HP (Hewlett-Packard) F2215AA#ABA manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

Ir a la página of

Buen manual de instrucciones

Las leyes obligan al vendedor a entregarle al comprador, junto con el producto, el manual de instrucciones HP (Hewlett-Packard) F2215AA#ABA. La falta del manual o facilitar información incorrecta al consumidor constituyen una base de reclamación por no estar de acuerdo el producto con el contrato. Según la ley, está permitido adjuntar un manual de otra forma que no sea en papel, lo cual últimamente es bastante común y los fabricantes nos facilitan un manual gráfico, su versión electrónica HP (Hewlett-Packard) F2215AA#ABA o vídeos de instrucciones para usuarios. La condición es que tenga una forma legible y entendible.

¿Qué es un manual de instrucciones?

El nombre proviene de la palabra latina “instructio”, es decir, ordenar. Por lo tanto, en un manual HP (Hewlett-Packard) F2215AA#ABA se puede encontrar la descripción de las etapas de actuación. El propósito de un manual es enseñar, facilitar el encendido o el uso de un dispositivo o la realización de acciones concretas. Un manual de instrucciones también es una fuente de información acerca de un objeto o un servicio, es una pista.

Desafortunadamente pocos usuarios destinan su tiempo a leer manuales HP (Hewlett-Packard) F2215AA#ABA, sin embargo, un buen manual nos permite, no solo conocer una cantidad de funcionalidades adicionales del dispositivo comprado, sino también evitar la mayoría de fallos.

Entonces, ¿qué debe contener el manual de instrucciones perfecto?

Sobre todo, un manual de instrucciones HP (Hewlett-Packard) F2215AA#ABA debe contener:
- información acerca de las especificaciones técnicas del dispositivo HP (Hewlett-Packard) F2215AA#ABA
- nombre de fabricante y año de fabricación del dispositivo HP (Hewlett-Packard) F2215AA#ABA
- condiciones de uso, configuración y mantenimiento del dispositivo HP (Hewlett-Packard) F2215AA#ABA
- marcas de seguridad y certificados que confirmen su concordancia con determinadas normativas

¿Por qué no leemos los manuales de instrucciones?

Normalmente es por la falta de tiempo y seguridad acerca de las funcionalidades determinadas de los dispositivos comprados. Desafortunadamente la conexión y el encendido de HP (Hewlett-Packard) F2215AA#ABA no es suficiente. El manual de instrucciones siempre contiene una serie de indicaciones acerca de determinadas funcionalidades, normas de seguridad, consejos de mantenimiento (incluso qué productos usar), fallos eventuales de HP (Hewlett-Packard) F2215AA#ABA y maneras de solucionar los problemas que puedan ocurrir durante su uso. Al final, en un manual se pueden encontrar los detalles de servicio técnico HP (Hewlett-Packard) en caso de que las soluciones propuestas no hayan funcionado. Actualmente gozan de éxito manuales de instrucciones en forma de animaciones interesantes o vídeo manuales que llegan al usuario mucho mejor que en forma de un folleto. Este tipo de manual ayuda a que el usuario vea el vídeo entero sin saltarse las especificaciones y las descripciones técnicas complicadas de HP (Hewlett-Packard) F2215AA#ABA, como se suele hacer teniendo una versión en papel.

¿Por qué vale la pena leer los manuales de instrucciones?

Sobre todo es en ellos donde encontraremos las respuestas acerca de la construcción, las posibilidades del dispositivo HP (Hewlett-Packard) F2215AA#ABA, el uso de determinados accesorios y una serie de informaciones que permiten aprovechar completamente sus funciones y comodidades.

Tras una compra exitosa de un equipo o un dispositivo, vale la pena dedicar un momento para familiarizarse con cada parte del manual HP (Hewlett-Packard) F2215AA#ABA. Actualmente se preparan y traducen con dedicación, para que no solo sean comprensibles para los usuarios, sino que también cumplan su función básica de información y ayuda.

Índice de manuales de instrucciones

  • Página 1

    HP 3 5s sc ie ntif i c calc ulator user's guide H Ed i t io n 1 HP part number F2 215AA-90001[...]

  • Página 2

    Notice REGISTER Y OUR PRODUCT A T: www .r egister .hp .com THI S MANU AL AND ANY EXAMPLES CO NT AI NED HEREIN ARE PRO VI DED “ AS I S” AND ARE SUBJECT T O CHANGE WITHOUT NO TICE. HEWLETT-P ACKARD COMP ANY MAKE S NO W ARRANT Y OF ANY KIND WITH REGARD T O TH IS MANUAL , INCLUDI NG, BUT NOT LIMITED T O, THE IMPLIED W ARRANTIES OF MERCHANT ABILIT Y[...]

  • Página 3

    Contents 1 Contents Part 1. Basic Operation 1. Getting Started ............... ...................... ....................... 1-1 Important Preliminaries .............. ................... .................... ........ 1-1 Turning the Calcula tor On and Off ..................... .................. 1-1 Adjusting Display Contrast .............. .....[...]

  • Página 4

    2 Contents Complex number display format (  ,  ,  ·‚) ... ................. 1-24 SHOWing Full 12–Digit Precisio n ......... ...................... ........ 1-25 Fractions ............. ................... ................. ................... ........... 1-26 Entering Fractions ............ .................... ..............[...]

  • Página 5

    Contents 3 Using the MEM Catalog .................. ................. ................... ..... 3-4 The VAR cata log..... ................ .................... ................ ........ 3-4 Arithmetic with Stored Variables .... .................... ................... ..... 3-6 Storage Arithmetic ..... .................... ................ ........[...]

  • Página 6

    4 Contents 5. Fractions ....... .......................... ...................... .............. 5-1 Entering Fractions ... .................... ................... .................... ...... 5-1 Fractions in the Display ... ................... .................... ................... 5-2 Display Rules ............ ................... ............[...]

  • Página 7

    Contents 5 Operator Precedenc e . .................... ................ ................... 6-1 4 Equation Functions ........ .................... ................ ................ 6-1 6 Syntax Errors....... ................... ................ .................... ...... 6-19 Verifying Equations ................ ................... ...............[...]

  • Página 8

    6 Contents Dot product .......... ................. ................... .................... .... 10-4 Angle between vecto rs ..... .................... ................ .............. 10-5 Vectors in Equations ... .................... ................... .................... . 10-6 Vector s in Programs.................. ...........................[...]

  • Página 9

    Contents 7 Part 2. Programming 13.Simple Programming ...... ........................................... 13-1 Designing a Pro gram ...... .................... ................ ................... 1 3-3 Selecting a Mode ... ................ .................... ................... ... 1 3-3 Program Boundaries (L BL and RTN) ........ .................[...]

  • Página 10

    8 Contents Clearing One or More Prog rams .............. ................... ...... 1 3-23 The Checksum .......................... ................... ................... 13-2 3 Nonprogrammable Functions ... .................... ................... ...... 13-24 Programming with BASE .......... .................... ................... ...... 1 3-24 [...]

  • Página 11

    Contents 9 15.Solving and Integrating Programs ............. ................. 15-1 Solving a Program .... ................... .................... ................... ... 15-1 Using SOLVE in a Program ..................... ................... ............. 15-6 Integrating a Program ........ ................. ................... ................ 1[...]

  • Página 12

    10 Contents B. User Memory and the Stac k ....................... .................. B-1 Managing Calculator M emory ...................... ................... .......... B -1 Resetting the C alculator ............................ ................ ................ B-2 Clearing Memo ry .................... ................. ................... .....[...]

  • Página 13

    Contents 11 How SOLVE Finds a Root ............. .................... ................ ........ D-1 Interpreting Results ............. ................. ................... .................. D-3 When SOLVE Cannot Find a Root ........................... .................. D-8 Round–Off Error ... .................... ................ .............[...]

  • Página 14

    12 Contents[...]

  • Página 15

    Pa r t 1 Basic Op er ation[...]

  • Página 16

    [...]

  • Página 17

    Getting Star ted 1-1 1 Gett ing Star ted Important Preliminaries T urning th e Calculator On and Of f T o turn the calculat or on , pr es s  . ON is printed on the bottom of the  key . T o turn the calculat or off , press  . That is , pr ess and r eleas e the  shift ke y , then pres s  (w hic h has OFF pr inted in ye llo w abo [...]

  • Página 18

    1-2 Getting Star ted Highlights of the K ey b oar d and Di spl ay Shifted Ke y s E ach ke y has three functi ons: one pr in te d o n i ts fa c e , a le f t –s hi ft ed f u n c t i on (yello w) , and a righ t–shifted functi on (blue). The shifted f uncti on names ar e prin ted in ye llo w abo ve and in blue on the bottom of eac h k e y . Pr es s[...]

  • Página 19

    Getting Star ted 1-3 Pr essi ng  or  turns on the cor re sponding or  ann unc iato r sy mbol at the top of the displa y . The ann unc iato r r emains on until y ou pr es s the next k ey . T o cancel a shift ke y (and tur n off its annunc iato r), pr ess the same shift k ey again . Alpha K e y s Most k ey s  displa y a letter in their bo[...]

  • Página 20

    1-4 Getting Star ted Backspac ing and Clearing Among the f irs t things y ou need to kno w are ho w to c lear an entry , corr ect a number , and clear the entire display to start over . Keys fo r C l e ar in g Key D es c r ip t i on  Backspace . If an e xpr essio n is in the proce ss of be ing enter ed,  er ases th e char acter to the left of[...]

  • Página 21

    Getting Star ted 1-5 Ke ys for Clearing (continued) Key D es c r ip t i on  Th e C LE AR m enu (        ) contains options f or c learing x (the n umber in the X-r egister ), all dire ct v ari ables, all o f memory , a ll statistical data, all stacks and indirect v ari ables. If you pr ess ?[...]

  • Página 22

    1-6 Getting Star ted Using Men us The re is a lo t mor e po w er to the HP 3 5s than w hat y ou s ee on the k e yboar d. This is because 16 of the k e y s ar e menu k e ys . T her e ar e 16 menus in all , w hic h pro vide many mo r e functi ons, or mo r e options f or mor e f unctions . HP 35s Menus Men u Name Men u Description Chapter Numeric F un[...]

  • Página 23

    Getting Star ted 1-7 T o use a menu function: 1. Pre ss a menu k e y to displa y a set of menu items. 2. Pre ss Õ Ö × Ø to mov e the underline to the item y ou w ant to selec t . 3. Pre ss  while the item is under lined. With n umber ed menu items, y ou can either pr ess  w hile the item is underlined, or just enter the number of the item[...]

  • Página 24

    1-8 Getting Star ted Some men us, lik e the CONS T and S UM S , hav e mor e than one page . Ente ring the se menus turns on the  or  annunc iator . In these menus , use the Õ and Ö c ursor k ey s to na v igate to an item on the c urr ent menu page; us e the Ø and × k e ys t o access the ne xt and pr ev ious pages in the menu . Ex ample: I[...]

  • Página 25

    Getting Star ted 1-9  Pr essi ng  bac ks out of the 2–le v el CLEAR or MEM men u , one le v el at a time . Re fe r to  in the table on page 1–5 .  Pr essi ng  or  cancels an y other menu .  Pr essing another men u k ey r eplaces the old menu w ith the ne w one . RPN and AL G M odes The calc ulator can be set to perf orm ar [...]

  • Página 26

    1-10 Getting Star ted T o s elect ALG mode: Pre ss 9{  (  ) to set the calc ulator to AL G mode . When the calculat or is in AL G mode, the AL G annunc iator is on . Ex ample: Suppose y ou w ant to calculate 1 + 2 = 3 . In RPN mode, y ou enter the first n umber , pre ss the  ke y , enter the second number , and finall y pr ess [...]

  • Página 27

    Getting Star ted 1-11 Undo ke y The Un do Ke y The operation of the Undo k e y depends on t he calculator context , but serves largel y to r ecov er from the deleti on of an e ntry rather than to undo an y arbitr ary operati on . See T he Last X Register in Chapt er 2 fo r details o n r ecalling the entry in line 2 o f the displa y after a numer ic[...]

  • Página 28

    1-12 Getting Star ted The Displa y and Annunciators The dis play com pr ises tw o lines and ann unc iato rs . Entr ies w ith more than 14 c har acter s w ill sc r oll to the left . Dur ing input , the entry is display ed in the f irst line in AL G mode and the second line in RPN mode. E v ery calculati on is display ed in up to 14 digits , includin[...]

  • Página 29

    Getting Star ted 1-13 HP 35s Annunciators Annunciator Meaning Chapte r  The "  (Bus y)" annunci ator appears while an operati on , equation , or pr ogr am is execu t in g.   When in Fr action–display mode (press   ) , only on e of th e "  " or "  " halv e s of the "  "' an[...]

  • Página 30

    1-14 Getting Star ted HP 35s Annunciators (continu ed) Annunciator Meaning Chapter  ,  The re ar e more char act ers to the left or r ight in the display o f the entry in line 1 or line 2 . Both of th ese an nunciat ors may ap pe ar simultaneously , indic  ting that ther e ar e char acters to the le ft and ri ght in the disp lay o f an ent[...]

  • Página 31

    Getting Star ted 1-15 Keyi n g i n N u m b e r s The minimum and max imum v alues that the calc ulato r can handle are ± 9 . 99999999999 499 . If the r esult of a calc ulatio n is bey ond thi s r ange , the err or message “  ” appears momentarily along w ith the  annunc i ator . T he o verflo w message is then r epla[...]

  • Página 32

    1-16 Getting Star ted Ke ying in P owers o f T en The  key i s us e d to e n te r p owe r s of t e n q u i ck ly. Fo r exa m p le, i n s t e ad o f e nt e ri n g one million as 1000000 y ou can simply enter  . T he f ollo w ing e xam ple illustrates the process as w ell as how the calculator di splay s the result . Ex ample: Suppose y o[...]

  • Página 33

    Getting Star ted 1-17 Other Exponent Functions T o calculate an e xponent o f ten (the base 10 antilogar ithm) , use   . T o calculate the r esult of any n umber raised to a pow er (e xponentiation), use  (see chap ter 4) . Understanding Entry Cursor As yo u k ey in a number , the cur sor (_) appears and blinks in the display . The c urs o[...]

  • Página 34

    1-18 Getting Star ted P erforming Ar ithmetic Calculations The HP 3 5s c an operat e in either RPN mode or in Algebr aic mode (AL G). These modes affect ho w e xpres sions ar e enter ed.  The f ollo w i ng secti ons illus tr ate the entry differences for single ar gument (or unar y) an d two argument ( or binar y) operations. Single Argument or [...]

  • Página 35

    Getting Star ted 1-19 Example: Calculate 3.4 2 , firs t in RPN mode and then in AL G mode . In the ex ample, the sq uar e oper ator is sho wn on the ke y as  but display s as S Q() . Ther e are se v er al single ar gument operators that display differentl y in AL G mode than they a ppear on the ke y boar d (and differ ently than the y appear in [...]

  • Página 36

    1-20 Getting Star ted Ex ample Calc ulate 2+3 and 6 C 4 , f irs t in RPN mode and then in AL G mode . In AL G mode, the inf i x oper ator s ar e  ,  ,  ,  , and  . The other tw o argumen t oper ations us e func tion not ation o f the for m f(x ,y), where x and y ar e the fir st and second operands in or der . In RPN mode, the operand[...]

  • Página 37

    Getting Star ted 1-21 F or commutati ve operati ons such as  and  , the order of the operands does not affect the calculated result . If you mistak enly enter the operand fo r a noncommut ativ e tw o ar gument operati on in the w r ong or der in RPN mode , simply pr ess the  k ey t o e xc hange the co nten ts in the x - and y -r egisters .[...]

  • Página 38

    1-2 2 Getting Star ted Scientific F ormat (  ) S CI for mat displa y s a number in sc ie ntifi c notati on (one digit be fo r e the "  " o r "  " ra dix mar k) w ith up to 11 dec imal places and up to thr ee di gits in the expo nent . Aft er th e prom pt,  _ , t ype in the number of dec imal places to be [...]

  • Página 39

    Getting Star ted 1-23 Example: This e x ample illu str ate s the behav ior of the Engineer ing f ormat us ing the number 12 .3 46E4. It als o sho w s the use o f the  @ and  2 functi ons. This e xample uses RPN mode . ALL Format (  ) The All f or mat is the defa ult for mat , display ing numbers w ith up to 12 di git pr ec ision . If[...]

  • Página 40

    1-24 Getting Started Ex ample Enter the n umber 12 , 3 4 5, 6 7 8.90 and c hange the dec imal po int to the co mma. Then c hoos e to hav e no thou sand separ ator . Finall y , r eturn t o the defa ult settings . This e x ample u ses RPN mode . Complex number displa y format (  ,  ,   ) Co mple x numb ers ca n be displa y ed [...]

  • Página 41

    Getting Star ted 1-25 Example Display the complex number 3+4i in each of the differ ent for mats. SHO W ing Full 12–Digit Pr ecision Changing the number of display ed dec imal places affects what y ou see , but it does not affect the inte rnal r epr esent ation o f numbers. A n y number stor ed inte rnall y alw a y s has 12 digits . F or e x ampl[...]

