National Instruments NI MATRIX Xmath Robust Control Module Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 71 Seiten
- 0.55 mb
Zur Seite of
Ähnliche Gebrauchsanleitungen
-
Computer Accessories
National Instruments PXI-8460
49 Seiten 0.57 mb -
Computer Accessories
National Instruments 3.x
18 Seiten 0.42 mb -
Computer Accessories
National Instruments NI 5911
61 Seiten 0.54 mb -
Computer Accessories
National Instruments VirtualBench
55 Seiten 0.66 mb -
Computer Accessories
National Instruments 373873C-01
186 Seiten 3.12 mb -
Computer Accessories
National Instruments NI MATRIX Xmath Robust Control Module
71 Seiten 0.55 mb -
Computer Accessories
National Instruments 370757C-01
71 Seiten 0.55 mb -
Computer Accessories
National Instruments NI cDAQ-9172
76 Seiten 1.96 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung National Instruments NI MATRIX Xmath Robust Control Module an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von National Instruments NI MATRIX Xmath Robust Control Module, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung National Instruments NI MATRIX Xmath Robust Control Module die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung National Instruments NI MATRIX Xmath Robust Control Module. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung National Instruments NI MATRIX Xmath Robust Control Module sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts National Instruments NI MATRIX Xmath Robust Control Module
- Den Namen des Produzenten und das Produktionsjahr des Geräts National Instruments NI MATRIX Xmath Robust Control Module
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts National Instruments NI MATRIX Xmath Robust Control Module
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von National Instruments NI MATRIX Xmath Robust Control Module zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von National Instruments NI MATRIX Xmath Robust Control Module und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service National Instruments finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von National Instruments NI MATRIX Xmath Robust Control Module zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts National Instruments NI MATRIX Xmath Robust Control Module, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von National Instruments NI MATRIX Xmath Robust Control Module widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
NI MA TRIXx TM Xmath TM Robust Control Module MA TRIXx Xmath Robust Control M odule April 2007 370757C-01[...]
-
Seite 2
Support Worldwide Technical Support and Product Info rmation ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Aust in, Texas 78759-3504 USA Tel: 512 683 0100 Worldwide Offices Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 5050 9800,[...]
-
Seite 3
Important Information Warranty The media on which you receive National In struments software are warranted not t o fail to execute pr ogramming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as eviden ced by receipts or other documentation. N ational Instruments will , at its option, repair[...]
-
Seite 4
Conventions The follo wing conv entions are used in this manual: [ ] Square brackets enclose op tional it ems—for example, [ response ]. » The » symbol leads you th rough nested menu items and dial og box options to a final action. The sequence File»Page Setup»Options di rects you t o pull down the File menu, select the Page Setup item, and s[...]
-
Seite 5
© National Instruments Corporation v MATRIXx Xmath Robust Control Module Contents Chapter 1 Introduction Using This Manual...................... ......................... ....................... ......................... .......... 1-1 Document Organization........... ... ...................... .......................... ..................... 1-1 [...]
-
Seite 6
Contents MATRIXx Xmath R obust Control Mo dule vi ni.com Chapter 3 System Evaluation Singular Value Bode Plots.............. ...................... .......................... ...................... ......... 3-1 L Infinity Norm (linfnorm) ............... ....................... ......................... ....................... ...... 3-3 linfnorm( [...]
-
Seite 7
© National Instruments Corporation 1-1 MA TRIXx Xmath Robust Co ntrol Module 1 Introduction The Xmath Robust Control Module (RCM) provi des a collection of analysis and synthesis tools that assist in the design of robust control systems. This chapter starts with an outline of the manual and some use notes. It continues with an overvie w of the Xma[...]
-
Seite 8
Chapter 1 Introduction MA TRIXx Xmath Robust Control Modul e 1-2 ni.com techniques. The general problem setup is explained together with known limitations; the rest is left to the references. Bibliographic References Throughout this document, biblio graphic references are cited with bracketed entries. For example, a reference to [DoS81] corresponds[...]
