Ir a la página of
manuales de instrucciones parecidos
-
Calculator
HP 10BII
144 páginas -
Calculator
HP scientific calculator
2 páginas 0.29 mb -
Calculator
HP F2225AA 40gs
444 páginas -
Calculator
HP quick calc 1
36 páginas 0.66 mb -
Calculator
HP Prime
249 páginas -
Calculator
HP 35s scientific calculator
382 páginas 4.16 mb -
Calculator
HP HP 6S
21 páginas 0.25 mb -
Calculator
HP 39gII
292 páginas
Buen manual de instrucciones
Las leyes obligan al vendedor a entregarle al comprador, junto con el producto, el manual de instrucciones HP HP 50g. La falta del manual o facilitar información incorrecta al consumidor constituyen una base de reclamación por no estar de acuerdo el producto con el contrato. Según la ley, está permitido adjuntar un manual de otra forma que no sea en papel, lo cual últimamente es bastante común y los fabricantes nos facilitan un manual gráfico, su versión electrónica HP HP 50g o vídeos de instrucciones para usuarios. La condición es que tenga una forma legible y entendible.
¿Qué es un manual de instrucciones?
El nombre proviene de la palabra latina “instructio”, es decir, ordenar. Por lo tanto, en un manual HP HP 50g se puede encontrar la descripción de las etapas de actuación. El propósito de un manual es enseñar, facilitar el encendido o el uso de un dispositivo o la realización de acciones concretas. Un manual de instrucciones también es una fuente de información acerca de un objeto o un servicio, es una pista.
Desafortunadamente pocos usuarios destinan su tiempo a leer manuales HP HP 50g, sin embargo, un buen manual nos permite, no solo conocer una cantidad de funcionalidades adicionales del dispositivo comprado, sino también evitar la mayoría de fallos.
Entonces, ¿qué debe contener el manual de instrucciones perfecto?
Sobre todo, un manual de instrucciones HP HP 50g debe contener:
- información acerca de las especificaciones técnicas del dispositivo HP HP 50g
- nombre de fabricante y año de fabricación del dispositivo HP HP 50g
- condiciones de uso, configuración y mantenimiento del dispositivo HP HP 50g
- marcas de seguridad y certificados que confirmen su concordancia con determinadas normativas
¿Por qué no leemos los manuales de instrucciones?
Normalmente es por la falta de tiempo y seguridad acerca de las funcionalidades determinadas de los dispositivos comprados. Desafortunadamente la conexión y el encendido de HP HP 50g no es suficiente. El manual de instrucciones siempre contiene una serie de indicaciones acerca de determinadas funcionalidades, normas de seguridad, consejos de mantenimiento (incluso qué productos usar), fallos eventuales de HP HP 50g y maneras de solucionar los problemas que puedan ocurrir durante su uso. Al final, en un manual se pueden encontrar los detalles de servicio técnico HP en caso de que las soluciones propuestas no hayan funcionado. Actualmente gozan de éxito manuales de instrucciones en forma de animaciones interesantes o vídeo manuales que llegan al usuario mucho mejor que en forma de un folleto. Este tipo de manual ayuda a que el usuario vea el vídeo entero sin saltarse las especificaciones y las descripciones técnicas complicadas de HP HP 50g, como se suele hacer teniendo una versión en papel.
¿Por qué vale la pena leer los manuales de instrucciones?
Sobre todo es en ellos donde encontraremos las respuestas acerca de la construcción, las posibilidades del dispositivo HP HP 50g, el uso de determinados accesorios y una serie de informaciones que permiten aprovechar completamente sus funciones y comodidades.
Tras una compra exitosa de un equipo o un dispositivo, vale la pena dedicar un momento para familiarizarse con cada parte del manual HP HP 50g. Actualmente se preparan y traducen con dedicación, para que no solo sean comprensibles para los usuarios, sino que también cumplan su función básica de información y ayuda.
Índice de manuales de instrucciones
-
Página 1
HP 5 0g gr aphing calc ulat or user ’s manual H Ed it io n 1 HP part number F2 2 2 9AA-90 001[...]
-
Página 2
Notice REG I STER Y OUR PROD UC T A T: www .register .hp .com THI S MANUAL AND ANY EX AMPLES CONT AI NED HEREI N ARE PRO VIDED “ AS I S” AND ARE SUBJECT T O CHANGE WITHOUT NO TICE. HEWLETT-P A CKARD COMP ANY MAKE S NO W A R R A N T Y O F A N Y K I N D W I T H R E G A R D T O T H I S M A N U A L , IN CLUDI NG, B UT NO T LIMITED T O, THE IMPLIED [...]
-
Página 3
Pr ef ace Y ou hav e in y our hands a compact s y mbolic and n umer ical comput er that w ill f acilit ate calc ulation and mathe matical analy sis of pr oblems in a var iety of disc iplines, f r om elementary mathematics to ad vanced engineer ing and sc ie nce subjec ts . T his manual contains e xamples that illus tr ate the us e of the basi c cal[...]
-
Página 4
Page TOC-1 T able of Contents Chapter 1 - Getting started Basic Operat ions , 1-1 Batteries, 1-1 Turning the calculator on and off, 1-2 Adjusting the display contrast, 1-2 Contents of the calculator’s display, 1-3 Menus, 1-3 The TOOL menu, 1-3 Setting time and date, 1-4 Introducing the calculator’s keyboard , 1-4 Select ing calc ulato r modes ,[...]
-
Página 5
Page TOC-2 Editing expressions i n the stack , 2-1 Creating arithmetic expressions, 2-1 Creating algebraic expressions, 2-4 Using the Equation Write r (EQW) to create expres sions , 2- 5 Creating arithmetic expressions, 2-5 Creating algebraic expressions, 2-7 Organizing data in the calculator , 2-8 The HOME directory, 2-8 Subdirectories, 2-9 Variab[...]
-
Página 6
Page TOC-3 Available units, 3-9 Attaching units to numbers, 3-9 Unit prefixes, 3-10 Operations with uni ts, 3-11 Unit conversions, 3- 12 Physical constants in the calculator , 3-13 Defining and using functions , 3-15 Reference , 3-16 Chapter 4 - Calculations with complex numbers Definitions , 4-1 Setting the calculator to COMPLEX mode , 4-1 Enterin[...]
-
Página 7
Page TOC-4 The PROOT fu nction, 5-9 The QUOT and R EMAINDER functions, 5-9 The PEVAL function , 5-9 Fractions , 5-9 The SIMP2 function, 5-10 The PROPFRAC function, 5-10 The PARTFRAC function, 5-10 The FCOEF function, 5-10 The FROOTS function, 5-11 Step-by-step operations with polynomials and fractions , 5-11 Reference , 5-12 Chapter 6 - Solution to[...]
-
Página 8
Page TOC-5 Addition, subtraction, multiplication, di vision, 7-2 Functions applied to lists, 7-4 Lists of complex number s , 7-4 Lists of algebraic objects , 7-5 The MTH/LIST menu , 7-5 The SEQ functi on , 7-7 The MAP function , 7-7 Reference , 7-7 Chapter 8 - Vectors Entering v ectors , 8-1 Typing vectors in the stack, 8-1 Storing vectors into var[...]
-
Página 9
Page TOC-6 Matrix multiplication, 9-5 Term-by-term multiplication , 9-6 Raising a matrix to a real power, 9-6 The identity matrix, 9-7 The inverse matrix, 9-7 Characterizing a matrix (The matrix NO RM menu) , 9-8 Function DET, 9-8 Function TRACE, 9-8 Solution of linear systems , 9-9 Using the numerical solver for linear systems, 9-9 Solution with t[...]
-
Página 10
Page TOC-7 Chapter 12 - Multi-variate Calculus Applications Partial deriv atives , 12-1 Multiple integrals , 12-2 Reference , 12-2 Chapter 13 - Vector Analysis Applications The del operator , 13-1 Gradient , 13-1 Divergence , 13-2 Curl , 13-2 Reference , 13-2 Chapter 14 - Differential Equations The CALC/DIFF menu , 14-1 Solution to linear and non-l[...]
-
Página 11
Page TOC-8 Reference , 15-4 Chapter 16 - Statistical Applications Entering data , 16-1 Calculating single-variable statistics , 16-2 Sample vs. population , 16-2 Obtaining frequency distributions , 16-3 Fitting data to a function y = f(x) , 16-5 Obtaining additional summary statistics , 16-6 Confidence intervals , 16-7 Hypothesis testing , 16-9 Ref[...]
-
Página 12
Page 1-1 Chapter 1 Ge tti ng s ta rte d T his chapt er pr ov ides basi c inf ormatio n about the oper ation of y our calc ulator . It is designed to f amili ar i z e y ou w ith the basic oper ations and settings be fo r e y ou perf orm a calc ulation . Basic Ope r ations Ba tte ri es T he calc ulator u ses 4 AAA (LR0 3) batter ie s as main po wer a[...]
-
Página 13
Page 1-2 b . Insert a new CR203 2 lithium bat tery . Mak e sur e its positi v e (+) side is facing up. c. Replace the plate and push it to the or iginal place . After installi ng the batteri es , pr ess $ to tur n the po w er on . Wa r n i n g : When the lo w bat tery icon is displa y ed , y ou need to r e place the batteri es as soon as pos sible [...]
-
Página 14
Page 1-3 Contents of the calculator ’s displa y T ur n y ou r c alc ul at or on on ce mor e . A t the to p o f the di spl ay y ou w il l h a v e two lines of inf ormati on that des cr ibe the settings of the calc ulator . T he f irst line sho w s the ch ar act er s: RAD XYZ HEX R = 'X' F or details on the meani ng of thes e s ymbols see[...]
-
Página 15
Page 1-4 The se si x functi ons for m the fir st page of the T OOL menu . This menu has actuall y ei ght entr ies arr anged in t wo pages . The second page is av ailable b y pr essing the L (N eXT menu) k e y . T his k e y is the thir d ke y fr om the lef t in the thir d r o w of k ey s in the k e yboar d. In this case , only the fir st tw o soft m[...]