  • Página 42

    1-2 6 Getting Started Frac t i on s The HP 3 5 s allow s y ou to enter and operate on fr actions , display ing them as either dec imals or fr acti ons. T he HP 3 5s displ ay s fracti ons in the fo rm a b/c , wher e a is an integer and both b and c ar e counting n umbers. In additi on , b is such that 0 ≤ b<c and c is such that 1<c ≤ 409 5[...]

  • Página 43

    Getting Star ted 1-2 7 Example Enter the mix ed numer al 12 3/8 and di spla y it in frac tion and decimal f orms . Then ente r ¾ and add it to 12 3/ 8. Th is ex ample uses RPN mod e . Re fer to c hapter 5, "Fr actions," for m o re in fo rma t io n a b o u t u s i n g fract ion s. Mes sa ge s The calc ulator r espo nds to err or conditi o[...]

  • Página 44

    1-28 Getting Started  An y other k e y also clear s the message , though the k e y functi on is not ente red If no message is dis play ed, but the  annunciator appears, then yo u hav e pres sed an inactiv e or in vali d ke y . F or ex ample , pres sing  will dis play  beca use the second dec imal point ha s no meaning in this cont[...]

  • Página 45

    Getting Star ted 1-2 9 Clearing All of Memor y Clea ring a l l of me mory erase s all numbers , equations , and pr ograms you' ve stor ed . It does not aff ect mode and fo rmat settings. (T o clear set tings as well as data , see "Clear ing Memory" in appendi x B .) To c l e a r a ll of m e m o r y : 1. Pre ss  (  )[...]

  • Página 46

    1-30 Getting Star ted[...]

  • Página 47

    RPN: The Automatic Memory Stac k 2- 1 2 RPN: T he Automatic Me m o ry St ack This c hapter e xplains ho w calculati ons tak e place in the automatic memory stack in RPN mode. Y ou do not need to r ead and unders tand this mater ial to use the calculator , but understanding the mater ial w ill gr eatl y enhance yo ur use of the calculator , especi a[...]

  • Página 48

    2- 2 RPN: The Automatic Memor y Stack The mo st "r ecent" number is in the X–r egister : this is the numbe r y ou see in the second line of the displa y . Ev ery register is separated into three par ts:  A real n umber or a 1-D vec tor w ill occ up y part 1; part 2 and part 3 will be null in this case   A comple x numbe r or a [...]

  • Página 49

    RPN: The Automatic Memory Stac k 2- 3 The X and Y–Registers ar e in the Displa y The X and Y–Registers are what y ou see exc ep t when a menu , a message, an equation line ,or a pr ogr am line is being displa y ed. Y ou might hav e noticed that sev er al func tion names include an x or y . This is no coinc idence: these letters r efe r to the X[...]

  • Página 50

    2- 4 RPN: The Automatic Memor y Stack What w as in the X–r egiste r rotates into the T–regis ter , the contents of the T–r egist er r otate int o the Z–r egister , etc. Noti ce that onl y the contents of the r egister s ar e r olled — the r egister s themsel v es maintain the ir positi ons, and onl y the X– and Y–r egister's cont[...]

  • Página 51

    RPN: The Automatic Memory Stac k 2- 5 Arithmetic – Ho w the Stac k Does It The contents o f the stac k mov e up and do wn automati cally as ne w n umbers enter the X–r egister ( lifting the stac k) and as oper ators combine two numbers in the X – and Y–registers to produce one new number in the X–register ( dr opp ing the stac k ). Suppos[...]

  • Página 52

    2- 6 RPN: The Automatic Memor y Stack Ho w ENTER W orks Y ou kno w that  separate s two n umbers k ey ed in one aft er the other . In terms of the st ack , ho w doe s it do this ? Suppos e the s tac k is again f illed w ith 1, 2 , 3, and 4. Now en ter and add two ne w numbers: 1. Lifts the stack. 2. Lifts the stack and replicates the X–registe[...]

  • Página 53

    RPN: The Automatic Memory Stac k 2- 7 Filling the stack with a constant The r eplicating effec t of  togethe r w ith the repli cating eff ect of s tac k dr op (fr om T int o Z) allow s y ou to f ill the stac k w ith a numer ic cons tant f or calculati ons . Example: G i v en bacter ial c ultur e w i th a constant gr o wth rate of 5 0% per day , [...]

  • Página 54

    2- 8 RPN: The Automatic Memor y Stack 1. Lifts the stack 2. Lifts the stack and replicates the X–register . 3. Overwr ites the X–register . 4. Clears x by o v erwr iting it with z ero . 5. Overwr ites x (r eplaces the z ero .) Th e L AST X Register The LAS T X register is a companion to the st ack: it ho lds the number that w as in the X–regi[...]

  • Página 55

    RPN: The Automatic Memory Stac k 2- 9 Corr ecting Mistakes with LAS T X W rong Single Argument F unction If you e xec ute th e w r o n g single ar gument function , use  to r etr ie v e the number so y ou can ex ec ute the correct funct io n. ( P res s  firs t if you w ant to clear the incor r ect r esult fr om the stac k .) Since  a[...]

  • Página 56

    2- 1 0 RPN: The Automatic Memor y Stack Ex ample: Suppose y ou made a mistak e w hile calc ulating 16 × 19 = 304 The r e are thr ee kinds of mistak es y ou could ha ve m ad e : Reusing Numbers with LAST X Y ou can use  to r eus e a number (such a s a constant) in a calc ulati on. Remember to ent er the constant second, j ust bef or e ex ec u[...]

  • Página 57

    RPN: The Automatic Memory Stac k 2- 1 1 Example: T w o clo se s tellar nei ghbor s of E a rth are R igel Cent auru s ( 4. 3 light–y ears aw a y) and Siriu s (8.7 ligh t–y ears a w ay). Use c , the sp eed of li ght (9 . 5 × 10 15 met ers per y ear ) to conv ert th e distances from the E arth to these stars i nto meters: T o R igel Centau rus: 4[...]

  • Página 58

    2- 1 2 RPN: The Automatic Memor y Stack Chain Calculations in RPN M ode In RPN mode, the a utomati c lifting and dropp ing of the stac k's conten ts let y ou re tain inter mediate r esults witho ut stor ing or r eentering them , and w ithout u sing par entheses . W ork from the P arentheses Out For exam pl e, ev al u at e (1 2 + 3 ) × 7. If y[...]

  • Página 59

    RPN: The Automatic Memory Stac k 2- 1 3 Now study the f ollo wing e xam ples. R emember that y ou need to pr ess  only to separ ate sequentiall y-enter ed numbers , such a s at the beginning of an expr essi on. T he operations themsel ve s (  ,  , et c.) separ ate sub seq uent number s and sav e inte rmedi ate r esults . The las t r esult [...]

  • Página 60

    2- 1 4 RPN: The Automatic Memor y Stack Ex ercises Calculate: Solution:   Calculate: Solution:   Calculate: (10 – 5) ÷ [(17 – 12) × 4] = 0.2 500 Solution:    or [...]

  • Página 61

    RPN: The Automatic Memory Stac k 2- 1 5 4 ÷ [14 + (7 × 3) – 2 ] by s tarting w ith the inner mos t par enthe ses ( 7 × 3) and w or king o u tw a r d , j u s t as yo u wo uld w ith penc il and paper . The k e ys tr ok es w er e    . If y o u w o r k t h e p r ob l e m f r om left–to–ri ght , p r es s ?[...]

  • Página 62

    2- 1 6 RPN: The Automatic Memor y Stack Mor e E x erci ses Pr acti ce using RPN b y w orking thr ough the follo w ing pr oblems: Calculate: (14 + 12) × (18 – 12) ÷ (9 – 7) = 7 8.000 0 A Solution:   Calculate: 23 2 – (13 × 9) + 1/ 7 = 412 .14 2 9 A Solution: ?[...]

  • Página 63

    RPN: The Automatic Memory Stac k 2- 1 7 A Solution:      [...]

  • Página 64

    2- 1 8 RPN: The Automatic Memor y Stack[...]

  • Página 65

    Storing Data into V ariables 3-1 3 Storing Dat a in to V ar i a b le s The HP 3 5 s has 3 0 KB of memory , in whi ch y ou can stor e numbers , equations , and pr ogr ams. Numbers ar e st or ed in locations called var iables , each named w ith a letter fr om A thr ough Z . (Y ou can choose the letter to remind y ou of w hat is s tor ed ther e , suc [...]

  • Página 66

    3-2 Storing Data into V ariables In AL G mode, y ou can st or e an e xpr essi on into a v ar iable; in this case , the value of the expr ession is stor ed in the vari able rather than the expressi on itself . Ex ample: E ach p ink letter is assoc iat ed with a k ey and a unique v ar ia ble. (T he A. .Z annunc iator in the dis pla y confir ms this.)[...]

  • Página 67

    Storing Data into V ariables 3-3 T o recall the v alue st or ed in a v ari able , use the Recall command . T he displa y of this command differs sli ghtl y fr om RPN to AL G mode , as the follo wing e xam ple illustr ates . Example: In this e xam ple , w e r ecall the value o f 1.7 5 that we s tor ed in the v ar iable G in the last e x ample . This[...]

  • Página 68

    3-4 Storing Data into V ariables Vie w ing a V ariable The VIE W command (  ) displa y s the value of a v ar iable w ithout recalling that value t o the x -r egist er . T he displa y tak es the for m V aria ble=V alue. If the numbe r has too man y digits to f it into the displa y , use  Õ or  Ö to v ie w the missing digits. T o cancel[...]

  • Página 69

    Storing Data into V ariables 3-5 Example: In this ex ample , we stor e 3 in C, 4 in D , and 5 in E. T hen w e vi e w these v ar iables vi a the V AR Catalog and clear them as well . This e x ample uses RPN mode . Note the  and  annunc iators indicating that the Ø and × ke y s ar e acti v e to help y ou scr oll through the catalog; ho w e ve[...]

  • Página 70

    3-6 Storing Data into V ariables T o leave the V AR catalog at any time , press e ither  or  . An alternate me t ho d to cl e a ri ng a va ria bl e i s s i mp ly t o s t ore t he va l ue zero i n i t. Fin a ll y , yo u c a n clear all dir ect var iable s by pr essing   (  ). If all direct var ia bles ha ve the value z [...]

  • Página 71

    Storing Data into V ariables 3-7 Recall Arithmetic Recall ar ithmeti c uses  ,  ,  , or  to do arithmeti c in the X–regis ter using a r ecalled number and to leav e the r esult in the dis play . Only the X–r egiste r is affec ted . T he value in the v ar iable r emains the same and the resu lt r eplaces the value in the [...]

  • Página 72

    3-8 Storing Data into V ariables Ex ample: Suppose the variables D , E , and F contain the values 1, 2 , and 3 . Use stor age arithmeti c to add 1 to each of th ose v ar iables . Suppose the variables D , E , and F contain the values 2 , 3, and 4 from the las t ex ample . Div ide 3 by D , multipl y it by E , and add F to the r esult . Ex changing x[...]

  • Página 73

    Storing Data into V ariables 3-9 Example: The V a riables "I" and "J" Ther e ar e two v ar iables that y ou can acc ess dir ectl y: the var iables I and J. A lthough they stor e v alues as other var i ables do , I and J ar e spec ial in that the y can be us ed to r ef er to other v a r iable s, inc luding the st atistical r egis[...]

  • Página 74

    3-10 Storing Data into V ariables[...]

  • Página 75

    Rea l–Nu mb er Fu nc tio ns 4- 1 4 Real–Number F u nctions This c hapter co ver s most o f the calculat or's functi ons that perfo rm computati ons on real n umbers, inc luding some n umeri c functi ons used in pr ograms (such as AB S , the absolu te–value functi on). These f uncti ons ar e addr ess ed in gro ups , as f ollo ws :  Exp[...]

  • Página 76

    4- 2 Real–Number Functions Quotient and Remainder of Div ision Y ou can use  (   )and  (  ) to pr oduce the integer qu otient and int eger r emainder , r espec tiv ely , fr om the di v isio n of two integer s. 1. K ey in the fir st intege r . 2. Pr es s  to separ ate the f irs t number fr om the [...]

  • Página 77

    Rea l–Nu mb er Fu nc tio ns 4- 3 In RPN mode, to calc ulate a r oot x of a number y (the x th root of y ), k e y i n y  x , then pr ess  . F or y < 0, x must be an integer . T rigonometry Entering π Pr es s   to place the f irst 12 di gits of π into the X–r egist er . (The number display ed depends on the display for mat .) [...]

  • Página 78

    4- 4 Real–Number Functions Setting th e Angular Mode The angular mode spec ifies w hic h unit of measur e to assume f or angles u sed in trigonometric functions. The mode does not convert numbers alread y present (see "Con v ersi on F uncti ons" later in this c hapter ). 3 60 degr ees = 2 π radians = 400 grads T o set an angular mode ,[...]

  • Página 79

    Rea l–Nu mb er Fu nc tio ns 4- 5 Example: Sho w that cosine (5/7) π r adians and cosine 128. 5 7° are equal (to four significant digits). Progra mming Note: E quati ons using in verse tr igonometr ic f uncti ons to det ermine an angle θ , often look something lik e this: θ = arc tan ( y / x ). If x = 0, then y / x is undefined , r esulting in[...]

  • Página 80

    4- 6 Real–Number Functions Hy perbolic Functions With x in the display : Pe r c e n t a g e F u n c t i o n s The pe r centage f uncti ons ar e speci al (compar ed w ith  and  ) becaus e they pres erve the value of the b ase number (in the Y– r egister) when the y r eturn the result of the per centage calculati on (in the X–r egiste r )[...]

  • Página 81

    Rea l–Nu mb er Fu nc tio ns 4- 7 Suppos e that the $15.7 6 item cost $16.12 last y ear . What is the percentage change fr om last year's pri ce to this year's ? Ke ys: Display: Descriptio n:  8  (  )  Rounds dis play to tw o decimal places .     Calculates 6% tax[...]

  • Página 82

    4- 8 Real–Number Functions Ph y sics Constants Ther e ar e 41 ph y sics const ants in the CONS T menu. Y ou can pre ss   to v ie w the follo w ing items . CONST Menu Items Desc ription V alue  Speed of li ght in va c uum 29 979 24 58 m s –1  Standar d acceler ati on of gr av it y 9. 8 0 6 6 5 m s –2  Newtonian constant of gr[...]

  • Página 83

    Rea l–Nu mb er Fu nc tio ns 4- 9 T o insert a consta nt: 1. P osition y our cursor w her e y ou w ant the const ant inserted. 2. Pre ss   to displa y the ph ys ics cons tants men u . 3. Pre ss ÕÖ×Ø (or , yo u can pre ss   to acces s the next page , one page at a time) to sc roll thr ough the men u until the const ant y ou want [...]

  • Página 84

    4- 10 R eal–Number Functions Conv ersion F unctions The HP 3 5s support s four types of conv ersions . Y ou can convert between:  re ctangular and polar formats f or comple x numbers  degr ees , ra dians , and gr adie nts f or angle measur es  dec imal and hex agesimal f or mats fo r time (and degree angles)  var ious supported units [...]

  • Página 85

    Rea l–Nu mb er Fu nc tio ns 4- 1 1 T o conv ert between rectangular and polar coordinates: The fo rmat fo r repr esen ting complex number s is a mode setting. Y ou may ente r a complex number in an y for mat; upon entry , th e complex number is con verted to the for mat determined b y the mode setting . Here ar e the steps r equired to set a comp[...]

  • Página 86

    4- 12 R eal–Number Functions Ex ample: Conv ersion w i th V e ctors. Engineer P .C. Bor d has dete rmined that in the R C c i r c uit sho w n , the tot al impedance is 77 .8 ohms and voltage lags curr ent by 3 6.5º. What are the values of resistance R and capaciti v e r eactance X C in the c ir c uit ? Use a v ec tor diagr am as sho wn, w ith im[...]

  • Página 87

    Rea l–Nu mb er Fu nc tio ns 4- 1 3 Time Con versions The HP 3 5s can con v ert between dec imal and hex a gesimal f ormats f or numbers . This is es peci all y use ful f or time and angles measur ed in degrees . F or e x ample , in deci mal for mat an angle measured in degr ees is e xpr ess ed as D .ddd…, while in hex agesimal the same angle is[...]

  • Página 88

    4- 14 R eal–Number Functions T o c onv ert an angl e between degrees and radians: Ex ample In this ex ample, w e con vert an angle measur e of 30 ° to π /6 r adians . Unit Conv ersions The HP 3 5s has ten unit–conv er sion f uncti ons on the k e yboar d:  kg,  lb,  ºC,  ºF ,  cm,  in ,  l,  gal,  MILE ,  KM K e[...]

  • Página 89

    Rea l–Nu mb er Fu nc tio ns 4- 1 5 Probability F unc tions Fac to ria l T o calculate the factorial of a displa ye d non-negativ e integer x (0 ≤ x ≤ 2 5 3) , pre ss  * (the r ight–shifted  key) . Gamma T o calculate the gamma f unction o f a noninteger x , Γ ( x ), k e y in ( x – 1) and press  * . The x ! f uncti on calcu lates[...]

  • Página 90

    4- 16 R eal–Number Functions The RANDOM f uncti on uses a seed t o generat e a random n umber . E ach r andom number gener ated becomes the seed f or the ne xt r andom number . Theref or e , a sequence of r a ndom number s can be repeat ed by s tarting with the same seed . Y ou can stor e a new seed w ith the SEED functi on . If memory is clear e[...]

