Yamaha PM4000 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Ir a la página of

Buen manual de instrucciones

Las leyes obligan al vendedor a entregarle al comprador, junto con el producto, el manual de instrucciones Yamaha PM4000. La falta del manual o facilitar información incorrecta al consumidor constituyen una base de reclamación por no estar de acuerdo el producto con el contrato. Según la ley, está permitido adjuntar un manual de otra forma que no sea en papel, lo cual últimamente es bastante común y los fabricantes nos facilitan un manual gráfico, su versión electrónica Yamaha PM4000 o vídeos de instrucciones para usuarios. La condición es que tenga una forma legible y entendible.

¿Qué es un manual de instrucciones?

El nombre proviene de la palabra latina “instructio”, es decir, ordenar. Por lo tanto, en un manual Yamaha PM4000 se puede encontrar la descripción de las etapas de actuación. El propósito de un manual es enseñar, facilitar el encendido o el uso de un dispositivo o la realización de acciones concretas. Un manual de instrucciones también es una fuente de información acerca de un objeto o un servicio, es una pista.

Desafortunadamente pocos usuarios destinan su tiempo a leer manuales Yamaha PM4000, sin embargo, un buen manual nos permite, no solo conocer una cantidad de funcionalidades adicionales del dispositivo comprado, sino también evitar la mayoría de fallos.

Entonces, ¿qué debe contener el manual de instrucciones perfecto?

Sobre todo, un manual de instrucciones Yamaha PM4000 debe contener:
- información acerca de las especificaciones técnicas del dispositivo Yamaha PM4000
- nombre de fabricante y año de fabricación del dispositivo Yamaha PM4000
- condiciones de uso, configuración y mantenimiento del dispositivo Yamaha PM4000
- marcas de seguridad y certificados que confirmen su concordancia con determinadas normativas

¿Por qué no leemos los manuales de instrucciones?

Normalmente es por la falta de tiempo y seguridad acerca de las funcionalidades determinadas de los dispositivos comprados. Desafortunadamente la conexión y el encendido de Yamaha PM4000 no es suficiente. El manual de instrucciones siempre contiene una serie de indicaciones acerca de determinadas funcionalidades, normas de seguridad, consejos de mantenimiento (incluso qué productos usar), fallos eventuales de Yamaha PM4000 y maneras de solucionar los problemas que puedan ocurrir durante su uso. Al final, en un manual se pueden encontrar los detalles de servicio técnico Yamaha en caso de que las soluciones propuestas no hayan funcionado. Actualmente gozan de éxito manuales de instrucciones en forma de animaciones interesantes o vídeo manuales que llegan al usuario mucho mejor que en forma de un folleto. Este tipo de manual ayuda a que el usuario vea el vídeo entero sin saltarse las especificaciones y las descripciones técnicas complicadas de Yamaha PM4000, como se suele hacer teniendo una versión en papel.

¿Por qué vale la pena leer los manuales de instrucciones?

Sobre todo es en ellos donde encontraremos las respuestas acerca de la construcción, las posibilidades del dispositivo Yamaha PM4000, el uso de determinados accesorios y una serie de informaciones que permiten aprovechar completamente sus funciones y comodidades.

Tras una compra exitosa de un equipo o un dispositivo, vale la pena dedicar un momento para familiarizarse con cada parte del manual Yamaha PM4000. Actualmente se preparan y traducen con dedicación, para que no solo sean comprensibles para los usuarios, sino que también cumplan su función básica de información y ayuda.

Índice de manuales de instrucciones

  • Página 1

    PROFESSIONAL AUDIO MIXING CONSOLE PM4000 OPERATING MANUAL YAMAHA[...]

  • Página 2

    PM4000 OPERATING MANUAL[...]

  • Página 3

    IMPORTANT NOTICE FOR THE UNITED KINGDOM Connecting the Plug and Cord WARNING : THIS APPARATUS MUST BE EARTHED IMPORTANT. The wires in this mains lead are coloured in accordance with the following code: GREEN-AND-YELLOW : EARTH BLUE : NEUTRAL BROWN : LIVE As the colours of the wires in the mains lead of this apparatus may not correspond with the col[...]

