IBM SPSS 20 Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 170 Seiten
- N/A
Zur Seite of
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung IBM SPSS 20 an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von IBM SPSS 20, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung IBM SPSS 20 die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung IBM SPSS 20. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung IBM SPSS 20 sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts IBM SPSS 20
- Den Namen des Produzenten und das Produktionsjahr des Geräts IBM SPSS 20
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts IBM SPSS 20
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von IBM SPSS 20 zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von IBM SPSS 20 und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service IBM finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von IBM SPSS 20 zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts IBM SPSS 20, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von IBM SPSS 20 widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
i IBM SPSS Statistics 20 Brief Guide[...]
-
Seite 2
Note : Before using this informat ion and the produ c t it supports, read the general information under Notices on p. 156. This edition applie s to IBM® SPSS® Statistic s 20 and to all subseq uent releases and mod ifications until ot herwise indi cated in new edition s. Adobe product screenshot(s) reprinted with per mission from Adobe Syst ems In[...]
-
Seite 3
Preface The IBM SPSS Statistics 20 Brief Guide provides a set of tutorials designed to acquaint you with the various components of IBM® SPSS® Statistics. This guide is intended for use with all operating system versions of the software, including: W indo ws, Macintosh, and Linux. Y ou c a nw o r kt h r o u g ht h et u t o r i a l si ns e q u e n [...]
-
Seite 4
Additionally , SPSS Statistics Ba se offers a broad range of algor ithms for compar ing means and predictive techniques such as t-test, analysis of var iance, linear regression and ordinal regression. Advanced Statistics focuses on techniques often used in sophisticated experimental and biomedical research. It includes procedures for general linear[...]
-
Seite 5
Regression provides techniques for analyzing data that do not fit traditional linear statistical models. It inclu des p rocedures fo r probit analysis, l ogistic regression, weig ht esti mation, two-stage least-squares regression, and general nonlinear regression. Amos™ ( a nalysis of mo ment s tructures) uses structural equation modeling to conf[...]
-
Seite 6
SPSS Stati stics command sy ntax is not a vailable to t he user . This means that it i s not possibl e to repeat an analysis by saving a series of commands in a syntax or “job” file, as can be done in the full version of IBM® SPSS® Statistics. Scripting and automation are not available to the user . This means that you cannot create s[...]
-
Seite 7
Contents 1 Introduction 1 S a m p l e F i l e s .................... ............ ............ ............ ......... 1 O p e n i n g a D a t a F i l e ......... ............ ............ ............ ............ ... 1 R u n n i n g a n A n a l y s i s .... ............ ............ ............ ............... ... 3 V i e w i n g R e s u l t s ..[...]
-
Seite 8
C o p y i n g a n d P a s t i n g I n f o r m a t i o n b e t w e e n D a t a s e t s ..... ............... ............ ... 51 R e n a m i n g D a t a s e t s ... ............... ............ ............ ............ ...... 51 S u p p r e s s i n g M u l t i p l e D a t a s e t s ......... ............ ............ ............ ...... 51 5 Examin[...]
-
Seite 9
H i d i n g R o w s a n d C o l u m n s........................ ............... ............ 89 C h a n g i n g D a t a D i s p l a y F o r m a t s .. ............... ............ ............ ...... 89 T a b l e L o o k s ............... ............... ............ ............ ............ 91 U s i n g P r e d e f i n e d F o r m a t s ...... ..[...]
-
Seite 10
S p l i t - F i l e P r o c e s s i n g ........ ............... ............ ............ ........... 139 S o r t i n g C a s e s f o r S p l i t - F i l e P r o c e s s i n g ................. ............ ........... 140 T u r n i n g S p l i t - F i l e P r o c e s s i n g O n a n d O f f .......... ............ ............ ..... 141 S e l e c[...]
-
Seite 11
Chapter 1 Introduction This guide provides a set of tutorials designed to enable you to perform useful analyses on your data. Y ou can work through the tutorials in sequence or turn to the topics for which you need additional information. This chapter will introduce you to the basic features and demonstrate a typical session. W e will retrieve a pr[...]
-
Seite 12
2 Chapt er 1 By default, IBM® SPSS® Statistics data files (. sav exten sion) are display ed. This example uses t he file demo.sav . Figure 1 -2 demo.sav file in Dat a Editor The data file is displayed in the Data Editor . In the Data Editor , if you put the mouse cursor on a variable name (the colum n h eadings), a more descripti ve variable labe[...]
-
Seite 13
3 Introduction Figure 1 -4 V a l u el a b e l sd i s p l a y e di nt h eD a t aE d i t o r R u n n i n ga nA n a l y s i s If you have any add-on options, the Analyze menu contains a list of reporting and statistical analysis categories. W e will start by creating a simple frequency tab le (table of counts). This example requires the Statisti cs Ba[...]
-
Seite 14
4 Chapt er 1 An icon nex t to each vari able provides information about data type and lev el of measuremen t. Numeric String Date Tim e Scale (Continuous) n/a Ordinal Nominal E Click the variable Income category in thousands [inccat] . Figure 1 -6 Va r i a b l e l a b e ls and names in the F requencies dialog box If the variable label and/or name a[...]
-
Seite 15
5 Introduction Figure 1 -7 Resized dialo g box In the dia log b ox, you ch oose th e varia bles that you wan t to analyze from the s ource list on the left and d rag a nd dro p the m in to th e V ariabl e(s) l ist on the right . The OK button, which runs the analysis, is disabled until at least one variable is placed in the V ariable(s) list. In ma[...]
-
Seite 16
6 Chapt er 1 E Click Gender [gender] in the source variable list and drag the variable into the target V ariable(s) list. E Click Income category in thousands [inccat] in the source list and drag it to the target list. Figure 1 -9 V ariables selected for analysis E Click OK to run the procedure. Vi ewing R esults Figure 1 -1 0 Vie wer window Result[...]
-
Seite 17
7 Introduction E Click Income cate go r y in thou sa nd s [inccat] . Figure 1 -1 1 F requen cy t able of income categories The frequency table for income categories is displayed. This frequency table shows the number and percentage of people in each income category . Creating Charts Although some statistical procedures can cr eate charts, you can a[...]
-
Seite 18
8 Chapt er 1 Figure 1 -12 Chart Builder dialog box E Scroll down the V ariables list, right-click W ir e less service [wireless] , and then choose Nominal as its measurement level. E Drag the W ireless service [wir eless] variable to the x axis. E Right-click Owns PDA [ownpda] and c hoose Nominal as its measu rement leve l. E Drag the Owns PDA [own[...]
-
Seite 19
9 Introduction Figure 1 -13 Bar c hart display ed in View er wind ow The bar chart is displayed in the V iewer . The chart shows that people with wireless phone service are far m ore likely to have PDAs than peo ple without wireless service. Y ou can edit charts and tables by double-clic king them in the contents pane of the V iewer window , and yo[...]