  • Página 91

    Rea l–Nu mb er Fu nc tio ns 4- 1 7 Pa r t s o f N u m b e r s These f uncti ons ar e pr imaril y us ed in progr amming. Integer part T o remo v e the fr ac tional part of x and r eplace it with z er os , pres s  (  ) . (F or e x ample , the integer part of 14.2 300 is 14.0000.) Fr actional part T o remo v e the integer part of x[...]

  • Página 92

    4- 18 R eal–Number Functions Greatest integer T o obtain the greatest int eger equal to or less than gi v en number , pr ess  (  ). Ex ample: This e x ample summar i z es many of the oper ations that e xtr act parts of numbers. The RND f uncti on (   ) r ounds x internall y to the n umber of digits spec ifi ed by the[...]

  • Página 93

    Frac ti ons 5-1 5 Frac ti on s In Ch apter 1, the section Fr actio ns intr oduced the basic s of enter i ng , display ing, and calculating w ith frac tions . T his cha pter giv es mor e info rmati on on these topi cs . Here is a sho rt re v ie w of ent eri ng and display ing frac tions:  T o enter a fr action, pr ess  tw ice: once after the i[...]

  • Página 94

    5-2 Frac ti ons If y ou didn't get the same r esults as the ex ample , y ou may ha v e acc identall y change d ho w fr acti ons ar e displa y ed . (See "C hanging the F r acti on Displa y" late r in this chapter .) The ne xt topic inc ludes mor e ex amples of v alid and inv alid input fr actions . Frac t i on s i n t he D is pl ay In[...]

  • Página 95

    Frac ti ons 5-3 Accuracy Indicators The acc ur acy of a displa y ed fr ac tion is indi cated b y the  and  annunc iators at the ri ght of the dis play . The calcu lator compar es the value of the fr actional part of the intern al 12–digit n umber w ith the va lue of the displa y ed fr ac tion:  If no indicator is lit , the fracti onal pa[...]

  • Página 96

    5-4 Frac ti ons This is espec ially important if y ou c hange the r ules abo ut ho w f rac ti ons are display ed . (See "C hanging the F r actio n Display" later .) Fo r ex ample , if y ou f or ce all fr acti ons to ha v e 5 as the den ominator , then 2 / 3 is display ed as    because the ex act fr acti on is appro ximately[...]

  • Página 97

    Frac ti ons 5-5  T o set the maximum denominator value , enter the value and t hen pres s  . F r actio n-display mode w ill be auto maticall y enabled . T he value y ou ent er canno t e x ceed 4 09 5 .  T o recall the /c value to the X–register , pr ess  .  T o rest or e the def ault v alue to 40 9 5, pres s  or e[...]

  • Página 98

    5-6 Frac ti ons 2 . In AL G mode, y ou can use the r esult of a calculati on as the ar gument f or the /c functi on . With the v alue in line 2 , simply pres s  . The v alue in line 2 is display ed in F r action f ormat and the integer part is used to determine the max imum denominator . 3 . Y ou may not u se e ither a comple x number or a v [...]

  • Página 99

    Frac ti ons 5-7 Y ou can c hange flag s 8 and 9 to set the f r acti on fo rmat u sing the steps lis ted her e . (Because f lags ar e es pec iall y usef ul in pr ogr ams, the ir use is co v er ed in detail in chapter 14.) 1. Pre ss  to get th e flag menu . 2. T o set a flag, pr ess  (  ) and type the flag number , such as 8. T o cl[...]

  • Página 100

    5-8 Frac ti ons Ex amples of Fr action Display s The f ollo wing table sh o ws h o w the number 2 .7 7 is displa y ed in the thr ee fr acti on form at s f or t wo /c val u es. The fo llow ing table show s ho w differ ent numbers ar e display ed in the three fr action fo rmats f or a /c val ue of 16. R ounding Fr actions If F r acti on–display mod[...]

  • Página 101

    Frac ti ons 5-9 Example: Suppos e y ou ha ve a 5 6 3 / 4 –inch space that y ou w ant to di v ide int o si x equal sections. Ho w w ide is each section , assuming you can conv eniently measur e 1 / 16 – inch incr ements ? What's the cum ulati v e r oundo ff err or ? Fr actions in Equations Y ou can use a fr acti on in an equation . When an [...]

  • Página 102

    5-10 Frac ti ons Fr actions in Progr ams Y ou can u se a fr acti on in a pr ogr am ju st as yo u can in an equation; n umer ical values ar e show n in their en ter ed fo rm . When y ou'r e running a pr ogr am , display ed v alues ar e sho wn using F r actio n– display mode if it's acti v e . If yo u're pr ompted for v alues by INP [...]

  • Página 103

    Entering and E valuating Equations 6- 1 6 Entering and E valuating Equations How Y ou Can Use Equations Y ou can us e equati ons on the HP 3 5s in s ev eral wa y s:  F or spec ifyi ng an equation to e valuat e (this chapt er).  F or spec ifying an equati on to sol v e fo r unkno wn v alues (c hapter 7).  F or spec ifying a f uncti on to in[...]

  • Página 104

    6- 2 Entering and Ev aluating Equations By co mpar ing the chec ksum and length of y our equation w ith tho se in the e x ample , yo u can verify that you'v e entered the equation properl y . (See "V er ifying E quations" at the end of this chapter fo r mor e infor mation .) Ev aluate the equati on ( to calc ulate V ): K ey s: Displa[...]

  • Página 105

    Entering and E valuating Equations 6- 3 Summary of Equation Operations All equat ions y ou c r eate ar e sa v ed in the equati on list . This list is v isible whenev er y ou acti v ate E quatio n mode. Y ou use certain k e ys to perform operati ons in vol v ing equations . The y'r e desc ribed in more detail later . When display ing equations [...]

  • Página 106

    6- 4 Entering and Ev aluating Equations Entering Equations into the Equation List The equati on list is a collection of equations you enter . The list is sav ed in the calculat or's memory . E ach eq uatio n yo u ente r is automati call y sa ved in the eq uation list . T o enter an equation: Y o u ca n m ake a n eq u at i on a s l o n g a s yo[...]

  • Página 107

    Entering and E valuating Equations 6- 5 Numbers in Equations Y ou can enter an y v alid number in an eq uation , including bas e 2 , 8 and 16 , real , comple x, and f r actio nal numbers . Numbers ar e al w ay s sho w n using ALL displa y for mat , whi ch displa y s up to 12 c harac ters . T o enter a number in an equation , y ou can use the standa[...]

  • Página 108

    6- 6 Entering and Ev aluating Equations P arentheses in Equations Y ou can inc lude par enthese s in equations to contr ol the or der in whi ch oper ations are perf ormed . Pres s 4 to insert pare ntheses . (F or more infor matio n, s ee "Operator Pr eced ence" later in this chapter .) Ex ample: Entering an Equation. Enter the eq uation r[...]

  • Página 109

    Entering and E valuating Equations 6- 7 T o displ ay equa tions: 1. Pre ss  . This ac ti vate s E quati on mode and tur ns on the EQN annunc iator . The dis pla y sho w s an entry fr om the eq uation list:     if the equation po inte r is at the top of the list .  The c urr ent equation (the last equation you [...]

  • Página 110

    6- 8 Entering and Ev aluating Equations Editing and Cl earing Equations Y ou can edit or c lear an equatio n that y ou're ty ping . Y ou can also edit or clear equations sa v ed in the equation lis t . Ho we ver , y ou cannot edit or c lear the two built- in equations 2*2 lin . so lv e and 3*3 lin . sol v e . If y ou attemp t to insert a equat[...]

  • Página 111

    Entering and E valuating Equations 6- 9 T o clear a saved equati on: Scr oll the equation list up or dow n until the desi r ed equation is in line 2 of the displa y , and then pr es s  . T o clear all saved equations: In EQN mode , press  . S elect  (  ). T h e     menu is displayed . Select Ö (Y) ?[...]

  • Página 112

    6- 10 Enter ing and Evaluating Equations  Expre ssions. The equati on does not contain an "=". F or ex ample, x 3 + 1 is an exp res si on. When you' re calcula tin g w ith an equati on, y ou might use an y type of eq uatio n — although the type can aff ect ho w it's evaluated . Whe n yo u'r e sol v ing a pr oblem fo r [...]

  • Página 113

    Entering and E valuating Equations 6- 11 T o e valuate an equation: 1. Display the desired equation. (See "Displaying and Selecting Equations" above .) 2. Pre ss  or  . T he equation pr ompts for a v alue fo r each v ar ia ble needed. (If the base of a number i n the equation is different fr om the cur r ent base , the calc ulator a[...]

  • Página 114

    6- 12 Enter ing and Evaluating Equations  If the equati on is an assi gnment , only the r igh t–hand side is e v aluated . T he re sult is r etur ned to the X–reg ister and st or ed in the left–hand va ri able , then the var iable is v iew ed in the displa y . Essen tiall y ,  f inds the v alue of the left–hand var ia ble .  If the[...]

  • Página 115

    Entering and E valuating Equations 6- 13 Example: Ev aluating an Equation w ith XEQ. Use the r esults fro m the pr ev ious e xam ple to f ind out ho w mu ch the v olume o f the pipe changes if the diameter is c hanged to 3 5 . 5 millimeters. The v alue o f the eq uation is the old v olume (fr om V) minu s the new v olume (calc ulated using the ne w[...]

  • Página 116

    6- 14 Enter ing and Evaluating Equations  T o c hange t he number , type the new n umber and pr ess  . T his ne w number writes o v er the old value in the X–register . Y ou ca n enter a number as a fr acti on if y ou w ant . If y ou need to calc ulate a number , us e normal k ey boar d calc ulations , then pre ss  . F or e xam ple , y o[...]

  • Página 117

    Entering and E valuating Equations 6- 15 So , f or e x ample , all operat ions insi de par ent hese s ar e perf orme d bef ore oper ations outside the par entheses . Examples: Order O peration Ex ampl e 1 P arentheses  2F u n c t i o n s  3P o w e r (  )  4 Unary Minus (  )  5 Multipl y an[...]

  • Página 118

    6- 16 Enter ing and Evaluating Equations Equation Functions The f ollo wing table lis ts the func tions that ar e v alid in eq uation s. Appe ndi x G , "Oper ation Inde x" also giv es this inf or mation . F or con v enience , pr ef i x–type f unctio ns, w hic h r equir e one o r two ar guments , displa y a left parenthe sis when y ou en[...]

  • Página 119

    Entering and E valuating Equations 6- 17       E ight o f the equati on func tions ha v e names that diff er fr om their equi vale nt operati ons: Example: P erimeter of a T r apez oid. The f ollo w ing equati on calc ulates the per imeter of a tr apez oid . T his is ho w the equa[...]

  • Página 120

    6- 18 Enter ing and Evaluating Equations Th e ne xt equation als o obe y s the s ynt ax rules . T his equati on use s the inv er se functi on ,  , instead of the fractional fo rm ,    . Notice that the SIN f uncti on is "nested" insi de the INV functi on . (INV is typed b y  .) ?[...]

  • Página 121

    Entering and E valuating Equations 6- 19 Y ou can ent er the equatio n into the equati on list using the f ollo wing k ey strok es:   Õ  S y ntax Err ors The calculator doesn't c heck the s y ntax of an equation until you e v aluate the equation . If [...]

  • Página 122

    6- 20 Enter ing and Evaluating Equations K ey s: Display: Description:  ( ×  as required)  π  Display s the desir ed equati on .   (hold)   Displa y equati on's c hec ksum and length. (release)  π  Re displa ys the e[...]

  • Página 123

    Solving Equations 7- 1 7 Solv ing Equations In chapt er 6 y ou sa w ho w y ou can us e  to f ind the value o f the left–hand variab le in a n assignment –type equati on . W ell, y ou can use S OL VE to find the v alue of any vari ab le in any type of equati on . For exa m p l e, c o n s id e r t h e e qu a t io n x 2 – 3 y = 10 If y ou kno[...]

  • Página 124

    7- 2 Solving Equations 2. Pr es s  then pre ss the ke y for the unkno wn v ari able . F or ex ample , press  X to solv e f or x. The equatio n then pr ompts for a v alue f or ev ery other v ar iable in the equati on . 3. F or each pr ompt, enter the desired v alue:  If the displa yed v alue is the one y ou want , pre ss  .  If [...]

  • Página 125

    Solving Equations 7- 3 g (accelerati on due to gr av ity) is included as a var i able so y ou can c hange it f or differ ent units (9 .8 m/s 2 o r 32. 2 f t / s 2 ). Calc ulate ho w man y meters an obj ect falls in 5 seconds , starting fr om r est . Since E quation mode is tur ned on and the desir ed equati on is alr eady in the displa y , y ou can[...]

  • Página 126

    7- 4 Solving Equations Ex ample: Sol ving the Ideal Gas L aw Equati on. The Ideal Gas L aw de sc ri bes the r elatio nship betwee n pr essur e, v olume , tempe ratu r e , and the amount (mole s) of an ide al gas: P × V = N × R × T whe re P is pr essur e (in atmospher es or N/m 2 ), V is v olume (in liter s) , N is the number of moles of gas , R [...]

  • Página 127

    Solving Equations 7- 5 A 2–liter bottle contains 0.00 5 moles of car bon dio xide gas at 2 4°C. Assuming that the gas beha v es as an i deal gas, calc ulate its pres sur e . Since E quati on mode is turned on and the desir ed eq uation is alr e ady in t he d ispl ay , you ca n sta rt solving for P : A 5–liter fla sk contains nitr ogen gas. The[...]

  • Página 128

    7- 6 Solving Equations Solv ing built-in Equation The bu ilt-in equations ar e: “2*2 lin. sol v e ” ( Ax+B y=C, Dx+E y=F ) and “3*3 lin . Sol v e ”(Ax+B y+Cz=D , Ex+Fy+Gz=H , Ix+Jy+Kz=L). If you se lect one of the m, the  ,  and  k e y w ill hav e no eff ect . Pr essing the  will re quest 6 var ia bles (A to F) f or the 2*2 c[...]

  • Página 129

    Solving Equations 7- 7 Understanding and Contr olling SOL VE S OL VE f irst atte mpts to so lv e the eq uation dir ectly f or the unkno wn var iable. If the attempt f ails, S O L VE c hanges to an it er ati ve (r epetitiv e) pr ocedur e . Th e procedu r e starts b y ev aluating the eq uation using tw o initial gue sse s for the unkno w n var iable.[...]

  • Página 130

    7- 8 Solving Equations  The Y–r egister (press  ) contains the pr evi ous e stimate f or the r o ot or eq uals to z er o . This nu mber should be the same as the value in the X–regist er . If it is not , then the r oot r etur ned wa s only an appro x imation , and the value s in the X– and Y–registers brac ket the r oot . These br ack[...]

  • Página 131

    Solving Equations 7- 9 These sour ces ar e used for guesses w hether you enter guesses or not . If y ou enter only one guess and st ore it in the v ar iable , the second guess w ill be the same value since the displa y also holds the number y ou just s tor ed in the vari able . (If suc h is the case, th e cal culator changes one g uess sl ightly so[...]

  • Página 132

    7- 1 0 Solving Equations Ex ample: Using Guesses to Find a Root . Using a r ectangular pi ece of sheet metal 40 cm b y 80 cm , f orm an open–top bo x hav ing a v olume o f 7 5 00 cm 3 . Y ou need to f ind the height o f the box (that is , the amount to be f olded up along eac h of the f our sides) that gi ves the spec if ied vo lume . A taller bo[...]

  • Página 133

    Solving Equations 7- 1 1 It seems reasonable that either a ta ll , narro w b o x or a short, flat box could be for med hav ing the desired v olume . Becaus e the taller bo x is pr ef err ed , lar ger initial estimate s of the hei ght ar e r easonable . Ho w e ve r , hei ghts gr eater than 20 cm ar e not ph y sicall y pos sible becaus e the metal sh[...]

  • Página 134

    7- 1 2 Solving Equations The dimensi ons of the desir ed box ar e 5 0 × 10 × 15 cm . If yo u ignor ed the upper limit on the heigh t (20 cm) and used initial es timates of 30 and 4 0 cm, y ou would obta in a h eight of 4 2 .0 2 56 cm — a root th at is phy sical ly mean ing less. If you used small initial estimates suc h as 0 and 10 cm, y ou wou[...]

  • Página 135

    Integrating Equations 8-1 8 Integr ating Equations Many pr oblems in mathematic s, sc ience, and engineer ing r equir e calc ulating the def inite integr al of a f uncti on. If the f uncti on is denoted b y f(x) and the interval of integrati on is a to b , then the int egr al can be expr es sed mathematicall y as The q uantity I can be in ter pr et[...]

  • Página 136

    8-2 Integrating Equations Integrating Equations ( ∫ FN) T o integrate an equation: 1. If the equation that de fi nes the integr and's fu nctio n isn't stor ed in the equati on list, k ey it in (see "Enter ing E quati ons into the E quati on L ist" in c hapter 6) and leav e E quation mode . The equati on usually contains j ust [...]

  • Página 137

    Integrating Equations 8-3 Example: Bes sel Fu nction . The Bessel functi on of the first kind of order 0 can be expr essed as F ind the Bess el functi on fo r x– val ues o f 2 a nd 3 . Enter the e xpr ession that de fi nes the integ rand's f uncti on: cos ( x sin t ) No w integr ate this f unctio n w ith r espec t to t fr om zer o to π ; x [...]