-
Página 16
Page 1-5 F or e x ample , the P key , key (4,4 ) , has the f ollo w ing six f unctio ns associ ated with it: P Main func tio n , to acti vate the S YMBolic menu „´ L eft -shift functi on, to ac ti v ate the MTH (Math) menu …N R ight -shift functi on, to acti vat e the CA T alog func tion ~p ALPHA f uncti on, to ente r the upper -case letter P [...]
-
Página 17
Page 1-6 Of the si x functi ons assoc iated w ith a k ey onl y the fir st f our ar e show n in the k e y boar d itself . The f igur e in next page sho ws these f our labels for the P k e y . Notice that the color and the position of the labels in the k ey , namely , SY M B , MTH , CA T and P , indicate w hic h is the main functi on ( SY M B ) , and[...]
-
Página 18
Page 1-7 Operating Mode T he calc ulator off ers tw o operating modes: the Alge b raic mode, and the Revers e P ol i s h N ot a t io n ( RPN ) mode . T he def ault mode is the Algebr aic m o d e ( a s i n d i c a t e d i n t h e f i g u r e a b o v e ) , h o w e v e r , u s e r s o f e a r l i e r H P calc ulators ma y be mor e famil iar w ith the [...]
-
Página 19
Page 1-8 Y ou could also type the e xpr essi on direc tly into the dis pla y w ithout using the equation w riter , as follo ws: R!Ü3.*!Ü5.- 1/3.*3.™ /23.Q3+!¸2.5` to obta in th e same r esult . Change the oper ating mode to RPN b y fir st pr es sing the H butt on . Select the RPN operating mode b y e ither usin g the k e y , o r p r e s s i [...]
-
Página 20
Page 1-9 Le t's try some other simple oper ations bef or e trying the mor e compli cated e xpr essi on used earlie r for the algebr aic oper ating mo de: Note the po sition o f the y and x in the las t two oper atio ns. T he base in the e xponenti al oper atio n is y (stac k le v el 2) w hile the e xponent is x (stac k le v el 1) be f or e the[...]
-
Página 21
Page 1-10 T o se lect between the AL G vs . RPN operating mode , y ou can also set/ c lear s y stem f lag 9 5 thr ough the follo w ing k e ys tr oke s equence: H @FLAGS! 9˜˜˜˜ ` Number F o rmat and decimal dot or comma Changing the n umber f ormat allo ws y ou to c usto mi z e the wa y real number s ar e display ed by the calc ulator . Y ou w i[...]
-
Página 22
Page 1-11 Pr es s the r ight ar ro w k e y , ™ , to highlight the z er o in fr ont of the option Fix . Pr es s the @CHOOS so ft menu k ey and , using the up and do wn ar r ow keys, —˜ , select , say , 3 decimals . Pr es s the !!@@OK#@ soft menu k e y to comple te the select ion: Pr es s the !!@@OK#@ s o ft me nu k e y r e tur n t o th e ca lc [...]
-
Página 23
Page 1-12 K eep the number 3 in fr ont of the Sc i . ( This number can be c hanged in the same f ashio n that w e c hanged the Fix e d number of dec imals in the e x ample abo ve). Pr es s the !!@@OK#@ s o ft me nu k e y r e tu rn to t he c alc u la to r di s p la y . T he n um ber no w is sho wn as: T his r esult , 1.2 3E2 , is the calc ulator’s[...]
-
Página 24
Page 1-13 Pr es s the !!@@OK#@ s o ft me nu k e y r e tur n t o th e ca lc ula to r d is p la y . T he n um ber no w is s ho w n as: Becau se this n umber has thr ee f igur es in the int eger part , it is sh o wn w ith fo ur signif icati ve f igur es and a z er o po w er of ten , w hile using the Engineer ing for mat . F or ex ample , the number 0.[...]
-
Página 25
Page 1-14 Angle M easure T r igonometr ic f unctions , f or e xample , r equir e ar guments r e pr esenting plane angles . The calc ulator pr ov ides thr ee differ ent A ngle Measur e modes f or wo rk i n g wi t h a n g l e s, n a m e l y: • Degr ees : Th er e ar e 360 degr ees ( 360 ° ) i n a c om p l e t e ci rcu m fe re n c e. • R adians : [...]
-
Página 26
Page 1-15 soft men u k ey to complet e the oper ation . F or e x ample , in the fo llo w ing sc r een, the P olar coor dinate mode is selected: Selec ting CAS setting s CA S st ands f or C omputer A lgebr aic S y ste m. T his is the mathemati cal cor e of the calc ulator whe r e the s ymbo lic mathematical oper ations and fu ncti ons ar e pr ogramm[...]
-
Página 27
Page 1-16 Non-Rati onal options abo v e) . Unselected options w ill sho w no chec k mark in the underline pr eceding the option of inte r est (e .g., the _Numer ic , _Appr o x , _Comple x , _V erbo se , _Step/St ep , _Incr P ow options abov e) . • Afte r hav ing selec ted and uns elec ted all the options that y ou w ant in the CA S MODE S input f[...]
-
Página 28
Page 1-17 Selec ting Displa y modes T he calc ulator displa y can be cu stomi z ed to y our pr efer ence b y selec ting diffe r ent displa y modes. T o see the optional dis pla y settings u se the fo llo wing: •F i r s t , p r e s s t h e H button to acti vat e the CAL CULA T OR MODE S input f or m. W ithin the CAL CUL A T OR MODE S input f orm ,[...]
-
Página 29
Page 1-18 Selec ting the display f ont Fi r s t , p re s s t h e H button to activ ate the C AL CUL A T OR MO D E S i nput f orm . Within the CAL CULA T OR MODE S input f orm , pr ess the @@DIS P@ soft menu k e y to displa y the D ISP LA Y MODE S input f orm . The Fon t : fie l d i s highlighted , an d the option F t8_0: sy stem 8 is selected . Thi[...]
-
Página 30
Page 1-19 Selec ting pr operties of the Stac k Fi r s t , p re s s t h e H but ton to a cti vate the CAL CUL A T OR MOD E S i nput fo rm . Within the CAL CUL A T OR MODE S input for m, pr ess the @ @DISP@ soft menu k e y ( D ) to displa y the D ISP L A Y MODE S input fo rm . Pre ss the do w n arr o w k e y , ˜ , twi ce , to get to the Sta ck line [...]
-
Página 31
Page 1-20 Selec ting pr oper ties of the equation writer (E QW ) Fi r s t , p re s s t h e H button to activ ate the C AL CUL A T OR MO D E S i nput f orm . Within the CAL CULA T OR MODE S input f orm , pr ess the @@DIS P@ soft menu k e y to dis play the DISP L A Y MODE S input f orm . Pre ss the do wn arr o w k ey , ˜ , thr e e times , to get t o[...]
-
Página 32
Page 2-1 Chapter 2 Intr oduc ing t he calc ulator In this cha pter w e pre sent a n umber of basi c operati ons of the calc ulator inc luding the use of the E quati on W riter and the manipulati on of data obj ects in the calc ulator . Stud y the e xamples in this c hapter to get a good gr asp of the capab ilities o f the calc ulator f or f utur e [...]
-
Página 33
Page 2-2 Notice that , if y our CA S is set to E X A CT (see Appendi x C in user ’s guide) and y ou enter y our expr essi on using integer number s fo r integer v alues, the r esult is a s ymboli c quantity , e. g ., 5*„Ü1+1/7.5™/ „ÜR3-2Q3 Bef or e pr oduc ing a r esult , y ou w ill be ask ed to c hange to Appr o x imate mode . Accept the[...]
-
Página 34
Page 2-3 If the CA S is set to Ex act , yo u w ill be ask ed to appr ov e changing the CA S sett in g to Appr ox . Once this is done , y ou w ill get the same r esult as bef ore . An alte rnati ve w ay t o e valuat e the e xpr essi on enter ed earli er between quot es is by u sing the opti on …ï . W e w ill no w ente r the expr essi on used a bo[...]
-
Página 35
Page 2-4 Creating algebr aic e xpressions Algebr aic e xpre ssi ons inc lude not onl y number s , but also v ari able names . As an e x ample , w e will ent er the fo llo w ing algebrai c e xpr ession: W e s et the calc ulator oper ating mode to A lgebrai c, the CA S to Exac t , and the displa y to Te x t b o o k . T o ente r this algebr aic e xpr [...]
-
Página 36
Page 2-5 Using the Equation W riter (E QW ) to c reate ex p r e s s i o n s T he equation w rite r is an extr emel y po w erful t ool that not only le t y ou ent er or see an eq uation , but also allo ws y ou to modify and w ork/appl y func tions o n all or part of the equati on . T he E quation W r iter is la unched by pr essing the k e y str ok e[...]
-
Página 37
Page 2-6 Suppos e that y ou w ant to r eplace the quantity between par enthese s in the denominator (i .e ., 5+1/ 3) with (5+ π 2 /2) . F irs t , w e use the delet e k ey ( ƒ ) delete the c urr ent 1/3 expr essi on, and then w e r ep lace that fr action wi t h π 2 /2 , as f ollo ws: ƒƒƒ„ìQ2 When hit this po int the sc r e en looks as f oll[...]
-
Página 38
Page 2-7 F irst , w e need to hi ghlight the entir e fir st ter m b y using eithe r the ri ght arr o w ( ™ ) or the upper ar ro w ( — ) k ey s, r epeatedly , until the entir e e xpr essi on is highli ghte d , i .e. , se ven time s, pr oduc ing: Once the e xpr ession is hi ghlighted as sho w n abo v e , t ype +1/ 3 to add the fr action 1/3 . R e[...]
-
Página 39
Page 2-8 ~„y———/~‚tQ1/3 T his r esults in the output: In this e x ample w e us ed se ver al lo w er -case English letter s, e .g ., x ( ~„x ), se v er a l G r e ek le tt e rs , e .g ., λ ( ~‚n ) , and e v en a combinati on of Gr eek and English letter s, name ly , ∆ y ( ~‚c~„y ) . K e e p i n m i n d t h a t t o e n t e r a l o[...]