-
Seite 20
Chapter 2 Reading Data Data can be entered di rectly , or i t can be imported fr om a numb er of different sources. The processes for reading data stored i n IBM® SPSS® Statistics data files; spreadsheet applications, such as Microsoft Excel; database applications , such as Microso ft Access; and text fil es are all discussed in this chapter . Ba[...]
-
Seite 21
11 Reading Dat a The data are now displayed in the Data Editor . Figure 2-2 Opened dat a fi le Reading Data from Spreadsheets Rather than typing all of your data directly into the Data Editor , you can read data from applications such as Microsoft Excel. Y ou can also read column headings as variable names. E From the menus choose: File > Open &[...]
-
Seite 22
12 Chapt er 2 E Make sure that Re ad variable names from the first row of da ta is selected. This option reads column headings as variable names. If the column headings do not conform to the IBM® SPSS® Statistics variable-naming rules, they are converted into valid variable names and the original column headings are saved as variable labels. If y[...]
-
Seite 23
13 Reading Dat a Figure 2-5 Dat a base W izard Welcome dialo g box E Sele ct MS Access Database from the list of data sources and click Next . Note : Depending on your installation, you may also see a list of OLEDB data sources on the left side of the wizard (W indows operating systems only), but this example uses the list of ODBC data sourc es dis[...]
-
Seite 24
14 Chapt er 2 Figure 2-6 ODBC Driver Login dialog box E Click Browse to navigate to the Access database file that you want to open. E Open demo.mdb . For more information, see the topic Sample Files in Appendix A on p. 147. E Click OK in the login dialog box. In the next step, you can specify the tabl es and variables that you want to import. Figur[...]
-
Seite 25
15 Reading Dat a E Drag the entire demo table to the R etrieve Field s In This Or der list. E Click Nex t . In the next step, you select which records (cases) to import. Figure 2-8 Limit Retriev ed Cases step If you d o not want to import all cases, you can import a subset of cases (for example, males older than 30), or you can import a random samp[...]
-
Seite 26
16 Chapt er 2 Field names are used to create variable names. If necessary , the names are converted to valid variable names. The original f ield names are pres erved as variable labels. Y ou can also change the variable names before importing the database. Figure 2-9 Define V ariables step E Click the Recode to Numeric cell in the Gender field. Thi[...]
-
Seite 27
17 Reading Dat a The SQL statement created from your selections in the Database W izard appears in the Results step. This statement can be executed now or saved to a file for later use. Figure 2-1 0 Resu lt s ste p E Clic k Finish to import the data.[...]
-
Seite 28
18 Chapt er 2 All of the data in the Access database t hat you se lected to import are now available in the Data Editor . Figure 2-1 1 Data imported from an Access database Reading Data from a T ext File T ext files are another common source of data. Many spreadsheet programs and databases can save their contents in one of many text file formats. C[...]
-
Seite 29
19 Reading Dat a The T ext Import Wiza rd guides you through the process o f defining how the specified text file should be interpreted. Figure 2-12 T ext Import W izard: Step 1 of 6 E In Step 1, yo u can choose a pred efined format or creat e a new form at in the wizard. Select No to indicat e that a new f ormat sho uld be created . E Click Ne xt [...]
-
Seite 30
20 Chapt er 2 As stated earlier , this file uses tab-delimited formatting. Also, the variable names are defined on t he top line of this file. Figure 2-13 T ext Import W izard: Step 2 of 6 E Select Delimited to indicate that the data use a delimited formatting structure. E Select Ye s to indicate that variable names should be read from the top of t[...]
-
Seite 31
21 Reading Dat a E Ty p e 2 in the top section of next dialog box to indicate that the first row of data starts on the second line of the text file. Figure 2-1 4 T ext Import W izard: Step 3 of 6 E Keep the default values for the remainder of this dialog box, and click Next to continue.[...]
-
Seite 32
22 Chapt er 2 The Data preview in Step 4 pr ovides you with a qui ck way to ensure that you r data are being properly read. Figure 2-15 T ext Import W izard: Step 4 of 6 E Select Ta b and desel ect the ot her options. E Click Ne xt to continue .[...]
-
Seite 33
23 Reading Dat a Because the variable names may have been truncated to fit formatting requirements, this dialog box gives you the opportunity to edit any undesirable names. Figure 2-16 T ext Import W izard: Step 5 of 6 Data types can be defined here as well. For examp le, it’ s safe to assume that the income variable is meant to contain a certain[...]
-
Seite 34
24 Chapt er 2 E Select Dollar from the Data for mat drop-down list. Figure 2-17 Change the data t ype E Click N ex t to c ontinue .[...]
-
Seite 35
25 Reading Dat a Figure 2-18 T ext Import W izard: Step 6 of 6 E Leave the default selections in this dialog b ox, and click Finish to import the d ata.[...]
-
Seite 36
Chapter 3 Using the Data Editor The D ata Ed itor displays the content s of the active data file. The informa tion in the Data Edito r consists of variables and cases. In Data V iew , columns represent variables , and rows represent c ases (observations). In V ariable V iew , each row is a variable, and each column is an attribute that is a[...]
-
Seite 37
27 Using the Dat a Editor E In the second row , type mar ital . E In the third row , type income . New variables are automatically given a Numeric data type. If you don’t enter variable names, unique names ar e automatically created. However , these names are n ot descriptive and are not recommended for large data files. E Click the Data Vie w ta[...]
-
Seite 38
28 Chapt er 3 Currently , the age and marital columns display decimal points, even though their values are intended to be integers. T o hide the decimal points in these variables: E Click the Va r i a b l e V i e w tab at the bottom of the Dat a E ditor wind ow . E In the Decimals column of the age row , type 0 to hide the decimal. E In the Decimal[...]
-
Seite 39
29 Using the Dat a Editor E Click the button on the right side of the Ty p e cell to open the V ariable T ype dialog box. Figure 3-4 B u t t o ns h o w ni nT y p ec e l lf o rs e x E Select String to specify the variable type. E Click OK to save your selection and return to the Data Editor . Figure 3-5 V ariable T ype dialog box[...]
-
Seite 40
30 Chapt er 3 Defining Data In addition to defining data types, you can also define descriptiv e variable labels and value labels for variable names and data values. These descrip tive labels are used in statistical reports and charts. Adding V ariable Labels Labels are meant to provide descript ions of variables. These descri ptions are often long[...]
-
Seite 41
31 Using the Dat a Editor Changing V ariable T ype and Format The Ty p e column displ ays the current data type fo r each variable. The m ost commo n data types are numeric and string, but many other formats are supported. In the current data file, the income variable is defined as a numeric type. E Click the Ty p e cell for the inc ome row , and t[...]