  • Página 138

    8-4 Integrating Equations No w calc ulate J 0 (3) w ith the same limits of integr ati on . Y ou must r e-specify the limits of i nte gration (0 , π ) since they w ere pushed o ff the stac k b y the sub sequent di visio n by π . Ex ample: Sine Integral. Certain pr oblems in comm unications theory (f or ex ample , pulse transmis sion thr ough ideal[...]

  • Página 139

    Integrating Equations 8-5 Enter the e xpr ession that de fine s the integ rand's f uncti on: If the calculator attempted to ev aluate this func tion at x = 0, the lo w er limit o f integr atio n, an e rr or (    ) would r esult. Ho w ev er , the integrati on algor ithm normall y does no t ev aluate func tions at e it[...]

  • Página 140

    8-6 Integrating Equations Accuracy of Integr ation Since the calc ulator cannot com pute the v alue of an integ ral e xactly , it appro ximates it. T he acc ur acy of t his appr o x imation depends on the acc ur acy o f the integrand's f uncti on itself , as calc ulated b y y our equation . T his is affected b y r ound– off err or in the cal[...]

  • Página 141

    Integrating Equations 8-7 Example: Specifying Accuracy . With the displa y f ormat s et to S CI 2 , calculate the int egr al in the e xpre ssi on fo r Si(2) (f rom t he p revio us exa mp l e) . The integr al is 1.61±0.0161. Since the uncertainty wo uld not affec t the appro ximation until its thir d dec imal place , y ou can consider all the displ[...]

  • Página 142

    8-8 Integrating Equations This unce rtainty indicates that the r esult might be corr ec t to onl y thr ee dec imal places. In r ealit y , this r esult is acc ur ate to seven dec imal places when com par ed w ith the actual v alue of this integr al . Since the uncertaint y of a r esult is calc ulated conservati ve ly , the calculato r's appr o [...]

  • Página 143

    Operations with Complex Numbers 9-1 9 Operations w ith Comple x Numbers The HP 3 5s can use complex numbers in the form     It has oper ations f or comple x ar ithmetic (+, –, × , ÷ ), complex tr igonometry (sin, cos, tan), an d the mathematic s func tions – z , 1/ z , , ln z , and e z . (wher e z 1 and z 2 are complex[...]

  • Página 144

    9-2 Operat ions with Comple x Numbers Th e C o m p l ex St a c k A complex number occ upie s part 1 and part 2 of a stack lev el. In RPN mode , the complex number occ up y ing part 1 and part 2 of the X-register is displa yed in line 2 , wh ile the comple x number occup ying part 1 and part 2 of the Y - r egiste r is display ed in line 1. Complex O[...]

  • Página 145

    Operations with Complex Numbers 9-3 Functions for One Complex Number , z T o do an arithmetic operation w ith two complex numbers: 1. Enter the f irs t comple x number , z 1 as descr ibed befor e . 2. Enter the second complex number z 2 as descr ibed bef or e. 3. Select the ar ithmetic oper ation: Arithmetic With T wo Complex Numbers, z 1 and z 2 T[...]

  • Página 146

    9-4 Operat ions with Comple x Numbers Ex amples: Her e are so me e xam ples of tr igono metry and arithmetic w ith comple x number s: Ev aluate sin (2i3) Evalu ate t he exp ression z 1 ÷ (z 2 + z 3 ), whe re z 1 = 23 i 13, z 2 = –2i1 z 3 = 4 i – 3 P erform the calc ulation as Eval ua te (4 i –2/5)  (3 i –2/3) . K ey s : Display: Descrip[...]

  • Página 147

    Operations with Complex Numbers 9-5 Evalu ate , wher e z = (1 i 1). Using Comple x Numbers in P olar Notation Many appli cations us e r eal numbers in polar for m or polar notation . T hese fo rms use pair s of number s, as do com plex number s, so y ou can do arithmetic w ith these numbers b y using the comple x operations. Example: V ec tor Addit[...]

  • Página 148

    9-6 Operat ions with Comple x Numbers Y ou can do a complex operation w ith numbers who se complex for ms are differ ent; ho w ev er , the result f orm is depe ndent on the se tting in 8 menu . K ey s : Display: Des cription: 9  (  ) Sets Degr ees mode .  8  (   ) Sets com ple x mode  ?  ?[...]

  • Página 149

    Operations with Complex Numbers 9-7 Evalu ate 1 i1 +3 θ 10+5 θ 30 Comple x Numbers in Equations Y ou can type comple x number s in equations . When an eq uation is displa y ed , all numer i c for ms ar e sho wn as the y w er e ent er ed , lik e x iy , or r θ a When y ou e valuate an equation and ar e pr ompted for v ari able value s, y ou may en[...]

  • Página 150

    9-8 Operat ions with Comple x Numbers Complex Number in Pr ogr am In a progr a m, y ou c an type a complex number . F or e xample , 1i2+3 θ 10+5 θ 30 in pr ogram is: When y ou are r unning a progr am and ar e prompted f or values b y INPU T instru ctions , y ou can ente r comple x number s. T he value s and for mat of the r esult are contr olled [...]

  • Página 151

    V ector Arithmetic 10 -1 10 V ec tor Arithmetic F r om a mathematical po int of v ie w , a vector is an ar r ay of 2 or mor e elements arr anged into a r ow or a column . Ph ysi cal vec tors that ha v e two or thr ee compo nents and can be used to r epr esent ph ysi cal quantiti es such a s positi on , veloc it y , accelerati on , for ces, moments,[...]

  • Página 152

    10 -2 V ec tor Arithmetic Calc ulate [1. 5,- 2 .2]+[ -1. 5,2 .2] Calc ulate [-3 .4, 4 . 5]-[2 .3,1.4] Multiplication and div isions b y a scalar: 1. Enter a vecto r 2 . Enter a scalar 3. Pre s s  for m ultiplicati on or  for divi sio n K ey s: Display: Description: 9  (  ) S w itches to RPN mode(if necessary)  3 [...]

  • Página 153

    V ector Arithmetic 10 -3 Calc ulate [3, 4]x5 Calc ulate [- 2 ,4]÷2 Absolute va lue of the vector The abs olute v alue functi on “ ABS” , when applied to a v ector , produces the magnitude of the v ecto r . F or a v ector A=( A1, A2 , …An) , the magnitude is defined as = . 1. Pre ss  2. E n t e r a v e c t o r 3. P res s  F or e x am[...]

  • Página 154

    10 -4 V ec tor Arithmetic Dot pr oduct F uncti on DO T is used to calc ulate the dot pr oduc t of tw o vec tors w ith the same length . Attempting to calculat e the dot pr oduc t of tw o vec tor s of diff er ent length cause s an err or mess age “   ”. F or 2 -D vecto rs: [ A, B], [C, D], dot pr oduct is defined[...]

  • Página 155

    V ector Arithmetic 10 -5 Angle bet w een vectors The angle between two v ect ors, A and B , can be found as  θ  = ACOS(A  B/ ) F ind the angle between tw o v ector s: A=[1, 0],B=[0,1] F ind the angle between tw o v ector s: A=[3,4],B=[0,5]   Presses  f or dot produc t ,and the dot pr oduc t of tw o vec to rs [...]

  • Página 156

    10 -6 V ec tor Arithmetic V ec tors in Equations V ectors can be us ed in equati ons and in equation v a r iable s ex actly lik e r eal numbers . A vec tor can be enter ed w hen pr ompted f or a va ri able . E quations con taining v ector s can be sol ved , ho wev er the s olv er has limited ability if the unkno w n is a vec tor . E quati ons conta[...]

  • Página 157

    V ector Arithmetic 10 -7 V ectors in Progr ams V ectors can be used in pr ogr am in the same w ay as r eal and comple x n umbers F or e x ample , [5, 6] +2 x [7 , 8] x [ 9 , 10] in a progr am is: A vec tor can be enter ed when pro mpted f or a va lue for a v a r iable . Progr ams that contain v ector s can be used f or solv ing and integr ating . P[...]

  • Página 158

    10 -8 V ec tor Arithmetic Creating V ec tors from V ariables or Registers It is possible to c r eate v ector s containing the con tents of memory v ari ables , stac k re gisters, o r values fr om the indirect r egisters , in run or pr ogr am modes. In AL G mo de , begin enter ing the vec tor b y pre ssing  3 . RPN mode wor ks similarly to AL G m[...]

  • Página 159

    Base Conversions and Ar ithmetic and Logic 11-1 11 Base Conv ersions and Arithm etic and Log ic The B A SE menu (   ) allo ws y ou to enter numbers and for ce the display of numbers in dec imal , binary , octal and hex adec imal base . The LOGIC menu (  > ) pro v ides acce ss to logic f uncti ons. BAS E M e n u Menu label D es cr ip ti [...]

  • Página 160

    11-2 Base Conversions and Ar ithmetic and Logic Ex amples: Converting the Base of a Number . The f ollo w ing k e y str okes do v ar ious bas e con ve rsi ons. Conver t 1 25 .99 10 to hex adec imal, octal , and binary numbers. Note: When no n dec imal bases ar e us e , only the integer part of numbers ar e us ed fo r displa y . T he fr actional par[...]

  • Página 161

    Base Conversions and Ar ithmetic and Logic 11-3 yo u c a n us e  menu to enter base-n sign b/o/d/h follo w ing the operand t o repr esent 2/8/10/16 base number in any base mode. A number w ithout a base sign is a dec imal number Note: In AL G mode: 1. The r e sult’s base mode is deter mined by the c urr ent base mode setting . 2 . If there is [...]

  • Página 162

    11-4 Base Conversions and Ar ithmetic and Logic LO G I C M e n u The “ AND” , “OR” , “X OR” , “NO T ” , “NAND” , “NOR” can be used as logic functions . Fr action , complex , vector ar guments will be seen as an "   " in logic f uncti on . Arithmetic in Bases 2, 8, and 16 Y ou can pe[...]

  • Página 163

    Base Conversions and Ar ithmetic and Logic 11-5  The r esult of an oper ati on is alw a ys an integer (an y fr actio nal portion is truncated). Wher eas co n ve rsio ns change o nly the dis play o f the number but not the ac tual number in the X–r egist er , arithmeti c does alter the n umber in the X–r egister . If the re sult of an oper at[...]

  • Página 164

    11-6 Base Conversions and Ar ithmetic and Logic The Repr esentation of Numbers Although the displa y of a number is conv erted when the base is changed, its stor ed fo rm is not modif ied , so decimal nu mbers ar e not truncated — until the y ar e used in arithmeti c calc ulations . When a num ber app ears in h exadecima l, oct al, or bina ry bas[...]

  • Página 165

    Base Conversions and Ar ithmetic and Logic 11-7 Range of Numbers The 3 6-bit binar y number si z e determines the r ange of numbers that can be repr esented in hex adec imal (9 digits) , octal (12 di gits), and binary bas es (3 6 digits), and the range of dec imal number s (11 digits) that can be con v erted to thes e other bases. Range of Numbers [...]

  • Página 166

    11-8 Base Conversions and Ar ithmetic and Logic In BIN/OCT/HEX, If a number ent er ed in decimal ba se is outside the r ange gi ve n abov e , then it produces the message   . A n y operati on using   cause s an o v erflo w conditio n, w hi ch su bstitu tes the lar ges t positi v e or negati ve number possible f o[...]

  • Página 167

    Statistical Operations 12-1 12 Statistical Operations The s tatisti cs men us in the HP 3 5s pro v ide f uncti ons to s tatisti call y analyz e a set of one– or two–v ar iable data (real n umbers):  Mean, sample and population s tandard de v iations .  Linear r egr ession and linear estimation ( and ).  W eighted mean ( x weig h te d b[...]

  • Página 168

    12 -2 Statistical Operations En teri ng On e– V ariab l e D ata 1. Pr es s  (  )to clear ex isting statistical dat a. 2. Key i n e a c h x –value and pres s  . 3. The display sho w s n , the number o f statistical data v alues no w accumulated . Pre ssing  actually enters two var iables into the statistics registers because th[...]

  • Página 169

    Statistical Operations 12-3 T o corr ect statistical data: 1. Reenter the incorr ect data, but instead of pr essing  , pr ess   . T his deletes the value(s) and dec r ements n . 2. Enter the cor r ect v alue(s) using  . If the incorr ect values w ere the ones j us t ent er ed, pr ess   to r etr ie v e them, then pre ss   to [...]

  • Página 170

    12 -4 Statistical Operations Statistical Calculations Once y ou hav e enter e d y our data , y ou can use the func tions in the statisti cs men us. Statistics M enus Mea n Mean is the arithmetic a ver age of a group of numbers .  Pre ss  ( ) for the mean of the x –values .  Pre ss  Õ ( ) fo r the mean of the y –v alues .  [...]

  • Página 171

    Statistical Operations 12-5 Example: Mean (One V ariable) . Pr oducti on supe rvis or Ma y K itt wants t o deter mine the a ve r age time that a certain pr oces s tak es . She ra ndomly p ic ks si x people , obse rves eac h one as he o r she carr ie s out the pr ocess , and r ecor ds the time r equir ed (in minut es): Calc ulate the me an of the ti[...]

  • Página 172

    12 -6 Statistical Operations Sample Standard De v iation Sample s tandar d dev i ation is a measur e of how dis persed the data v alues ar e about the mean sample s tandar d de vi ation a ssumes the data is a sampling of a larger , complete set of data , and is calc ulated using n – 1 as a di visor .  Pre ss  (  ) for the s tandar [...]

  • Página 173

    Statistical Operations 12-7 P opulation Standar d Dev iation P opulation standard de vi ation is a measur e of ho w dispersed the data v alues are about the mean. P opulation st andard de v iation a ssumes the data constitutes the complete set of data, and is calc ulated using n as a div isor .  Pr es s   ÕÕ ( σ  ) f or the populatio[...]

  • Página 174

    12 -8 Statistical Operations L.R. (Linear Regr ession) Menu  T o find an estimat ed value f or x (or y ), ke y in a gi v en h y pothe tical v alue f or y (or x ), t hen pr ess  () ( o r  Õ () .  T o find the values that defi ne the line that best f its y our data , pr ess   follo wed b y  ,  , or  . Ex ample: Cu[...]

  • Página 175

    Statistical Operations 12-9           Enters data; displ ay s n .     F iv e data pairs entered.   ÕÕ (  )     Display s li[...]

  • Página 176

    12 -10 Statistical Operations What if 7 0 kg of nitr ogen fertiliz er w er e applied to the r ice f ield ? Pr edict the gr ain y ield based on the a bov e s tatisti cs. Limitations on Pr ec ision of Data Since the calculat or uses f inite pr ecision , it f ollo w s that ther e ar e limitations to calc ulatio ns due to r ounding . Her e ar e tw o e [...]

  • Página 177

    Statistical Operations 12-11 Summation V alues and the Statistics Registers The statistics register s are si x unique loca tions in memor y that store the acc umulatio n of the si x summation v alues . Summation Statistics Pr essi ng   gi ve s y ou acces s to the conte nts of the s tatisti cs r egis ters:  (  ) to r ecall the number of [...]

  • Página 178

    12 -12 Statistical Operations Access to the Statistic s Registers The s tatistic s r egister a ssignme nts in the HP 3 5s are sho w n in the fo llow ing table. Summation r e gister s should be r ef err ed to by names and not b y numbers in expr essi on, equations and progr ams. Statistics Registers ×        V[...]

  • Página 179

    Statistical Operations 12-13 Y ou can load a statistics r egister w ith a summation b y sto ring the number (- 2 7 thr ough -3 2) of the r egister y ou want in I or J and then stor ing the summati on ( val ue  7 or A ). Similarl y , y ou can pre ss   7 or A (or   7 or A ) to vi ew (or r ecall)a r egiste r value — the displa y is la[...]

  • Página 180

    12 -14 Statistical Operations[...]

  • Página 181

    Pa r t 2 Pr ogr amming[...]

  • Página 182

    [...]

  • Página 183

    Simple Progr amming 13-1 13 Simple Progr amming P art 1 of this manual intr oduced you to func tions and oper atio ns that y ou can use manually , that i s, b y pr essing a k e y fo r each indiv i dual operation . And y ou sa w ho w y ou can us e equati ons to r epeat calc ulati ons w ithout do ing all o f the k ey strok es each time . In part 2 , [...]

  • Página 184

    13-2 Simple Programming This v ery si mple progr am assumes that the value for the radius is in the X– register (the display) w hen the pr ogr am starts to run . It comput es the ar ea and lea ves it in the X–reg ister . In RPN mode, t o enter this pr ogr am into pr ogr am memory , do the follo w ing: T r y running this pr ogram to f ind the ar[...]

  • Página 185

    Simple Progr amming 13-3 T r y running this pr ogr am to find the ar ea of a c ir c le w ith a radiu s of 5: W e will con tinue u sing the abo ve pr ogram fo r the ar ea of a c ir c le to illu str ate pr ogr amming concepts and methods. Designing a Progr am The f ollo w ing topi cs sho w what instruc tions y ou can put in a pr ogram. W hat y ou put[...]

  • Página 186

    13-4 Simple Programming Progr am Boundaries (LBL and R TN) If y ou wan t mor e than one progr am stored in pr ogr am memory , then a progr am needs a label to mark its beginning (suc h as    ) and a ret u rn to ma rk it s end (such as   ). Notice that the line n umbers acquir e an  to match the ir lab[...]