-
Página 40
Page 2-9 Subdirectories T o s tor e your dat a in a w ell or gani z ed dir e ctory tr ee yo u ma y w ant to c r eate subdir ector ies under the HOME dir ectory , and mor e subdir ector ie s w ithin subdir ector ies , in a hier ar ch y of dir ector ie s similar to f olders in modern co mput ers . The su bdir ect or ies w ill be giv en names that ma [...]
-
Página 41
Page 2-10 T o unloc k the upper -case lock ed k e y board , pre ss ~ . T ry the f ollo wing e xe r c ises: ~~math` ~~m„a„t„h` ~~m„~at„h` T he calc ulator displa y w ill sho w the f ollo w ing (left-hand side is Algebr aic mode , r ight-hand side is RPN mode) : Creating v ariables Th e s i m p l es t way t o cre a t e a va ria b l e is by [...]
-
Página 42
Page 2-11 The f ollo w ing are the k e ys tr oke s for ente r ing the r emaining var iables: A12: 3V5K~a12` Q: ~„r /„Ü ~„m+~„r™ ™K~q` R: „Ô3‚í2‚í1™ K~r` z1: 3+5*„¥K~„z1` (Acce p t cha n ge to Co mp l ex mode if ask ed ) . p1: å‚é~„r³„ì* ~„rQ2™™ ™K~„p1` . The sc r een , at this po int , w ill loo k as[...]
-
Página 43
Page 2-12 T o enter the value 3 × 10 5 i n t o A 1 2 , w e c a n u s e a s h o r t e r v e r s i o n o f t h e pr ocedur e: 3V5³~a12`K Her e is a wa y to enter the contents of Q: Q: ~„r/„Ü ~„m+~„r™™³~q`K T o ent er the value of R , we can us e an e ve n shor ter v ersio n of the pr ocedur e: R: „Ô3#2#1™ ³~rK Notice that t o se[...]
-
Página 44
Page 2-13 Chec king var iables contents Th e s i m p l es t way to che ck a va ria b l e c o nt e n t i s by p res s i n g t h e so f t m en u k e y label fo r the var iable . F or e x ample , for the v ari ables listed abo ve , pr ess the foll o w ing k ey s to see the contents o f the var iables: Algebraic mode T ype the se k ey str ok es: J @@z1[...]
-
Página 45
Page 2-14 T his pr oduces the f ollo wing s cr een (A lgebr aic mode in the left , RPN in the rig h t ) Notice that this time the co ntents of pr ogr am p1 are listed in the s c r een. T o see the r emaining var iables in this dir ectory , pr es s L . L isting t he contents of all va riables in th e sc reen Use the k ey str ok e combinati on ‚˜ [...]
-
Página 46
Page 2-15 Y ou can use the P URGE command to er ase mor e than one var iable b y plac ing their names in a list in the ar gument of P URGE . F or e x ample , if n ow we wa n t e d t o p u rg e va ri a b l es R and Q , simultaneousl y , w e can try the follo w ing ex erc ise . Pr ess : I @PURGE @ „ä³J @@@R!@@ ™‚í³J @@@Q!@@ At this po int ,[...]
-
Página 47
Page 2-16 UNDO and CMD functions F unctions UNDO and CMD are u sef u l f or r ecov er ing r ecent commands, or to r ev er t an oper ation if a mist ak e was made . T hese f unctions ar e as soc iat ed w ith the HI S T k ey : UNDO re sults fr om the k e y st r ok e seq uence ‚¯ , w hile CMD r esult s fr om the k e y str ok e sequ ence „® . CHO[...]
-
Página 48
Page 2-17 T her e is an alte rnati ve w ay to acces s thes e menu s as sof t ME N U keys, by set tin g sy stem flag 117 . (F or infor mation on F lags see Cha pter s 2 and 2 4 in the calc ulator ’s user ’s guide) . T o set this f lag tr y the f ollo wing: H @FLAGS! ——————— T he sc re en sho w s fl ag 117 not s et ( CHOO SE bo x es[...]
-
Página 49
Page 2-18 Pr ess B to sel ect the M EMOR Y sof t m enu ( ) @@MEM@ @ ). T he di s p la y n o w sho w s: Pr ess E to se lect th e D I RECT O R Y soft me nu ( ) @@DIR@ @ ) T he ORDER command is not sho wn in this sc reen . T o f ind it w e use the L key t o fi n d i t : T o ac ti v ate the ORDE R command w e pr es s the C ( @O RDER ) soft m enu k e y [...]
-
Página 50
Page 3-1 Chapter 3 Calculations with re al numbers T his chapt er demons tr ates the use o f the calc ulator for oper ations and func tions r elated to r eal numbers . The us er sho uld be acquainted w ith the k e ybo ar d to i dentify certain f uncti ons a v ailable in the k e y boar d (e .g ., SIN , CO S, T AN, e tc.). Also , it is assumed that t[...]
-
Página 51
Page 3-2 6.3#8.5- 4.2#2.5* 2.3#4.5/ • P arentheses ( „Ü ) can be used to gr oup ope r ations , as well as to enclose a rgument s of function s. In AL G mode: „Ü5+3.2™/„Ü7- 2.2` In RPN mode , y ou do not need the par enthesis , calc ulatio n is done dir ectl y on the stac k: 5`3.2+7`2.2-/ In RPN mode , typ ing the e xpre ssi on betw een[...]
-
Página 52
Page 3-3 • T he po w er func tion, ^, is a vailable thr ough the Q key . W h e n calc ulating in the stac k in AL G mode , enter the ba se ( y ) f ollo w ed by the Q k ey , and then the e xponent ( x ), e .g ., 5.2Q1.25` In RPN mode, ent er the number f irst , then the functi on, e .g., 5.2`1.25Q • The r oot functi on, XR OO T (y ,x) , is av ai[...]
-
Página 53
Page 3-4 2.45`‚¹ 2.3`„¸ • T hr ee tr igonome tr ic func tions ar e r ead ily a vailable in the k e yboar d: sine ( S ), c os i n e ( T ) , and tangent ( U ). Ar guments of the se f uncti ons ar e a ngles in either degr ees, r adians, gr ades . T he fo llo wing e xample s us e angles in degr ees (DE G): In AL G mode: S30` T45` U135` In RPN [...]
-
Página 54
Page 3-5 Real number functions in t he MTH menu Th e M T H ( „´ ) me nu inc lude a number of mathemati c al f uncti ons mostl y applicable t o r eal number s. W ith the def ault setting of CHOO SE bo x es for sy ste m fla g 1 1 7 (se e Ch ap te r 2) , t he M TH m e nu s h ow s th e fol l ow in g fu n ctio n s : T he func tions ar e gr ouped b y [...]
-
Página 55
Page 3-6 F or e xample , in AL G mode , the k e ys tr ok e sequence t o calc ulate, sa y , tanh( 2 .5 ) , is the f ollo w ing: „´4 @@OK @@ 5 @@OK@@ 2.5` In the RPN mode , the ke ys tr ok es to perf or m this calc ulatio n ar e the f ollo wing: 2.5`„´4 @@OK@@ 5 @@OK@@ T he oper ations sh o w n abo ve as sume that y ou ar e using the def ault s[...]
-
Página 56
Page 3-7 F inally , in or der to selec t , f or e x ample , the hy perboli c tangent (tanh) functi on, simpl y pr ess @@TANH@ . F or e x ample , to calc ulate ta nh(2 .5 ) , in the AL G mode , w hen using SO F T menus ove r CHOOSE bo xe s , f ollow this pr ocedur e: „´ @@HYP@ @@ TANH@ 2.5` In RPN mode , the same v alue is calc ulated us ing: 2.5[...]
-
Página 57
Page 3-8 Optio n 1. T ools.. cont ains f uncti ons u sed t o oper ate on units (disc uss ed later ) . Options 2. L e n g t h . . t h r o u g h 17 .V iscosity .. conta in menus w ith a number o f units fo r each of the quantiti es desc r ibed . F or e x ample , selec ting option 8. F or c e .. sho ws the f ollo wing units menu: T he user w ill r eco[...]
-
Página 58
Page 3-9 Pr es sing on the appr opri a te so ft menu k e y will open the sub-menu of units fo r that partic ular selec ti on . F or e x ample , for the @) SPEED su b-menu , the fo llo wing units ar e av ailable: Pr essing the so ft men u k ey @ ) UNITS w ill tak e you back to the UNIT S menu . R ecall that y ou can alw ay s list the full men u labe[...]
-
Página 59
Page 3-10 5‚Û8 @@OK@ @ @@ OK@@ Notice that the unders cor e is enter e d au tomati call y w hen the RPN mode is acti ve . The k e y str oke s equences to enter units w hen the SO F T m e n u option is selec ted , in both AL G and RPN modes , ar e illustr ated next . F or e xample , in AL G mode , to enter the quan tity 5_N use: 5‚Ý‚ÛL @ ) [...]
-
Página 60
Page 3-11 123‚Ý~„p~„m Using UB ASE (type the name) to conv ert to the def ault unit (1 m) r esults in: Operations w ith units Her e ar e some calc ulation e xamples u sing the AL G operatin g mode . Be w arned that , when multipl y ing or di vi ding quantitie s w ith units, y ou must enc los ed each quan tity w ith its units betw een par en [...]
-
Página 61
Page 3-12 Additi on and subtr a cti on can be perfo rmed , in AL G mode, w ithout u sing par enthese s, e .g., 5 m + 3 200 mm, can be enter ed simply as 5_m + 3 200_mm ` . Mor e complicated e xpre ssion r equir e the use of par entheses , e . g ., (12_mm)*(1_cm^2)/( 2_s) ` : St ack calc ulations in the RPN mode do not r equir e y ou to encl os e th[...]
-
Página 62
Page 3-13 Ph ysical constants in the calculator T he calc ulator ’s ph ysi cal cons tants ar e contained in a cons tants libr ar y acti vated w ith the command CONLIB. T o launc h this command y ou could simpl y t y pe it in the s tac k: ~~conlib` , or , you can s elect the command CONLIB f ro m the co mmand catalog , as fo llo ws: F ir st , laun[...]