-
Seite 9
Chapter 1 Introduction © National Instruments Corporation 1-3 MA TRIXx Xmath Robust Co ntrol Module • Xmath Optimization Module • Xmath Robust Control Module • Xmath X μ Module MA TRIXx Help Robust Control Modul e function reference informatio n is available in the MATRIXx Help . The MATRIXx Help includes all Robust Control functions. Each [...]
-
Seite 10
Chapter 1 Introduction MA TRIXx Xmath Robust Control Modul e 1-4 ni.com Figure 1-1. RCM Function Structure Many RCM functions are based on stat e-of-the-art algorithms impl emented in cooperation with researchers at Stanford Uni versity . The robustness analysis functions are based on struct ured singular v alue calculations. The synthesis tools ex[...]
-
Seite 11
© National Instruments Corporation 2-1 MA TRIXx Xmath Robust Co ntrol Module 2 Robustness Analysis This chapter describes RCM tools used for analyzing the robustness of a closed-loop system. The chapter a ssumes that a controller has been designed for a nominal plant and that the closed-loop performance of this nominal system is acceptable. The go[...]
-
Seite 12
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-2 ni.com system, including how the un certain transfer functions are connected to the system and the magnitude bound fun ctions l i ( w ). T o do this, extract the uncertain transf er functions and co llect them into a k -input, k -outp ut transfer matrix Δ , where: (2-2) The re[...]
-
Seite 13
Chapter 2 Robustness Analysis © National Instruments Corporation 2-3 MA TRIXx Xmath Robust Co ntrol Module Stability Margin (smargin) Assume that the nominal cl osed-loop system is stable . That belief raises a question: Does the system remain stab le for all possible uncertain transfer functions that satisfy the magnitude bou nds (Equation 2-1)? [...]
-
Seite 14
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-4 ni.com smargin( ) marg = smargin(SysH, delb {s caling, graph}) The smargin( ) function plots an approximatio n to the stability margin of the system as a function of frequency . For a full discussion of smargin( ) syntax, refer to the MATRIXx Help . The approximation is exact i[...]
-
Seite 15
Chapter 2 Robustness Analysis © National Instruments Corporation 2-5 MA TRIXx Xmath Robust Co ntrol Module Figure 2-3. SI SO T racking Syst em with Three Uncertaintie s The H system will ha ve the reference i nput as input1 and the error outpu t as output1 ( w and z , respectiv ely , in Figure 2-2). Removing the δ va l u e s w i l l create inputs[...]
-
Seite 16
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-6 ni.com Figure 2-4. Bound for Sensor Uncertainty Note A value of l 3 at one radian per second of –20 dB indicates that modeling uncertainties of up to 10% (–20 dB = 0.1) are allowed. The actuator and sensor uncertainties δ 1 and δ 2 are bound ed by –20 dB at all frequenc[...]
-
Seite 17
Chapter 2 Robustness Analysis © National Instruments Corporation 2-7 MA TRIXx Xmath Robust Co ntrol Module Figure 2-5. Stability Margin Now e xamine the effect on the st ability margin of discretizing H ( s ) at 100 Hz. dt = 0.01; Hd = discretize(H,dt); margD = smargin(Hd,delb); smargin --> Scaling algorith m is type: PF smargin --> Margin c[...]
-
Seite 18
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-8 ni.com W orst-Case Performance Degradation (wcbode) Even if a system is robustly stable, th e uncertain transfer functions still can have a great effect on performance. Co nsider the transfer function from the q th input, w q , to th e p th output, z p . With δ 1 = ... = ... ?[...]
-
Seite 19
Chapter 2 Robustness Analysis © National Instruments Corporation 2-9 MA TRIXx Xmath Robust Co ntrol Module wcbode( ) [WCMAG, NOMMAG] = wcbode (Sy sH, delb, {input, output, graph}) The wcbode( ) function computes and plots the worst-case gain of a closed-loop transfer function. This function is useful for checking a system that already has been ver[...]