  • Página 187

    Simple Progr amming 13-5  Using RPN operati ons ( whi ch w ork with the stac k, as e xplained in c hapter 2).  Using AL G operations (as e xplained in appendi x C) .  Using equations (a s e xplained in chapter 6). The pr ev iou s ex ample used a ser ies of RPN oper atio ns to calculate the area of the c ir cle . Instead , y ou could ha ve [...]

  • Página 188

    13-6 Simple Programming F or outpu t , y ou can displa y a var ia ble w ith the VIEW instr ucti on, y ou can display a message der i v ed fr om an eq uation , y ou can displa y proces s in line 1, you can display the pr ogram r esult in line 2 , or you can lea v e unmark ed v alues on the stac k . The se ar e cov er ed later in this c hapt e r unde[...]

  • Página 189

    Simple Progr amming 13-7 5. End the progr am with a ret u rn instru ctio n, w hic h sets the progr am po inter bac k to   after the progr am runs . Pr ess  . 6. Pre ss  (or  ) to cancel progr am entry . Numbers in progr am lines are stor ed pr ecisel y as you enter ed them, and they'r e displa y ed using ALL[...]

  • Página 190

    13-8 Simple Programming           No w , er ase line A00 2 , and line A004 changes to “ A003 G T O A002” Function Names in Progr ams The name o f a functi on that is used in a pr ogr am line is not nec es sar ily the same as the func tion's n[...]

  • Página 191

    Simple Progr amming 13-9 A different c hecksum means th e progr am was not enter ed ex actl y as given her e. Example: Enter ing a Progr am with an Equation . The f ollo w ing pr ogr am calc ulates the ar ea of a c ircle u sing an equation , r ather than using RPN operati ons lik e the pr ev i ous pr ogr am .  Cancels pr ogr am entry ( PRGM a[...]

  • Página 192

    13-10 Simple Programming Running a Pr ogr am To r u n o r execu te a progr am , pr ogr am entry cannot be acti ve (no pr ogr am–line numbers display ed; PRGM off). Pre ssing  w ill cancel Progr am–entr y mode. Ex ecuting a Program (XEQ) Pre ss  label to ex ecute the pr ogram labeled w ith that let ter : T o ex ec ute a pr ogr am fr om it?[...]

  • Página 193

    Simple Progr amming 13-11 T esting a Program If you kno w there is an err or in a progr am, but are not sur e wher e the error is , then a good wa y to tes t the pr ogram is b y step w ise e x ec ution . It is also a good idea to test a lo ng or complicated pr ogram bef or e r el y ing on it . By s tepping thr ough its ex ecution , one line at a ti[...]

  • Página 194

    13-12 Simple Programming Entering and Displa y ing Data The c al cul a to r' s va ria bl es ar e used to s tor e data input , intermediat e r esults, and final r esults . (V ariables, as e xplained in chapter 3, ar e identif ied b y a letter fr om A thr ough Z , but the v ar iable names ha ve noth ing to do w ith pr ogr am labels .) In a pr og[...]

  • Página 195

    Simple Progr amming 13-13 Using INPUT f or Entering Data The INPUT instruction (   V ari able ) stops a ru nning progr am and displa ys a pr ompt for the gi v en va ri able . This dis pla y includes the e xisting v alue f or the var ia ble , suc h as   whe re "R" is the var iable's name, " ? " [...]

  • Página 196

    13-14 Simple Programming 2. In the beginning of the pr ogr am , insert an INP UT instr ucti on fo r each v ar iable whose v alue you w ill need. Later in the progr am, w hen you w r ite the par t of the calc ulation that needs a gi v en v alue , insert a  var iable instr uc ti on to br ing that value bac k into the s tac k. Sin ce t he I NPUT in[...]

  • Página 197

    Simple Progr amming 13-15  T o cancel the INPUT prompt, pr ess  . T he curr ent value for the var iable remains in the X–register . I f y ou press  to r esume the progr am , the canceled INPUT pr ompt is repeated . If y ou pr es s  during di git entry , it clear s the number to z ero . Pres s  again to cancel the INPUT pr ompt . Us[...]

  • Página 198

    13-16 Simple Programming Using Equations to Displa y Messag es E quations ar en't c heck ed for valid s yntax until the y'r e ev aluated . T his means yo u can enter almost any sequ en ce of ch ara cte rs in to a p rog ram as a n e qu at io n — you enter it just as you enter an y equation . On an y pr ogram line , pre ss  to start th[...]

  • Página 199

    Simple Progr amming 13-17 Keys : (In RPN mode) Display: Description:     R    H   π  Calc ulates the v olume .     Chec ksum and length of equation .  V    Stor e the v olume in V .    R  4 [...]

  • Página 200

    13-18 Simple Programming No w find the volume and surf ace ar ea–o f a cy linder w ith a r adius o f 2 1 / 2 cm and a height o f 8 cm. Display ing Inf ormation w ithout Stopp ing Normally , a program stop s when it displa y s a var iable w ith VIEW or display s an equation mes sage . Y ou nor mally ha v e to pr ess  t o r esume e xec ution . I[...]

  • Página 201

    Simple Progr amming 13-19 Stopping or Inter rupting a Pr ogr am Progr amming a St op or P ause (ST OP , PSE)  Pr essi ng  ( run / stop ) during pr ogram entry ins erts a S T OP ins truc ti on . T his w ill display the con tents o f the X-r egister and halt a r unning pr ogr am until y ou r esume it b y pr es sing  fr om the k e y boar d. Y[...]

  • Página 202

    13-20 Simple Programming Editing a Progr am Y ou can modify a pr ogr am in pr ogram memo ry by inserting, deleting , and editing progr am lines. If a pr ogr am line contains an equation , y ou can edit the equati on . T o d elete a progr am line: 1. Selec t the re le vant pr ogram or r outine and pres s Ø or × to locate th e pr ogr am line that m[...]

  • Página 203

    Simple Progr amming 13-21 3. Mo vi ng the c urso r”_” and pr ess  r epeatedly to delete the unw anted number or func tion , then r etype the r est of the pr ogr am line . (A fter pr essing  , Undo func tion is acti ve)  Notice: 1. When the c urso r is acti ve in the pr ogr am line , Ø or × ke y w ill be disabled. 2. When y ou are edi[...]

  • Página 204

    13-2 2 Simple Programming  Pre ss   to mo ve the pr ogram po inter to   .  Pre ss   label nnn to mo v e to a spec ifi c line. If Progr am–entr y mode is not acti v e (if no pr ogr am lines ar e display ed), you can also mov e the pr ogr am pointer b y pressing  label line number . Canceling Pr ogram–[...]

  • Página 205

    Simple Progr amming 13-23    wher e 6 7 is the number of by tes us ed b y the pr ogr am. C le arin g O n e or M ore P rogra ms T o clear a specific program fr om memory 1. Pre ss   (2  )  and displa y (using Ø and × ) the label o f the pr ogram . 2. Pre ss  . 3. Pre ss  to cancel the catalog o[...]

  • Página 206

    13-2 4 Simple Programming F or e x ample , to see the c hecksum f or the c urr ent pr ogram (the "cylinder" pr o gr am): If y our ch ecks um does not matc h this number , then y ou hav e not entered this progr am correc tly . Y ou w i ll see that all of the a pplicati on pr ograms pro vided in c hapter s 16 and 17 include c hec ksum va lu[...]

  • Página 207

    Simple Progr amming 13-25 This allo w s y ou to wr ite pr ograms that accept numbers in an y of the f our bases , do arithmetic in an y base , and display r esults in an y base . When w riting pr ograms that use n umbers in a base other than 10, set the base mode both as the c urr en t setting for the calc ulator and in the progr am (as an instruct[...]

  • Página 208

    13-2 6 Simple Programming P ol ynomial Expr essions and Horner's M ethod Some e xpr e ssions , suc h as pol yno mials , use the same var i able se v er al times f or their soluti on. F or ex ample , the expre ssion Ax 4 + Bx 3 + Cx 2 + Dx + E use s the var ia ble x f our differ ent times . A pr ogr am to calc ulate such an e xpr essi on using [...]

  • Página 209

    Simple Progr amming 13-2 7 No w ev aluate this po ly nomi al for x = 7 . Keys : (In RPN mode) Display: Description:         A      X       5  X           x 4  ?[...]

  • Página 210

    13-28 Simple Programming A more gener al form of this pr ogr am fo r any equati on Ax 4 + Bx 3 + Cx 2 + Dx + E wo ul d be :                     ?[...]

  • Página 211

    Progr amming T ec hniques 14 -1 14 Pr ogr amming T ec hniques Chapter 13 co v er ed the basic s of pr ogr amming. T his cha pter e xplor es mor e soph istic ated but u seful te chniqu es:  Using subr outines to sim plify progr ams b y separ ating and labeling portions of the pr ogr am that ar e dedi cated to partic ular tasks. T he use o f subr [...]

  • Página 212

    14 -2 Pr ogramming T echniques  If y ou plan to hav e only one pr ogr am in the calc ulator memory , yo u can separate the r outine in vari ous labels . If y ou plan to ha v e mor e than one pr ogram in the calc ulator memory , it is better to hav e r outines part of the main pr ogram label , st arting at a specif ic line number .  A subrou t[...]

  • Página 213

    Progr amming T ec hniques 14 -3 MAIN progr am (T op leve l) End of pr ogr am Attempting to ex ec ute a su br outine ne sted mor e than 20 le v els deep cau ses an   error . Example: A Nested Subroutine . The f ollo w ing subr outine , labeled S, calc ulates the v alue of the ex pre ssi on as part of a larger calc ul[...]

  • Página 214

    14 -4 Pr ogramming T echniques In RPN mode, Branching (G T O) As we hav e seen w ith subroutines, it is often desirable to transfer e x ecuti on to a par t of the pr ogram other than the ne xt li ne . This is called br anching . Unconditi onal br anching u ses the G T O ( go to ) instr ucti on to br anch t o a spec if ic progr am line (label and li[...]

  • Página 215

    Progr amming T ec hniques 14 -5 A Progr ammed G T O Instruction The GT O label  instruction (pr ess  label line n umber ) transfer s the exec uti on of a running pr ogr am to the spec i f ied pr ogr am line . The pr ogram continues r unning fr om the ne w locati on , and nev er automatically retur ns to its point of origination, so G T O is n[...]

  • Página 216

    14 -6 Pr ogramming T echniques  To   :   .  T o a specif ic line number :  label line n umber ( line number < 1000). F or ex ample ,  A  . F or ex ample , pres s  A   . T he displa y w ill sho w ”   ” .  If y ou w ant to go to the f irs t line of a l[...]

  • Página 217

    Progr amming T ec hniques 14 -7  Comparison tes ts. These compar e the X–and Y–r egisters, or the X–register and z er o .  F lag tests . The se c heck the s tatus o f flags , whi ch can be e ither set or c lear .  Loop counte rs . The se ar e usuall y used to loop a s pec ifi ed number of times. T ests of Comparison (x ? y, x ? 0) Th[...]

  • Página 218

    14 -8 Pr ogramming T echniques Ex ample: The "N ormal and Inv erse–Normal Distr ibuti ons" pr ogr am in chapt er 16 uses the x < y ? conditio nal in r outine T : Line T00 9 calculates the correcti on for X gue ss . L ine T013 compar es the a bsolut e value of the calc ulated cor rec tion w ith 0 . 0001. If the value is les s than 0.0[...]

  • Página 219

    Progr amming T ec hniques 14 -9 Flags A flag is an indicator of status . It is either set ( tru e ) or clear ( false ). T estin g a fl ag is another conditional te st that f ollo ws the "Do if true" r ule: pr ogr am ex ec ution pr oceeds direc tly if the test ed flag is set , an d skips one line if the flag is clear . Mea ni n gs of F la [...]

  • Página 220

    14-10 Programming T ec hniques Fla g Stat us Fr action–Contr ol Fl ags 789 Clear (Defa ult) Fra c t io n d i s p l a y off ; di spl ay rea l number s in the cur r ent display form at. F r actio n denominator s not greater than t he /c val u e. Reduce fr ac tions to sma ll est form. Set Fra c t i o n di sp l a y on; display r eal numb ers as fract[...]

  • Página 221

    Progr amming T ec hniques 14-11  Flag 1 0 contro ls pr ogr am e xec ution of equati ons: When flag 10 is c lear (the defa ult state), equations in running pr ogr ams ar e ev aluated and the result put on the stac k. When flag 10 is s et , equatio ns in running pr ogr ams ar e displa ye d as messages, cau sing them to behave lik e a VIEW statemen[...]

  • Página 222

    14-12 Programming T ec hniques Annunciators for Set F lags F lags 0, 1, 2 , 3 and 4 have annunc iators in the display that turn on w hen the corr esponding flag is set . The pr esence or absence of 0 , 1 , 2 , 3 or 4 lets y ou kn o w at an y time whether an y of these fi v e flags is s et or not . Ho w e ver , there is no suc h indicati on fo r the[...]

  • Página 223

    Progr amming T ec hniques 14-13 It is good pr ac tice in a pr ogr am to mak e sure that any conditi ons y ou w ill be t esting start out in a know n stat e . Cur r ent flag settings depend on ho w the y hav e been left by ear lier pr o gr ams that ha ve been r un. Y ou should not assume that an y gi ven f lag is clear , fo r instance , and that it [...]

  • Página 224

    14-14 Programming T ec hniques If y ou r eplace lines S00 2 and S003 b y SF0 and SF1, then f lags 0 and 1 ar e set s o lines S006 and S010 tak e the natur al logar ithms of the X- and Y -inputs . Use abo ve progr am to see ho w to use flags Y ou can try other three case s. R emember to pr ess   (  )  and   (  [...]

  • Página 225

    Progr amming T ec hniques 14-15 Progr am Lines: (In RPN mode) Desc ription:    Begins the fr acti on pr ogr am .    Clears thr ee f r actio n flags .          Displays mess ages.   Selects dec imal bas e.  [...]

  • Página 226

    14-16 Programming T ec hniques Use the a bov e program t o see the diff er ent f orms o f fr acti on display : Loops Branc hing back war ds — that is , to a label in a pr ev ious line — makes it pos sible to ex ec ute part of a pr ogr am mor e than once . This is called looping .       ?[...]

  • Página 227

    Progr amming T ec hniques 14-17 This r outine is an e x ample of an inf inite loop . It can be used t o collect the initial data. After entering the three v alues, it is up to you to manually interr upt this loop b y pr essing  label line number to e x ec ute other r outines. Conditional Loops (G T O) When y ou w ant to perfor m an oper ation un[...]

  • Página 228

    14-18 Programming T ec hniques Loops w ith Counters (D SE, IS G) When y ou want to ex ec ute a loop a spec if ic number of times , use the   ( incr ement ; skip if gr eater than ) or   ( decr ement ; skip if le ss than or equal to ) conditional f uncti on k ey s. Eac h time a loop functi on is e x ecut ed in a progr am , it automatical [...]

  • Página 229

    Progr amming T ec hniques 14-19  ii is the interval f or inc r ementing and dec r ement ing (must be two di gits or unspecif ied). This value does not change. An unspec ified v alue for ii is assumed to be 01 (incr ement/dec re ment by 1). Gi v en the loop–contr ol nu mber ccccccc . fff ii, DSE dec rements ccccccc to ccccccc — ii , compar es[...]

  • Página 230

    14-20 Programming T ec hniques                 Pre ss  L  , then press   Z to s ee that the loop–contr ol number is no w 11. 0100. Indirectly Addr essing V ariables and Labels Indirec[...]

  • Página 231

    Progr amming T ec hniques 14-21 The Indir ect Address, (I) and (J) Many func tions that use A thr ough Z (as var ia bles or labels) can u se (I) or (J) to r ef er to A through Z (var iables or labels) or statistics re gisters indir ec tl y . The functi on (I) or (J) uses the v alue in va ri able I to J to determine w hic h var iable , label, or reg[...]

  • Página 232

    14 -2 2 Pr ogramming T echniques The INP U T ( I ) ,INP UT (J) and VIEW ( I ) ,VIEW (J) o per ations label the display with the name of the indir ectl y–addre ssed v ar iable or r egister . The S UMS menu ena bles y ou to r ecall v alues f r om the statis tic s regis ter s. Ho w e v er , y ou must u se indir ect addr essing to do other operati on[...]

  • Página 233

    Progr amming T ec hniques 14 -23 Y ou can not sol v e or integr ate f or unnamed var iables or statisti c r egister s. Progr am Contr ol with (I)/(J) Since the conten ts of I can c hange each time a pr ogram runs — or e v en in differ ent parts of the same progr am — a pr ogr am instr uctio n such as S T O (I) or (J) can stor e value to a diffe[...]

  • Página 234

    14 -2 4 Progr amming T ec hniques Note: 1. If y ou want to r ecall the value f r om an undefined s tor age addres s, the err or message “   ”w ill be sho w n ” . (See A014) 2 . The calc ulator allocates memory for var i able 0 to the last non- z ero v ar iable . It is important to stor e 0 in v ari ables after us[...]

