Yamaha PM4000 Bedienungsanleitung
- Schauen Sie die Anleitung online durch oderladen Sie diese herunter
- 132 Seiten
- 5.4 mb
Zur Seite of
Ähnliche Gebrauchsanleitungen
-
Musical Instrument
Yamaha DS550U
2 Seiten 1.49 mb -
Musical Instrument
Yamaha CVP-206/204
172 Seiten 5.75 mb -
Musical Instrument
Yamaha DRX-730BL
178 Seiten 7.66 mb -
Musical Instrument
Yamaha MM 1402
52 Seiten 0.9 mb -
Musical Instrument
Yamaha PortaSound PSS-101
11 Seiten 0.51 mb -
Musical Instrument
Yamaha MX400
76 Seiten 0.96 mb -
Musical Instrument
Yamaha P-70 P-70S
36 Seiten 0.86 mb -
Musical Instrument
Yamaha YPT-200
68 Seiten 2.62 mb
Richtige Gebrauchsanleitung
Die Vorschriften verpflichten den Verkäufer zur Übertragung der Gebrauchsanleitung Yamaha PM4000 an den Erwerber, zusammen mit der Ware. Eine fehlende Anleitung oder falsche Informationen, die dem Verbraucher übertragen werden, bilden eine Grundlage für eine Reklamation aufgrund Unstimmigkeit des Geräts mit dem Vertrag. Rechtsmäßig lässt man das Anfügen einer Gebrauchsanleitung in anderer Form als Papierform zu, was letztens sehr oft genutzt wird, indem man eine grafische oder elektronische Anleitung von Yamaha PM4000, sowie Anleitungsvideos für Nutzer beifügt. Die Bedingung ist, dass ihre Form leserlich und verständlich ist.
Was ist eine Gebrauchsanleitung?
Das Wort kommt vom lateinischen „instructio”, d.h. ordnen. Demnach kann man in der Anleitung Yamaha PM4000 die Beschreibung der Etappen der Vorgehensweisen finden. Das Ziel der Anleitung ist die Belehrung, Vereinfachung des Starts, der Nutzung des Geräts oder auch der Ausführung bestimmter Tätigkeiten. Die Anleitung ist eine Sammlung von Informationen über ein Gegenstand/eine Dienstleistung, ein Hinweis.
Leider widmen nicht viele Nutzer ihre Zeit der Gebrauchsanleitung Yamaha PM4000. Eine gute Gebrauchsanleitung erlaubt nicht nur eine Reihe zusätzlicher Funktionen des gekauften Geräts kennenzulernen, sondern hilft dabei viele Fehler zu vermeiden.
Was sollte also eine ideale Gebrauchsanleitung beinhalten?
Die Gebrauchsanleitung Yamaha PM4000 sollte vor allem folgendes enthalten:
- Informationen über technische Daten des Geräts Yamaha PM4000
- Den Namen des Produzenten und das Produktionsjahr des Geräts Yamaha PM4000
- Grundsätze der Bedienung, Regulierung und Wartung des Geräts Yamaha PM4000
- Sicherheitszeichen und Zertifikate, die die Übereinstimmung mit entsprechenden Normen bestätigen
Warum lesen wir keine Gebrauchsanleitungen?
Der Grund dafür ist die fehlende Zeit und die Sicherheit, was die bestimmten Funktionen der gekauften Geräte angeht. Leider ist das Anschließen und Starten von Yamaha PM4000 zu wenig. Eine Anleitung beinhaltet eine Reihe von Hinweisen bezüglich bestimmter Funktionen, Sicherheitsgrundsätze, Wartungsarten (sogar das, welche Mittel man benutzen sollte), eventueller Fehler von Yamaha PM4000 und Lösungsarten für Probleme, die während der Nutzung auftreten könnten. Immerhin kann man in der Gebrauchsanleitung die Kontaktnummer zum Service Yamaha finden, wenn die vorgeschlagenen Lösungen nicht wirksam sind. Aktuell erfreuen sich Anleitungen in Form von interessanten Animationen oder Videoanleitungen an Popularität, die den Nutzer besser ansprechen als eine Broschüre. Diese Art von Anleitung gibt garantiert, dass der Nutzer sich das ganze Video anschaut, ohne die spezifizierten und komplizierten technischen Beschreibungen von Yamaha PM4000 zu überspringen, wie es bei der Papierform passiert.
Warum sollte man Gebrauchsanleitungen lesen?
In der Gebrauchsanleitung finden wir vor allem die Antwort über den Bau sowie die Möglichkeiten des Geräts Yamaha PM4000, über die Nutzung bestimmter Accessoires und eine Reihe von Informationen, die erlauben, jegliche Funktionen und Bequemlichkeiten zu nutzen.
Nach dem gelungenen Kauf des Geräts, sollte man einige Zeit für das Kennenlernen jedes Teils der Anleitung von Yamaha PM4000 widmen. Aktuell sind sie genau vorbereitet oder übersetzt, damit sie nicht nur verständlich für die Nutzer sind, aber auch ihre grundliegende Hilfs-Informations-Funktion erfüllen.
Inhaltsverzeichnis der Gebrauchsanleitungen
-
Seite 1
PROFESSIONAL AUDIO MIXING CONSOLE PM4000 OPERATING MANUAL YAMAHA[...]
-
Seite 2
PM4000 OPERATING MANUAL[...]