-
Seite 20
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-10 ni.com Figure 2-6. Performance Degradation of the SISO T rac king System Advanced T opics This section describes the theoretical background on robust ness analysis and performance degradation. Stability Margin This section discusses advanced aspect s of computing the stability[...]
-
Seite 21
Chapter 2 Robustness Analysis © National Instruments Corporation 2-11 MA TRIXx Xmath Robust Control Modu le for all diagonal Δ such that where μ ( . ) is the structured singular value , introduced by Do yle in [Doy82]. Thus, the margin is the in verse of the structured singular value of H qr diagonally scaled by the magnitude bo unds. There is n[...]
-
Seite 22
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-12 ni.com Y ou can compare this mar g in to that of the example in the Creating a Nominal Syst em section; the following inputs produce Figure 2-7. plot ([marg,margSVD],{xlog} legend=["PF_SCALE","SVD"], ylab="Stability Margin,dB", xlab="Frequenc[...]
-
Seite 23
Chapter 2 Robustness Analysis © National Instruments Corporation 2-13 MA TRIXx Xmath Robust Control Modu le of generality—so, roughly speaking, it can be solved. [SD83,SD84] discusses this optimization problem. Notice that: so you hav e the fol lowing from Equation 2-5: This inequality is tho ught to be nearly an equ ality , so that the left sid[...]
-
Seite 24
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-14 ni.com Comparing Scaling Algorithms Using the system from the first ex ample (Figure 2-3), you can compare the results of using the three scal ing algorithms: MARG_PF=smargin(H,delb,{scal ing="PF",!graph}); MARG_OS=smargin(H,delb,{scal ing="OS",!graph}); MA[...]
-
Seite 25
Chapter 2 Robustness Analysis © National Instruments Corporation 2-15 MA TRIXx Xmath Robust Control Modu le ssv( ) [v,vD] = SSV(M, {scaling}) The ssv( ) function computes an approx imation (and gu aranteed upper bound) to the Scaled Singular V alue of a complex square matrix M , where M can be a reducible matrix. The scaled singular value v ( M ) [...]
-
Seite 26
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-16 ni.com VOPT=ssv(M,{scaling="OPT"}) VOPT (a scalar) = 2.43952 VSVD = max(svd(M)) VSVD (a scalar) = 2.65886 osscale( ) [v, vD] = osscale(M) The osscale( ) function scales a matrix using the Osborne Algorit hm. A diagonal scaling D OS is found that min imizes the Froben[...]
-
Seite 27
Chapter 2 Robustness Analysis © National Instruments Corporation 2-17 MA TRIXx Xmath Robust Control Modu le optscale( ) [v, vOPTD] = optscale (M, {t ol}) The optscale( ) function optimally scales a matri x. An iterativ e optimization (ellipsoid) algorithm which calculates upper and lower bounds on the left side of Equation 2-5 is used. If these bo[...]
-
Seite 28
Chapter 2 Robustness Analysis MA TRIXx Xmath Robust Control Modul e 2-18 ni.com Figure 2-10. Reduction to Separat e Systems In terms of the approximations to th e margin discussed abov e, this reducibility will manifest itself as a pro blem such as di vide-by-zero or nontermination. I t really means that the minimum of the optim ization problem is [...]
-
Seite 29
Chapter 2 Robustness Analysis © National Instruments Corporation 2-19 MA TRIXx Xmath Robust Control Modu le Using this relation and any of the previously discussed appro ximations for μ ( . ), you can compute an approximation to wcgain( ) . Because the approximations to μ ( . ) are up per bounds, the resulting approxim ations to wcgain( ) also a[...]
-
Seite 30
© National Instruments Corporation 3-1 MA TRIXx Xmath Robust Co ntrol Module 3 System Evaluation This chapter describes system analysis functions that create singu lar value Bode plots, performance plots, and calculate the L ∞ norm of a linear system. Singular V alue Bode Plots The singular value Bode plot is a MIMO general ization of the bode( [...]