  • Página 235

    Solv ing and Integrating Pr ograms 15-1 15 Solv ing and Integrating Pr ograms Solv ing a Pr ogr am In chapter 7 yo u saw ho w y ou can enter an eq uation — it's added to the eq uation list — and then solve it for an y var iable . Y ou can also enter a pr ogram that calculates a f uncti on, and then sol ve it for an y variable . This is esp[...]

  • Página 236

    15-2 Solv ing and Integrating Pr ograms 1. Begin the pr ogr am w ith a label . T his label i dentif ies the f uncti on that y ou want SOL VE to ev aluate (  label ). 2. Include an INP UT instruc tion f or eac h var ia ble , including the unkno wn. INP UT instruc tions ena ble y ou to sol v e fo r an y var iable in a m ulti–var i able fun[...]

  • Página 237

    Solv ing and Integrating Pr ograms 15-3 T o begin, put the calculato r in Progr am mode; if necessary , positio n the pr ogram pointe r to the top of pr o gr am memory . T ype in the pr ogr am: Pr es s  to cancel Progr am–entr y mode . Use pr ogra m "G" to solv e fo r the pre ssur e of 0. 00 5 moles of car bon dio x ide in a 2–lite[...]

  • Página 238

    15-4 Solv ing and Integrating Pr ograms Ex ample: Program Using Equation . W rite a pr ogram that us es an equation to so lv e the "Ideal Gas Law ." No w calculate the change in pre ssure of the carbon dio x ide if its temp er ature dr ops by 10 °C fr om the prev ious ex ample .   val ue Sto res .0 05 i n N ; prompts[...]

  • Página 239

    Solv ing and Integrating Pr ograms 15-5 Keys : (In RPN mode) Display: Description:  L  Stores previous press ure.   H  Selects progr am “H. ”  P   Selects variable P ; prompts f or V .    Ret ai ns 2 i n V ; pr ompts f or N .   ?[...]

  • Página 240

    15-6 Solv ing and Integrating Pr ograms Using SOL VE in a Progr am Y ou can use the S OL VE oper ation as part of a progr a m . If appr opr iate , include or pr ompt for initial gue sse s (into the unkn o wn v a r iab le and into the X–register) bef or e e xec uting the SOL VE var iable instr ucti on. T he tw o instruc tions f or sol ving an eq u[...]

  • Página 241

    Solv ing and Integrating Pr ograms 15-7 Integrating a Pr ogram In chapter 8 you sa w how y ou can enter an equation (or expr ession) — it's added to the list of equ ations — and then integr ate it with r espect to an y var iable . Y ou can also en ter a pr ogram that calc ulates a f uncti on , and then int egr ate it w ith r esp ect to an [...]

  • Página 242

    15-8 Solv ing and Integrating Pr ograms 2. Select the pr ogram that def ines the f unction to integr ate: pr ess   label . (Y ou can skip this step if yo u'r e re integr ating the same progr am.) 3. Enter the limits of integr ation: k ey in the lo w er limit and pr ess  , then k ey in the up per l imi t . 4. Select the v ar ia ble of [...]

  • Página 243

    Solv ing and Integrating Pr ograms 15-9  A functi on pr ogr ammed as an equati on is usuall y included as an expr ession spec ifying the int egrand — though it can be an y type of equation . If you w ant the eq uation t o pr ompt f or v ar iable v alues ins tead of including INP UT instruc tions , make sur e flag 11 is set. 4. End the pr ogr a[...]

  • Página 244

    15-10 Solv ing and Integrating Pr ograms Using Integration in a Pr ogr am Integr ation can be e x ec uted fr om a progr am. R emember to inc lude or pr ompt f or the limits of integr ati on bef or e e x ec uting the integr atio n, and r emember that accurac y and ex ecution time ar e contro lled by the displa y f or mat at the time the pr ogr am ru[...]

  • Página 245

    Solv ing and Integrating Pr ograms 15-11 Restr ictions on Solving and Integr ating The SOL VE vari able and ∫ FN d vari ab le instructi ons cannot call a r outine that contains another S OL VE or ∫ FN instructi on. T hat is , neither of these ins tructi ons can be used r e c ursi v el y . F or e x ample , attempting to calc ulate a multiple int[...]

  • Página 246

    15-12 Solv ing and Integrating Pr ograms[...]

  • Página 247

    Statistics Progr ams 16 -1 16 Statistic s Progr ams Cur ve F it ting This program can be used to fit one of four models of equations to y our data. These models are the s tr aight line , the logarithmic c urve , the e xponential c ur ve and the po wer c ur ve . T he pr ogram accepts tw o or more ( x , y ) data pairs and then calculates the corr ela[...]

  • Página 248

    16 -2 Statistics Progr ams T o fit logarithmi c c urves, v a lues of x m ust be positi ve. T o fit e xponential c urves , val u es of y must be po siti ve . T o fit po w er c urves, bo th x and y must be positi ve . A  err or w ill occur if a negati ve n umber is enter ed for thes e cases . Data value s of lar ge magnitude b[...]

  • Página 249

    Statistics Progr ams 16 -3 Progra m Listing: Progr am Lines: (In RPN mode) Description    This r outine s ets, the s tatus f or the str aigh t–line model .    Clears f lag 0, the indicator f or ln X .    Clears f lag 1, the indicator f or In Y .    [...]

  • Página 250

    16 -4 Statistics Progr ams    If flag 0 is set . . .   . . . take s the natur al log of the X–input .    Stor es that v alue f or the corr ection r ou tine.    Prompts f or and stor es Y .    If flag 1 is set . . .  [...]

  • Página 251

    Statistics Progr ams 16 -5    Display s, pr ompts for , and, if changed , stor es x –v alue in X .   If flag 0 is set . . .    Branc hes to K001    Branc hes to M001    Sto res – val ue in Y . [...]

  • Página 252

    16 -6 Statistics Progr ams Chec ksum and length: 88 9C 18    This subr outine calc ulates for the logar ithmic model .              Cal culates = e ( Y – B ) ÷ M   Retur ns to the calling r outine . Chec ks[...]

  • Página 253

    Statistics Progr ams 16 -7                Calculates = ( Y / B ) 1/M   Goes to O 005 Checksum and length: 8 5 2 4 21    Determines if D001 or B001 should be run  ?[...]

  • Página 254

    16 -8 Statistics Progr ams Flags Used: F lag 0 is set if a natur al log is r equired of the X inp u t. Fla g 1 i s s et i f a n a t ura l l og i s req u ire d of th e Y input . If flag 1 is set in r outine N, then I001 is exec uted. If flag 1 is c lear , G001 is execu te d. Progr am instructions: 1. K ey in the pr ogram r outines; press  w hen d[...]

  • Página 255

    Statistics Progr ams 16 -9 13 . F or a new case , go to step 2 . V ari ables Used: Example 1: F it a str aigh t line to the data belo w . Make an inten tional er r or w hen k e y ing in the third data pair and corr ect it w ith the undo r outine . Also , es timate y for a n x va lu e of 3 7 . E stimate x for a y value of 101. B Regr ession coeff ic[...]

  • Página 256

    16-10 Statistic s Progr ams No w intenti onall y enter 3 7 9 instead of 3 7 .9 so that you can s ee ho w to cor r ect incorr ect entries .     Enter s y –valu e of data pair .    Enter s x –valu e of data pair .    Enter s [...]

  • Página 257

    Statistics Progr ams 16 -11 Example 2: Repeat e x ample 1 (using the same data ) for logar ithmic , exponential , and po w er c urve f its. T h e table be lo w gi v es y ou the starting e x ec ution label and t he r esults (the corr elation and r egre ssion coeff ic i ents and the x – and y – estimates) f or eac h type of curve . Y ou w ill nee[...]

  • Página 258

    16-12 Statistic s Progr ams This progr am uses the bui lt–in integ r ation feature of the HP 3 5s to integrate the equation o f the normal fr equency curv e . The in v ers e is obtained using Ne wton's method to ite r ati ve ly s ear ch f or a v alue of x w hi ch y ields the giv en pr o babi lity Q(x) . x y "Upper tai l" a r e a x [...]

  • Página 259

    Statistics Progr ams 16 -13 Progra m Listing: Progr am Lines: (In RPN mode) Description    This r outine initiali ze s the normal distr ibuti on pr ogr am.   Stores defau lt val ue for m ean.       Prompts f or and stor es mean , M .   Stores[...]

  • Página 260

    16-14 Statistic s Progr ams    Adds the corr ecti on to y ield a new X gues s .       T es ts to see if the co rr ecti on is signif ic ant .    Goes back to start of loop if corr ecti on is signif icant . Co ntin ue[...]

  • Página 261

    Statistics Progr ams 16 -15 Flags Used: None . Remark s: The acc ur acy of this pr ogr am is dependent on the dis play s etting. F or inputs in the ar ea between ±3 standar d de v iatio ns, a displa y of f our or mor e signif icant f igur es is adequate for mos t applications . At full pr ec ision , the input limit becomes ±5 st andard de vi atio[...]

  • Página 262

    16-16 Statistic s Progr ams 4. After the p rompt for S , k e y in the population st andard de v iation and pr es s  . (If the standar d dev iati on is 1, ju st pr ess  .) 5. To c a l cu l a t e X give n Q ( X ), skip to step 9 of these instructions. 6. To c a l cu l a t e Q ( X ) giv en X ,  D  . 7. After the pr om pt , k e y in the val[...]

  • Página 263

    Statistics Progr ams 16 -17 Since your f r iend has been kno wn to ex agger ate f ro m time to time , yo u dec ide to se e how ra re a " 2 σ " date might be . Note that the pr ogr am may be r erun simply by pr essing  . Example 2: The mean of a set of test scores is 5 5 . The standar d dev iation is 15 . 3 . Assuming that the standar [...]

  • Página 264

    16-18 Statistic s Progr ams Th us , w e wo uld e xpect that o nly a bout 1 per cen t of the stude nts w ould do better than scor e 90. Grouped Standar d Deviation The s tandar d de v iati on of gr ouped data , S xy , is the standar d de v iati on o f data points x 1 , x 2 , ... , x n , occur r ing at positi v e integer fr equenci es f 1 , f 2 , ...[...]

  • Página 265

    Statistics Progr ams 16 -19 This pr ogr am allo ws y ou to input data , co rr ect entries, and calc ulate the standar d dev iati on and we ighted mean of the grouped data . Progra m Listing: Progr am Lines: (In AL G mode) Description    Start grouped standar d dev iati on progr am.   Clears st atistic s [...]

  • Página 266

    16-20 Statistic s Progr ams   Updates in register -30.       Increments (or decr ements) N .               Display s cur r ent number of data pair[...]

  • Página 267

    Statistics Progr ams 16 -21 Flags Used: None . Progra m Instructions: 1. K ey in the progr am r outines; pr ess  when done . 2. Pre ss  S  to start enter ing ne w data . 3. Key i n x i –value (data po int) and pr ess  . 4. Key i n f i –v alue (fr equenc y) and press  . 5. Pre ss  after VIEWing the nu mber of po ints en ter ed [...]

  • Página 268

    16 -2 2 Statistics Progr ams Y ou err ed by ente ring 14 instead of 13 for x 3 . Undo your e rror by exec uting r outine U: G r o u p 1234 56 x i 581 3 1 5 2 2 3 7 f i 1 7 26 37 4 3 73 1 1 5 Keys : (In AL G mode) Display: Description:  S   val u e Pr ompts fo r the f irs t x i .   val u e Stores 5 in X ; p romp ts for fir st[...]

  • Página 269

    Statistics Progr ams 16-23    Displa ys the counter .    Pr ompts f or the f ifth x i .    Pr ompts f or the f ifth f i .    Displa ys the counter .    Pr ompts fo r the si xth x i . ?[...]

  • Página 270

    16 -2 4 Statistics Progr ams[...]

  • Página 271

    Miscellaneous Programs and Equations 17 -1 17 Miscellan eous Pr ogr ams and Equations Tim e V a lu e of M o n ey Gi v en an y four o f the fi v e v alues in the "T ime–V alue–of–Mone y equatio n" (TVM) , y ou can sol v e for the f ifth v alue . T his equati on is use ful in a w i de var i ety of financ ial applications such as consu[...]

  • Página 272

    17 -2 Miscellaneous Programs and Equations Equation Entry: K ey in this equation:        Remark s: The TVM equatio n r equir es that I mu st b e n o n –ze ro t o avo id a     error . If y ou'r [...]

  • Página 273

    Miscellaneous Programs and Equations 17 -3 The or der in w hic h yo u'r e pr ompted f or value s depends upon the var iable y ou're solv ing for . SOL VE instructions: 1. If y our fir st T VM calculati on is to sol ve f or inte r est r ate , I, pr es s   I . 2. Pre ss  . If neces sary , press × or Ø to s cr oll through the e[...]

  • Página 274

    17 -4 Miscellaneous Programs and Equations V ariables Used: Ex ample: Pa r t 1. Y ou ar e f inancing the pur cha se of a car w i th a 3–y ear (3 6–month) loan at 10.5% ann ual inter est compounded mon thly . The purcha se pri ce of the car is $7 ,25 0. Y our do wn pa yment is $1,5 00. N The number of com pounding periods . I The periodi c inter[...]

  • Página 275

    Miscellaneous Programs and Equations 17 -5 The ans w er is negativ e since the loan has been v ie w ed fr om the borro wer's perspec tiv e. Mone y r ecei v ed by the bor r o w er (the beginning balance) is positi v e , while mo ney pai d out is negati v e .   val ue Sto res 0 i n F ; pr o mpts f or B .  ?[...]

  • Página 276

    17 -6 Miscellaneous Programs and Equations Pa r t 2 . What inter est r ate w ould r educe the monthly pa y ment b y $10 ? Pa r t 3 . Using the calc ulated inter es t rate (6 .7 5%) , assume that y ou sell the car after 2 year s. What balance w ill you still o w e ? In other wo rds , w hat is the futur e balance in 2 years ? Note that the in ter est[...]

  • Página 277

    Miscellaneous Programs and Equations 17 -7 Prime Number Gene r ator This pr ogr am accepts an y positi v e integer gr eater than 3 . If the number is a prime number (not e venl y di v isible by integer s other than itself and 1), then the progr am r eturns the inpu t value . If the inpu t is not a pr ime number , then the progr am r etur ns the fir[...]

  • Página 278

    17 -8 Miscellaneous Programs and Equations LBL Y VIEW Pri me LBL Z P + 2 x → LBL P x P 3 D → → LBL X x = 0 ? yes no Star t no ye s Note: x is the value in the X -register .[...]

  • Página 279

    Miscellaneous Programs and Equations 17 -9 Progra m Listing: Progr am Lines: (In AL G mode) Description    This r outine displa y s prime n umber P .    Checksum and length: 2C C5 6    This r outine ad ds 2 to P .    Checksum and length: EFB2 9 [...]

  • Página 280

    17 -10 Miscellaneous Programs and Equations Fla gs Use d: None . Progr am Instructions: 1. K ey in the pr ogram r outines; press  w hen done . 2. K ey in a positi ve in teger gr eater than 3 . 3. Pr es s  P  to run pr ogram. Pr ime number , P will be displa y ed . 4. T o see the next prime n umber , pr es s  . V ariables Used: Remark s:[...]

  • Página 281

    Miscellaneous Programs and Equations 17 -11 Cros s Pr oduct in V ectors Here is an e xam ple sho w ing ho w to u se the pr ogr am f unction t o calc ulate the c r oss pr oduc t . Cr oss p r oduct: v 1 × v 2 = ( YW – ZV ) i + ( ZU – XW ) j + ( XV – YU ) k whe re v 1 = X i + Y j + Z k and v 2 = U i + V j + W k Progr am Lines: (In RPN mode) Des[...]

  • Página 282

    17 -12 Miscellaneous Programs and Equations Ex ample: Calc ulate the c ro ss pr oduct of tw o v ectors , v1=2i+5j+4k and v2=i- 2j+3k Progr am L ines: (In RPN mode) Description    Defines the beginning o f the cr o ss–pr o duct r outine.          [...]

  • Página 283

    Miscellaneous Programs and Equations 17 -13 Ke ys: Display: D escription:  R     R un R r ou tine to in put v ec tor v alue     Input v2 of x -component  z    Input v2 of y-compon ent     Input v2 of z- c o m p o n e n t  E [...]

  • Página 284

    17 -14 Miscellaneous Programs and Equations[...]

  • Página 285

    Pa r t 3 Appendix es and Ref er ence[...]

  • Página 286

    [...]

  • Página 287

    Support, Batteries, and Service A-1 A Suppor t , Batteries, and Ser v ice Calculator Suppor t Y ou can obtain answ ers to qu estions a bout using y our calc ulator fr om our Calc ulator Suppo rt Department. Our e xper ience sho w s that man y c ustomer s hav e similar questions a bout our pr oducts , so w e hav e pr o v ided the f ollo w ing sec ti[...]

  • Página 288

    A-2 Support, Batteries, and Ser vice A: Exponent of ten; that is, 2 .51 × 10 –13 . Q: The calc ulator has displa yed the mes sage   . What sh ould I do ? A: Y ou must c lear a portion of memory befor e proceeding . (See appendix B .) Q: Wh y does calculating the sine (or tangent) o f π ra dians disp lay a v ery sma[...]

  • Página 289

    Support, Batteries, and Service A-3 Changing th e Batteries The calculato r is pow er ed by two 3-volt lithium co in batteries , CR203 2 . Replace the batter ie s as soon as po ssible w hen the lo w battery annunc ia tor (  ) appears. If the battery annunciator is on , and the display dims, y ou ma y lose data. If data is l ost , the ?[...]