-
Página 63
Page 3-14 If w e de -select the UNI T S option (pr es s @UNITS ) onl y the values ar e sho w n (English units selec ted in this case): T o cop y the value o f Vm to the stac k, s elect the v ari able name , and pr ess @²STK , then, press @QUIT@ . F or the calc ulator se t to the AL G , the s cr een w ill look lik e this: T he displa y sho w s w ha[...]
-
Página 64
Page 3-15 Defining and using func tions User s can def ine thei r o w n functi ons b y using the DEFIN E command av ailable thought the ke ystr ok e sequence „à (assoc iat ed with the 2 k e y) . The func tion mu st be enter ed in the follo w ing for mat: F unction_name(ar guments) = expr ession_con taining_ar guments F or ex ample , w e could de[...]
-
Página 65
Page 3- 16 r elativ ely simple and consists o f two parts, contai ned between the pr ogram container s This is t o be inter pr eted as say ing: enter a v alue that is tempor aril y assigned to the name x (r efer r ed to as a local v ar iable), ev aluate the e xpr essi on betw een quotes that contain that local v ar ia ble , and sho w the eval u a t[...]
-
Página 66
Page 4-1 Chapter 4 Calculations with compl e x numbers T his cha pter sho ws e xample s of calc ulation s and applicati on of fu ncti ons to comp le x number s. Definitions A comple x number z is a number z = x + iy , wher e x and y ar e real number s , and i is the imaginary unit def ined by i ² = –1. The comple x num ber x + iy ha s a r eal pa[...]
-
Página 67
Page 4-2 Pr ess @@O K@@ , t wi ce, to r e turn to the sta ck . Entering comple x numbers Com p le x numbers in the calc ulator can be e nter ed in e ither of the tw o Car tesia n representations, nam ely , x+iy , or (x,y) . T he re sults in the calc ulator w ill be sho wn in the or dered-pair f ormat , i . e ., (x ,y) . F or e x ample , with the ca[...]
-
Página 68
Page 4-3 P olar r epresentation o f a comple x number The polar r epr esentati on of the complex number 3 . 5-1.2i, enter e d abo v e , is ob tain ed by changing the c oor din ate sy stem to cylindri cal or pol ar (using f uncti on C YLIN) . Y ou can find this f unction in the catalog ( ‚N ) . Y ou can also c hange the coordinate t o polar using [...]
-
Página 69
Page 4-4 Si mp le o per at io ns w ith co mple x nu mb er s Com ple x numbers can be comb ined using the f our fundament al oper ations ( +-*/ ) . T he re sults f ollo w the rule s of algebr a w ith the cav eat that i2= -1 . Oper atio ns w ith comple x numbers ar e similar to tho se w ith r e al number s . F or e x ample , with the cal c ulator in [...]
-
Página 70
Page 4-5 T he f irs t menu (opti ons 1 thr ough 6) sho ws the f ollo w ing f uncti ons: Ex amples of applic ations of these func tions are sho wn ne xt in RE CT coor dinates. R ecall that, f or AL G mode , the func tion mu st pr ecede the ar gument , while in RPN mode , y ou ente r the ar gument f irs t , and then select the fu ncti on . Also , r e[...]
-
Página 71
Page 4-6 CMP LX menu in k e y boar d A second CMP L X menu is access ible by u sing the r ight- shift option ass oc iated w ith the 1 k e y , i .e ., ‚ß . With s y st em fl ag 117 set t o CHOO SE box es , the k ey boar d CMPLX me nu sh o ws u p as the f ollo w ing scr e ens : T he r esulting men u include s ome of the f unctions alr eady in tr o[...]
-
Página 72
Page 4-7 F unc tion DROITE: equation o f a straight line F unction DROI TE tak es as ar gument two comple x numbers, sa y , x 1 + iy 1 and x 2 +iy 2 , and r etur ns the equati on of the str aight line , say , y = a + bx, that contains the po ints (x 1 , y 1 ) and (x 2 , y 2 ) . Fo r exa m p l e, t h e l i n e between po ints A(5, - 3) and B(6, 2) c[...]
-
Página 73
SG49A.book Page 8 Friday, S eptember 16, 2005 1:31 P M[...]
-
Página 74
Page 5-1 Chapter 5 Algebraic and ar ithm etic oper ations An algebr aic objec t , or simply , algebrai c , is an y number , var iable name or algebr aic e xpr es sio n that can be oper ated upon , manipulated , and comb ined accor ding to the r ules o f algebr a. Ex amples o f algebr ai c obj ects ar e the f ollo wing: Enteri ng alge br aic objec t[...]
-
Página 75
Page 5-2 Simple operations w it h alg ebr aic objects Algebr aic ob jec ts can be added, subtr acted , multipli ed , di vi ded (e x cept by z er o) , r aised to a po w er , used as ar guments f or a var iety of st andar d functi ons (exponen tial , logar ithmic , tr igonome tr y , h y perboli c, etc .) , as y ou w ould an y real o r comple x number[...]
-
Página 76
Page 5-3 @@A1@ @ * @@A2@@ ` @@A1@ @ / @@A2@@ ` ‚¹ @@A1@@ „¸ @@A2@@ T he same r esults ar e obtained in RP N mode if u sing the f ollo wi ng keyst ro kes : Functions in the AL G menu T he AL G (Alg ebr aic) men u is a vail able b y using the k e y str ok e sequ ence ‚× (assoc iat ed w ith the 4 k e y) . W ith s y stem flag 117 set to CHOO S[...]
-
Página 77
Page 5-4 T o complete the oper ation pr ess @@ OK@@ . H e re i s t h e h el p scre en for fu n ct io n COL L ECT : W e noti ce that , at the bottom of the sc r een, the line See: EXP AND F A CT OR suggests l inks to other help f ac ility entr ie s, the f unctio ns EXP AND and F A CT OR . T o mo ve dir ectl y to thos e entr ies , pr ess the soft men[...]
-
Página 78
Page 5-5 F or e x ample , for f unction S UB S T , w e find the f ollo wing CA S help fac ility entry: Operations w ith transcendental func tions T he calc ulator off ers a number of f uncti ons that can be used t o r eplace e xpr essions con taining logar ithmic and e xponential f uncti ons ( „Ð ), as well as trigonometric f unctions ( ‚Ñ ).[...]
-
Página 79
Page 5-6 Inf or mation and e x amples on the se commands ar e av ailable in the help fac ility of the calc ulator . F or ex ample , the de sc r ipti on of EXP LN is sh o w n in the left-hand side , and the ex ample fr om the help f ac ilit y is sho wn to the rig h t : Expansion and factoring using tr igonometric functions T he TRIG menu , tr igger [...]
-
Página 80
Page 5-7 F unc tions in the ARITH MET I C menu The ARI TH MET IC menu is tr igger ed thr ough the k e y str oke co mbinati on „Þ (asso c iated w ith the 1 k e y) . With sy stem f lag 117 set t o CHOO SE bo xe s , „Þ sho ws the f ollo w ing men u: Out o f this men u list , opti ons 5 thr ough 9 ( DIVIS , F A CT ORS , L GCD , P ROP FR A C, S IM[...]
-
Página 81
Page 5-8 Po l y n o m i a l s P oly nomi als ar e algebrai c e xpr essi ons consisting of one or more ter ms containi ng decr easing po w ers of a gi v en var iable . F or e xam ple , ‘X^3+2*X^2 -3*X+2’ is a thir d-order pol y nomi al in X, while ‘S IN(X)^2 - 2’ is a second-or der poly nomial in S IN(X) . F uncti ons COLLE CT and EXP AND , [...]
-
Página 82
Page 5-9 Th e PRO O T f u n c t i o n Gi ven an ar ra y containing the coeff ic i ents of a pol ynomi al , in decr easing or der , the functi on PR OO T pr ov ides the r oots of the pol ynomi al . Ex ample , fr om X 2 +5X+6 =0, P RO O T([1, –5, 6]) = [2 . 3 .]. Th e Q U O T a n d R E M A I ND E R f u n c t i o n s T he func tio ns QUO T and REMAI[...]
-
Página 83
Page 5-10 F A CT OR(‘(X^3-9*X)/(X^2 -5*X+6)’ )=‘X*(X+3)/(X- 2)’ T he SI MP2 func tion F unction SIMP2 , in the ARITHME TIC men u , tak es as argume nts tw o number s or pol y nomi als, r epr esen ting the numer ator and denominator o f a r a tio nal fr action , and retur ns the simplified n umerato r and denominat or . F or e x ample: S IMP[...]
-
Página 84
Page 5-11 FCOEF([2 ,1, 0, 3,–5,2 ,1,–2 ,–3,–5])=‘(X--5)^2*X^3*(X- 2)/( X-+3)^5*(X-1)^2’ If y ou pre ss µ„î` (or , si mply µ , in RPN mode) y ou w ill get: ‘(X^6+8*X^5+5 *X^4 -50*X^3 )/(X^7+13*X^6+61* X^5+10 5*X^4 - 4 5*X^3- 2 9 7*X6 2 -81*X+2 4 3)’ Th e F R O O TS f u n c t i o n T he f unct io n FR OO T S, in the A RI THMET IC[...]
-
Página 85
Page 5-12 Refe re n c e Additi onal infor mation , def initions , and e xamples o f algebr aic and ar ithmeti c oper ation s ar e pr esented in C hapter 5 of the calc ulator’s u ser ’s guide . SG49A.book Page 12 Friday, September 16 , 2005 1:31 PM[...]
-
Página 86
Page 6-1 Chapter 6 Solution to equations Ass oc iated w ith the 7 k e y there ar e t wo me nus of equati on -sol v ing func tions , the S y mbolic S OL V er ( „Î ) , and the NUMeri cal SoL V er ( ‚Ï ) . F ollo wing , w e pr ese nt some o f the f u ncti ons contained in thes e menu s. S y mbolic solution o f algebraic equation s H e r e w e d [...]
-
Página 87
Page 6-2 the f igur e to the left . After a pply ing IS OL, the r esult is sho w n in the f igur e to the ri ght: T he fir st ar gument in IS OL can be an expr essi on, as sho wn a bov e , or an equation . F or ex ample , in AL G mode , tr y : T he same pr oblem can be sol ved in RPN mode as illus tr ated belo w (fi gur es sho w the RPN stac k bef [...]