-
Seite 3
IMPORTANT NOTICE FOR THE UNITED KINGDOM Connecting the Plug and Cord WARNING : THIS APPARATUS MUST BE EARTHED IMPORTANT. The wires in this mains lead are coloured in accordance with the following code: GREEN-AND-YELLOW : EARTH BLUE : NEUTRAL BROWN : LIVE As the colours of the wires in the mains lead of this apparatus may not correspond with the col[...]
-
Seite 4
How to Use This Manual If you are an engineer or technician who is familiar with sound system design, much of this manual will serve as a review for you. The basic features are presented in the “BRIEF OPERATING INSTRUC- TIONS” section. Check this and the “SPECIFICA- TIONS” section, and you will see most of what you need to know. The balance[...]
-
Seite 5
Table of Contents Page Sect. Title Section 1. Introduction Section 2. Brief Operating Instructions 2-1 2.1 PM4000 Front Panel Features 2-1 2.1.1 The Standard Monaural Input Module 2-7 2.1.2 The Stereo Input Module 2-12 2.1.3 The Master Module (1 - 8) 2-17 2.1.4 The Stereo Master Module 2-19 2.1.5 The TB (Talkback) Module 2-22 2.1.6 The Monitor Modu[...]
-
Seite 6
Page Sect. Title 6-16 6.15 Stereo Master to Matrix ST Bus: Pre or Post ST Master Fader 6-17 6.16 Installation of Optional Input Transformers 6-18 6.15 Hints on Circuitry For Remote Control of the VCA Masters and Mute Groups Section 7. Operating Notes and Hints 7-1 7.1 Console Gain Structure 7-l 7.1.1 What Is The Proper Gain Structure? 7-1 7.1.2 Wha[...]
-
Seite 7
Section 1 Introduction[...]
-
Seite 8
Section 1. Introduction The PM4000 is a professional audio mixing console with the kind of flexibility, performance and reliability for which Yamaha has earned a worldwide reputation. It picks up where the famous PM3000 left off, with still more functions, a higher level of performance, and a greater degree of versatility than ever before. The cons[...]
-
Seite 9
combined signal through a single bus, which is why full-length Group Master Faders are provided on the PM4000. However, when the VCA Master Faders are used, more than one VCA Master can combine to alter the level of a single input channel. What’s more, the VCA Master Fader, because it affects the input channel directly, can also alter that channe[...]
-
Seite 10
stereo master output. Cue replaces the signal in the headphones and the stereo cue XLR outputs with only those sources whose CUE switches are engaged. The CUE system has input priority so that the operator may normally monitor the cue signal from the stereo bus or the group busses, and can instantly check one or more channel or aux return inputs wi[...]
-
Seite 11
Section 2 Brief Operating Instruction[...]
-
Seite 12
This locking switch assigns the channel output directly to the stereo bus. An LED in the switch turns on when the signal is assigned to the stereo bus. If you want the cleanest, quietest stereo mix, create it by assigning inputs directly to the stereo bus with this switch rather than running signal to group busses and then mixing the groups down to[...]
-
Seite 13
TOM POWER switch is on. An LED in the switch turns on when phantom power is being applied to the channel input connector. When both the Master and this switch are on, +48 volts is applied to both pins 2 & 3 of the channel input XLR connector for remote power- ing of condenser microphones. Although phantom power will not harm most dynamic and ot[...]
-
Seite 14
1 ~ 20 kHz The outer concentric knob sweeps the EQ Fre- quency between 1,000 and 20,000 Hz. -15 ~ +15 dB The inner concentric knob adjusts the gain of the set frequency band by plus or minus 15 dB. A center detent is provided for unity gain. 10. HIGH-MID Q This rotary control adjusts the Q (the bandwidth) of this section of the equalizer from a ver[...]
-
Seite 15
Figure 2-1b. PM4000 Standard Input Module (middle portion of module) NOTE: A signal processor (effects device) can be set up before it is needed, its levels adjusted using the always active INSERT OUT signal, and then the processor can be inserted on cue in the channel’s signal path by pressing this switch. 17. AUX 1 - 8 (Send level & Pre/Off[...]
-
Seite 16
mixing buses, and the inner rotary control on the right serves to PAN that signal between the L & R sides of that stereo pair. When the send is set for dual mono mode, the inner rotary control on the left sets the LEVEL applied to the AUX ST L bus (i.e., LEVEL-L), and the inner rotary control on the right sets the LEVEL applied to the AUX ST R [...]
-
Seite 17
prevents the channel from being muted. Engag- ing this switch ensures the channel will always be on so long as the channel ON switch is also engaged. 25. FADER This long-throw fader sets the level applied to the 8 group mixing busses, and the stereo bus. It also affects any auxiliary feeds which are set to post- fader position. The Fader does not p[...]
-
Seite 18
2.1.2. The Stereo Input Module The PM4000 comes with at least four stereo input modules, located in near the master section. More of these stereo modules can be ordered in lieu of the monaural input modules. Their position in the main- frame is completely interchangeable with the standard input modules (see Section 6 for details). 1S. 1 2 3 4 5 6 7[...]
-
Seite 19
input is available at odd-numbered busses, and the right input at even numbered busses (and, of course, L&R in are available to the L&R stereo bus). In L position, the right input is deactivated, and the left input connector is available to all group busses and the L&R sides of the stereo bus. Similarly, in R position, the right input i[...]
-
Seite 20
This indicators measure signal from the XLRs or from the INSERT IN jacks, whichever are active, as well as after the equalizer. If necessary, use the PAD or decrease the GAIN setting to prevent the LEDs from remaining on any longer than momentarily; otherwise excessive distortion and insufficient fader travel will result. With stereo input sources,[...]