-
Seite 42
32 Chapt er 3 E Click Add to add t his la bel to the list. Figure 3-8 V alue Labels dialo g box E Ty p e 1 in the V alue field, and type Marr ied in the Label field. E Click Add , and then c lick OK to s ave your changes a nd return to th e Data Editor . These labels can also be displayed in Data V iew , which can make your data more readable. E Cl[...]
-
Seite 43
33 Using the Dat a Editor If the V alue Labels menu item is already ac tive (with a check mark next to it), choosing Va l u e Labels again will turn off the display of value labels. Figure 3-9 V a l u el a b e l sd i s p l a y e di nD a t aV i e w Adding V alue Labels for String V ariables String variables may require value labels as well. For exam[...]
-
Seite 44
34 Chapt er 3 E Click Add to add this label to yo ur data file. Figure 3-1 0 V alue Labels dialo g box E Ty p e M in the V alue fiel d, and type Male in the Label field. E Click Add , and then c lick OK to s ave your changes a nd return to th e Data Editor . Because string values are case sensitive , you shou ld be consisten t. A lowercase m is not[...]
-
Seite 45
35 Using the Dat a Editor E Click the button on the right side of the cell, and then choose Fe m a le fr om the dro p-down li st. Figure 3-1 1 Using variable labels to select values Only defined values are listed, which ensures that the entered data are in a format that you expect. Handling Missing Data Missing or invalid data are generally too com[...]
-
Seite 46
36 Chapt er 3 Figure 3-12 Missing values d isplaye d as periods The reas on a value is missing may be important to your analysis. For example, you may find it useful to distinguish between those respondents who refused to answer a question and those respondents who didn’t answer a que stion because it was not applicable. Missing V alues for a Num[...]
-
Seite 47
37 Using the Dat a Editor E Select Discrete missing values . E Ty p e 999 in the first text box and leave the other two text boxes empty . E Click OK to save your changes and r eturn to the Data Edito r . Now that the missing data value has been added, a label can be applied t o that value. E Click the Va l u e s cell in the age row , and then clic[...]
-
Seite 48
38 Chapt er 3 E Click OK to save your changes and r eturn to the Data Edito r . Now you can add a label for the missing value. E Click the Va l u e s cell in the sex r o w , a n dt h e nc l i c kt h eb u t t o no nt h er i g h ts i d eo ft h ec e l lt o open the V alue Labels dialog box. E Ty p e NR in the V alue field. E Ty p e No Response in the [...]
-
Seite 49
39 Using the Dat a Editor E In V ariable V iew , type agew ed in the first cell of the first empty row . Figure 3-16 agew ed variable in V ariable Vie w E In the Label column, type Age Marr ied . E Click the Va l u e s cell in the age row . E From the menus choose: Edit > Cop y E Click the Va l u e s cell in the agewed row . E From the menus cho[...]
-
Seite 50
40 Chapt er 3 T o apply t he attribute to multiple variables, simply select multiple targ et cells (click and drag down the column). Figure 3-17 Multiple cells selected When you paste the attribute, it is applied to all of the selected cells. New variables are automatically created if you paste the values into empty rows.[...]
-
Seite 51
41 Using the Dat a Editor T o copy all attributes from one variable to another variable: E Click the row number in the marital row . Figure 3-18 Selected row E From the menus choose: Edit > Cop y E Click the row number of the first empty r ow . E From the menus choose: Edit > Pas te[...]
-
Seite 52
42 Chapt er 3 All attribu tes of t he marital vari able are applied to the new v ariable. Figure 3-1 9 All values pasted into a row Defining Variable Propertie s for Categorical V ariables For categorical (nominal, ordin al) data, you can use Define V ariable Properties to define value labels a nd other variable properties. The D efine V ariable Pr[...]
-
Seite 53
43 Using the Dat a Editor Figure 3-20 Initial Define V ariable Properties d ialog box In the initial Define V ariable Properties dialog bo x, you select the nominal or ordinal variables for which you want to define value labels and/or other properties. E Drag and drop Owns TV [owntv] thro ugh Owns fax machi ne [ownfax] into the V ari ables to Scan [...]
-
Seite 54
44 Chapt er 3 Figure 3-21 Define V ariable Prope rties main dialog box E In the S canned V ariabl e List, select ownpc . The current level of measurement for the selected variable is scale. Y ou can change the measurement level by selecting a level from the drop-down list, or you can let Define V ariable Propert ies suggest a measurement level. E C[...]
-
Seite 55
45 Using the Dat a Editor Figure 3-22 Suggest Measurement Lev el dialog box Because the variable doesn’ t have very many different values and all of the scanned cases contain integer values, the proper measurement level is probably ordinal or nominal. E Select Ordinal , and then click Contin ue . The measurement level for the selected variable is[...]
-
Seite 56
46 Chapt er 3 Figure 3-23 New variable properties defined for ownpc Before w e compl ete the job of modif ying the variable properties for ownpc , let’ s apply the same measurement level, value labels, and missing valu es definitions to the other variables in the list. E In the Copy Properties area, click T o Other V ariables .[...]
-
Seite 57
47 Using the Dat a Editor Figure 3-24 Apply Labels and Level dialog box E In the Apply Labels and Level dialog box, select all of the variables in the list, and then click Cop y . If you select any other variable in the Scanned V ariable List of the Define V ariable Properties main dialog box now , you’ll see that they are all ordinal variables, [...]
-
Seite 58
48 Chapt er 3 E Click OK to save all of the v ariable properties that you have defined.[...]
-
Seite 59
Chapter 4 W orking with Multiple Data Sources Starting with version 14.0, multiple data sources can be open at the same time, making it easier to: Switch back and forth between data sources. Compare the co ntents of different data so urces. Copy and paste data between data sources. Create multiple subsets o f cases and/or variables [...]
-
Seite 60
50 Chapt er 4 Only the variables in the active dataset are available for analysis. Figure 4-2 V ariable list cont aining variables in the active datase t Y ou cannot change the active dataset when any dialog box that accesses the data is open (including all dialog boxes that display variable lists). At least one Data Editor wi ndow must[...]
-
Seite 61
51 W orking with M ultiple Data Source s Figure 4-3 Open dat asets display e d on syntax window toolbar Copying and Pasting Information between Datasets Y ou can copy both data and variabl e d efiniti on a ttributes from one data set to ano ther dataset in basically the same way that you copy and paste information within a single data file. Cop[...]
-
Seite 62
52 Chapt er 4 E Click the General tab. Select (check) Open only one dataset at a time .[...]
-
Seite 63
Chapter 5 Examining Summary Statistics for Individual V ariables This chapter discusses simple summary measures and how the level of measurement of a variable influences the ty pes of statistics t hat should b e used. W e will u se the data fi le demo.sav . For more information , see th e topic Sample Files in Appendix A on p. 147. Level of Measure[...]