  • Página 4

    How to Use This Manual If you are an engineer or technician who is familiar with sound system design, much of this manual will serve as a review for you. The basic features are presented in the “BRIEF OPERATING INSTRUC- TIONS” section. Check this and the “SPECIFICA- TIONS” section, and you will see most of what you need to know. The balance[...]

  • Página 5

    Table of Contents Page Sect. Title Section 1. Introduction Section 2. Brief Operating Instructions 2-1 2.1 PM4000 Front Panel Features 2-1 2.1.1 The Standard Monaural Input Module 2-7 2.1.2 The Stereo Input Module 2-12 2.1.3 The Master Module (1 - 8) 2-17 2.1.4 The Stereo Master Module 2-19 2.1.5 The TB (Talkback) Module 2-22 2.1.6 The Monitor Modu[...]

  • Página 6

    Page Sect. Title 6-16 6.15 Stereo Master to Matrix ST Bus: Pre or Post ST Master Fader 6-17 6.16 Installation of Optional Input Transformers 6-18 6.15 Hints on Circuitry For Remote Control of the VCA Masters and Mute Groups Section 7. Operating Notes and Hints 7-1 7.1 Console Gain Structure 7-l 7.1.1 What Is The Proper Gain Structure? 7-1 7.1.2 Wha[...]

  • Página 7

    Section 1 Introduction[...]

  • Página 8

    Section 1. Introduction The PM4000 is a professional audio mixing console with the kind of flexibility, performance and reliability for which Yamaha has earned a worldwide reputation. It picks up where the famous PM3000 left off, with still more functions, a higher level of performance, and a greater degree of versatility than ever before. The cons[...]

  • Página 9

    combined signal through a single bus, which is why full-length Group Master Faders are provided on the PM4000. However, when the VCA Master Faders are used, more than one VCA Master can combine to alter the level of a single input channel. What’s more, the VCA Master Fader, because it affects the input channel directly, can also alter that channe[...]

  • Página 10

    stereo master output. Cue replaces the signal in the headphones and the stereo cue XLR outputs with only those sources whose CUE switches are engaged. The CUE system has input priority so that the operator may normally monitor the cue signal from the stereo bus or the group busses, and can instantly check one or more channel or aux return inputs wi[...]

  • Página 11

    Section 2 Brief Operating Instruction[...]

  • Página 12

    This locking switch assigns the channel output directly to the stereo bus. An LED in the switch turns on when the signal is assigned to the stereo bus. If you want the cleanest, quietest stereo mix, create it by assigning inputs directly to the stereo bus with this switch rather than running signal to group busses and then mixing the groups down to[...]

  • Página 13

    TOM POWER switch is on. An LED in the switch turns on when phantom power is being applied to the channel input connector. When both the Master and this switch are on, +48 volts is applied to both pins 2 & 3 of the channel input XLR connector for remote power- ing of condenser microphones. Although phantom power will not harm most dynamic and ot[...]

  • Página 14

    1 ~ 20 kHz The outer concentric knob sweeps the EQ Fre- quency between 1,000 and 20,000 Hz. -15 ~ +15 dB The inner concentric knob adjusts the gain of the set frequency band by plus or minus 15 dB. A center detent is provided for unity gain. 10. HIGH-MID Q This rotary control adjusts the Q (the bandwidth) of this section of the equalizer from a ver[...]

  • Página 15

    Figure 2-1b. PM4000 Standard Input Module (middle portion of module) NOTE: A signal processor (effects device) can be set up before it is needed, its levels adjusted using the always active INSERT OUT signal, and then the processor can be inserted on cue in the channel’s signal path by pressing this switch. 17. AUX 1 - 8 (Send level & Pre/Off[...]

  • Página 16

    mixing buses, and the inner rotary control on the right serves to PAN that signal between the L & R sides of that stereo pair. When the send is set for dual mono mode, the inner rotary control on the left sets the LEVEL applied to the AUX ST L bus (i.e., LEVEL-L), and the inner rotary control on the right sets the LEVEL applied to the AUX ST R [...]