-
Página 88
Page 6-3 T he fo llo wing e xample s sho w the use of f unction S OL VE in AL G and RPN modes (U se C omple x mode in the CA S): The scr een s hot show n above displ ay s t wo solution s. In t he first on e , β 4 -5 β = 1 2 5 , S O L V E p r o d u c e s n o s o l u t i o n s { } . I n t h e s e c o n d o n e , β 4 - 5 β = 6, S OL VE p r odu ce [...]
-
Página 89
Page 6-4 Fun c t i on SO L V EV X T he functi on S OL VEVX sol v es an eq uation f or the def ault CA S v ari able co n t a i n e d i n t h e re se r ved va ria b l e n a me V X . By d efa u l t, t h i s va ria b l e i s s e t to ‘X’ . Example s, u sing the AL G mo de w ith VX = ‘X’ , a r e sho w n below : In the fi rst cas e S O L V EVX co[...]
-
Página 90
Page 6-5 sc reen sh ots sho w the RPN stac k bef or e and after the appli cation of ZERO S to the two e xamples abo ve (Use C omple x mode in the CAS): T he S ymboli c Solv er functi ons pre sente d abo v e pr oduce solutions t o r ational equations (mainl y , poly nomi al equations). If the equation to be sol ved f or has all numer ical coeff ic i[...]
-
Página 91
Page 6-6 w ith e xamples fo r the n umer ical sol v er applicatio ns. Item 6. MS L V (Multiple equation SoL V er ) w i ll be pr esen ted later in page 6 -10 . P oly nomial Equations Using the Solve p oly… option in the calc u lator’s SOL V E env ironment you can: (1) f ind the soluti ons to a pol y nomi al equati on; (2) obtain the coeff ic ien[...]
-
Página 92
Page 6-7 Pr ess ` to r eturn to st ack . The st ac k w ill sho w the follo w ing r esults in AL G mode (the same r esult w ould be sho w n in RPN mode) : All the solu tions ar e complex number s: (0. 4 3 2 , -0. 3 8 9) , (0.4 3 2 , 0.3 89 ) , (- 0.7 66 , 0.6 3 2), (-0.7 66 , -0.6 3 2) . Generating pol y nomial coeffic ients giv en t h e poly nomial[...]
-
Página 93
Page 6-8 Generating an algebraic e xpression f or the poly nomial Y ou can use the calc ulator to gener ate an algebr aic e xpr essi on for a poly nomial gi ven the coe ffi ci ents or the r oots of the pol ynomi al . T he r esulting e xpr essi on wi ll be gi v en in ter ms of the de fa ult CA S v ar iable X. T o ge ner ate the algebr aic e xpr essi[...]
-
Página 94
Page 6-9 Solv ing equations with one unkno wn thr ough NUM.SL V T he calc ulator's NUM. S L V menu pr ov ides it em 1. Sol ve eq uation .. solve diffe r ent t y pes o f equati ons in a single v ar iable , inc luding non-linear algebr aic and tr anscendent al equati ons . F or e x ample , let's solv e the equati on: ex- s i n ( π x/3) = 0[...]
-
Página 95
Page 6-10 T he eq uat i on w e s t or ed i n v ar i ab le E Q i s al r ead y lo ade d in t he Eq fie l d i n the S OL VE E Q U A TION inpu t fo rm . Also , a f ield labeled x is pr ov ided. T o sol v e the equation all y ou need to do is highlight the f ield in fr ont of X: by using ˜ , and pre ss @SOLVE@ . The s oluti on sho wn is X: 4. 5006E - 2[...]
-
Página 96
Page 6-11 In AL G mode, pr ess @ECHO to cop y the e x ample to the s tack , pr es s ` to run the e x ample . T o see all the ele ments in the soluti on y ou need to acti vate the line editor b y pr essing the do wn arr o w ke y ( ˜ ): In RPN mode , the soluti on fo r this e x ample is pr oduced b y using: Ac ti v ating func ti on MSL V r esults in[...]
-
Página 97
SG49A.book Page 12 Friday, September 16 , 2005 1:31 PM[...]
-
Página 98
Page 7-1 Chapter 7 Ope r at i on s w ith li sts L ists ar e a t ype o f calc ulator ’s obj e ct that can be us ef ul for dat a pr oces sing. T his chapt er pr esents e xamples o f oper a tio ns w ith lists. T o get started w ith the e xamples in this Chapte r , we use the A ppr ox imate mode (See C hapter 1) . Creating and stor ing lists T o c r [...]
-
Página 99
Page 7-2 Addition , subtr ac tion, multiplication, di vision Multipli cation and di visi on of a list b y a single number is distr ibuted acr os s the list , for e xample: Subtr action o f a single number fr om a list w i ll subtr act the s ame number fr om each element in the list , for e xample: Additi on of a single number to a lis t pr oduces a[...]
-
Página 100
Page 7-3 T he di v isi on L4/L3 w i ll pr oduce an infinity entry becaus e one of the elements in L3 is z er o , and an err or mes sage is r eturned . If the lists in vol v ed in the oper atio n hav e differ ent lengths , an err or mess age (In valid Dime nsi ons) is pr oduced. T r y , for e xam ple , L1-L4. Th e p l us s ig n ( + ) , whe n applied[...]
-
Página 101
Page 7-4 Functions applied to lists Real n umber functi ons fr om the k e yboar d (ABS , e x , LN , 10 x , L OG , SIN, x 2 , √ , CO S, T AN, A SIN , A CO S, A T AN, y x ) as well as those fr om the M TH/ HYP ERBOLIC menu (S INH, C O SH, T ANH, A SINH, A C OSH , A T ANH) , and MTH/REAL men u (%, etc .) , can be appli ed to lists , e .g., L ists of[...]
-
Página 102
Page 7-5 L ists of algebraic objects T he f ollo wi ng ar e e xamples o f lists of algebr aic ob jec ts w ith the functi on SIN a pplied t o them (se lect Ex act mode fo r thes e e x amples -- See C hapter 1): Th e M T H / L I ST m e n u T he MTH menu pr ov ides a n umber of f uncti ons that e x c lusi vel y to lists . W i t h s y s t e m f l a g 1[...]
-
Página 103
Page 7-6 Ex amples of applic ation o f thes e func tions in AL G mode ar e sho w n next: S ORT and REVLI S T can be combined to sort a list in dec rea sing or der : If y ou ar e w or king in RPN mode , enter the lis t onto the s tac k and then selec t the oper ation y ou want . F or e x ample , to calc ulate the inc r ement between cons ec uti v e [...]
-
Página 104
Page 7-7 Th e S E Q f u n c t i o n T he SE Q functi on, a vailable thr ough the command catalog ( ‚N ), tak es as ar guments an e x pr ession in t erms o f an index , the name of the inde x , and st arting, ending , and incr ement v alues f or the inde x, and r etur ns a list consisting of the e valuation o f the e xpr essi on for all possible v[...]
-
Página 105
SG49A.book Page 8 Friday, S eptember 16, 2005 1:31 P M[...]
-
Página 106
Page 8-1 Chapter 8 Ve c t o r s T his Chapte r pr ov ides e xample s of ent er ing and oper ating w ith v ector s, both mathematical v ector s of man y elements , as well as ph ysi cal ve ctor s of 2 and 3 componen ts. Enteri ng v ec tors In the calc ulator , ve ctor s are r epr esented b y a sequence of number s enc los ed betwee n br ack ets, and[...]
-
Página 107
Page 8-2 Stor ing vectors into v ariables in the stack V e c t o r s c a n b e s t o r e d i n t o v a r i a b l e s . T h e s c r e e n s h o t s b e l o w s h o w t h e ve c to rs u 2 = [1, 2] , u 3 = [-3, 2, -2] , v 2 = [3,-1] , v 3 = [1, -5, 2] Stored i nto variable s @@@u 2@@ , @@@u3 @@ , @@@v2@@ , and @@@v3@@ , r especti ve ly . F irst , in A[...]
-
Página 108
Page 8-3 Using th e Ma tri x W riter (MTR W ) to enter vec tors V e ctor s can also be enter ed b y using the Matri x W rite r „² (thir d k e y in the f ourth ro w of k e ys f r om the t op of the k ey board). This command gener ates a spec ies of spr eadsheet cor r esponding to r ow s and columns of a matr i x (Details on using the Matr ix W r [...]
-
Página 109
Page 8-4 @+ROW@ @ -ROW @+COL@ @-COL@ @GOTO@ Th e @+ROW@ k ey w ill add a ro w full of z ero s at the location of the selec ted cell of the sp r eadsheet . Th e @- ROW ke y w ill delete the r o w corr esponding to the s elected cell o f the spr eadsheet . Th e @+COL@ k ey w ill add a column full of z er os at the loca tio n of the selec ted cell of [...]
-
Página 110
Page 8-5 Simple operations w it h vectors T o illu str ate oper ations w ith vec tor s w e w ill us e the vect ors u2 , u3, v2 , and v3, stored in an ea rlier ex erc ise. Also , store v ector A =[ -1 ,- 2 ,-3 ,- 4,-5] to be used in the fo llo w ing ex er c ises . Changing sign T o c hange the sign o f a v ector us e the k e y , e .g., Addition , [...]
-
Página 111
Page 8-6 Multiplication b y a scalar , and div ision b y a scalar Multipli cation b y a scalar or di vi sion b y a scalar is str aigh tfo rwar d: Absolute v alue function T he absolu te v alue func tio n (AB S) , when appli ed to a v ector , pr oduces the magnitude of the v ect or . F or ex ample: ABS([1,-2 ,6]) , ABS(A) , ABS(u3) , w ill sho w in [...]
-
Página 112
Page 8-7 Ma gnitude T he magnitude of a v ector , as disc ussed ear lier , can be f ound w ith f uncti on A B S . T h i s f u n c t i o n i s a l s o a v a i l a b l e f r o m t h e k e y b o a r d ( „Ê ). Ex amples of applicati on of func tion AB S wer e sho w n abo ve . Dot pr oduc t F unction DO T (optio n 2 in CHOO SE bo x abov e) is us ed t[...]