-
Seite 64
54 Chapt er 5 E Select Owns PDA [ownpda ] and Owns TV [owntv] and move them into the V ariable(s) list. Figure 5-1 Categorical variables selected for analysis E Click OK t o run the procedure. Figure 5-2 F requen cy ta b les The frequency tables are displayed in the V ie wer w indow . The frequency tables reveal that only 2 0.4% of t he people own [...]
-
Seite 65
55 Examining Summ ar y Statistics for Individual V ariables Charts for Categorical Data Y ou can graphically display the information in a frequency table with a bar chart or pie chart. E Open the Frequencies dialog box again. (The two variables should still be selected.) Y ou can use the Dialog Recall button on the toolbar to quickly return to rece[...]
-
Seite 66
56 Chapt er 5 Figure 5-5 Bar c hart In addition to the frequency tables, the same information is now displayed in the form of bar charts, making it easy to see that most people do not o wn PDAs but almost everyon e owns a TV . Summary Measures for Scale V ariables There are many summary measures available for scale variables, including: Measure[...]
-
Seite 67
57 Examining Summ ar y Statistics for Individual V ariables E Select Household income i n thous ands [inco me] a n dm o v ei ti n t ot h e V a r i a b l e ( s )l i s t . Figure 5-6 Scale variable selected for analysis E Click Statistics . E Select Mean , Median , Std. deviation , Minimum ,a n d Maximum . Figure 5-7 F requen cies S tatisti cs dial o[...]
-
Seite 68
58 Chapt er 5 E Click OK to run the procedure. The Frequencies Statistics table is displayed in the V iewer window . Figure 5-8 F requen cies St atistics table In this example, there is a lar ge dif ference between the mean and the median. The mean is almost 25,000 greater than the media n, in dicating that the values are not norm ally dist ributed[...]
-
Seite 69
59 Examining Summ ar y Statistics for Individual V ariables Figure 5-1 0 Histo gram The majo rity of c ases are clustered at the lo wer en d of t he scale, with most falling below 100,00 0. There are, however , a few cases in the 500,000 range and beyond (too few to even be visible without modifying the histogram) . These hig h values for o nly a f[...]
-
Seite 70
Chapter 6 Creating and editing charts Y ou can c reate and edit a wide varie ty o f cha rt t ypes. In t his c hapter, we wi ll cr eate and edit b ar charts. Y ou can apply the principles to any chart type. Chart creation basics T o demonstrate the basics of chart creation, we w ill create a bar chart of mean income for different levels of job satis[...]
-
Seite 71
61 Creating and editing charts The Chart Buil der d ialog box is an interactive window that allows you to preview how a chart will look while you build it. Figure 6-1 Chart Builder dialog box Using the Chart Builder gallery E Click the Galler y tab if it is not selected. The Gallery includes many differe nt predefined charts, which are organized by[...]
-
Seite 72
62 Chapt er 6 E Drag the ico n for the si mple bar chart ont o the “can vas,” which is the large area above the Gallery . The Chart Builder displays a preview of the chart on the canvas. Note that the data used to draw the chart are not your actual data. They are example data. Figure 6-2 Bar c hart on Chart Builder canvas Defining variables and[...]
-
Seite 73
63 Creating and editing charts E Right-click Job satisfaction in the V ariables list and choose Ordinal . Ordinal is an appropriate measurement level because the categories in Job satisfaction can be ranked by level of satisfaction. Note that the icon changes after you change the measurement level. E Now d rag Job satisfaction from the V ariables l[...]
-
Seite 74
64 Chapt er 6 Figure 6-4 Element Properties window The Element Properties window allows you to change the properties of the various chart elements. These elements include the graphic elements (suc h as the bars in the bar chart) and the axes on the chart. Select one of the elements in the Edit Prope rties of list to change the properties associated[...]
-
Seite 75
65 Creating and editing charts Adding text Y ou can also add titles and footnotes to the chart. E Click the Titles/Footnotes tab. E Select Title 1 . Figure 6-5 T i t l e1d i s p l a y e do nc a n v a s The title appears on the canvas with the label T1 . E In the Elem ent Properties window , select Title 1 in the Edit Properties of list. E In the Co[...]
-
Seite 76
66 Chapt er 6 Creating the chart E Click OK to create the bar chart. Figure 6-6 Bar c hart The bar chart reveals that respondents who are more satisfied w ith their jobs tend to have higher household incomes. Chart editing basics Y ou can edit charts in a variety of ways. For th e sample bar chart that you created, you will: Change colors. [...]
-
Seite 77
67 Creating and editing charts E Double-click the bar chart to open it in the Chart Editor . Figure 6-7 Bar chart in the Chart Editor Selecting chart elements T o edit a chart element, you first select it. E Click any one of the bars. The rectangles arou nd the bars indicate that they are selected. There are general ru les for select ing elements i[...]
-
Seite 78
68 Chapt er 6 This opens the Pro perties window , sh owing the tabs th at appl y t o the bars you selected. These tab s change d epending on what chart elemen t you select in the Chart Edi tor . For example , if you had selected a t ext frame instead of bars, different tabs would appear in the Properties window . Y ou will use these tabs to do most[...]
-
Seite 79
69 Creating and editing charts Figure 6-9 Fill & Border t ab E Click Apply . The bars in the chart are now light blue. Figure 6-1 0 Edited bar c hart showin g b lue bars[...]
-
Seite 80
70 Chapt er 6 Formatting numbers in tick labels Notice t hat t he numbers on t he y axis are scaled in thousands. T o make the chart m ore attractive and easier to int erpret, we will change t he numb er format in the tick labels and then edit the axis title appropriately . E Select the y axis tick labels by clicking any one of them. E T o reop en [...]
-
Seite 81
71 Creating and editing charts Figure 6-1 1 Number Format tab E Click Apply .[...]
-
Seite 82
72 Chapt er 6 The tick labels reflect the new number formatting: There are no decimal places, the numbers are no longer scaled, and each thousandth place is specified w ith a character . Figure 6-12 Edited bar c hart showing new nu mber format Editing t ext Now that y ou have ch anged the number fo rmat of the tick lab els, t he axis title is no lo[...]
-
Seite 83
73 Creating and editing charts E Delete the following text: in thousands E Press Enter to exit edit mode and update the axis t itle. The axis title now accurately describes the contents of the tick labels. Figure 6-13 Bar c hart showing edited y axis title Displaying data value labels Another common task i s to show the ex act values associated wi [...]