  • Página 290

    A-4 Support, Batteries, and Ser vice 5. Insert a new CR20 3 2 lithium battery , making sure that the positi v e sign (+) is fac ing ou twar d . 6. Remo ve and insert the other bat tery as in steps 4 thr ough 5 . Mak e sur e that the positi v e sign (+) on eac h battery is fac ing outw ar d . 7. Replace the battery c ompartment cov er . 8. Pr es s ?[...]

  • Página 291

    Support, Batteries, and Service A-5 3. Re mov e the bat ter ie s (see "Changing the Batter ies") and lightl y pr es s a coin against both batter y contacts in the calculator . Re place the batteries and turn on the calc ulator . It should display   . 4. If the calculator s till does not respond to k eys tr[...]

  • Página 292

    A-6 Support, Batteries, and Ser vice  →  →  → 9 → × → Ö → Õ →  →  →  → 6 → Ø →  →  →  →  →  →  →  →  →  → 4 →  →  →  →  →  →  →  →  →  →  →  →  →  →  →  →  →  →  → [...]

  • Página 293

    Support, Batteries, and Service A-7 Wa r ra n t y HP 3 5s Sc ie ntifi c Calc ulator ; W arr anty period: 12 months 1. HP war r ants to y ou , the end-user c us tomer , that HP hard w ar e , accessor i es and supplies w ill be f r ee fr om def ects in mater ials and w orkmanship after the date of pur cha se , for the per iod spec ified abov e . If H[...]

  • Página 294

    A-8 Support, Batteries, and Ser vice 6. HP MAKE S NO O THER EXPRE SS W A RRANTY OR CONDIT ION WHETHER WRITTEN OR ORAL. T O THE EXTENT ALL OWED B Y L OCAL LA W , ANY IMPLIED W ARRANTY OR CONDIT ION OF MER CHANT ABILITY , S A TISF A CTOR Y QUALI TY , OR FITNE SS FOR A P ART ICULAR PURPO SE IS LIMITED T O THE DURA TION OF THE EXPRE SS W ARRANTY SET FO[...]

  • Página 295

    Support, Batteries, and Service A-9 Chi na 0 10 -68002 39 7 Hong K ong 28 05- 25 63 Indonesia +6 5 6100 6 68 2 Japan +85 2 28 05- 25 63 Malay sia +6 5 6100 66 8 2 N e w Z e a l a n d 0 9 - 57 4 -270 0 Philippines +6 5 6100 66 8 2 Singapore 6100 66 8 2 South K orea 2-5 61- 2 7 00 Ta i w a n + 8 52 28 05 -256 3 Thailand +6 5 6100 66 8 2 Vi etnam +6 5[...]

  • Página 296

    A-10 Support, Batteries, and Ser vice S w itz er land (German) 01 4 3 9 5 35 8 S w itz erland (Italian) 0 2 2 5 6 7 5 308 United Kingdom 020 7 4 5 8 0161 LA Country : Telephone numbers Anguila 1-800-711- 2 884 Antigua 1-800-711- 2 8 84 Ar gentina 0 -800- 5 5 5 -5 000 Ar uba 800-8000 ♦ 800 - 711- 2 8 84 Bahamas 1-800 - 7 11- 2 8 84 Barbados 1-800-[...]

  • Página 297

    Support, Batteries, and Service A-11 Haiti 18 3 ♦ 800-711- 2 8 8 4 H o nd ur a s 80 0-0- 12 3 ♦ 8 00 - 711- 28 8 4 Jamaica 1-800 - 711 - 2 8 84 Martinica 0 -800 -99 0 -011 ♦ 8 77 - 219-86 71 M exic o 01 - 8 0 0 - 4 7 4 - 68368 ( 8 0 0 H P INVENT) Montser rat 1-8 00 - 711- 2 8 84 Netherland An tilles 001-800 -8 7 2 - 28 81 ♦ 800 - 7 11- 2 88[...]

  • Página 298

    A-12 Support, Batteries, and Ser vice Regulatory information Feder al Communications Commission Notice This eq uipment has been tested and f ound to compl y w ith the limits for a Clas s B digital de v ice , pursuant to P ar t 15 of the FCC R ules . Thes e limits are designed t o pro vide r easonable pr otection against ha rmful interfer ence in a [...]

  • Página 299

    Support, Batteries, and Service A-13 Houston , TX 77 2 6 9- 2000 or call HP at 2 81-514 -33 33 T o identify your pr o duct , r ef er to the part , seri es , or model number located on the pr oduc t . Canadian Notice This Cla ss B digital appar atus meets all requ irements of the C anadian Interference- Cau sing E quipment R egulatio ns. Av is Canad[...]

  • Página 300

    A-14 Support, Batteries, and Ser vice Japanese Notic e こ の装置は、 情報処理装置等電波障害自主規制協議会 (VCCI) の基準 に 基づ く ク ラ ス B 情報技術装置 で す 。 こ の装置は、 家庭環境 で 使用 す る こ と を 目的 と し て い ま すが、 こ の装置が ラ ジ オや テ ?[...]

  • Página 301

    User Memory and the Stack B-1 B User M emory and t he Stack This appendi x co v ers  The allocation and requirements of user memory ,  Ho w to r eset the calc ulator withou t affec ting memory ,  Ho w to clear (pu rge) all o f us er memory and re set the s y ste m def aults, and  Which o perat ions affe ct st ack li ft. Managing Calc ul[...]

  • Página 302

    B-2 User Memor y and the Stac k T o see the memor y r equirements of spec ifi c equations in th e equation list: 1. Pr es s  to ac ti vate E quation mode . (    or the left end of the c urr ent eq uation w i ll be displa y ed.) 2. If necessary , scr oll thr ough the equation list (pr e ss × or Ø ) until y ou see t[...]

  • Página 303

    User Memory and the Stack B-3 Clear in g Memory The usual w a y to clear u ser memory is to pr ess   (  ). H o w e v e r , there is als o a mor e po w erful c lear ing pr ocedur e that r esets additional inf or mation and is use ful if the k e y boar d is not f unctio ning pr operl y . If the calc ulator fails t o r espond to k ey[...]

  • Página 304

    B-4 User Memor y and the Stac k Memory may inad vertentl y be clear ed if th e calc ulator is dr opped or if po w er is int errupt ed. The Status of Stack Lift The f our s tac k r egister s ar e alw a y s pr esen t , and the stac k al w ay s has a stac k–lift stat us . Th at is to sa y , the stac k lift is al wa ys enabled or disabled re g ard i [...]

  • Página 305

    User Memory and the Stack B-5 Disabling Operations The f iv e oper ations  , / , - ,   (  ) and   (  ) disable st ack lift. A n umber ke yed in after on e of these disabling operations w r ites ov er the number cur rentl y in the X–register . The Y–, Z– and T– re gi st er s rem a in u nc ha n ge d. In add[...]

  • Página 306

    B-6 User Memor y and the Stac k The Status o f the L AST X R egister The f ollo w ing oper ations sa v e x in the LAS T X r egister in RPN mode: Notice that /c does no t affect the LAS T X registe r . The r ecall-arithmeti c sequence Xh  varia bl e stor es x in L AS Tx and Xh vari ab le  stores the r ecalle d number in L AS Tx. In AL G mode, [...]

  • Página 307

    User Memory and the Stack B-7 Accessing Stack Register Contents The values held in the four stack r egisters, X, Y , Z and T , are accessible in RPN mode in an equatio n or pr ogr am using the RE GX, RE G Y , REG Z and REG T commands. T o use t hese instructions , pres s d fir st . Then , pr essing < pr oduces a menu in the display sh ow ing the[...]

  • Página 308

    B-8 User Memor y and the Stac k[...]

  • Página 309

    AL G: Summ ary C-1 C AL G: Summar y About AL G This appendi x summar i z es some featur es uniq ue to AL G mo de , including ,  T w o argumen t arithmeti c  Exponenti al and Logar ithmic f uncti ons (  ,  ,  ,  )  T rigonomet ric functions  P arts of numbers  Re vie w ing the s tac k  Oper[...]

  • Página 310

    C-2 AL G: Summary 5. Unary Minus +/- 6. × , ÷ 7. +, – 8. = Doing T wo argument Arithmetic in AL G This dis c ussi on of ar ithmeti c using AL G re places the f ollo w ing parts that ar e aff ected by AL G mode . T w o argumen t ar ithmetic oper ations ar e affec ted b y AL G mode:  Simple arithmeti c  P ow er functions (  ,  )  P[...]

  • Página 311

    AL G: Summ ary C-3 P ow er F unctions In AL G mode, to calc ulate a numbe r y rai s ed t o a p ower x , k e y in y  x , then pr es s  . P ercentage Calculations The P ercent Function. The  key di v ides a number b y 100. Example: Suppos e that the $15.7 6 item cost $16.12 last y ear . What is the percentage change fr om last year's pr[...]

  • Página 312

    C-4 AL G: Summary P ermutations and Combinations Ex ample: Combinations of P eople. A company em plo y ing 14 women and 10 men is f orming a si x–perso n safety committee. Ho w many differ ent comb inations o f people are pos sible ? Quotient and Remainder Of Division Yo u c a n u s e  (   ÷ ) a n d  ( ?[...]

  • Página 313

    AL G: Summ ary C-5 If y ou w er e to k e y in  , the calc ulator w ould calc ulate the r esult , -10 7 .64 71. How eve r , that’s not w hat y ou w ant . T o delay the di v ision until y ou’v e subtr acted 12 f ro m 8 5, use par entheses: Y ou can omit the mult iplicati on sign ( × ) be fo r e a left par enthesis. [...]

  • Página 314

    C-6 AL G: Summary T rigonometric F unctions Assume the unit of t he angle is 9  (  ) Hy perb olic functions T o Calculate: Press: Display: Sine of x .    Co sine of x .     T angent of x .   [...]

  • Página 315

    AL G: Summ ary C-7 Pa r t s o f n u m b e r s Re v iew ing the Stack The  or    k e y pr oduces a menu in the displa y— X–, Y–, Z–, T–r egisters , to let you re view the entire conte nts of th e stack . The diff er ence betw een the  and the   k ey is the locati on of the unde rline in the dis play . Pressing the  [...]

  • Página 316

    C-8 AL G: Summary The v alue of X-, Y -, Z -, T -r egister in AL G mode is the same in RPN mode . After nor mal calc ulation , sol v ing, pr ogramming, or in tegr ating, the v alue of the f our re gisters w ill be the same as in RPN or AL G mode and ret ained w hen yo u sw itch between AL G and RPN logic modes. Integrating an Equation 1. K ey in an[...]

  • Página 317

    AL G: Summ ary C-9 T o do an oper ation with one comple x number : 1. Select the f uncti on . 2. Enter the c omplex number z . 3. Pre ss  to calculate. 4. T h e c a l c u l a t e d r e s u l t w i l l b e d i s p l a y e d i n L i n e 2 a n d t h e d i s p l a y e d f o r m w i l l be the one that y ou ha ve s et in 9 . T o do an arithmetic oper[...]

  • Página 318

    C-1 0 AL G: Summary Ex amples: Ev aluate ( 4 - 2/5 i )  (3 - 2/3 i ) Arithmetic in Bases 2, 8, and 16 Her e ar e some e xam ples of ar ithmetic in Hex adec imal, Oc tal , and Binary modes: Ex ample: 12F 16 + E9A 16 = ? K ey s: Display: Description:  8 Ë  (  ) Sets di splay form 4  6 Õ  4  6 ?[...]

  • Página 319

    AL G: Summ ary C-11 77 60 8 – 4326 8 = ? 100 8 ÷ 5 8 = ? 5A0 16 + 10011000 2 = ? Entering S tatistical T wo–V ariable Data In AL G mode, r emember to enter an ( x , y ) pair in rev erse or der ( y  x or y   x ) so that y ends u p in the Y–regis ter and X in the X–r egister . 1. Pre ss   (4 Σ ) to c lear ex isting statistica[...]

  • Página 320

    C-12 AL G: Su mmary 4. The display sho w s n the number of st atistical dat a pairs y ou hav e acc umulat ed . 5. Continue en tering x , y –pairs . n is updated w ith each en try .  If y ou w ish to delete the incorr ect values that we re j us t enter ed , pr ess z 4 . After de leting the incorr ect statisti cal data , the calc ulator w ill di[...]

  • Página 321

    AL G: Summ ary C-13 Linear Regression Linear r egr ession, or L .R . (also called linear estimatio n) , is a statistical method fo r finding a s tr aight line that be st f its a set o f x , y –dat a.  T o find an estimated v alue fo r x (or y ) , k e y in a giv en h ypothetical value f or y (or x ) ,pre ss  , then pre ss   () ( o r ?[...]

  • Página 322

    C-1 4 AL G: Summary[...]

  • Página 323

    More about Solving D-1 D Mo r e about Solv ing This appendi x pr o vi des inf ormatio n about the S OL VE operati on be y ond that giv en in chap ter 7 . How S OL VE F inds a Ro ot S OL VE f irst atte mpts to so lv e the eq uation dir ectly f or the unkno wn var iable. If the attempt f ails, S OL VE cha nges to an ite rati ve(r epetiti v e) pr oced[...]

  • Página 324

    D-2 More about Solving  If f(x) has one or more local minima or minima , each occ ur s singly between adjacent r oots o f f(x) (fig ur e d, belo w). In most situati ons, the calc ulated r oot is an accu rat e estimate of the theo r etical , infinite ly pr ec ise r oot of the equati on . An "ideal" so lution is one f or w hic h f(x) = 0[...]

  • Página 325

    More about Solving D-3 Interpr eting Results The S OL VE operatio n will pr oduce a solution under either of the follow ing conditions:  If it finds an estimate f or w hic h f(x) equals z ero . (See figur e a , belo w .)  If it finds an estimate wher e f(x) is not equal t o z er o, but the calc ulated root is a 12–digit number adjacen t to [...]

  • Página 326

    D-4 More about Solving No w , sol v e the equati on to f ind the r oot: Ex ample: An Equation with T w o Roots. F ind the two r oots of the para bolic eq uation: x 2 + x – 6 = 0. Enter the eq uation as an e xpr ession: K ey s: Display: Desc ription:  Select E quation mode .   X    X   X [...]

  • Página 327

    More about Solving D-5 Now , solv e the equatio n to find its positi ve and negativ e r oots: Certain cases r equir e spec ial consi derati on:  If the functi on's gr aph has a dis continuity that cr os ses the x –ax is, then the S OL VE oper atio n r etur ns a va lue adjacent t o the discontin uity (see fi gur e a , below). In this case [...]

  • Página 328

    D-6 More about Solving  Va l u e s o f f(x) may be appr oaching inf i nity at the location w her e the gr aph changes si gn (see f igur e b , belo w). This situatio n is called a pole . Si nce the S OL VE operation determines that there is a sign change between two neighbo ring v alues o f x , it r eturns the po ssible r oot . Ho w ev er , the v[...]

  • Página 329

    More about Solving D-7 No w , sol v e to fi nd the r oot: Note the difference between the last two estimates, as w ell as the relati vel y large val ue for f(x) . The pr o blem is that ther e is no v alue of x for w hi ch f(x) equals z er o . Ho we ver , at x = 1 . 99999999999 , t h ere i s a n e ig h bo ri n g va lu e of x that yi elds an opposite[...]

  • Página 330

    D-8 More about Solving No w , sol ve t o find the r oot . When S OL VE Cannot Find a R oot Sometimes S OL VE fails to find a r oot . T he follo wing conditions caus e the mess age    :  The sear ch terminat es near a local minimum or max imum (s ee fi gur e a , belo w).  The sear ch halts because S OL VE is working [...]

  • Página 331

    More about Solving D-9 Example: A Relati ve Minimum. Calc ulate the r oot of this parabo lic eq uation: x 2 – 6 x + 13 = 0. It has a minimum at x = 3. Enter the equation as an expr essi on: K ey s: Displa y: Description:  Selects E quation mode .  X   X   Enters the eq uatio n. f ([...]

  • Página 332

    D-10 More about Solving No w , sol ve t o find the r oot: Ex ample: An Asymptote . F ind the r oot of the eq uation Enter the eq uation as an e xpr ession .     Chec ksum and length .  Cancels E quati on mode . K ey s: Display: Desc ription:  X   _ Y our initial gu esse s for the [...]

  • Página 333

    More about Solving D-11 W atch what happens when y ou use negativ e v alues f or guesses: Example: Find the root of the equation. Enter the equation as an expr essi on:  F irs t attempt to f ind a positi v e r oot: Ke ys: Display: D escription:  X   Y our negati v e guesse s f or the r oot .  ?[...]

  • Página 334

    D-12 More about Solving No w attempt to f ind a ne gativ e root b y ent ering guess es 0 and –10. Noti ce that the fun ct ion is un defi ne d fo r va lu es of x bet w een 0 and –0. 3 since tho se v alues produce a positi ve denomina tor bu t a negati v e numer ator , causing a negativ e square root. Ex ample: A Local "Flat" Region . F[...]

  • Página 335

    More about Solving D-13 Solve for X us ing i nit ial gu esses of 1 0 –8 and –10 –8 . Rou nd – O f f E rror The limited (12–digit) pr ec isio n of the calc ulator can cause er r or s due to r ounding off , whi ch adv ers ely affect the iterati ve s olutions of S OL VE and integration . F or exam p le, has no r oots be cau se f(x) is al w a[...]