-
Seite 31
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-2 ni.com Refer to [BoB91 ] in Appendix A, Bibliography . Example 3-1 Creating a Singular Value Plot 1. Let a system H be a 2-input/2-output system: tf=makepoly([1,2],"s")/... polynomial([0,-2.334,-12],"s ") tf (a transfer function) = s + 2 -------------------- [...]
-
Seite 32
Chapter 3 System Ev aluation © National Instruments Corporation 3-3 MA TRIXx Xmath Robust Co ntrol Module Figure 3-1. Sing ular Value Plot L Infinity Norm (linfnorm) The L ∞ norm of a stable transfer matrix H i s defined as: where is the maximu m singular value and H ( j ω ) is the transfer matr ix under consideration. The L ∞ norm of a stabl[...]
-
Seite 33
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-4 ni.com factor b y wh ich the RMS value of a signal flo wing th rough H can be increased. By comparison, the H 2 norm is defined as: This norm can be interpreted as th e RMS value of the output when the input is unit intensity whit e noise. It can be compu ted in Xmath using the [...]
-
Seite 34
Chapter 3 System Ev aluation © National Instruments Corporation 3-5 MA TRIXx Xmath Robust Co ntrol Module •I f A has an imaginary eigen value at j ω 0 , linfno rm( ) retu rns: vOMEGA = SIGMA = Infinity where ω 0 is one of the imaginary eigen values of A . •E v e n i f H is unstable, linfnorm( ) returns i ts maximum sing ular v alue on the j [...]
-
Seite 35
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-6 ni.com Figure 3-2. Singular Values of H ( j ω) as a Function of ω Note sv is returned in dBs. Check that sigma is within 0.01 (the default value of tol ) of 10**(max(sv,{channels})/20) . [sigma,10^(max(sv,{channels} )/20)] ans (a row vector) = 5.07322 4.98731 The linfnorm( ) f[...]
-
Seite 36
Chapter 3 System Ev aluation © National Instruments Corporation 3-7 MA TRIXx Xmath Robust Co ntrol Module Singular V alue Bode Plots of Subsystems To evaluate the performance achieved by a given controller rapidly, it is useful to check four basic maximum si ngular value plots—for example, the transfer matrices from process and se nsor noises to[...]
-
Seite 37
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-8 ni.com The four transfer matrices are labeled e / d , e / n , u / d , and u / n in the f inal plot. The plots in the top ro w , consisting of e / d and e / n , show the regulation or tracking achie ved by the controller . If both these quantities are small, then the disturbance [...]
-
Seite 38
Chapter 3 System Ev aluation © National Instruments Corporation 3-9 MA TRIXx Xmath Robust Co ntrol Module The system matrix can be calculated using the afeedback( ) function for different v alues of K . Consider two cases: K=1 and K=5 . P = 1/makepoly([1,0],"s") P (a transfer function) = 1 -- s System is continuous K1= 1/makepoly(1,"[...]
-
Seite 39
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-10 ni.com Figure 3-5. Per fplots( ) for K = 1 and K =5 clsys( ) SysCL = clsys( Sys, SysC ) The clsys( ) function computes th e state-space realization SysCL , of the closed-loop system from w to z as sho wn in Figu re 3-6. Figure 3-6. Closed Loop System from w to z Sys w u y z Sys[...]
-
Seite 40
Chapter 3 System Ev aluation © National Instruments Corporation 3-11 MA TRIXx Xmath Robust Control Modu le Where SysC=system(Ac,Bc,Cc,Dc ) , Sys=system(A,B,C,D) , and nz is the dimension of z and nw is the dimension of w : Given th e ab ove, SysCL is calculated as shown in Figure 3-7. Figure 3-7. Calculation of the Clos ed Loop System (SysCL) The [...]
-
Seite 41
Chapter 3 System E valuation MA TRIXx Xmath Robust Control Modul e 3-12 ni.com Figure 3-8. I ll-Posed Feedback System Example 3-4 Example of Closed-Loop System a = 1; b = [1,0,1]; c = b'; d = [0,0,0;0,0,1;0,1,0]; Sys = SYSTEM(a,b,c,d); SysC = SYSTEM(-40,2.7,-40,0) ; SysCL = clsys(Sys,SysC) SysCL (a state space system) = A 1 -40 2.7 -40 B 1 0 0[...]