-
Seite 84
74 Chapt er 6 Figure 6-1 4 Bar c hart showing data value labels Each bar in the chart now displays the exact mean household income. Notice that the units are in thousands, so you c ould use the Number Format tab a gain to chan ge the scaling factor . Using templates If you make a num ber o f ro utine changes to your charts, you can use a chart temp[...]
-
Seite 85
75 Creating and editing charts Y ou can also enter a description of the template. This description will be visible when you apply the template. Figure 6-15 Sav e Chart T emplate dialog box E Click Continue . E In the Save T emplate dialog box, specify a location and filename for the template. E When you are finished, click Save . Y ou can apply the[...]
-
Seite 86
76 Chapt er 6 E Close the Chart Editor . The updated bar chart is shown in the V iewer . Figure 6-16 Updated bar c h art in Viewer E From the V iewer menus choose: Graphs > Char t Build er ... The Chart Builder dialog box “remembers” t he variables that you entered w hen you created the original chart. However , here you will create a slight[...]
-
Seite 87
77 Creating and editing charts Figure 6-17 Options dialog box with template The Op tions di alog box disp lays the fi le pat h of the template you sel ected. E Click OK to close the Options dialog box.[...]
-
Seite 88
78 Chapt er 6 Figure 6-18 Chart Builder with completed drop zones E Click OK on the Chart Builder dialog box to create the chart and apply the template. The formatting in the new chart matches the formatting in the chart that you previously created and edited. Although the variables on the x axis are different, the charts otherwise resemble each ot[...]
-
Seite 89
79 Creating and editing charts If you want to apply templates after you’ve created a chart, you can do it in the Chart Editor (from the File menu, choose Apply Char t T emplate ). Figure 6-1 9 Updated bar c h art in Viewer Defining chart options In addition to using templates to format charts, y ou can use the Options to control v arious aspects [...]
-
Seite 90
80 Chapt er 6 The Options dialo g box contains many c onfiguration sett ings. Click the Char ts tab to see the available options. Figure 6-20 Charts tab in Options dialog box The options control how a chart is created. For each new chart, you can specify: Whether to use the current settings or a template. The width-to-heig ht ratio (aspect [...]
-
Seite 91
81 Creating and editing charts For a simp le chart, the Chart Ed itor uses one style t hat you specify . For grouped chart s, the Cha rt Editor uses a set of styles that it cycles through for each group (category) in the chart. E Select Simple Char ts . E Select the lig ht green col or , which is third from the right in the second row from the bott[...]
-
Seite 92
82 Chapt er 6 The bars in the new chart are light green. This chart also differs from the last one in other ways. There is n o tit le; the axis labels are in thousands; an d t here a re no da ta labels. The differences occurred because the template wasn’t applied to this chart. Figure 6-22 Updated bar c h art in Viewer[...]
-
Seite 93
Chapter 7 W orking with Output The results from running a statistical procedure are displayed in the V iewer . The o utput produced can be statistical tables, charts, graphs, or text, depending on the choices you make when you run the procedure. This section uses the files viewertut.spv and demo.sav . For mor e informat ion, see the topic Sample Fi[...]
-
Seite 94
84 Chapt er 7 The open book icon changes to a c losed book icon, signifying t hat the information associated with it is now hidden. E T o redisplay the hidden output, d ouble-click the closed bo ok i con. Y ou can also h ide all of the output from a particular stati stical procedur e or all of the output in the V iewer . E Click the box with the mi[...]
-
Seite 95
85 W orking with Output E Double-cli ck the Owns PDA * Gender * Internet Cr osstabulation table. E Right-click Expected Count and choose What’ s This? f rom the pop-up context menu. The definition is displayed in a pop-up window . Figure 7 -3 P op-up definition Pivoting T ables The default tables produced may not display information as neatly or [...]
-
Seite 96
86 Chapt er 7 Pivoting trays provide a way to move data between columns, rows, and layers. Figure 7 -4 Pivoting tray s E Drag the Statisti cs element from the Row dimension to the Column dimension, below Gender . The table is immediately reconfigured to reflect your changes. Figure 7 -5 Moving rows to column s The order of the elements in the pivot[...]
-
Seite 97
87 W orking with Output E Drag and drop the Owns PDA element before the Internet element in the row dimension to reverse the order of these two rows. Figure 7 -6 Swap r ows Creating and Displaying Layers Layers can be useful for large tables with nested categories of information. By creating layers, you simplify the look of the table, making it eas[...]
-
Seite 98
88 Chapt er 7 T o display a differen t layer , select a category from the drop-down list in the table. Figure 7 -8 Choosing a layer Editing T ables Unless you’ve taken the time to create a custom T ableLook, pivot tables are created with standard formatting. Y ou can change the formatting of any text within a table. Formats that you can change in[...]
-
Seite 99
89 W orking with Output Note : If you change the values in a table, totals and other statistics are not recalculated. Hiding Rows and Columns Some of the data displayed in a table may not be useful or it may unnecessarily complicate the table. Fortunately , you can hide en tire rows and columns without losing a ny d ata. E If it’ s not already ac[...]
-
Seite 100
90 Chapt er 7 E Ty p e 0 in the Decimals field to hide all decimal points in this column. Figure 7 -1 1 Cell Properties, Format V alu e tab Y ou can also chan ge the data type and fo rmat in this dialog box . E Select the type that you want from the Category list, and then select the format for that type in the Format list. E Click OK or Apply t o [...]
-
Seite 101
91 W orking with Output T ableLooks The format of your tables is a critical part of prov iding clear , concise, and meaningful results. If your table is difficult to read, the information contained within that table may not be easily understood. Using Predefined Formats E Double-click the Marital status table. E From the menus choose: Format > T[...]
-
Seite 102
92 Chapt er 7 Customizing T ableLook Styles Y ou can customize a format to fit your specific needs. Almost all aspects of a table can be customized, from the background color to the border styles. E Double-click the Marital status table. E From the menus choose: Format > T ableLooks... E Select the style that is closest to your desired format an[...]
-
Seite 103
93 W orking with Output E Then select a new text color . T h eS a m p l ew i n d o ws h o w st h en e ws t y l e . Figure 7 -1 5 Changing table cell formats E Click OK to return to the T ableLooks dialog box. Y ou can save your new style, which allows you to apply it to future tables easily . E Click Sav e As . E Navigate to the desired target dire[...]
-
Seite 104
94 Chapt er 7 The table now contains the custom formatting that y ou specified. Figure 7 -1 6 Custom T ableLook Changing t he Default T able Formats Although y ou can change the format of a table after it has been created, it m ay be more efficient to change the default T ableLook so that you do not have to change the format every time you create a[...]
-
Seite 105
95 W orking with Output E Click the Piv ot T ab les tab in the Options dialog box. Figure 7 -1 7 Options dialog box E Select the T ableLook style that you want to use for all new tables. The Sample window on the right shows a preview of each T ableLook. E Click OK to save your settings and close the dialog box. All tables that you create after chan[...]