-
Seite 21
NOTE: PM3000 users will notice there is no EQ CLIP indicator. Clipping at this stage can occur even though the input signal is not clipping, due to boost (gain) applied with the EQ circuitry. In the PM4000, clipping in the equalizer is detected and shown on the PEAK indicators [7S] adjacent to the GAIN controls. 13. EQ (In/Out switch) This locking [...]
-
Seite 22
iary mixing bus. When the switch is in the center (OFF) position, no signal is applied to the auxil- iary bus. NOTE: When the input signal select switch [2S] is set to stereo mode, then the left input signal can be assigned to odd-numbered aux busses, and the right input to even numbered busses. With a mono signal-select setting, the same mono sign[...]
-
Seite 23
20S . MT PRE (switch) and L, R (level meters) The channel level meters consist of two rows of 6 LEDs each that display the left and right signal levels from -20 dB u to +6 dBu, plus PEAK (3 dB below clipping). The meters normally indicate the level after the EQ and the channel fader. Engag- ing the METER PRE switch causes the meters to indicate lev[...]
-
Seite 24
Figure 2-3a. PM4000 Master Module (matrix section of module) 2.1.3 The Master Module (1 - 8) These eight modules are identical, except that each controls a differently-numbered set of Group Master, VCA Master and Matrix Output channels. MATRIX SECTION 28. SUB IN This rotary control adjusts the level of the signal from the MTRX SUB IN connector appl[...]
-
Seite 25
Figure 2-3b. PM4000 Master Module (aux send and group sections of module) 33. CUE (Matrix cue) Pressing this switch part-way down causes momentary contact; pressing it further locks it down. When the CUE switch is illuminated, the module’s matrix mix signal (post insert point, pre MTRX MASTER) replaces any other signal in the Cue output and the P[...]
-
Seite 26
GROUP SECTION 39. PAN (group to stereo bus) This pan control is operational only when the adjacent GROUP-TO-ST switch is engaged. It then pans the group signal between the left and right sides of the stereo mixing bus. The signal is derived after the group master fader. 40. GROUP-TO-ST an input CUE switch is engaged. (Bus cue signals are overriden [...]
-
Seite 27
Figure 2-3c. PM4000 Master Module (VCA master section of module) VCA SECTION 46. VCA MUTE Engaging this switch is the equivalent of setting the VCA master fader at maximum kill . The switch is illuminated when the master fader is muted. This affects all input channels assigned to the correspondingly numbered VCA group. The switch enables you to pre[...]
-
Seite 28
2.1.4 The Stereo Master Module This module controls the output of the stereo bus and the two aux stereo busses. Figure 2-4a. PM4000 Stereo Master Module (upper portion of module) 51. CUE (Aux 1 Stereo cue) Pressing this switch part-way down causes momentary contact; pressing it further locks it down. When the CUE switch is illuminated, the aux 1 ma[...]
-
Seite 29
52. ON (Aux 1Master On) Engaging this locking, illuminated switch turns on the Aux 1 master output. When the output is turned off, the feed to the VU meter is also off, although the signal may still be previewed with the adjacent CUE switch [51]. 53. AUX 2 STEREO SEND MASTER SECTION This cluster of controls and switches functions identically to the[...]
-
Seite 30
gether, or they can be operated completely independently if, for example, the stereo bus is used for two discrete mono mixes. 2.1.5 The TB (Talkback) Module 60. TB-TO-MON. B Engaging this switch assigns the Talkback signal to the Monitor B mix. An LED in the switch turns on when it is assigned. NOTE: Normally, you do not want talkback signal assign[...]
-
Seite 31
Figure 2-5b. PM4000 TB Module (middle portion of module) oscillator when it is not actually in use. NOTE: Even though the oscillator may not be assigned to any busses, it is still possible that you would inadvert- ently select it when preparing to use the talkback feature, or that some signal could leak into busses (albeit at low levels). Hence, le[...]
-
Seite 32
supply with an A-B powered mic, in which case you should turn off the TB 48V Switch. corresponding switch here is illuminated. See the meter bridge description in Section 2.1.7 for additional details. 71. (TB INPUT) This XLR-3 connector accepts a low-Z microphone or a line level signal, depending on the settings of the controls below it. Signal fro[...]
-
Seite 33
2.1.6 The Monitor Module 77. SOLO MODE (switch) Figure 2-6a. PM4000 Monitor Module (upper portion of module) Page 2-22 This locking, red, illuminated switch flashes when engaged, indicating the console monitor system is set to the SOLO mode. In this mode, input channel CUE/SOLO switches mute all other channels, much like a recording console SOLO fu[...]
-
Seite 34
81. ON switch (Monitor B On) Engaging this switch applies the Monitor B signal to the Monitor B left and right output connectors. The switch is illuminated when the output is on. Figure 2-6b. PM4000 Monitor Module (middle portion of module) 82. 2TR IN 1, 2TR, IN 2, ST CH3, ST CH4, ST OUT (Monitor A Source Select Switches) These five switches functi[...]
-
Seite 35
90. PHONES (Level control) This 2-gang rotary control adjust the output level at both stereo PHONES output jacks. It affects any signals which may be fed to these outputs. 91. INPUT CUE / SOLO (LED status annunciators) INPUT CUE is a yellow LED that turns on when any input channel’s CUE/SOLO switch is en- gaged, indicating the console is subject [...]
-
Seite 36
2.1.7 The Meter Bridge The PM4000 is equipped with 2 jumbo and 12 or 16 large, illuminated VU meters, depending on the size of the mainframe. Each meter has true VU ballistics to indicate approximate loudness, plus a red "PEAK" LED which responds to instantaneous levels that are beyond the scale of the meter. The PEAK LED turns on 3 dB be[...]