  • Página 17

    prevents the channel from being muted. Engag- ing this switch ensures the channel will always be on so long as the channel ON switch is also engaged. 25. FADER This long-throw fader sets the level applied to the 8 group mixing busses, and the stereo bus. It also affects any auxiliary feeds which are set to post- fader position. The Fader does not p[...]

  • Página 18

    2.1.2. The Stereo Input Module The PM4000 comes with at least four stereo input modules, located in near the master section. More of these stereo modules can be ordered in lieu of the monaural input modules. Their position in the main- frame is completely interchangeable with the standard input modules (see Section 6 for details). 1S. 1 2 3 4 5 6 7[...]

  • Página 19

    input is available at odd-numbered busses, and the right input at even numbered busses (and, of course, L&R in are available to the L&R stereo bus). In L position, the right input is deactivated, and the left input connector is available to all group busses and the L&R sides of the stereo bus. Similarly, in R position, the right input i[...]

  • Página 20

    This indicators measure signal from the XLRs or from the INSERT IN jacks, whichever are active, as well as after the equalizer. If necessary, use the PAD or decrease the GAIN setting to prevent the LEDs from remaining on any longer than momentarily; otherwise excessive distortion and insufficient fader travel will result. With stereo input sources,[...]

  • Página 21

    NOTE: PM3000 users will notice there is no EQ CLIP indicator. Clipping at this stage can occur even though the input signal is not clipping, due to boost (gain) applied with the EQ circuitry. In the PM4000, clipping in the equalizer is detected and shown on the PEAK indicators [7S] adjacent to the GAIN controls. 13. EQ (In/Out switch) This locking [...]

  • Página 22

    iary mixing bus. When the switch is in the center (OFF) position, no signal is applied to the auxil- iary bus. NOTE: When the input signal select switch [2S] is set to stereo mode, then the left input signal can be assigned to odd-numbered aux busses, and the right input to even numbered busses. With a mono signal-select setting, the same mono sign[...]

  • Página 23

    20S . MT PRE (switch) and L, R (level meters) The channel level meters consist of two rows of 6 LEDs each that display the left and right signal levels from -20 dB u to +6 dBu, plus PEAK (3 dB below clipping). The meters normally indicate the level after the EQ and the channel fader. Engag- ing the METER PRE switch causes the meters to indicate lev[...]

  • Página 24

    Figure 2-3a. PM4000 Master Module (matrix section of module) 2.1.3 The Master Module (1 - 8) These eight modules are identical, except that each controls a differently-numbered set of Group Master, VCA Master and Matrix Output channels. MATRIX SECTION 28. SUB IN This rotary control adjusts the level of the signal from the MTRX SUB IN connector appl[...]

  • Página 25

    Figure 2-3b. PM4000 Master Module (aux send and group sections of module) 33. CUE (Matrix cue) Pressing this switch part-way down causes momentary contact; pressing it further locks it down. When the CUE switch is illuminated, the module’s matrix mix signal (post insert point, pre MTRX MASTER) replaces any other signal in the Cue output and the P[...]

  • Página 26

    GROUP SECTION 39. PAN (group to stereo bus) This pan control is operational only when the adjacent GROUP-TO-ST switch is engaged. It then pans the group signal between the left and right sides of the stereo mixing bus. The signal is derived after the group master fader. 40. GROUP-TO-ST an input CUE switch is engaged. (Bus cue signals are overriden [...]

  • Página 27

    Figure 2-3c. PM4000 Master Module (VCA master section of module) VCA SECTION 46. VCA MUTE Engaging this switch is the equivalent of setting the VCA master fader at maximum kill . The switch is illuminated when the master fader is muted. This affects all input channels assigned to the correspondingly numbered VCA group. The switch enables you to pre[...]

  • Página 28

    2.1.4 The Stereo Master Module This module controls the output of the stereo bus and the two aux stereo busses. Figure 2-4a. PM4000 Stereo Master Module (upper portion of module) 51. CUE (Aux 1 Stereo cue) Pressing this switch part-way down causes momentary contact; pressing it further locks it down. When the CUE switch is illuminated, the aux 1 ma[...]