-
Seite 106
96 Chapt er 7 Customizing the Initial Display Settings The initial display settings include the alignmen t of objects in the V iewer , whether objects are shown or hidden by default, and the width of the V iewer window . T o change these settings: E From the menus choose: Edit > O ptions... E Click the Viewer tab. Figure 7 -1 8 Vie wer options T[...]
-
Seite 107
97 W orking with Output Y ou can also hide elements, such as the log and warning messages, that tend to clutter your output. Double-clickin g on an icon automatically changes that object’ s display property . E Double-cli ck the Wa r n i n gs icon t o hi de warning m essages in the outp ut. E Click OK to save yo ur changes and close the dialog bo[...]
-
Seite 108
98 Chapt er 7 Y ou can specify differe nt settings for the outline and contents panes. For example, to show labels in the outline and variable names and data values in the contents: E In the Pivot T able Labeling group, select Names from the V ariables in Labels drop-down list to show variab le name s instead of labels. E Then, select Va l u e s fr[...]
-
Seite 109
99 W orking with Output Using Results in Other Applications Y our results can be used in many applications . For example, you may want to include a table or chart in a presentation or report. The following examples are specific to Microsoft W ord, but they may work similarly in other word processing applicatio ns. Pasting Results as W ord T ables Y[...]
-
Seite 110
10 0 Chapt er 7 Figure 7 -23 Pivot t able displayed in Word The table is now displayed in your document. Y ou can apply custom formatting, edit the data, and resize the table to fit your needs. Pasting Res ults as T ext Pivot tables can be copied to other applications as plain text. Formatting styles are not retained in this metho d, but you can ed[...]
-
Seite 111
101 W orking with Output E Select Unfo rmatted T e xt in the Paste Special dialog box. Figure 7 -24 Paste Special dialog box E Click OK to paste your results into the current document. Figure 7 -25 Pivot t able displayed in Word Each column of the table is separated by tabs. Y o u can change the column widths by adjusting the tab stops i n your wor[...]
-
Seite 112
10 2 Chapt er 7 Note : Export to P owerPoint is available only on W indows operating systems and is not available with the Studen t V ersion . In the V iewer’ s outline pane, you can select specific items that you want to export or export all items or all visible ite ms. E From the V iewer menus choose: File > Expor t... Instead of exporting a[...]
-
Seite 113
10 3 W orking with Output E Click OK to generate the W ord file. When you open the resulting file in W ord, you can see how the results are exported. Notes, which are not visible objects, appear in W o rd because you chose to export all o bjects. Figure 7 -27 Output.doc in W ord[...]
-
Seite 114
10 4 Chapt er 7 Pivot tables beco me W ord tables, wit h all of the formatting of the ori ginal p ivot table retai ned, including fonts, c olors, borders, and so on. Figure 7 -28 Pivot tables in Word Charts are included in the W ord do cument as graphic images. Figure 7 -29 Charts in Word[...]
-
Seite 115
10 5 W orking with Output T ext output is disp layed in the same font u sed for the te xt object in t he V iewer . For proper alignment, t ext o utput should use a fixed-pitch (monospaced) font. Figure 7 -30 T ext o utput in Word[...]
-
Seite 116
10 6 Chapt er 7 If you export to a PowerPoint file, each exported item is placed on a separate slide. Pivot tables exported to PowerPoint become W ord tables, with all of the formatting of the original pivot table, including fonts, colors, borders, and so on. Figure 7 -31 Pivot table s in P owerP oint[...]
-
Seite 117
10 7 W orking with Output Charts selected for expor t to PowerPoint are em bedded in the PowerPoint file. Figure 7 -32 Charts in P ow erP oint If you e xport to an Excel file, results are exported differently . Figure 7 -33 Output.xls in Excel[...]
-
Seite 118
10 8 Chapt er 7 Pivot table rows, columns, and cells become Excel rows, columns, and cells. Each line in the text outp ut is a r ow in the Exce l file, w ith the entire c ontents of the l ine cont ained in a single cell. Figure 7 -34 T ext output in Excel Exporting Results to PDF Y ou can export all or selected items in the V iewer to a PDF (portab[...]
-
Seite 119
10 9 W orking with Output E In the Export Output dialog box, f rom the Export Format File T ype drop-down list choose P or tab le Document Format . Figure 7 -35 Export Output dialog box The outline p ane of the V iewer document is converted to bookmarks in the PDF file for easy navigation. Page size, orientation, margins, content and displa[...]
-
Seite 120
11 0 Chapt er 7 be 1200 DPI. No te : High-re solution documents may yield poor results when printed on lower-resolution prin ters. Figure 7 -36 PDF file with bookmarks[...]
-
Seite 121
111 W orking with Output Exporting Results to HTML Y ou can also export results to HTML (hypertex t markup language). Whe n saving as HTML, all non-graphic output is exported into a single HTML file. Figure 7 -37 Output.htm in Web browser When you e xport to HTML, charts can be export ed as well, but not to a single file. Each chart will be saved a[...]
-
Seite 122
Chapter 8 W orking with Syntax Y ou can save and automate many common tasks by using the powerful command language. It also prov ides some functionalit y not found in the menus and d ialog box es. Most comman ds are accessible from the menus and dialog boxes. Howe ver , some commands and options are available only by using the command language. The[...]
-
Seite 123
11 3 Wo r k i ng wi th S y n t a x E In the Charts dialog box, select Bar char ts . E In the Chart V alues group, select Pe rcentage s . E Click Continue . E Click Pa st e to copy the syntax created as a result of the dialog box selections t o the Syntax Editor . Figure 8-2 F requen cies synt ax E T o run the syntax currently displayed, from the me[...]
-
Seite 124
11 4 Chapt er 8 E Click on the item labelled FREQ for frequencies. Clicking on a n item in the auto-completion c o n t r o lw i l li n s e r ti ta tt h ec u r r e n tc u r s o rp o s i t i o n( t h eo r i g i n a l PERCENT keyword w as manu ally deleted). By default, the auto-completion control will prompt you with a list of available terms as you [...]
-
Seite 125
11 5 Wo r k i ng wi th S y n t a x Figure 8-5 FREQUENCI ES syntax help Y ou may have noticed that text disp layed in the syntax window is col ored. Color coding allows you to quickly identify unrecognized terms, since only recognized terms are colored. For example, you misspell the FORMAT subcommand as FRMAT . Subcommand s a re colored green by def[...]
-
Seite 126
11 6 Chapt er 8 Understanding the Error Pane The error pane displays runtime errors from the m ost current run. It contains the details of each error as well as the line number of the command on which the error occurred. Figure 8-6 Error p ane displayed in the Syntax Editor Clicking on the entry for an error positions the cursor on the first line o[...]