-
Seite 37
96. II (Group/Matrix/Aux meters and indicators) 97. ST L, ST R (Stereo output meters) On 24 and 32 channel mainframes, these four meters monitor the correspondingly numbered busses, as described above in item [95]. In 40 or 48 channel mainframes, these eight meters display the eight group outputs or the eight matrix outputs (redundant with the firs[...]
-
Seite 38
2.2 PM4000 Rear Panel Features All XLR connectors and phone jacks are balanced. Outputs and patch points are +4 dBu level unless otherwise noted. Channel inputs, sub inputs, sub outputs, and primary outputs all rely upon XLR-3 type connectors wired Pin 2=high, Pin 3=low, Pin 1=ground. INSERT IN/OUT points are ¼" (6.33mm) tip/ring/ sleeve conf[...]
-
Seite 39
STEREO INPUT MODLUE INPUT STRIPS Figure 2-8. PM4000 Rear Panels Stereo Channel Input Strip Figure 2-9. PM4000 Rear Panel: Cooling Fans and Lamp Connectors (2 shown) The PM4000 contains three or four cooling fans, depending on mainframe size, distributed across the rear panel. These operate continuously to draw heat away from the internal circuits a[...]
-
Seite 40
109. GROUP SUB IN (1 - 8) These eight female XLR connectors apply signal directly to the group mixing busses (ahead of the Group Insert point and Group Master Faders). They are used for “chaining” another mixing console’s group outputs into this console, with this console serving as the master for both consoles. 110. MTRX SUB IN (1 - 8) These[...]
-
Seite 41
118. GROUP INSERT 1-8 (IN, OUT) These phone jacks serve as a patch point for the signal from the correspondingly numbered group mixing bus. Nominal output and input level is +4 dBu (1.23 V). The OUT jacks may be used as auxiliary group outputs to another console or as a group output to a multitrack tape machine, although the direct output connector[...]
-
Seite 42
122. AUX INSERT 1-8 (IN, OUT) These phone jacks serve as a patch point for the signal from the correspondingly numbered auxiliary mixing bus. They function identically to the insert points for the group mixing bus [118]. 123. AUX ST INSERT 1 L & R (IN, OUT) These four phone jacks serve as a patch point for the signal from the left and right sid[...]
-
Seite 43
PIN Nº 1 2 3 4 5 6 7 8 9 10 11 12 CONNECTOR PINS (FEMALE) FUNCTION PIN Nº FUNCTION VCA EXT 1 13 MUTE EXT 3 VCAEXT 2 14 MUTE EXT 4 VCA EXT 3 15 MUTE EXT 5 VCA EXT 4 16 MUTE EXT 6 VCA EXT 5 17 MUTE EXT 7 VCA EXT 6 18 MUTE EXT 8 VCA EXT 7 19 GND VCA EXT 8 20 GND GND 21 GND NC 22 INPUT CUE EXT MUTE EXT 1 23 SOLO EXT MUTE EXT 2 24 GND Figure 2-13. VCA[...]
-
Seite 44
134. TB OUT This male XLR connector outputs signal from the talkback circuit when the TB OUT switch [64] is on. If that switch is OFF, this output is muted. Assuming the TB OUT switch is on, this output is derived from the talkback input XLR when the TALKBACK switch [74] is engaged. Otherwise the TB OUT is derived from the console’s oscillator/ n[...]
-
Seite 45
2.4 The PW4000 Power Supply Figure 2-16. PW4000 Power Supply (Front and Rear Panels) 141. POWER This alternate-action switch turns on the AC input to the supply, and thereby provides the necessary output voltages to the console via the umbilical power cable. Pressing the switch a second time turns off the power. 142. Operation Monitor This panel of[...]
-
Seite 46
144. DC OUTPUT (Umbilical Connector) This locking, multi-pin connector provides the necessary DC voltages from the PW4000 power supply to the PM4000 console. The cable must be connected correctly before attempting to operate the console. See Figure 2-17 for the pin assignments. CAUTION: Always make certain that the PW4000 power is turned OFF prior [...]
-
Seite 47
Section 3 Specifications[...]
-
Seite 48
Section 3. Specifications PM4000 Mixing Console General Specifications Total Harmonic Distortion <0.1% (THD+N) 20 Hz - 20 kHz @ +14 dBu, 600Ω (Master Output) <0.01% (2nd - 10th harmonics) 20 Hz - 20 kHz @ +14 dBu, 600Ω Frequency Response (Master Output) 0 ± 1/3 dB 20 Hz - 20 kHz @ +4 dBu, 600Ω Hum & Noise (48 Channels) -128 dB Equi[...]
-
Seite 49
VU Meters (0 VU = +4 dBu output) 24 or 32 channel consoles 40 or 48 channel consoles VU Meter Peak Indicators Phantom Power Dimensions (W x H x D) Weight 4 8 Channel 2086 x 346 x 1121 mm 4 0 Channel 1846 x 346 x 1121 mm 3 2 Channel 1586 x 346 x 1121 mm 2 4 Channel 1346 x 346 x 1121 mm 4 8 Channel 183 kg 4 0 Channel 161 kg 3 2 Channel 137 kg 2 4 Cha[...]
