permutations 17-1 PEVAL 5-22 PGDIR 2-44 Physical constants 3-29 PICT 12-8 Pivoting 11-34 PIX? 22-22 Pixel coordinates 22-25 Pixel references 19-7 P[...]

  • Seite 875

    Pa g e N - 1 4 17-6 Probability distributions discrete 17-4 Probability distributions for statistical inference 17-9 Probability mass function 17-4 Program branching 21-46 Program loops 21-53 Program-generated plots 22-17 Programming 21-1 Programming choose box 21-31 Programming debugging 21-22 Programming drawing commands 22-19 Programming drawing[...]

  • Seite 876

    Pa g e N - 1 5 RCLMENU 20-1 RCWS 19-4 RDM 10-9 RDZ 17-3 RE 4-6 Real CAS mode C-6 Real numbers C-6 Real numbers vs. Integer numbers C-5 Real objects 2-1 Real part 4-1 RECT 4-3 REF. RREF, rref 11-43 Relational operators 21-43 REMAINDER 5-11, 5-21 RENAM 2-34 REPL 10-12 Replace L-3 Replace All L-3 Replace Selection L-3 Replace/Find Next L-3 RES 22-6 RE[...]

  • Seite 877

    Pa g e N - 1 6 SEARCH menu L-2 Selection tree in Equation Writer E-1 SEND 2-34 SEQ 8-11 Sequential programming 21-15 Series Fourier 16-26 Series Maclaurin 13-23 Series Taylor 13-23 Setting time and date 25-2 SHADE in plots 12-6 Shortcuts G-1 SI 3-30 SIGMA 13-14 SIGMAVX 13-14 SIGN 3-14, 4-6 SIGNTAB 12-50, 13-10 SIMP2 5-10, 5-23 SIMPLIFY 5-29 Simplif[...]

  • Seite 878

    Pa g e N - 1 7 Stiff differential equations 16-67 Stiff ODE 16-66 Stiff ODEs numerical solution 16-67 STOALARM 25-4 STOKEYS 20-6 STREAM 8-11 String 23-1 String concatenation 23-2 Student t distribution 17-11 STURM 5-11 STURMAB 5-11 STWS 19-4 Style menu L-4 SUB 10-11 Subdirectories creating 2-39 Subdirectories deleting 2-43 SUBST 5-5 SUBTMOD 5-11, 5[...]

  • Seite 879

    Pa g e N - 1 8 TINC 3-34 TITLE 7-14 TLINE 12-45, 22-20 TMENU 20-1 TOOL menu CASCMD 1-7 CLEAR 1-7 EDIT 1-7 HELP 1-7 PURGE 1-7 RCL 1-7 VIEW 1-7 TOOL menu 1-7 Total differential 14-5 TPAR 12-17 TRACE 11-14 TRAN 11-15 Transforms Laplace 16-10 Transpose 10 -1 Triangle solution 7-9 Triangular wave Fourier series 16-34 TRIG menu 5-8 Trigonometric function[...]

  • Seite 880

    Pa g e N - 1 9 Vector elements 9-7 Vector fields 15-1 Vector fields curl 15-5 Vector fields divergence 15-4 VECTOR menu 9-10 Vector potential 15-6 Vectors 9-1 Verbose CAS mode C-7 Verbose vs. non-verbose CAS mode C-7 VIEW in plots 12-6 Viscosity 3-21 Volume units 3-19 VPAR 12-42, 22-10 VPOTENTIAL 15-6 VTYPE 24-2 V-VIEW 12-19 VX 2-37, 5-19 VZIN 12-4[...]

  • Seite 881

    Pa g e N - 2 0 ! 17-2 % 3-12 %CH 3-12 %T 3-12  ARRY 9-6, 9-20  BEG L-1  COL 10-18  DATE 25-3  DIAG 10-12  END L-1  GROB 22-31  HMS 25-3  LCD 22-32  LIST 9-20  ROW 10-22  STK 3-30  STR 23-1  TAG 21-33, 23-1  TIME 25-3  UNIT 3-28  V2 9-12  V3 9-12 Σ DAT 18-7 Δ DLIST 8-9 Σ PAR 22-13 Π PLIST 8-9[...]

  • Seite 882

    Pa g e LW- 1 Limited W ar ranty HP 50g gr aphing calculator ; W arr anty period: 12 months 1. HP warr ants to you , the end-user c ustomer , that HP hard war e, access ori es and supplies w ill be fr ee fr om defects in mat er ials and w orkmanship after the dat e of pur chase , for the per iod s pecif ied abo ve . If HP r e cei ves noti ce of such[...]

  • Seite 883

    Pa g e LW- 2 W ARRANTY S T A T EMENT ARE Y OUR SO LE AND EX CL US IVE REMEDIES . EX CEPT A S INDICA TED ABO VE , IN NO EVENT WILL HP OR I T S S UPPLIER S BE LIABLE FOR L O S S OF D A T A OR FOR DIRE CT , SP ECIAL , INCIDENT AL , CON SE QUENTIAL (INCL UDING L O S T PROFI T OR DA T A), OR O THER D AMA GE , WHETHER B ASED IN C ONTRAC T , T OR T , OR O[...]

  • Seite 884

    Pa g e LW- 3 Swi t ze r la n d +41-1-43 9 5 35 8 (Ger man) + 4 1 -2 2- 8 27878 0 ( F r e n c h ) +3 9-0 2 - 7 5 419 7 8 2 (Itali an) T urk ey +4 20 -5- 414 22 5 2 3 UK +44- 20 7 - 45 80161 Cz ech R epubli c +4 20 -5- 414 2 2 5 2 3 South A fri ca +2 7 -11- 2 3 7 6 200 Lu xembour g +3 2 - 2 - 712 6 219 Other Eu r opean countr ies +4 20 -5 - 414 2 25 [...]

  • Seite 885

    Pa g e LW- 4 Regulatory infor mation Fe deral Communications Commission Notic e This eq uipment has bee n test ed and found t o compl y with the limits f or a Class B digital de vice , pursuant t o P art 15 of the FCC R ules. T hese limits are de signed to pr ov ide r e asona ble pr otecti on against harmf ul interfer ence in a resi dential install[...]

  • Seite 886

    Pa g e LW- 5 This de vi ce complies with P art 15 of the FCC Rules . O per ation is subject to the follo wing two conditi ons: (1) this dev ice may not cause harmf ul interfer ence, and (2) this dev ice must accept an y interf er ence rece iv ed, incl uding interfer ence that may cau se undesir ed operation . F or ques tions r ega r ding y our prod[...]

  • Seite 887

    Pa g e LW- 6 This compliance is indi c ated b y the fo llow ing conformity marking placed on the pr oduc t: Japanese No tice ᬆ ᬡٍ¾ᬢ᫞ ᖱႎಣℂٍ¾╬ชᵄ්ኂȴਥۉ೙ද߿ ળ (V CCI) ᬡၮḰ ᬞ ၮᬘ ᬂ ╙ੑᖱႎᛛ؊ٍ¾ ᬚ ᬌ ᫟ ᬆ ᬡٍ¾ᬢ᫞ ኅᐸⅣႺ ᬚ ૶↪ ᬌ ᬾ ᬆ ᬛ ᭅ ⋡ ⊛ ᬛ ᬊ ᬙ ᫷ ᬱ[...]