-
Seite 127
11 7 Wo r k i ng wi th S y n t a x Figure 8-7 Breakpoint displayed in the Syntax Editor wi ndow When you run command syntax containing breakpo ints, execution stops prior to each command containing a breakpoint. Figure 8-8 Execu tion stopped at a breakpoint The do wnward poi nting arrow t o the left of t he co mmand text shows the progress of the s[...]
-
Seite 128
11 8 Chapt er 8 T o resume execution fo llowing a break point: E From the menus in the S yntax Ed itor cho ose: Run > Contin ue[...]
-
Seite 129
Chapter 9 Modifying Data V alues The data you start with may not always be organiz ed in the most useful manner for your analysis or reporting needs. For example, you may want to: Create a categorical variable from a scale variable. Combine several response categories into a single category . Create a new variable t hat is t he compu te[...]
-
Seite 130
120 Chapt er 9 Figure 9-1 Initial Visual Binning dialog box In the initial V isual Binning dialog box, you select the scale and/or ordinal variables for which you want to create new , binned variables. Binning means taking two or more contiguous values and grouping them into the same category . Since V isual Binning relies on actual values in the d[...]
-
Seite 131
121 Modifying Dat a V alues Figure 9-2 Main Visual Binning dialog b ox E In the main V isual Binning dialog box, select Household income in thousand s [i ncome] in the Scanned V aria ble List. Ah i s t o g r am displays the distribution of the selected variable (which in this case is highly skewed). E Enter in ccat2 for the new binned variab le nam[...]
-
Seite 132
122 Chapt er 9 Figure 9-3 Visual Binning Cu tpoi nts dialog box E Select Equal Width Inter vals. E Enter 25 for the first cutpoint location, 3 for the number of cutpoi nts, an d 25 for the width. The number of binned categories is one greater than the number of cutpoints. So in this example, the new binned variable will have four categories, with t[...]
-
Seite 133
123 Modifying Dat a V alues Figure 9-4 Main Visual Binning dialog box with define d cu tpoints The values now displayed i n the grid represent the defined cutpoints, which are the u pper endp oints of each category . V ertical lines in the histogram also indicate the locations of the cutpoints. By defaul t, these cutpoint values are included in the[...]
-
Seite 134
124 Chapt er 9 Figure 9-5 Automatically gen erated value labels This automatically generates descriptive value labels for each category . Since the actual values assigned to the new binned variable are simply s equential integers starting with 1, the value labels can be very useful. Y ou can also manual ly enter or chan ge cutpo ints and labels i n[...]
-
Seite 135
125 Modifying Dat a V alues The new variable is displayed in the Data Editor . Since the variable is added to the end of the file, it is displayed in the far right column in Data V iew and in the last row in V ariable V iew . Figure 9-6 New variable displayed in Dat a Editor Computing New V ariables Using a wide variety of mathematic al functions, [...]
-
Seite 136
126 Chapt er 9 E Select Y ears with current employer [employ] an d click the arrow button to copy it to the expression. Figure 9-7 Compute V ariable dialog box Note : Be careful to select the correct employment va riable. There is also a recoded categorical version of the variable, which is not what you want. The numeric expression should be age–[...]
-
Seite 137
127 Modifying Dat a V alues The new variable is displayed in the Data Editor . Since the variable is added to the end of the file, it is displayed in the far right column in Data V iew and in the last row in V ariable V iew . Figure 9-8 New variable displayed in Dat a Editor Using Functions in Expressions Y ou c an also use predefi ned functio ns i[...]
-
Seite 138
128 Chapt er 9 Cross-case functions String functions Figure 9-9 Compute V ariable dialog box displaying function grouping Functions are organiz ed into logically distinct groups, such as a group for arithmetic operations and another for compu ting statistical metrics. For convenien ce, a number of common ly used system va riables, su ch as [...]
-
Seite 139
129 Modifying Dat a V alues The function is inserted into the expression. If you highlight part of the expression and then insert the function, the highlighted portion of the expression is used as the first argument in the function. Editing a Function in an Exp ression The functi on is not complete until you enter the arguments, repr esented by que[...]
-
Seite 140
130 Chapt er 9 Figure 9-1 0 If Cases dialog box E Select Include if case satisfies condition . E Enter the conditional expression. Most conditional expressions contain at least one relational operator , as in: age>=21 or income*3<1 00 In the first example, only cases with a value of 21 or greater for Age [age] are selected. In the second exam[...]
-
Seite 141
131 Modifying Dat a V alues W orking with Dates and T imes A num ber of tasks commonl y perf ormed w ith d ates a nd ti mes can be easily accomplish ed us ing the Date and T ime Wiz ard. Using this wizard, you can: Create a date/time variable from a string variable containing a date or time. Construct a date/time variable by mergin g variab[...]
-
Seite 142
132 Chapt er 9 If you’re new to dates and times in IBM® SPSS® Statistics, you can select Learn how dates and times are represented and click Next . This leads to a screen that provides a brief overview of date/time variables and a link, through the Help button, to more detailed information. Calculating the Length of T ime between T wo Dates One[...]
-
Seite 143
133 Modifying Dat a V alues Figure 9-13 Calculating the length of time bet ween t wo dates: Step 2 E Select D ate of next r elease for Date1. E Select D ate of last upgrade for Date2. E Select Y ears for the Unit and T r uncate to Integer for the Result Treatmen t. (These are the default selections. ) E Click Nex t .[...]
-
Seite 144
134 Chapt er 9 Figure 9-1 4 Calculating the length of time bet ween t wo dates: Step 3 E Enter Y earsLastUp for the name of the resul t v ariable. Result v ariables cannot have th e same name as an existing variable. E Enter Y ears since last upgrade as the label for the result variable. V ariable labels for result variables are optional. E Leave t[...]
-
Seite 145
135 Modifying Dat a V alues Ad d i n gaD u r a t i o nt oaD a t e Y ou can add or subtract durations, such as 10 days or 12 months, to a date. Con tinuing with the example of the software company from the previous section, consider determining the date on which each customer ’ s initial tech support con tract ends. The data file upgra de.sav cont[...]
-
Seite 146
136 Chapt er 9 Figure 9-17 Adding a d uratio n to a date: Ste p 3 E Enter SupEndDate fo r the name of the resul t variable. Result variables cannot have t he same name as an existing variable. E Enter End date for support as the label for the result variable. V ariable labels for result variables are optional. E Click Finish to cr eate the n ew var[...]
-
Seite 147
[...]
-
Seite 148
Chapter 10 Sorting and Selecting Data Data files are not always organized i n the ideal fo rm for your specific needs. T o prepare data for analysis, you can select from a wide range of file transformations, including the ability to: Sort data. Y ou can sort cases based on the value of one or more variables. Select subsets of cases. Y ou ca[...]