-
Seite 50
INPUT CHARACTERlSTlCS Connection PAD Gain Trim Actual load Impedance 0 CH IN 1 ~ [ch (*1) -70 30 ST CH IN 1 ~ 4ch 0 30 -20 SUB IN GROUP (1 ~ 8) STEREO (L, R) AUX (1 ~ 8) AUX ST1, 2 (L, R) CUE (L, R) MTRIX (1 ~ 8) TALKBACK IN -50 +4 INSERT IN CH 1 ~ [ch (*1) ST CH 1 ~ 4ch GROUP (1 ~ 8) STEREO (L, R) AUX (1 ~ 8) AUX ST1, 2 (L, R) MTRIX (1 ~ 8) 2TR IN[...]
-
Seite 51
Dimensional Drawings PM4000 Console (all versions) Page 3-4[...]
-
Seite 52
Page 3-5[...]
-
Seite 53
Page 3-6 PM4000 Console Rear Profiles[...]
-
Seite 54
Module Block Diagrams (See back of the manual for overall system block diagram) Page 3-7[...]
-
Seite 55
Page 3-8[...]
-
Seite 56
Page 3-9[...]
-
Seite 57
Page 3-10[...]
-
Seite 58
Page 3-11[...]
-
Seite 59
Page 3-12[...]
-
Seite 60
Section 4 Installation Notes[...]
-
Seite 61
Section 4. Installation Notes 4.1 Planning An Installation Before installing the PM4000, it is worthwhile considering how it will be used, how it is going to be connected, and what is the best way to implement the installation. To begin with, there must be a surface upon which the console can be mounted. A desk or table top can be constructed to su[...]
-
Seite 62
voltmeter. It is also a good idea to use a special outlet tester that will also indicate reversed polarity, weak or missing neu- tral, and weak or missing ground connec- tions in the outlet. Test the power supply before connecting the umbilical cable to the console. Severe over voltage or under voltage in the powe r mains can damage your equip- men[...]
-
Seite 63
Figure 4-2. Testing a 2-wire AC Outlet and a 3-Prong to 2-Prong Adaptor 4.2. 4 Improperly Wired AC Outlets: Lifted Grounds A "lifted ground" condition exists if the ground or If you detect any voltage between the larger slot (white wire) in an outlet and the ground-terminal (round prong, green wire) when there is no load on that line, you[...]
-
Seite 64
way to ground via the safety ground, instead of via a person’s body. When checking AC power lines at the outlet, be sure you have proper testing tools and some familiarity with the danger of shock hazards from AC power. Follow the dia- gram shown here, being careful not to touch metal with your hands. Do not short the test leads together. If you [...]
-
Seite 65
4.3 Theory of Grouding Grounding is an area of “black magic” for many sound technicians and engineers, and certainly for most casual users of sound systems. Everyone knows that grounding has something to do with safety, and some- thing to do with hum and noise suppression, but few people know how to set up a proper AC power distribu- tion syste[...]
-
Seite 66
Dangerous potential differences can also occur without such shorts. Two individual localized ground points, if they are not directly connected, cannot be assumed to be at the same potential – far from it, in fact. Virtually anyone who has played in a band has, at one time or another, experienced a shock when touching both the guitar and the micro[...]
-
Seite 67
ment. If one of these conditions is not met, then instead of going directly to earth ground and disappearing, these circulating ground loop noise currents (which act like signals) travel along paths that are not intended to carry signals. The currents, in turn, modulate the potential of the signal-carrying wiring (they are super- imposed on the aud[...]
-
Seite 68
are required to implement this approach, since ground is not carried between components. One drawback is that cables may not all be the same – some having shields carried through at both ends, and others not, depending on the equipment – so it becomes more complicated to sort out the cabling upon setup and breakdown of a portable system. Figure[...]
-
Seite 69
end without affecting the audio signal on the two inner conductors of the cable, and with little or no effect on the shielding. Unfortunately, this is not a very practical solution to the ground loop problem for portable sound systems because it requires special cables with shields disconnected on one end. Fortunately, some professional audio equip[...]
-
Seite 70
The PM4000 is fitted with only two types of audio connectors: 3-pin XLRs, both male and female, and 3- circuit (tip/ring/sleeve) ¼” phone jacks (also known as stereo phone jacks, although their function is sometimes to carry a balanced mono signal rather than a stereo signal). 4.4. 1 Types of Cable To Use 2-conductor (twisted pair) shielded cabl[...]
-
Seite 71
Figure 4-12. Cables For Use With Unbalanced Sources NOTE regarding Figure 4-12. For microphone cables, conect the shield to pin 1 at both ends of the XLR cable. For line-level signal cables, cut the shield as illustrated. Page 4-11[...]
-
Seite 72
Figure 4-13. Cables For Use With Balanced Sources Page 4-12[...]
-
Seite 73
designed to recognize only the difference in voltage between the two wires, and (hence the term “balanced differential input”). Should any electrostatic interfer- ence or noise cut across a balanced cable, the noise voltage will appear equally - with the same polarity - on both signal-carrying wires. The noise is therefore ignored or “rejecte[...]
-
Seite 74
where a transformer is desirable even if the input is electronically balanced. For example, where there is a signiftcant amount of electrostatic or electromagneti- cally induced noise, particularly high-frequency high- energy noise (the spikes from SCR dimmers, for ex- ample), the common mode rejection ratio (CMRR) of an electronically balanced inp[...]
-
Seite 75
4.5 Direct Boxes The so-called “direct box” is a device one uses to overcome several of the problems that occur when connecting electric guitars and some electronic key- boards to a mixing console. By using a transformer, the direct box provides important grounding isolation to protect a guitarist from inadvertent electrical shock in the event [...]