  • Página 336

    D-14 More about Solving[...]

  • Página 337

    More about Integration E-1 E More about Integr ation This appendi x pro v ides inf or mation abo ut integr ati on be y ond that gi ven in c hapte r 8. How the Integr al Is Ev aluated The algorithm used by the integration operation , ∫   , calc ulates the integr al of a func tion f(x ) by computing a w eighted a ver age of the f unctio[...]

  • Página 338

    E-2 More about Integration As explained in c hapter 8 , the uncertainty of the final appr o x imation is a number deri v ed fr om the displa y f or mat, w hic h spec if ies the uncertainty f or the functi on . At the end of eac h iter atio n, the algo rithm com par es the appr o x imati on calc ulated during that iter ati on w ith the appr o x imat[...]

  • Página 339

    More about Integration E-3 With this nu mber of sample po ints, the algo rithm w ill calc ulate the same appro ximation f or the integr al of any o f the functions sho w n . The actual integr als of the func tions sho wn with s olid blue and blac k lines are a bout the same , so the appro ximation w ill be fair ly acc ur ate if f(x) is one of these[...]

  • Página 340

    E-4 More about Integration T r y it and see what happens. Enter the func tion f(x) = x e – x . Set the displa y fo rmat to S CI 3, spec if y the low er and upper limits of integration as z er o and 10 499 , than start the integr ati on. The ans wer r etur ned by the calc ulato r is clear ly incor r ect , since the actual int egr al of f(x) = xe ?[...]

  • Página 341

    More about Integration E-5 The gr ap h is a spik e v ery cl ose to the o ri gin . Becaus e no sample point ha ppened to disco ve r the spik e, the algor ithm assumed that f(x) w as ide nticall y equ al to z er o thro ughout the interval o f integr atio n. E ven if y ou inc r eased the n umber of sample points b y calc ulating the integral in S CI 1[...]

  • Página 342

    E-6 More about Integration Note that the r api dity of var iati on in the f unctio n (or its lo w–or der der i vati v es) mu st be deter mined w ith re spect t o the w idth of the in terval of in tegr ation . W ith a gi ve n number of sample po ints , a functi on f(x) that has three f luctuatio ns can be better char acteri zed b y its samples whe[...]

  • Página 343

    More about Integration E-7 In man y cases y ou w ill be famili ar enough w ith the f unction y ou want to integr ate that y ou w ill kno w whe ther the func tion has an y quick w iggle s r elati ve to the interval of integr ati on . If y ou'r e not f amiliar w ith the f unctio n, and y ou su spect that it ma y cause pr oblems, yo u can quic kl[...]

  • Página 344

    E-8 More about Integration This is the co rr ect ans w er , but it took a very long time. T o understand w hy , compar e the gr aph of the f uncti on betw een x = 0 and x = 10 3 , w hic h looks about the s ame as that sho wn in the pr e v io us e x ample , w ith the gr aph of the func tion betw een x = 0 and x = 10: Y ou can s ee that this functi o[...]

  • Página 345

    More about Integration E-9 Because the calc ulation time depends on how soon a certain density of sample points is ac hie v ed in the r egion w her e the func tion is int er esting , the calc ulation o f the integr al of an y f unctio n w ill be pr olonged if the int erval of int egrati on inc ludes mostl y r egio ns wher e the fu nctio n is not in[...]

  • Página 346

    E-10 More about Integration[...]

  • Página 347

    Mes s ag es F-1 F Me s sa g e s The calc ulator r espo nds to certain conditions or k e y str okes b y display i ng a message . T he  s y mbol comes on to call y our attentio n to the message . F or signif icant conditi ons, the mes sage r emains until y ou c lear it . Pr essing  or  clear s the message and the pr evi ous dis p lay con ten[...]

  • Página 348

    F-2 Messag es    Indicates the "top" o f equation memory . The memo ry scheme is c ir c ular , so    is also the "equatio n" after the last equati on in equati on memory .  The calc ulator is calculating the integr al of an equation or p[...]

  • Página 349

    Mes s ag es F-3    Exponentiation er r or :  Attempted to raise 0 to the 0 th pow er or to a negativ e pow er .  Attempted t o r aise a negativ e number t o a non– intege r po w er .  Attempted to raise compl e x number (0 + i 0) to a number w ith a negati ve r eal part .     Attem[...]

  • Página 350

    F-4 Messag es    SOL VE (include EQN and P G M mode)cannot find the r oot of the equati on using the c urr ent initial guesse s (see page ). These conditions inc lude: bad guess , soluti on not fo und, po int of inte r est , left unequal to r igh t . A S OL VE operati on e x ec uted in a pr ogr am does not pr oduce this e[...]

  • Página 351

    Mes s ag es F-5 Self–T est Messages:   St a ti s ti cs e rro r:  Attempt ed to do a s tatisti cs calc ulati on w ith n = 0.  Attempted to ca lculate s x s y , , , m , r , or b with n = 1.  Attempted to calculate r , or with x –data onl y (all y –values equal to z er o) .  Attempted to c alculate , , r , [...]

  • Página 352

    F-6 Messag es[...]

  • Página 353

    Operation Index G-1 G Ope r atio n I n de x This sec tion is a quic k r ef er ence f or all func tions and operati ons and the ir for mulas , wher e appr o pr iate . T he listing is in alphabetical or der by the function's name . This name is the one used in pr ogr am lines . F or e x ample , the f unction named FI X n is ex ecuted as  8 ?[...]

  • Página 354

    G-2 Oper ation I nde x Ø Display s next entry in catal og; mov es to ne xt equation in eq uation list; mo ve s pr ogr am point er to ne xt line (during progr am entry); exec utes the c urr ent pr ogr am line (not dur ing progr am entry) . 1–2 8 6–3 13–11 13–20 Ö or Õ Mov es the cursor and does not delete any content . 1–14  Ö or ?[...]

  • Página 355

    Operation Index G-3 Σ x 2   ÕÕÕ (   ) Retur ns the sum of squar es o f x – val u es. 12–11 1 Σ xy  ÕÕÕÕÕ (   ) Retur ns the sum of pr oducts o f x –and y –value s. 12–11 1 Σ y   ÕÕ (  ) Retur ns the sum of y –values . 12–11 1 Σ y 2   ÕÕÕÕ (   ) Retur ns the sum[...]

  • Página 356

    G-4 Oper ation I nde x A thr ough Z  var i able V alue of named var iable . 6–4 1 ABS   A bsolut e value . Ret urn s . 4–17 1 AC OS   Arc cos ine . Ret urns cos –1 x. 4–4 1 AC OS H    Hy perbolic ar c cosine . Ret urns cosh –1 x . 4–6 1 9  (  ) Acti v ates Algebr aic mode . 1–9 AL OG   C[...]

  • Página 357

    Operation Index G-5 b   (  ) Indicates a b inary number 11–2 1   Displa ys the bas e–con ve rsion me nu . 11–1 BIN   (  ) Selects Binary (base 2) mode. 11–1  T urns on calculat or ; clear s x ; clear s messages and prompts; cancels menus; cancels catalog s; cancels equation entry; cancels program[...]

  • Página 358

    G-6 Oper ation I nde x CL V ARx   (  ) Clear s indir ect v ar iable s wh ose addre ss is greater than the x address to z er o . 1–4 CLS TK   (  ) Cle ars all stack le ve ls to z ero . 2–7  CM   Con v erts inches to centimeters. 4–14 1 nCr  x Comb inations of n items taken r at a time . [...]

  • Página 359

    Operation Index G-7 ENG n  8  (  ) n Selects Engineer ing dis play w ith n digits f ollo w ing the f irst di git ( n = 0 thro ugh 11). 1–2 2 @ and 2 Caus es the e xpone nt display for the number be ing displa y ed to change in multiple of 3 . 1–2 2  Separates two n umbers k ey e d in sequentially; completes equation entr y [...]

  • Página 360

    G-8 Oper ation I nde x FS ? n   (  ) n If flag n (n = 0 thr ough 11) is set , e xec utes the next pr ogr am line; if flag n is clear , skips the ne xt progr am line. 14–12  GA L   Con v erts liters to gallons . 4–14 1 GRAD 9  (  )Sets Grads angular mode. 4–4   label nnn Sets progr a m poin[...]

  • Página 361

    Operation Index G-9 INT÷  (  ÷ ) P r o d u c e s the quoti ent of a di v isio n oper ation inv ol ving tw o integers . 4–2 1 INT G  (  ) Obtains the great est int eger equal to o r less than giv en number . 4–18 1 INP UT vari able   varia b le Recalls the variab l e to the X–registe r , dis[...]

  • Página 362

    G-10 Oper ation I nde x LBL label   label La bels a pr ogr am w ith a single lette r for r efer ence b y the XEQ, G T O, or FN= operati ons . (Used onl y in progr ams.) 13–3 LN  Natur al logarithm . Ret urn s lo g e x . 4–1 1 LO G   Common logarithm . Ret urn s lo g 10 x . 4–1 1   Display s menu f or linear r egre ssio[...]

  • Página 363

    Operation Index G-11 OR  >  (  ) Log ic op era tor 11–4 1   T urns the calc ulator off . 1–1 nPr  { Pe r m u t a t i o n s of n items taken r at a time. R etur ns n ! ÷ ( n – r )!. 4–15 1   Ac tiv ate s or cancels (t oggles) Progr am–entr y mode . 13–6 PS E   Pa u s e . Halts pr ogr am e xec ution[...]

  • Página 364

    G-12 Oper ation I nde x RCL+ vari able   vari abl e Ret urn s x + vari able . 3–7 RCL– va riabl e   var iable . Ret urn s x – var iable . 3–7 RCLx va ria bl e   variab le . Ret urn s x × variab le. 3–7 RCL ÷ vari able   var iable . Ret urn s x ÷ variab le. 3–7 RMDR  (  ) Produces the[...]

  • Página 365

    Operation Index G-13 SC I n  8  (  ) n Selects Sci entifi c display w ith n dec imal plac es . ( n = 0 thr ough 11.) 1–2 2 SEED   Re starts the r andom– number sequence with the seed . 4–15 SF n   (  ) n Sets flag n ( n = 0 through 11). 14–12 SG N  (  ) Indicat es the sign of x [...]

  • Página 366

    G-14 Oper ation I nde x STOP  Ru n /stop. Begins progr am e x ec ution at the cur r ent pr ogr am line; stop s a running progr am a nd display s the X–r egister . 13–19   Display s the summati on menu . 12–4 s x   (  ) Retur ns sample standard dev iation of x –v alues: 12–6 1 s y   Õ (  ) Retur ns sample [...]

  • Página 367

    Operation Index G-15   () Given a y –value in the X–r egiste r , returns the x – estim ate based on the regr ession line: = ( y – b) ÷ m. 12–11 1 !  * F actor ial (or gamma) . Re turns ( x )( x – 1) ... (2)(1), or Γ ( x + 1) . 4–15 1 XROO T  Th e argumen t 1 r oot of ar gument 2 . 6–16 1 w  ÕÕ ( w )Returns w[...]

  • Página 368

    G-16 Oper ation I nde x x = y ?   ÕÕÕÕÕ (  ) If x = y , ex ec utes ne xt pr ogr am line; if x ≠ y , skips ne xt progr am line. 14–7   Display s the " x ? 0" c ompar ison tests menu . 14–7 x ≠ 0 ?   ( ≠ ) If x ≠ 0, exe cut es next pr ogr am line; if x =0, skips the ne xt pr ogr am line . 14–7 x ≤ 0[...]

  • Página 369

    Operation Index G-17 Notes: 1. F uncti on can be used in equati ons.   Õ () Gi v en an x–v alue in the X–re gister , returns the y –estimate based on the regr ession line: = m x + b . 12–11 1 y x  Po w e r . Ret ur ns y raised to the x th pow er . 4–2 1 Name Ke y s and Description P age  y ˆ  ˆ y ˆ[...]

  • Página 370

    G-18 Oper ation I nde x[...]

  • Página 371

    Index- 1 Inde x Special Characters ∫ FN. See integration % functions 4-6  1-15  in fractions 1-26 π 4-3, A-2   annunciator in fractions 5-2 in fractions 5-3   annunciators equations 6-7 binary numbers 11-8 equations 13-7  . See backspace key _. See digit-entry cursor  . See integration annunciators 1-3  annunciator 1-1[...]

  • Página 372

    Index- 2 binary numbers. See numbers arithmetic 11-4 converting to 11-2 range of 11-7 scrolling 11-8 typing 11-1 viewing all digits 11-8 borrower (finance) 17-1 branching 14-2, 14 -16, 15-7 C %CHG arguments 4-6, C-3 Å adjusting contrast 1-1 canceling prompts 1-4 canceling VIEW 3-4 clearing messages 1-4 clearing X-register 2-3, 2-7 leaving catalogs[...]

  • Página 373

    Index- 3 temperature units 4-14 time format 4-13 volume units 4-14 coordinates converting 4-10 correlation coefficient 12-8, 16 -1 cosine (trig) 4-4, 9-3, C- 6 curve fitting 12-8, 16-1 D Decimal mode. See base mode decimal point A-1 degrees angle units 4-4, A-2 converting to radians 4-14 denominators controlling 5-4, 14-10, 14-14 range of 1-26, 5-2[...]

  • Página 374

    Index- 4 memory in 13-16 multiple roots 7-9 no root 7-8 numbers in 6-5 numeric value of 6-10, 6-11, 7-1, 7-7, 13-4 operation summary 6-3 parentheses 6-5, 6-6, 6-15 precedence of operators 6 -14 prompt for values 6-11, 6 -13 prompting in pr ograms 14-11, 15-1, 15-8 roots 7-1 scrolling 6-7, 13-7, 13-16 solving 7-1, D-1 stack usage 6-11 storing variab[...]

  • Página 375

    Index- 5 G  finds PRGM TOP 13- 6, 13-21, 14- 6 finds program labels 13-10, 1 3- 22, 14-5 finds program lines 13-22, 14- 5 gamma function 4-15 go to. See GTO grads (angle units) 4-4, A-2 Grandma Hinkle 12-7 Greatest integer 4-18 grouped standard dev iation 16-18 GTO 14-4, 14-17 guesses (for SOLVE) 7-2, 7-7, 7-8, 7- 12, 15-6 H help about calculato[...]

  • Página 376

    Index- 6 logarithmic functions 4-1, 9- 3, C-5 logic AND 11-4 NAND 11-4 NOR 11-4 NOT 11-4 OR 11-4 XOR 11-4 loop counter 14-18, 14-23 looping 14-16, 14-17 Ł ukasiewicz 2-1 M  program catalog 1-28, 13-22 reviews memory 1-28 variable catalog 1-28 mantissa 1-25 mass conversions 4-14 math compl ex-nu mber 9 -1 general procedure 1-18 intermediate resu[...]

  • Página 377

    Index- 7 1-18 periods and commas in 1-23, A-1 precision D-13 prime 17-7 range of 1-17, 11-7 real 4-1 recalling 3-2 reusing 2-6, 2-10 rounding 4-18 showing all digits 1-25 storing 3-2 truncating 11-6 typing 1-15, 1-16, 11-1 O Ä 1-1 OCT annunciator 11-1, 11 -4 octal numbers. See numbers arithmetic 11-4 converting to 11-2 range of 11-7 typing 11- 1 o[...]

  • Página 378

    Index- 8 deleting 1-28 deleting all 1-5 deleting equations 13-7, 13-20 deleting lines 13-20 designing 13-3, 14-1 editing 1-4, 13-7, 13-20 editing equations 13-7, 13-20 entering 13-6 equation evaluation 14-11 equation prompting 14-11 equations in 13-4, 13-7 errors in 13-19 executing 13-10 flags 14-9, 14-12 for integration 15-7 for SOLVE 15-1, D-1 fr[...]

  • Página 379

    Index- 9 rolling the stack 2-3, C-7 root functions 4-3 roots. See SOLVE checkin g 7-7, D-3 in programs 15-6 multiple 7-9 none found 7-8, D-8 of equations 7-1 of programs 15-1 rounding fractions 5-8, 13-18 numbers 4-18 round-off fractions 5-8 integration 8-6 SOLVE D-13 statistics 12-10 trig functions 4-4 routines calling 14-1 nesting 14-2, 15-11 par[...]

  • Página 380

    Index- 10 size limit 2-4, 9-2 unaffected by VIEW 13-15 stack lift. See stack default state B-4 disabling B-4 enabling B-4 not affecting B-5 operation 2-5 standard deviations calculating 12-6, 12-7 grouped data 16-18 normal distribution 16-1 1 standard-deviation menu 12-6, 12-7 statistical data. See statistics registers clearing 1-5, 12-2 correcting[...]

  • Página 381

    Index- 11 solving for 7-1 , 15-1, 15- 6, D-1 storing 3-2 storing from equation 6-12 typing name 1-3 viewing 3-4, 13-15, 1 3-18 vectors absolute value 10-3 addition, subtraction 10-1 angle between two vectors 10-5 coordinate conversions 4-12, 9 -5 creating vectors from variables or registers 10-8 cross product 17-11 dot product 10-4 in equation 10-6[...]

  • Página 382

    Index- 12[...]