-
Seite 42
© National Instruments Corporation 4-1 MA TRIXx Xmath Robust Co ntrol Module 4 Controller Synthesis This chapter discusses synthe sis tools in two categories, H ∞ and H 2 . This chapter does not explain all of the theory of H ∞ , LQG/LTR, and frequency shaped LQG design techniques. The general problem setup is explained together with k nown li[...]
-
Seite 43
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-2 ni.com The functio n hinfcontr( ) can be used to find an optimal H ∞ controller K that is arbitrarily close to solving: (4-2) The hinfcontr( ) function description in the hinfcontr( ) section describes how the optimum can be found manually by decreasing γ until an error co[...]
-
Seite 44
Chapter 4 Controller Synthesis © National Instruments Corporation 4-3 MA TRIXx Xmath Robust Co ntrol Module Equi valently , as a transfer matrix: T o enter the extended system , you must kno w the sizes of e and w shown in Figure 4-1. The extended plant P can be cons tructed using the Xmath interconnection functio ns, as shown in Example 4-1. Buil[...]
-
Seite 45
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-4 ni.com The transfer matrix G can be viewed as a model of the underlying system dynamics with v and u as generalized forces that produce ef fects in the performance signals z and measured signals y . The weight W in is used to model the exogenous input v by v = W in w . Simila[...]
-
Seite 46
Chapter 4 Controller Synthesis © National Instruments Corporation 4-5 MA TRIXx Xmath Robust Co ntrol Module here the weighting matrices are tran sfer matrices, whereas in the LQG setup they are constants. A description of the plant in Figure 4-3 is as follows: • Dynamical system G dyn : • Measured v ariables y = y sens + n : • Input weight W[...]
-
Seite 47
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-6 ni.com Selecting these weigh ts has much the same effect he re. Specif ically , let H zv be the closed-loop transfer matr ix (with u = K γ ) from inputs: to outputs: Thus, Suppose that the controller u = K y approximates Eq uation 4-2. Thus, In many ca ses, this means that t[...]
-
Seite 48
Chapter 4 Controller Synthesis © National Instruments Corporation 4-7 MA TRIXx Xmath Robust Co ntrol Module where and The weights also can be viewed as “design knobs” (for example, [ONR84]). In this view , the weights are not directly related to specific disturbance or performance models but ra ther are used as a vehicle to obtain a closed-loo[...]
-
Seite 49
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-8 ni.com •F o r a l l ω ≥ 0, • Condition 1 is a standard cond ition to ensure the existence of a stabilizing controller . Condition 2 en sures that the control signal u is contained in the normalized error v ector e (refer to Figure 4-3). Conv ersely , conditio n 3 ensur[...]
-
Seite 50
Chapter 4 Controller Synthesis © National Instruments Corporation 4-9 MA TRIXx Xmath Robust Co ntrol Module If no error message occurs, then is guaranteed. Ho wever , this does not preclude the po ssibility that either or that . For the former c ase, there are two checks: •U s e t h e linfnorm( ) function to compute . • Compute the grap h vers[...]
-
Seite 51
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-10 ni.com Suppose the i nput/output we ights are as follows: 2. Create the four weights: Wdist = 1/makepoly([1,1],"s" ) Wdist (a transfer function) = 1 ----- s + 1 Wnoise = 0.1; Wreg=1/makepoly(1,"s"); Wact = 0.1; 3. Combine the weights in W in and W out (re[...]
-
Seite 52
Chapter 4 Controller Synthesis © National Instruments Corporation 4-11 MA TRIXx Xmath Robust Control Modu le 4. For this e xample, you will start with gamma=1 as the initial guess and enter: [K,Hew] = hinfcontr(P,1,2,2) ; No error messages are reported. This means that a stabilizing controller has been found such that Equation 4-1 holds. That is, [...]