  • Página 29

    52. ON (Aux 1Master On) Engaging this locking, illuminated switch turns on the Aux 1 master output. When the output is turned off, the feed to the VU meter is also off, although the signal may still be previewed with the adjacent CUE switch [51]. 53. AUX 2 STEREO SEND MASTER SECTION This cluster of controls and switches functions identically to the[...]

  • Página 30

    gether, or they can be operated completely independently if, for example, the stereo bus is used for two discrete mono mixes. 2.1.5 The TB (Talkback) Module 60. TB-TO-MON. B Engaging this switch assigns the Talkback signal to the Monitor B mix. An LED in the switch turns on when it is assigned. NOTE: Normally, you do not want talkback signal assign[...]

  • Página 31

    Figure 2-5b. PM4000 TB Module (middle portion of module) oscillator when it is not actually in use. NOTE: Even though the oscillator may not be assigned to any busses, it is still possible that you would inadvert- ently select it when preparing to use the talkback feature, or that some signal could leak into busses (albeit at low levels). Hence, le[...]

  • Página 32

    supply with an A-B powered mic, in which case you should turn off the TB 48V Switch. corresponding switch here is illuminated. See the meter bridge description in Section 2.1.7 for additional details. 71. (TB INPUT) This XLR-3 connector accepts a low-Z microphone or a line level signal, depending on the settings of the controls below it. Signal fro[...]

  • Página 33

    2.1.6 The Monitor Module 77. SOLO MODE (switch) Figure 2-6a. PM4000 Monitor Module (upper portion of module) Page 2-22 This locking, red, illuminated switch flashes when engaged, indicating the console monitor system is set to the SOLO mode. In this mode, input channel CUE/SOLO switches mute all other channels, much like a recording console SOLO fu[...]

  • Página 34

    81. ON switch (Monitor B On) Engaging this switch applies the Monitor B signal to the Monitor B left and right output connectors. The switch is illuminated when the output is on. Figure 2-6b. PM4000 Monitor Module (middle portion of module) 82. 2TR IN 1, 2TR, IN 2, ST CH3, ST CH4, ST OUT (Monitor A Source Select Switches) These five switches functi[...]

  • Página 35

    90. PHONES (Level control) This 2-gang rotary control adjust the output level at both stereo PHONES output jacks. It affects any signals which may be fed to these outputs. 91. INPUT CUE / SOLO (LED status annunciators) INPUT CUE is a yellow LED that turns on when any input channel’s CUE/SOLO switch is en- gaged, indicating the console is subject [...]

  • Página 36

    2.1.7 The Meter Bridge The PM4000 is equipped with 2 jumbo and 12 or 16 large, illuminated VU meters, depending on the size of the mainframe. Each meter has true VU ballistics to indicate approximate loudness, plus a red "PEAK" LED which responds to instantaneous levels that are beyond the scale of the meter. The PEAK LED turns on 3 dB be[...]

  • Página 37

    96. II (Group/Matrix/Aux meters and indicators) 97. ST L, ST R (Stereo output meters) On 24 and 32 channel mainframes, these four meters monitor the correspondingly numbered busses, as described above in item [95]. In 40 or 48 channel mainframes, these eight meters display the eight group outputs or the eight matrix outputs (redundant with the firs[...]

  • Página 38

    2.2 PM4000 Rear Panel Features All XLR connectors and phone jacks are balanced. Outputs and patch points are +4 dBu level unless otherwise noted. Channel inputs, sub inputs, sub outputs, and primary outputs all rely upon XLR-3 type connectors wired Pin 2=high, Pin 3=low, Pin 1=ground. INSERT IN/OUT points are ¼" (6.33mm) tip/ring/ sleeve conf[...]

  • Página 39

    STEREO INPUT MODLUE INPUT STRIPS Figure 2-8. PM4000 Rear Panels Stereo Channel Input Strip Figure 2-9. PM4000 Rear Panel: Cooling Fans and Lamp Connectors (2 shown) The PM4000 contains three or four cooling fans, depending on mainframe size, distributed across the rear panel. These operate continuously to draw heat away from the internal circuits a[...]