-
Página 113
Page 8-8 Exampl es of cross products of on e 3 -D vector with o ne 2 -D vector , or vice v ers a , ar e pr esented ne xt: Atte mpt s to c al culat e a cross product of vectors of l eng th oth er th an 2 or 3, pr od uce an er r or mes sage: Refe re n c e Additi onal infor mation on oper atio ns w ith vec tors, inc luding applicati ons in the ph y si[...]
-
Página 114
Page 9-1 Chapter 9 M atrices and linear algebr a T his chapt er sho ws e xample s of c reating matr ice s and oper ations w ith matr ices , including linear algebr a applicati ons . Enteri ng matrices in the stac k In this secti on we pr esent tw o differ ent methods to enter matr ices in the calc ulator stac k: (1) using the Matr i x W rit er , an[...]
-
Página 115
Page 9-2 If y ou hav e select ed the te xtbook display opti on (using H @) DISP! and ch e ck i n g of f Textbook ) , the matri x wi ll look lik e the one show n abo v e . Other wise , th e display will sho w: T he displa y in RPN mode w ill look very similar to thes e . T yping in the matr ix dir ec tly int o th e stack T h e s a m e r e s u l [...]
-
Página 116
Page 9-3 Ope r at i on s w ith ma tr ice s Matr ices , like other mathematical ob jec ts, can be added and su btr acted. T he y can be multipli ed b y a scalar , or among themsel ve s, and r aised to a r eal po wer . An important oper a tion f or linear algebr a appli cations is the in v erse o f a matr i x . Details of these oper atio ns ar e pr e[...]
-
Página 117
Page 9-4 Addition and subtr ac tion F our ex amples ar e show n below using the matr ices stor ed abo v e (AL G mode) . In RPN mode , tr y the follo w ing ei ght ex amples: Mul ti pl ica ti on T her e ar e a number of multipli cation oper ations that inv olv e matr ices . T hese ar e desc r ibed next . The e xamples ar e show n in algebrai c mode .[...]
-
Página 118
Page 9-5 Matrix -v ector multiplication Matr i x - v ector m ultiplicati on is possible onl y if the number o f columns of the matr i x is equal to the length of the v ector . A couple o f ex amples o f matri x - ve ctor m ultiplicati on follo w: V e ctor -matr i x multiplicati on , on the other hand , is not def ined. T his multiplicati on can be [...]
-
Página 119
Page 9-6 T erm-b y-term multiplica tion T erm- by- term mu lt ip lica tion of t wo mat rices of t he sam e d im ens ions is possi bl e th r oug h th e use of function H ADAMAR D . The result i s, of cou rse , another matri x of the same dime nsio ns. T his functi on is av ailable thr ough F unction catalog ( ‚N ) , or thr ough the MA TRICE S/OP E[...]
-
Página 120
Page 9-7 T he identit y matri x T he ide ntity matri x has the pr oper ty that A ⋅ I = I ⋅ A = A . T o ve r ify this pr oper ty w e pr esent the f ollo w ing ex amples us ing the matri c es st or ed earli er o n. U se functi on ID N (f ind it in the MTH/MA TRIX/MAKE me nu) to gener ate the iden tity matri x as sho wn her e: T he inv erse matri [...]
-
Página 121
Page 9-8 Char ac teri zing a matri x (The matr ix NORM menu) T he matri x NORM (NORMALI ZE) menu is acces sed thr ough the k ey str oke sequ enc e „´ . This men u is desc r ibed in de tail in Chapter 10 of the calc ulator’s us er’s gui de . Some o f these f uncti ons ar e des cr ibed next . Fu nc t i o n D ET F unction DET calc ulates th e d[...]
-
Página 122
Page 9-9 Solution of linear s y stems A s ys tem of n linear equati ons in m var iab les can be w r itten as a 11 ⋅ x 1 + a 12 ⋅ x 2 + a 13 ⋅ x 3 + …+ a 1,m-1 ⋅ x m-1 + a 1,m ⋅ x m = b 1 , a 21 ⋅ x 1 + a 22 ⋅ x 2 + a 23 ⋅ x 3 + …+ a 2, m - 1 ⋅ x m-1 + a 2, m ⋅ x m = b 2 , a 31 ⋅ x 1 + a 32 ⋅ x 2 + a 33 ⋅ x 3 + …+ a 3[...]
-
Página 123
Page 9-10 2x 1 + 3x 2 –5x 3 = 13, x 1 – 3x 2 + 8x 3 = -13, 2x 1 – 2x 2 + 4 x 3 = -6, can be wr it ten as the matr ix eq uation A ⋅ x = b , if T his s y stem has the same number o f equatio ns as of unkno w ns, and w ill be r e f e r r e d t o a s a s q u a r e s y s t e m . I n g e n e r a l , t h e r e s h o u l d b e a u n i q u e soluti [...]
-
Página 124
Page 9-11 A solu tion w as found as sho wn ne xt . Sol uti on w ith the in v erse ma tr i x T he soluti on to the s yst em A ⋅ x = b , wher e A is a squar e matri x is x = A -1 ⋅ b . F or the e x ample us ed earli er , we can f ind the soluti on in the calc ulator as f ollo ws (F irs t enter matr ix A and v ec tor b once more): Solution b y “[...]
-
Página 125
Page 9-12 Refe re n c e s Additi onal informati on on cr eating matri ces, matr i x operati ons , and matri x appli cations in linear algebr a is pr es ented in Cha pter s 10 and 11 of the calculator ’s us er’s gui de . SG49A.book Page 12 Friday, September 16 , 2005 1:31 PM[...]
-
Página 126
Page 10-1 Chapter 10 Gr aph ics In this cha pter w e intr oduce some of the gr aphic s capab ilitie s of the calc ulator . W e w ill pr es ent gr aphic s of f unctions in C artesian coor dinates and polar coor dinates , parametr ic plots , gr aphi cs of coni cs, bar plots, scatter plots, and fa st 3D plots . Graphs options in the calc ulator T o ac[...]
-
Página 127
Page 10-2 P lot ting an e xpression o f the for m y = f(x) As an e xample , let's plot the f u ncti on , • F irst, enter th e PL O T S ETUP envir o nment by pressing, „ô . Mak e sur e that the option F uncti on is select ed as the TYPE , and that ‘X’ is selec ted as the independent v ar iable ( INDEP ). Pr e s s L @@@OK@@@ to r etur n[...]
-
Página 128
Page 10-3 •P r e s s ` to r eturn t o the PL O T - FUNCTION w indo w . The e xpr essi on ‘ Y1(X) = EXP(- X^2/2)/ √ (2* π )’ will be highlig hted. Pr ess L @@@OK@@@ to r etur n to normal calc ulator display . • Enter the P L O T WINDO W en vir onment b y enter ing „ò (pre ss them simultaneou s l y if in RPN mode) . Use a r ange of –4[...]
-
Página 129
Page 10-4 Gen er ating a table of v alues f or a func tion The c o m bi n a t ion s „õ ( E ) and „ö ( F ) , pressed simultaneousl y if in RPN mode , let’s the us er pr oduce a table o f value s of func tions . F or e x ample , w e w ill produ ce a ta ble of the f uncti on Y(X) = X/ (X+10) , in the r ange -5 < X < 5 follo w ing these i[...]
-
Página 130
Page 10-5 • W ith the option In hi ghligh ted , pr ess @@@OK@@@ . The t able is e xpanded so that the x -incr ement is no w 0.2 5 rather than 0. 5 . Simply , what the calc ulator does is t o multipl y the or iginal incr ement , 0. 5, b y the z oom fa ctor , 0.5, t o pr oduce the ne w incr ement o f 0.2 5 . T hus , the zo o m i n option is us eful[...]
-
Página 131
Page 10-6 • K eep the def ault plot w indo w r anges to r ead: •P r e s s @ERASE @ DRAW to dr aw the thr ee -dimensio nal surface . The r esult is a w i r ef r ame pic tur e of the surface w ith the re fer ence coor dinate sy stem sho wn at the lo we r left corne r of the sc r een . B y using the arr o w ke ys ( š™—˜ ) you c an cha ng e t[...]
-
Página 132
Page 10-7 • When done , pr es s @EXIT . •P r e s s @CANCL to r eturn to P L O T WINDO W . •P r e s s $ , or L @@@OK@@@ , to r eturn to normal calc ulator displa y . T ry also a F ast 3D plot f or the surface z = f(x ,y) = sin (x 2 +y 2 ) •P r e s s „ô , simultaneousl y if in RPN mode , to access the P L O T SETUP w indo w . •P r e s s [...]
-
Página 133
SG49A.book Page 8 Friday, S eptember 16, 2005 1:31 P M[...]
-
Página 134
Page 11-1 Chapter 11 Calculus Applications In this C hapter w e disc uss appli catio ns of the calc ulator’s f uncti ons to oper ations r elated to C alc ulus , e.g ., limits, der i v ati v es, integr als, po w er series , etc. T he CAL C (Calc ulus) me nu Man y of the f uncti ons pr es ented in this Chapter ar e contained in the calc ulator’s [...]
-
Página 135
Page 11-2 Fu n c t io n lim is enter ed in AL G mode as lim(f (x),x=a) to calculate the limit . In RPN mode , ente r the func tion f irst , then the e xpr ession ‘ x=a’ , and f inally func tion lim. Ex amples in AL G mode ar e sho wn ne xt , inc luding some limits to inf inity , and one -sided limits . The inf inity sy mbol is assoc iated w ith[...]
-
Página 136
Page 11-3 F unc tions DERI V and DER VX The function D ERIV is used to take deri vati ve s i n terms of any ind epen dent var iable , while the functi on D ER VX tak es deri vati ve s w ith r espect to the C AS d efa ul t va ria bl e V X ( t ypic a l ly ‘ X’ ) . W hi l e fu n ct io n D E RVX i s ava i la b l e dir ectly in the CAL C menu , both[...]
-
Página 137
Page 11-4 P leas e noti ce that func tions S I G MA VX and SIGMA ar e designed f or integr ands that in v ol v e some s ort of integer func tion lik e the fact or ial (!) func tion sh o w n abo ve . The ir r esult is the so -called disc r ete der i v ati v e , i.e ., one def i ned f or intege r numbers onl y . Definite integr als In a def inite int[...]