-
Seite 53
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-12 ni.com Figure 4-5. Perfplots for H ew It also is useful to perform perfplots( ) on the unweighted closed-loop system, H zv , wh ich in this case is the closed-loop transfer matrix fr om ( d , n ) into ( x , u ). The following function calls produce Figure 4-6: Hzv=clsys(G,K)[...]
-
Seite 54
Chapter 4 Controller Synthesis © National Instruments Corporation 4-13 MA TRIXx Xmath Robust Control Modu le Figure 4-6. Per fplots for H zv singriccati( ) [P, solstat] = singriccati(A ,Q,R {method}) The singriccati( ) function solv es the Indefinite Algebraic Riccati Equation (ARE): The ARE is solv ed by deco mposing the Hamiltonian: The required[...]
-
Seite 55
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-14 ni.com Linear -Quadratic-Gaussian Control Synthesis The H 2 Linear-Quadratic-Gaussi an (LQG) control design methods are based on minimizing a quadratic functi on of stat e variables and control inputs. Conventionally, the prob lem is specified in the time domain. By converti[...]
-
Seite 56
Chapter 4 Controller Synthesis © National Instruments Corporation 4-15 MA TRIXx Xmath Robust Control Modu le This expression can be con verted into the following form [Gu80]: If R ( j ω ) is not a funct ion of frequency , then C 12 = 0 and D = I . Note The system has a new input v and the old input u is now the output of the system. This structur[...]
-
Seite 57
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-16 ni.com fsesti( ) [SysF, vEV] = fsesti(SysA, n s, QWWA, QVVA, {QWVA}) The fsesti( ) function computes a freque ncy-shaped state estimator . The estimatio n problem is stated as follo ws: The frequen cy-shaped f ilter design pr oblem is to minimize, which can be written as: or[...]
-
Seite 58
Chapter 4 Controller Synthesis © National Instruments Corporation 4-17 MA TRIXx Xmath Robust Control Modu le fslqgcomp( ) [SysCC, vEV] = fslqgcomp(Sys F, SysC) The fslqgcomp( ) function combines f ilter an d control law to compute a controller from a control law and an estimator . For more info rmation on the fslqgcomp( ) syntax, refer to the Xmat[...]
-
Seite 59
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-18 ni.com -0.500025 + 0.866011 j -0.500025 - 0.866011 j 5. T ry t he LQG compensator w ith the full-or der system: [Syscl_fo]=feedback(Sys,Sysc ); poles(Syscl_fo) ans (a column vector) = -0.401519 + 0.864869 j -0.401519 - 0.864869 j -0.638796 + 0.855861 j -0.638796 - 0.855861 j[...]
-
Seite 60
Chapter 4 Controller Synthesis © National Instruments Corporation 4-19 MA TRIXx Xmath Robust Control Modu le 0 0 0 1 0 0 0 0 B 0 0 0 1 C 0 0 1 0 D 0 X0 0 0 0 0 System is continuous 7. Frequency-weight the control signal. T ransfer the weight on U from RUU to the third di agonal entry in RXXA . Note In Equation 4-3, u is the third state of the augm[...]
-
Seite 61
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-20 ni.com System is continuous fs_evr (a column vector) = -0.645263 + 0.587929 j -0.645263 - 0.587929 j -0.347592 + 1.09155 j -0.347592 - 1.09155 j 8. Calculate the frequency-shaped estimator: Sysaf=system(ar,br,cr,0);qww a=qxx;qvva=quu; [Sysfs_se,fs_eve]=fsesti(Sys af,2,qwwa,q[...]
-
Seite 62
Chapter 4 Controller Synthesis © National Instruments Corporation 4-21 MA TRIXx Xmath Robust Control Modu le 9. Design the LQG compensator . [Sysfs_sc,fs_evc]=fslqgcomp( Sysfs_se,Sysfs_sr) Sysfs_sc (a state space syst em) = A 0 1 0 0 -1 -1.00005 1 0 0 0 0 1 0.951712 -0.228069 -1.95171 -1.97571 B 5.52357e-17 0.99005 0 0 C 0 0 1 0 D 0 X0 0 0 0 0 Sys[...]