  • Página 40

    109. GROUP SUB IN (1 - 8) These eight female XLR connectors apply signal directly to the group mixing busses (ahead of the Group Insert point and Group Master Faders). They are used for “chaining” another mixing console’s group outputs into this console, with this console serving as the master for both consoles. 110. MTRX SUB IN (1 - 8) These[...]

  • Página 41

    118. GROUP INSERT 1-8 (IN, OUT) These phone jacks serve as a patch point for the signal from the correspondingly numbered group mixing bus. Nominal output and input level is +4 dBu (1.23 V). The OUT jacks may be used as auxiliary group outputs to another console or as a group output to a multitrack tape machine, although the direct output connector[...]

  • Página 42

    122. AUX INSERT 1-8 (IN, OUT) These phone jacks serve as a patch point for the signal from the correspondingly numbered auxiliary mixing bus. They function identically to the insert points for the group mixing bus [118]. 123. AUX ST INSERT 1 L & R (IN, OUT) These four phone jacks serve as a patch point for the signal from the left and right sid[...]

  • Página 43

    PIN Nº 1 2 3 4 5 6 7 8 9 10 11 12 CONNECTOR PINS (FEMALE) FUNCTION PIN Nº FUNCTION VCA EXT 1 13 MUTE EXT 3 VCAEXT 2 14 MUTE EXT 4 VCA EXT 3 15 MUTE EXT 5 VCA EXT 4 16 MUTE EXT 6 VCA EXT 5 17 MUTE EXT 7 VCA EXT 6 18 MUTE EXT 8 VCA EXT 7 19 GND VCA EXT 8 20 GND GND 21 GND NC 22 INPUT CUE EXT MUTE EXT 1 23 SOLO EXT MUTE EXT 2 24 GND Figure 2-13. VCA[...]

  • Página 44

    134. TB OUT This male XLR connector outputs signal from the talkback circuit when the TB OUT switch [64] is on. If that switch is OFF, this output is muted. Assuming the TB OUT switch is on, this output is derived from the talkback input XLR when the TALKBACK switch [74] is engaged. Otherwise the TB OUT is derived from the console’s oscillator/ n[...]

  • Página 45

    2.4 The PW4000 Power Supply Figure 2-16. PW4000 Power Supply (Front and Rear Panels) 141. POWER This alternate-action switch turns on the AC input to the supply, and thereby provides the necessary output voltages to the console via the umbilical power cable. Pressing the switch a second time turns off the power. 142. Operation Monitor This panel of[...]

  • Página 46

    144. DC OUTPUT (Umbilical Connector) This locking, multi-pin connector provides the necessary DC voltages from the PW4000 power supply to the PM4000 console. The cable must be connected correctly before attempting to operate the console. See Figure 2-17 for the pin assignments. CAUTION: Always make certain that the PW4000 power is turned OFF prior [...]

  • Página 47

    Section 3 Specifications[...]

  • Página 48

    Section 3. Specifications PM4000 Mixing Console General Specifications Total Harmonic Distortion <0.1% (THD+N) 20 Hz - 20 kHz @ +14 dBu, 600Ω (Master Output) <0.01% (2nd - 10th harmonics) 20 Hz - 20 kHz @ +14 dBu, 600Ω Frequency Response (Master Output) 0 ± 1/3 dB 20 Hz - 20 kHz @ +4 dBu, 600Ω Hum & Noise (48 Channels) -128 dB Equi[...]

  • Página 49

    VU Meters (0 VU = +4 dBu output) 24 or 32 channel consoles 40 or 48 channel consoles VU Meter Peak Indicators Phantom Power Dimensions (W x H x D) Weight 4 8 Channel 2086 x 346 x 1121 mm 4 0 Channel 1846 x 346 x 1121 mm 3 2 Channel 1586 x 346 x 1121 mm 2 4 Channel 1346 x 346 x 1121 mm 4 8 Channel 183 kg 4 0 Channel 161 kg 3 2 Channel 137 kg 2 4 Cha[...]