-
Seite 76
which is ideal. Each winding, each Faraday shield, and the transformer chassis shield should have separate leads. Figure 4-15. Passive Musical Instrument Direct Box (D.I. Box) Schematic Diagram Notes Regarding Figure 4-15: 1. C1 is a high quality, non-polar aluminum electro- lytic, such as Roederstein type EKU. Voltage rating should be 25 V or high[...]
-
Seite 77
4.5.2 Active Guitar Direct Box The active direct box shown here can be used at the output of a standard electric guitar, with or without an amplifier. Because of its very high input impedance, it can be used with a piezoelectric instrument pickup, taking the place of the preamp that is normally in- cluded with such pickups. This box is not meant fo[...]
-
Seite 78
Before actually mounting the selected components, it is wise to carefully plan out each rack with an eye to signal flow, heat flow, and weight distribution. It might be best to mount together components that function as a group: the equalizer, active crossover and power ampli- fier for a single loudspeaker or array, for example . On the other hand,[...]
-
Seite 79
SECTION 5 Gain Structure and Levels[...]
-
Seite 80
SECTION 5. GAIN STRUCTURE AND LEVELS Page 5-1 5.1 STANDARD OPERATING LEVELS There are a number of different “standard” operating levels in audio circuitry. It is often awkward to refer to a specific level (i.e., +4 dBu) when one merely wishes to describe a general sensitivity range. For this reason, most audio engineers think of operating level[...]
-
Seite 81
5.2 Dynamic Range and Headroom 5.2.1 What Is Dynamic Range? Every sound system has an inherent noise floor, which is the residual electronic noise in the system equipment (and/or the acoustic noise in the local envi- ronment). The dynamic range of a system is equal to the difference between the peak output level of the system and the noise floor. 5[...]
-
Seite 82
Figure 5-1. Dynamic Range and Headroom in Sound Systems Page 5-3[...]
-
Seite 83
5.2. 5 A General Approach To Setting Levels In a Sound System Just because individual pieces of sound equipment are listed as having certain headroom or noise and maximum output capability, there is no assurance that the sound system assembled from these components will yield performance anywhere near as good as that of the least capable component.[...]
-
Seite 84
Remember that with a 20 dB headroom figure, a power amplifier as powerful as 500 watts will operate at an average 5 watts output power. In some systems such as studio monitoring, where fidelity and full dynamic range are of utmost importance, and where sensitive loudspeakers are used in relatively small rooms, this low average power may be adequate[...]
-
Seite 85
dynamic range. Of course, another alternative is available: add more amplifiers and speakers so that the 5.3 Gain Overlap And Headroom desired headroom can be obtained while raising the As explained previously, the PM4000 can deliver average power level. +24 dBu output level, a level which exceeds the input sensitivity of most other equipment. A po[...]
-
Seite 86
Section 6 Optional Functions[...]
-
Seite 87
Section 6. Optiona l Functions The PM4000 is factory wired to suit what Yamaha engineers believe to be the greatest number of applica- tions. Yamaha recognizes, however, that there are certain functions which must be altered for certain specific applications. In designing the PM4000, a number of optional functions have been built in, and can be sel[...]
-
Seite 88
6.1 Removing and Installing A Module Figure 6-1. Removal of PM4000 Module 1. Turn the Power OFF first, before removing or installing a module. 2. Loosen the screws at the top and bottom of the rear panel input/output strip corresponding to the module being removed (except Master section modules). These screws are not retained so be sure to grasp th[...]
-
Seite 89
6.2 Mono Input Direct Out Jack: Pre-Fader or Post-Fader (switch) Pre-ON or Post-ON Switch (jumper) A slide switch in each input module permits the Direct Out point to be altered. As shipped, the console is set so that the Direct Out point is derived after the EQ and Fader (technically speaking, it comes after the VCA which is controlled by the fade[...]
-
Seite 90
6.3 Mono Input Aux Sends: Pre Fader & EQ or Pre Fader/post EQ Ten slide switches in each input module permit each of the eight mono auxiliary sends and the two stereo aux sends to be altered. As shipped, the console is wired so that if the front-panel aux PRE/OFF/POST switch is set to PRE position, the aux send is derived ahead of the the fader[...]
-
Seite 91
6.4 Mono Input Cue/Solo Switch: Pre- Fader or Follow MT PRE Switch so that the take-off point for the cue/solo signal tracks the signal feed to the channel’s LED level meter. In this way, the cue/solo feed will be post-fader (or post- As shipped from the factory, the mono input channel CUE/SOLO switch applies signal to the left and right cue buss[...]
-
Seite 92
6.5 Stereo Input Cue/Solo Switch: Pre- Fader or Follow MT PRE Switch so that the take-off point for the cue/solo signal tracks the signal feed to the channel's LED level meter. In this way, the cue/solo feed will be post-fader (or post-VCA to As shipped from the factory, the stereo channel CUE/ be more exact) until the METER PRE switch is set [...]
-
Seite 93
6.6 Mono & Stereo Input Channel MT POST mode, the meter indicates the level after the PRE Switch: Pre- or Post-ON Switch Fader and the channel ON switch. By chaning the jumpers as indicated, the POST function can be made to Two jumpers in each mono input module (four on each stereo input module) permit the channel level meter’s MT PRE switch [...]
-
Seite 94
6.7 Stereo Input Channel Insert In/Out for example, when one wishes to the send to the signal Jacks: Pre-EQ or Post-EQ processor... for example, to apply the boost prior to compression. However, sometimes one wishes to equal- Four jumpers in each stereo input module permit the two pair of Insert In/Out points to be altered separately. ize equalize [...]