-
Seite 63
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-22 ni.com 10. Compute the closed-loop system fo r the reduced order plant and the frequency-shaped compensator: [Sysfs_scl]=feedback(Sysr,Sy sfs_sc); poles(Sysfs_scl) ans (a column vector) = -0.645263 + 0.587929 j -0.645263 - 0.587929 j -0.500025 + 0.866011 j -0.500025 - 0.8660[...]
-
Seite 64
Chapter 4 Controller Synthesis © National Instruments Corporation 4-23 MA TRIXx Xmath Robust Control Modu le Figure 4-8. LQG Feedbac k System for Loop T ransfer Recovery lqgltr( ) [SysC,EV,Kr] = lqgltr(Sys,Wx ,Wy,K,rho,{keywords}) The lqgltr( ) function designs an estimator or regulator which recovers loop transfer robustness through the design pa[...]
-
Seite 65
Chapter 4 Controller Synthe sis MA TRIXx Xmath Robust Control Modul e 4-24 ni.com Then ρ is increased so that pointwise in s : Regulator reco very is only guaranteed if G ( s ) is minimum-phase and there are at least as many control signals u as measurements y . If recover="estimator" , the loop-transfer is recov ered by designing an est[...]
-
Seite 66
© National Instruments Corporation A -1 MA TRIXx Xmath Robust Control M odule A Bibliography [BBK88] S. Boyd, V . Balakrishnan , and P . Kaba mba. “ A bisectio n method for com puting the L ∞ norm of a transfer matrix and related problems. ” Mathematical Control Sign als, Systems V ol. 2, No. 3, pp 207–219, 1989. [BeP79] A. Berman and R.J.[...]
-
Seite 67
Appendix A B ibliograph y MA TRIXx Xmath Robust Control Modul e A-2 ni.com [FaT88] M.K. Fan and A.L. Tits. “m-form Nu merical Range and the Computation of the Structured Singular V alue. ” IEEE Transactions on Auto matic Control , V ol. 33, pp 284 –289, March 198 8. [FaT86] M.K. Fan and A.L. T its. “Character ization and Eff icient Computat[...]
-
Seite 68
Appendix A B ibliograph y © National Instruments Corporation A -3 MA TRIXx Xmath Robust Control M odule [SA88] G. Stein and M. At hans. “The LQG/ L TR Procedure for Multivariable Control Design. ” IEEE Transacti ons on Automatic Control , V ol. A C-32 , No. 2, pp 105–114 , February 1987. [Za81] G. Zames. “Feedback and optimal sens iti vity[...]
-
Seite 69
© National Instruments Corporation B -1 MA TRIXx Xmath Robust Control M odule B T echnical Support and Professional Ser vices Visit the following sections of the National Instruments Web site at ni.com for technical support an d professional services: • Support —Online technical support resources at ni.com/support include the following: – Se[...]
-
Seite 70
© National Instruments Corporation I-1 MA TRIXx Xmath Robust Co ntrol Module Index A Algebraic Riccati Equation (ARE), 4-13 C clsys( ), 3-10 conventions used in the manual, iv D diagnostic tools (NI resources), B-1 documentation conventions used in the manual, iv NI resources, B-1 drivers (NI resources), B-1 E examples (NI resources), B-1 extended[...]
-
Seite 71
Index MA TRIXx Xmath Robust Control Modul e I-2 ni.com nominal transfer function, 2-8 norm H 2 , 3-4 L ∞ , 3-3 O optscale( ), 2-17 osscale( ), 2-16 P perfplots( ), 3-7 pfscale( ), 2-16 programming examples (NI resources), B-1 R reducibility, 2-17 robust stability, 2-3 S scaled singular values, 2-11 scaling Optimal (Boyd), 2-15 Osborne, 2-15 Perro[...]