-
Página 138
Page 11-5 Infinite ser ies A func tion f(x) can be e xpanded into an inf inite ser ies ar ound a point x=x 0 b y using a T a y lor’s se r ies , namely , , w here f (n) (x) r epr esen ts the n- th deri vati ve o f f(x) w ith r espec t to x , f (0) (x) = f(x) . If the value x 0 = 0 , t h e se ri es i s refe r red to a s a M a cl a u ri n’ s se ri[...]
-
Página 139
Page 11-6 ser ies) or an e xpre ssi on of the f or m ‘ var iable = v alue ’ indicating the poin t of e xpansion of a T ay lor ser ies , and the or der of the ser ies to be pr oduced . F unction SERIE S r eturns two o utput it ems: a list w ith f our items , and an e xpression f o r h = x - a, if th e second argument in the function call is ‘ [...]
-
Página 140
Page 12-1 Chapter 12 M ulti-v ari ate Calc ulus Applications Multi-var iate calc ulus r ef er s to f uncti ons o f tw o or mor e var iable s. In this Chapt er w e disc uss basi c concepts of multi-v ar iate calc ulus: partial der i v ati ves and m ultiple integr als. Pa r t i a l d e r i v a t i v e s T o qui c kly calc ulate partial deri vati ve s[...]
-
Página 141
Page 12-2 T o de f ine the functi ons f(x ,y) and g(x ,y , z) , in AL G mode , use: DEF(f(x,y )=x*CO S(y)) ` D EF(g(x,y ,z)= √ (x^2+y^2)*SIN(z) ` T o t ype the der iv ativ e sy mbol use ‚¿ . Th e d e riva t ive , f or e xample , w ill be ente r ed as ∂ x(f(x ,y)) ` in A L G mode in the scr een. M ultiple integrals A ph ysi cal inter pret ati[...]
-
Página 142
Page 13-1 Chapter 13 V ec tor Anal y sis Applications T his chapt er desc ribes the us e of f uncti ons HE S S, DIV , and CURL , f or calc ulating oper ations of v ector anal y sis . T he d el operator T he f ollo w ing oper ator , r ef er r ed to as the ‘ del’ or ‘ nabla ’ oper ator , is a ve ctor -based oper ator that can be applied to a [...]
-
Página 143
Page 13-2 Di ve rgence T he di v er ge nce o f a v ect or f unc ti on , F (x ,y ,z) = f(x,y ,z ) i + g(x,y ,z ) j +h(x ,y ,z) k , is de f ined by t aking a “ dot -produc t” o f the del oper ator w i th the func tion , i .e . , . F unction DIV can be used to calc ulate the di ve r gence of a v ecto r fi eld . F or ex ample , for F (X,Y ,Z) = [XY[...]
-
Página 144
Page 14-1 Chapter 14 Differential Equations In this Chapte r we pr esen t e x amples of so l v ing or dinar y differ ential equati ons (ODE) using calc ulator functi ons. A diff er ential equati on is an equati on inv olv ing deri vati ve s of the independent var iable . In mos t case s, w e seek the dependent f uncti on that satisf ie s the differ[...]
-
Página 145
Page 14-2 • the ri ght-hand side of the OD E • the char acter isti c equation of the ODE Both of these inputs mus t be giv en in terms of the defa ult independent var iable f or the calc ulator ’s CAS (ty pi cally X). The output f r om the functi on is the general soluti on of the ODE . The e x amples belo w ar e sho w n in the RPN mode: Ex a[...]
-
Página 146
Page 14-3 Fu n c ti o n DE SO L V E T he calculator pr o v ides f uncti on DE S OL VE (Differ ential E quation S OL VEr ) to sol v e certain t ype s of diff er enti al equations . The f unction r e quir es as input the differ enti al equatio n and the unkno wn f uncti on , and retur ns the soluti on to the equati on if av ailable . Y ou can also pr[...]
-
Página 147
Page 14-4 ‘ d1y(0 ) = -0. 5’ . Changing to these Ex act e xpres s ions f ac i litates the solut ion. Pr es s µµ to simplif y the re sult . Use ˜ @EDIT to see this r esult: i. e . , ‘ y(t) = -((19* √ 5*S IN( √ 5*t) -(148*CO S( √ 5*t)+8 0*C OS(t/2) ))/19 0)’ . Pr es s ``J @ODETY to get the str ing “ Linear w/ cst coeff ” f or the[...]
-
Página 148
Page 14-5 Compar e these e xpr essions w ith the one gi v en earli er in the def initi on of the L aplace tr ansf orm , i .e ., and y ou w ill notice that the CA S defa ult v ar iable X in the equati on wr iter sc r e en r epla ces the v aria ble s in this de f inition . Ther efor e , when us ing the func tion LAP y ou get bac k a functi on of X, w[...]
-
Página 149
Page 14-6 F our ier series f o r a quadr atic func tion Deter mine the co eff ic ients c 0 , c 1 , and c 2 f or the f uncti on g(t) = (t-1) 2 +(t - 1) , w ith per iod T = 2 . Using the calc ulator in AL G mode , firs t w e def ine functi ons f(t) and g(t) : Ne xt , w e mo v e to the CA SD IR sub-dir ectory under HOME to c hange the va l ue of va ri[...]
-
Página 150
Page 14-7 Th us , c 0 = 1/3, c 1 = ( π⋅ i+2)/ π 2 , c 2 = ( π⋅ i+1)/( 2 π 2 ). The F o urier seri es with three el ement s will be wr it ten as g(t) ≈ R e[(1/3) + ( π⋅ i+2)/ π 2 ⋅ ex p ( i ⋅π⋅ t)+ ( π⋅ i+1)/( 2 π 2 ) ⋅ ex p (2 ⋅ i ⋅π⋅ t)]. Referen ce F or additional def initi ons, a pplicati ons, and e xer c i ses [...]
-
Página 151
SG49A.book Page 8 Friday, S eptember 16, 2005 1:31 P M[...]
-
Página 152
Page 15-1 Chapter 15 Pr obabilit y Distributions In this Chapt er w e pr o v ide e x amples of appli cati ons of the pr e -defined pr obab ility distribu tions in the calc ulator . T he MTH/P R OB ABI LI TY .. sub-menu - par t 1 T he MTH/PR OB ABILI TY .. sub-men u is accessible thr ough the k ey str oke sequ enc e „´ . W i t h s y s t e m f l a[...]
-
Página 153
Page 15-2 • PERM(n ,r ) : Calc ulates the number o f perm utati ons of n items tak en r at a time • n!: F actor ial o f a positi ve inte ger . F or a non -integer , x! r etur ns Γ (x+1) , wh ere Γ (x) is the Gamma functi on (see C hapter 3). The f actor ial s ymbol (!) can be enter ed also as the ke ys tr ok e combinati on ~‚2 . Ex ample of[...]
-
Página 154
Page 15-3 T he MTH/P ROB menu - part 2 In this sec tio n w e dis c us s f our cont inuou s pr obabil ity distr ibuti ons that ar e commonl y us ed f or pr oblems r elated to s tatisti cal infer ence: the nor mal distr ibution , the Student ’s t distr i buti on , the Chi-squar e ( χ 2 ) distr ibuti on , and the F-dis tributi on . The f uncti ons [...]
-
Página 155
Page 15-4 T he C hi-squar e distribution Th e C h i - sq u a re ( χ 2 ) distribu tion has one par ameter ν , know n as the degr ees of fr eedom. The calc ulator pr ov ides f or values o f the upper - tail (c umulati v e) distr ibution f uncti on f or the χ 2 -distr ibution using UTPC gi ven the value o f x and the par ameter ν . The def inition[...]
-
Página 156
Page 16-1 Chapter 16 Statistical Applications T he calc ulator pr ov ides the f ollo wing pr e -pr ogr ammed statis tical f eatur es access ible thr ough the k e y str ok e combinati on ‚Ù (the 5 key ) : Enteri ng data Appli cations number ed 1, 2 , and 4 in the list abo v e r equir e that the data be a vaila ble as columns of the matr ix Σ D A[...]
-
Página 157
Page 16-2 Calculating singl e -v ar iable statistic s After enter ing the col umn vector into Σ DA T , p re s s ‚Ù @@@OK@@ to sele ct 1. Singl e - v ar .. The fo llo w ing input f or m w ill be pr ov ided: T he for m lists the data in Σ D A T , sho ws that column 1 is s elec ted (ther e is onl y one column in the c urr ent Σ D A T) . Mov e ab[...]
-
Página 158
Page 16-3 Obtaining frequenc y distr ibutions The ap p l ic a tio n 2. Frequenci es.. i n t h e S T A T m e n u c a n b e u s e d t o obtain f r equenc y distr ibuti ons f or a set of data . The data mu st be pr esent i n t h e f o r m o f a c o l u m n v e c t o r s t o r e d i n v a r i a b l e Σ DA T . T o g e t st a r t e d , pr ess ‚Ù˜ @@[...]
-
Página 159
Page 16-4 Σ D A T , b y usi ng functi on ST O Σ (see e x ample abo ve) . Ne xt, obtain single - v ar ia ble infor mation us ing: ‚Ù @@@OK@@@ . The r esults are: This informat ion ind icates tha t our da ta ranges from -9 to 9 . T o p roduce a f r e q u e nc y d is t r i b ut i o n w e w i ll u s e th e i n t e rv a l (- 8 , 8) d i v i di n g i[...]
-
Página 160
Page 16-5 F itting data to a func tion y = f(x) T he pr ogram 3. F it da ta.. , av ailable as option n umber 3 in the S T A T menu , can be used to f it linear , logar ithmic , exponenti al, and po w er func tions t o data sets (x , y) , stor ed in columns of the Σ D A T matr i x. F or this appli cation , yo u need to hav e at least tw o columns i[...]
-
Página 161
Page 16-6 Le ve l 3 sho ws the f or m of the equati on. L e v el 2 sho ws the sample corr elation coeff ic ient , and lev el 1 sho ws the co var iance of x -y . F or def initions of the se par ameters se e Chapter 18 in the user ’s guide . F or additional inf ormatio n on the data-fit f eatur e of the calculat or see Cha pter 18 in the u ser ’s[...]