-
Seite 149
139 Sorting and Selecting D at a in years [age] . For string variables, uppercase letters pr ecede their lowercase counterparts in sort order (for examp le, the string value Ye s comes before yes in th e sort o rder). Split-File Processing T o split your data file into separate groups for analysis: E From the menus choose: Data > Split File ... [...]
-
Seite 150
140 Chapt er 1 0 If you select Compare groups , results from all split-file groups will be included in the same table(s), as shown in the following table of summary statistics that is generated by the Frequencies procedure. Figure 1 0-3 Split-file output with single pivot table If you select Organiz e output b y groups and run the Frequencies proce[...]
-
Seite 151
14 1 Sorting and Selecting D at a By default, Split File automatically sorts the data file based on the values of the grouping variables. If the file is already sorted in the proper order , you can save processing time if you select File is alread y sor te d . T urning Split-File Processing On and Off After you i nvoke split-fil e pr ocessing, it r[...]
-
Seite 152
142 Chapt er 1 0 Figure 1 0-6 Select Cases d ialo g box Selecting Cases Based on Conditional Expressions T o select cases based on a conditional expression: E Select If condition is satisfied and click If in the Select Cases dialog box. This ope ns the Select Cases If dialog box.[...]
-
Seite 153
14 3 Sorting and Selecting D at a Figure 1 0-7 Select Cases If d ialo g box The conditional expression can use existing variable names, constants, arithmetic operators, logical operators, relational operators, and functions. Y ou can type and edit the expression in the text bo x just like text in an output win dow . Y ou can also use the calculator[...]
-
Seite 154
144 Chapt er 1 0 Figure 1 0-8 Select C ases Random Sample dialog box Y ou can select one of the fo llowing altern atives for sample si ze: Approximately . A user-specified percentage. This option generates a random sample of approximately the specified percentage of cases. Exactly . A user-specified number of cases. Y ou m us t also specify[...]
-
Seite 155
14 5 Sorting and Selecting D at a Figure 10 -1 0 Select Cases Range dialog box (time series) T o generate date variables for time series data: E From the menus choose: Data > Define Dates. .. T reatment o f Unselected Cases Y ou can choose one of the following alternati ves for the treatment of unselected cases: Filter out unselected cases. [...]
-
Seite 156
146 Chapt er 1 0 Figure 10 -1 1 Case selection st atus[...]
-
Seite 157
Appendix A Sample Files The sample files installed with the product can be found in the Samples subdirectory of the installation directory . There is a separate fo lder within the Samples subdirectory for each of the following languages: En glish, French, Ger ma n, Italian, Japanese, Kor ean, Polish, Russian, Simplified Chinese, Spanis h, and T rad[...]
-
Seite 158
148 Appendix A behavior .sav . In a classic example , 52 students were asked to rate the combinations of 15 situations and 15 behaviors on a 10-point sca le ranging from 0=“extremely appropriate” to 9=“extremely inappropriate.” A veraged over i ndividuals, the values are taken as dissimilarities. behavior_ini.sav. This data file con[...]
-
Seite 159
14 9 Sample F iles catalog.sav . This data file cont ains hy pothetical monthly sales fig ures for three p roducts sold by a catalog company . Data for five possibl e predictor variables are also included. catalog_seasfac.sav . This data file is the same as catalog.sav except for the addition of a set of seasonal factors calculated from the[...]
-
Seite 160
150 Appendix A demo.sav . This is a hypothetical data file that con cerns a purchased customer database, for the purpose of mailing monthly offers. Whether or not the customer responded to the offer is recorded, along w ith variou s demographic information. demo_cs_1.sav . This is a hypothetical data file that concerns the first step of a c[...]
-
Seite 161
151 Sample F iles health_funding.sav . This is a hypothetical data file that contains data on health care funding (amount per 100 populatio n), di sease rates (rate per 1 0,000 pop ulation), and v isits to health care providers (rate per 10,000 population ). Each case represents a different city . hivassay .sav. This is a hypothetical data [...]
-
Seite 162
152 Appendix A ozone.sav . The data include 330 observations on six meteorological variables for predicting ozone concentration from the remaining varia bles. Previous researchers , , among others found nonlinearities among these variables, which hinder standard regression approaches. pain_medication.sav . This hypothetical data file contai[...]
-
Seite 163
153 Sample F iles recidivism_cs_sample.sav . This is a hypothetical data file that concerns a government law enforcement agency’ s efforts to understand recidivism rates in their area of jurisdiction. Each case correspon ds to a p revious o ffender , r eleased from their first arre st during the month of June, 200 3, and records their demogra[...]
-
Seite 164
154 Appendix A stroke_survival. This hypothetical data file concerns survival times for patients exiting a rehabilitati on p rogram post-ischemic stroke face a number of challen ges. Post-stroke, the occurrence of myocardial infarction, ischemic stroke, or hemorrhagic stroke is noted and the time of the event recorded. The sample is left-trunca[...]
-
Seite 165
155 Sample F iles ulcer_recurrence.sav. This fi le contains partial informati on from a st udy designed to compare the efficacy of t wo therapies for preventing the recurrence of ulcer s. It provides a good exampl e of in terval- censore d data and h as been presen ted and analy zed el sewhere . ulcer_recurrence_recoded.sav. This file reorg[...]
-
Seite 166
Appendix B Notices This in formation was develo ped for products and serv ices offered wor ldwide. IBM may not offer the products, se rvices, or features discussed in this document in other countri es. Consult your local IBM representative for information o n the products an d service s current ly available in your area. Any reference to an IBM p r[...]
-
Seite 167
157 Notic es Such information may be available, subject to a ppropriate terms and conditions, including in some cases, payment of a fee. The licensed program described in this documen t and all licensed material available for it are provided by IBM u nder terms o f the IBM Customer A greement, IBM International Pro gram License Agreement or any equ[...]
-
Seite 168
158 Appendix B Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.[...]
-
Seite 169
Index Access (Micro soft), 12 bar charts, 55 cases selecting, 141 sorting, 138, 141 categor ical data, 53 summary measures, 53 charts bar, 55, 60 chart options, 79 creating charts, 60 editing charts, 66 histograms, 58 templates, 7 4 computing new variables, 125 conditional expressions, 129 continuous data , 53 copying variable attributes, 3 8 count[...]
-
Seite 170
160 Index PowerPoint (Microsoft) exporting resu lts to, 10 1 qualitative data, 53 quantitative data, 53 ratio data, 53 recoding valu es, 119 renaming datasets, 51 sample files location, 147 scale d ata, 53 scale variables summary measures, 56 selecting cases, 141 sorting cases, 138 split-file processing, 139 spreadsheet files reading, 1 1 reading v[...]