-
Seite 95
6.8 Stereo Input Channel Aux Sends: switch is set to PRE position, the aux send is derived Pre Fader & EQ or ahead of the the fader and equalizer (but after the high Pre Fader/Post EQ pass filter). In situations where it is desirable to apply channel EQ to the send, the internal slide switch for Eight slide switches in each stereo input module [...]
-
Seite 96
6.9 Stereo Input Channel Aux Sends 1-8: L+R Blend or Stereo Pairs and right inputs to the channel. Moving the switch changes the signal take-off points so that the odd- numbered Aux Sends derive signal from the channel’s A single slide switch in each stereo input module left input path, and the even-numbered Aux Sends changes the signal source fo[...]
-
Seite 97
6.10 Stereo Input Channel Stereo Aux Aux Sends each carry discrete left and right signals Sends 1 & 2: L+R Blend or Stereo from the channel input. Moving the switch changes the signal take-off points so that the L and R sides of each Pairs stereo Aux Send both carry the same mono L+R com- A slide switch in each stereo input module changes bined[...]
-
Seite 98
6.11 Stereo Input Channel Feed to Determination of which stereo modules actually Monitor Module ST IN 3 or ST IN 4 contribute to the monitors when the monitor module’s ST IN3 or ST IN4 switch is engaged is dependent on the The Monitor module has provisions for selection and monitoring of signals assigned from the “Stereo In 3” position of a s[...]
-
Seite 99
6.12 Phase Switch Function: Change Polarity of Both L and R inputs, or of L Only As shipped, the Stereo Input Module’s Phase Swich (Ø) [8S], which is really a polarity switch, reverses the polarity of both the left and right inputs to the module. If you wish to alter the polarity of the left input with respect to the right input, you must reset [...]
-
Seite 100
6.13 Stereo Input Module: Output Enable Jumpers to Group, Stereo and Aux Busses The stereo input module may be used as an effects return module. In this case, it could be disastrous if an incoming signal were to be assigned to the bus which is feeding the signal processor whose output is coming into the module. In other words, at the press of the w[...]
-
Seite 101
6.14 Master Module: Group-to-Matrix Assigned Pre or Post Group Master Fader stereo house mix from the eight subgroups, yet you need as many as eight additional mono or five stereo mixes. The mix matrix alone allows for only one stereo and A slide switch in each master module permits the module’s group send to the mix matrix to be altered. As ship[...]
-
Seite 102
6.15 Stereo Master to Matrix ST Bus: Pre or Post ST Master Fader A slide switch in Stereo Master module enables the signal applied to the matrix stereo bus from that module to be derived from two different points. As shipped, the switch is preset so the matrix is fed its signal after the Stereo Master fader [58] so that adjust- ments in the stereo [...]
-
Seite 103
6.16 Installation of Optional Input Transformers The PM4000 standard input module is equipped with a balanced, differential input preamplifier for the XLR connector. That preamp, along with some circuitry for the resistive attenu- ation pads, is located on a small printed circuit board that “piggy back” mounts to the module’s main circuit boa[...]
-
Seite 104
6.15 Hints on Circuitry For Remote Control of the VCA Masters and Mute Groups The VCA/MUTE CONTROL connector on the PM4000 rear panel is provided primarily so that two consoles may be linked, and just one console’s VCA MASTER FADERS and/or MUTE MASTER switches will affect both consoles input channels. However, it is possible to create an independ[...]
-
Seite 105
YAMAHA SUFFIX VALUE OR PART# QUAN ITE M LETTER TYPE UA21410 2 K MYLAR CAPACITOR 0.01 uF, 50 V HU07543 1 F METALIZED FILM RESISTOR 430 ohm, ¼ W HU07610 4 F METALIZED FILM RESISTOR 1 kohm, ¼ W HU07620 1 F METALIZED FILM RESISTOR 2 kohm, ¼ W HU07710 4 F METALIZED FILM RESISTOR 10 kohm, ¼ W HU07712 F 1 METALIZED FILM RESISTOR 12 kohm, ¼ W HU07713 [...]
-
Seite 106
Section 7 Operating Notes and Hints[...]
-
Seite 107
Section 7. Operating Notes and Hints This section is not meant to be comprehensive. Instead, it focuses on a few areas which we feel require special attention, or where a better understanding of the function can lead to far more utility or better sound quality from the PM4000. 7.1 Console Gain Structure In the GAIN STRUCTURE AND LEVELS section of t[...]
-
Seite 108
Given the correct GAIN and PAD settings, adjust the channel Fader to its nominal (0 dB) setting. This setting provides the best range of control, with some boost available if the signal must be raised in the mix, and plenty of resolution for fading the signal down in the mix. Now the channel HP Filter and EQ can be set as desired. If a particular E[...]
-
Seite 109
Fader, which is changeable via internal preset switches; the Group bus calibration must still be done first to establish the proper levels on the group busses ahead of the Group Masters. The same concept applies to the stereo bus.) Here, a similar approach can be used, monitoring the matrix outputs one at a time with the Matrix CUE switch, adjustin[...]
-
Seite 110
7.1.9 Channel Muting and Gain Structure As pointed out earlier, adding inputs to a mix will increase mix levels. If optimum mix levels are estab- lished with some input channels muted, and those channels are later turned on (either with the channel ON/off switch or with the channel MUTE and MASTER MUTE switches), then the bus levels may increase un[...]
-
Seite 111
trolled Amplifier) in the input module. The audio signal flowing through that VCA is, in turn, increased or decreased in level according to the control voltage applied to the VCA. One advantage of the VCA is that the control voltage applied to it can come from more than one point. In fact, when one or more of the input channel’s VCA ASSIGN switch[...]