-
Página 162
Page 16-7 •P r e s s @@@OK@@@ to obtain the fo llo wing r esults: Confidence inter vals T he applicati on 6. Con f In ter val can be acces sed b y using ‚Ù— @@@OK@@@ . Th e ap p l ic at io n of fe rs t h e fol l ow in g o p t io ns : These opt ions ar e to b e i nterpre ted as follo ws: 1. Z -INT : 1 µ .: Single sample conf idence in terval[...]
-
Página 163
Page 16-8 4. Z -INT : p 1− p 2 .: C onf idence interval f or the differ ence of tw o pr oportions, p 1 -p 2 , for lar ge samples w ith unkno w n populatio n va rian c es. 5. T- I N T: 1 µ .: Single sample confi dence int erval f or the population mean , µ , f or small samples with unkno w n population v ariance . 6. T- I N T: µ1−µ2 .: Conf [...]
-
Página 164
Page 16-9 T he gr aph sho ws the s tandar d nor mal distr ibution pdf (pr o babi lity densit y func tion), the location of the c riti cal po ints ± z α/2 , the mean value ( 2 3 . 3) and the corr esponding interval limits ( 21.9 84 2 4 and 2 4.615 7 6 ) . Pres s @TEXT to r eturn to the pr e v io us r esults sc r e en , and/or pr es s @@@OK@@@ to e[...]
-
Página 165
Page 16-10 2. Z - Te s t : µ1−µ2 .: Hy pothesis testing f or the differ ence of the populati on means, µ 1 - µ 2 , w ith either kno wn populati on v ari ances , or fo r lar ge samples w ith unkno wn populati on var iances . 3 . Z - T es t: 1 p.: Single sample h ypo thesis testing f or the pr oportion , p , for lar ge samples w ith unknow n po[...]
-
Página 166
Page 16-11 Then , we r ej ect H 0 : µ = 15 0, against H 1 : µ ≠ 15 0. The tes t z value is z 0 = 5 .6 5 6 8 54. T he P -v alue is 1. 54 × 10 -8 . T he cr iti cal v alues of ± z α /2 = ± 1.9 5 9 9 64 , cor r esponding t o cr itical ⎯ x r ange of {14 7 .2 15 2 .8}. T his info rmati on can be obs erved gr aphi call y b y pr essing the s oft-[...]
-
Página 167
SG49A.book Page 12 Friday, September 16 , 2005 1:31 PM[...]
-
Página 168
Page 17-1 Chapter 17 Numbers in Differ ent Bases Besi des our dec imal (base 10, di gits = 0 -9) number s y ste m , y ou can w ork w ith a b inary s yst em (bas e 2 , digits = 0,1) , an octal s yst em (base 8 , digits = 0 - 7) , or a he x adec imal s y ste m (base 16, di gits=0 -9 ,A -F), among others . T he same w ay that the dec imal int eger 3 2[...]
-
Página 169
Page 17-2 W r iting non -dec imal numbers Numbers in non-de c imal sy stems , r ef err ed to as bi n ar y i nte g e rs , ar e w r itten pr eceded by the # s y mbol ( „â ) in the calculator . T o select the c urr ent base to be u sed f or binary integers , choo se e ither HEX (adec imal) , D E C (imal) , OCT (al), or BIN (ary) in the BA SE menu .[...]
-
Página 170
Page 18-1 Chapter 18 Using SD car ds The calc ulator has a mem ory car d slot into w hic h y ou can insert an SD flash car d for backin g up calculat or objec ts, or f or do wnl oading objects fr om other sour ces . The SD car d in the calculat or w ill appear as port numb er 3. Inserting and remo ving an SD car d The SD slot is located on the bot [...]
-
Página 171
Page 18-2 4. When the for matting is fin ished, the HP 5 0g display s the m essage "FORMA T FINISHED . PRE S S ANY KEY T O EXI T". T o ex it the sy stem menu , hold dow n the ‡ k e y , pr ess and r elease the C k e y and then r elease the ‡ key . The SD car d is no w r eady for u se . It w ill ha v e been for matted in F A T3 2 form a[...]
-
Página 172
Page 18-3 N o t e t h a t i f t h e n a m e o f t h e o b j e c t y o u i n t e n d t o s t o r e o n a n S D c a r d i s longer than ei ght c har act ers , it w ill appear in 8.3 DO S for mat in port 3 in the F iler once it is stor ed on the card . Recalling an object fr om the SD card T o r eca ll an object f r om the SD card onto the sc r een, u[...]
-
Página 173
Page 18-4 P urging all objects on t h e SD card (b y re fo rm at t i n g ) Y ou can pur ge all ob jects f r om the SD card b y r ef ormatting it . When an SD car d is inserted, @FO RMA appears an additi onal menu item in F ile Manager . Selec ting this optio n r ef ormats the entir e car d, a pr ocess w hic h also delete s e very obje ct on the car[...]
-
Página 174
Page 19-1 Chapter 19 Equation L ibr ar y T he E quation L ibrary is a collectio n of equati ons and commands that enable y ou to sol v e simple sc ience and engineer ing pr oblems . T he libr ary consis ts of mor e than 300 equati ons grou ped into 15 tec hnical sub jects cont aining mor e than 100 pr oblem titl es . E ach pr oblem title contains o[...]
-
Página 175
Page 19-2 No w us e this equati on set to ans w er the questi ons in the follo w ing e x ample . Step 4: Vi e w the f i v e equati ons in the Pr oj ectile Moti on set . All f iv e ar e used inter changeabl y in order to s olv e for missing v ariable s (see the ne xt e xample). #EQN# # NXEQ# #N XEQ# # NXEQ# #NXE Q# Step 5 : Ex amine the var iable s [...]
-
Página 176
Page 19-3 0 *!!!!!!X0!!!!!+ 0 *!!!!!!Y0!!!!!+ 50 *!!!!!!Ô 0!!!!!+ L 65 *!!!!!!R!!!!!+ Step 3 : S olv e for the v eloc ity , v 0 . (Y ou solv e for a v ar iable b y pre ssing ! and then the var iable ’s menu k ey .) ! *!!!!!!V0!!!!!+ Step 4: Re call the r ange, R , di v ide b y 2 to get the halfwa y distance , and enter that as the x- c o o rd i [...]
-
Página 177
Page 19-4 Refe re n c e F or additional det ails on the E quation L ibrary , see C hapter 2 7 in the calculator ’s us er’s gui de . SG49A.book Page 4 Friday, S eptember 16, 2005 1:31 P M[...]
-
Página 178
Pa g e W - 1 L imited W arr ant y HP 50g gr aphing calculator ; W arr ant y per iod: 12 months 1. HP war r ants to y ou , the end-user c ustomer , that HP hard war e, accessor ies and suppli es w ill be fr ee fr om defects i n mater i als and w orkmanship after the date of pur c hase , for the per iod spec if ied a bov e. If HP rece i ves noti ce o[...]
-
Página 179
Pa g e W - 2 REMEDIE S . EX CEPT A S INDICA TED ABO VE , IN NO EVENT WILL HP OR I T S S UPP LIERS BE LIABLE F OR L OS S OF D A T A OR FOR DIRE CT , SP E CIAL, INCIDENT AL , CO NSE QUENTIAL (INCL UD ING L O S T PR OFIT OR D A T A ) , OR O THER D AM A GE , WHETHER B ASED IN C ONT RA CT , T OR T , OR O THER WISE . Some countr ies , States or pr o v in[...]
-
Página 180
Pa g e W - 3 Ser vice Eur ope Co untry : Te l e p h o n e n u m b e r s A us tr ia + 4 3-1-3 6 0 2 7 71203 B e l g i u m + 32-2-7 1 262 1 9 Denm ark + 4 5-8- 2 3 3 2 844 Ea s t e r n Eu ro p e c o u n t ri e s + 420 - 5 - 4 1 4 22 5 2 3 F inland +3 5 8-9 -64000 9 F rance +3 3-1- 4 99 3 9006 G e r m a n y + 49 - 69 - 953 07 1 0 3 Gr eece +4 20 -5- 4[...]
-
Página 181
Pa g e W - 4 L.A me ri ca Co un try : Te l e p h o n e n u m b e r s Ar genti na 0- 8 1 0- 5 5 5 - 5 5 2 0 Br azil S a o Pa u l o 37 47-7 79 9 ; R O T C 0 -800 -15 77 51 Me x ico M x C i t y 5 258 - 9 922; R O T C 01-8 00 - 4 7 2 -66 84 Ve n e z u e l a 0 80 0 - 4 7 46 - 8368 Chile 80 0 - 3 609 99 Col um bia 9-800 -114 7 2 6 Pe r u 0- 8 0 0- 1 0 11[...]
-
Página 182
Pa g e W - 5 Regulat or y inf ormation F ederal Communications Commission Notice T his equipment has been tes ted and fo und to comply w ith the limits f or a C las s B di gital de v ice , pursu ant t o P art 15 of the FCC R ules . Th ese limits ar e designed to pr o v ide r easona ble pr otec tion agains t harmf ul inte rfer ence in a re si dentia[...]
-
Página 183
Pa g e W - 6 Or , call 1 - 8 0 0 - 4 7 4 - 6836 F or questi ons r e gar ding this FCC dec larati on, contac t: Hew lett -P ac k ar d Compan y P . O . Bo x 6 9 2000, Mail S top 510101 Houston , T ex as 77 2 6 9- 2000 Or , call 1 -28 1 - 5 1 4 - 3333 T o identify this pr oduct , r ef er to the part , ser ies , or model number f ound on the pr oduct. [...]
-
Página 184
Pa g e W - 7 Japane se Not ice こ の装置は、 情報処理装置等電波障害自主規 制協議会 (VCCI) の基準 に 基づ く ク ラ ス B 情報技術装置 で す 。 こ の装置 は、 家庭環境 で 使用す る こ と を 目的 と し て い ま す が、 こ の装 置が ラ ジ オ や テ レ ビ ジ ョ ン ?[...]