-
Seite 112
NOTE: Channels and outputs are selected at random in this illustration. The VCA Master Fader controls multiple input channels, and their outputs to all bus- ses (assuming Post-fader AUX sends). There is no single insert IN/OUT point that can process this VCA-controlled group of inputs, however. NOTE: Channels and outputs are selected at random in t[...]
-
Seite 113
On the other hand, if one “pulls down” the conven- tional Group Master Fader in the first example above, the level of the double-assigned input will only drop 3 dB, whereas pulling down a VCA Master Fader will completely kill any input channel assigned to that VCA group. Ultimately, the selection of VCA or conventional Group Master Fader assign[...]
-
Seite 114
The Mix Matrix is Located on the Top portion of Master Modules 1-8 Figure 7-3. Front Panel View and Block Diagram of PM4000 Mix Matrix Page 7-8[...]
-
Seite 115
7.2.4.1 The Mix Matrix In General Sound Reinforcement Instead of feeding the house sound system directly from the Group outputs [130], or the Stereo output [133], the sound system can be fed from the Matrix outputs [131]. The Group busses and Stereo bus would then be used for mixing sub-groups of different sources; i.e., brass, drum/percussion, lea[...]
-
Seite 116
into the corresponding matrix channels, and fed to the house sound system which is driven by the matrix outputs. A related use for the MTRX SUB IN connectors is to inject a test signal for speaker setup and testing. While the PM4000 test oscillator can be assigned to the Group or Stereo busses, which, in turn, feed the matrix, it is likely that the[...]
-
Seite 117
moment the choir is called upon, thus reducing noise, the “hollow” sound from those open mics, and removing the extra stress on the choir members of having to keep absolutely still during the entire service. These are but a few of the ways that the PM4000’s ability to mute overlapping groups of input channels can be used to advantage. NOTE: W[...]
-
Seite 118
7.2.6 Stereo Panning To the Eight Group Mixing Busses The input channel bus assignment is very flexible. One can assign a channel directly to the stereo bus using the ST switch [3], and the PAN pot will place the signal between the left and right sides of that stereo bus. However, if the PAN switch [2] is engaged, then the PAN pot will place the ch[...]
-
Seite 119
Section 8 Applications[...]
-
Seite 120
Section 8. Applications 8.1 General The PM4000 is designed primarily for audio mixing in live sound reinforcement applications. Its exceptional flexibility, however, will undoubtedly appeal to those who need a high quality audio mixing console for other applications, including TV show and music video production, AV audio production, and general rec[...]
-
Seite 121
maintain an ideal S/N ratio while avoiding tape satura- tion. At the same time, the mix matrix can create working mixes of those groups, with levels adjusted for more “listenable” reference monitoring or foldback. Alternately, some of the aux mix busses can be used for performer cue mixes or foldback, while others can be used for effects sends [...]
-
Seite 122
With eight auxiliary sends, and four aux returns, it’s easy to utilize the most sophisticated effects. The aux returns, which can each be used for a mono or stereo source, have two-band, sweep-frequency equalization. If even more returns are needed, input channels may be used (they each have four-band parametric equalization with plenty of overla[...]
-
Seite 123
8.2.2 The Mix Matrix Allows the 8 Groups Plus the Stereo Bus to Function as 10 Subgroups. It is relatively straightforward to use the mix matrix to create up to eight mono outputs or four stereo out- puts from the eight subgroups and the stereo bus. However, it is equally easy to use the stereo bus not to create a stereo mix, but instead to create [...]
-
Seite 124
Figure 8-3. System Diagram For 5 Independent Stereo Output Mixes via the Stereo Bus and the Mix Matrix Page 8-5[...]
-
Seite 125
8.2.4 How to Use the VCA Masters Plus the Group Master Faders to Obtain the Functional Equivalent of 16 Subgroups. Let’s assume the object is to obtain a stereo output (or a pair of mono outputs). Some input channels can be assigned to the Group busses via their assign switches [1]. The eight Group Master Faders [42] then control these eight subg[...]
-
Seite 126
8.2.5 Using More Than One VCA Master to Control the Same Input Channels In Order To Handle Overlapping Scenes. In a multi-scene theatrical presentation, or a multi- set concert, to name a couple of examples, it may be necessary to mix the same input channels at different levels to suit changing stage requirements. Rather than have the console opera[...]
-
Seite 127
Section 9 Maintenance[...]
-
Seite 128
Section 9. Maintenance 9.1 Cleaning The Console 9.1.1 The Console and Power Supply Exterior The console and power supply are painted with a durable finish. To avoid damage to the paint, control knobs, switch caps and other parts, DO NOT USE SOLVENTS. Instead, keep the console as free of dust as practical. Cover it when not in use, and brush or vacu[...]
-
Seite 129
9.2 Meter Lamp Replacement The VU meters and meter-assign indicators are illuminated by LEDs which should not require replace- ment. Contact your Yamaha dealer or service facility should a meter illumination LED fail. 9.3 Where To Check If There Is No Output In general, when something appears not to be working properly in a sound system, it is nece[...]
-
Seite 130
9.4 What To Do In Case of Trouble The PM4000 is supported by Yamaha’s worldwide network of factory trained and qualified dealer service personnel. In the event of a problem, contact your nearest Yamaha PM4000 dealer. For the name of the nearest dealer, contact one of the Yamaha offices listed below. Yamaha Corporation Nakazawa-Cho 10-1, Hamamatsu[...]
-
Seite 131
[...]
-
Seite 132
YAMAHA VN02300[...]