  • Página 50

    INPUT CHARACTERlSTlCS Connection PAD Gain Trim Actual load Impedance 0 CH IN 1 ~ [ch (*1) -70 30 ST CH IN 1 ~ 4ch 0 30 -20 SUB IN GROUP (1 ~ 8) STEREO (L, R) AUX (1 ~ 8) AUX ST1, 2 (L, R) CUE (L, R) MTRIX (1 ~ 8) TALKBACK IN -50 +4 INSERT IN CH 1 ~ [ch (*1) ST CH 1 ~ 4ch GROUP (1 ~ 8) STEREO (L, R) AUX (1 ~ 8) AUX ST1, 2 (L, R) MTRIX (1 ~ 8) 2TR IN[...]

  • Página 51

    Dimensional Drawings PM4000 Console (all versions) Page 3-4[...]

  • Página 52

    Page 3-5[...]

  • Página 53

    Page 3-6 PM4000 Console Rear Profiles[...]

  • Página 54

    Module Block Diagrams (See back of the manual for overall system block diagram) Page 3-7[...]

  • Página 55

    Page 3-8[...]

  • Página 56

    Page 3-9[...]

  • Página 57

    Page 3-10[...]

  • Página 58

    Page 3-11[...]

  • Página 59

    Page 3-12[...]

  • Página 60

    Section 4 Installation Notes[...]

  • Página 61

    Section 4. Installation Notes 4.1 Planning An Installation Before installing the PM4000, it is worthwhile considering how it will be used, how it is going to be connected, and what is the best way to implement the installation. To begin with, there must be a surface upon which the console can be mounted. A desk or table top can be constructed to su[...]

  • Página 62

    voltmeter. It is also a good idea to use a special outlet tester that will also indicate reversed polarity, weak or missing neu- tral, and weak or missing ground connec- tions in the outlet. Test the power supply before connecting the umbilical cable to the console. Severe over voltage or under voltage in the powe r mains can damage your equip- men[...]

  • Página 63

    Figure 4-2. Testing a 2-wire AC Outlet and a 3-Prong to 2-Prong Adaptor 4.2. 4 Improperly Wired AC Outlets: Lifted Grounds A "lifted ground" condition exists if the ground or If you detect any voltage between the larger slot (white wire) in an outlet and the ground-terminal (round prong, green wire) when there is no load on that line, you[...]

  • Página 64

    way to ground via the safety ground, instead of via a person’s body. When checking AC power lines at the outlet, be sure you have proper testing tools and some familiarity with the danger of shock hazards from AC power. Follow the dia- gram shown here, being careful not to touch metal with your hands. Do not short the test leads together. If you [...]

  • Página 65

    4.3 Theory of Grouding Grounding is an area of “black magic” for many sound technicians and engineers, and certainly for most casual users of sound systems. Everyone knows that grounding has something to do with safety, and some- thing to do with hum and noise suppression, but few people know how to set up a proper AC power distribu- tion syste[...]

  • Página 66

    Dangerous potential differences can also occur without such shorts. Two individual localized ground points, if they are not directly connected, cannot be assumed to be at the same potential – far from it, in fact. Virtually anyone who has played in a band has, at one time or another, experienced a shock when touching both the guitar and the micro[...]

  • Página 67

    ment. If one of these conditions is not met, then instead of going directly to earth ground and disappearing, these circulating ground loop noise currents (which act like signals) travel along paths that are not intended to carry signals. The currents, in turn, modulate the potential of the signal-carrying wiring (they are super- imposed on the aud[...]

  • Página 68

    are required to implement this approach, since ground is not carried between components. One drawback is that cables may not all be the same – some having shields carried through at both ends, and others not, depending on the equipment – so it becomes more complicated to sort out the cabling upon setup and breakdown of a portable system. Figure[...]

  • Página 69

    end without affecting the audio signal on the two inner conductors of the cable, and with little or no effect on the shielding. Unfortunately, this is not a very practical solution to the ground loop problem for portable sound systems because it requires special cables with shields disconnected on one end. Fortunately, some professional audio equip[...]

  • Página 70

    The PM4000 is fitted with only two types of audio connectors: 3-pin XLRs, both male and female, and 3- circuit (tip/ring/sleeve) ¼” phone jacks (also known as stereo phone jacks, although their function is sometimes to carry a balanced mono signal rather than a stereo signal). 4.4. 1 Types of Cable To Use 2-conductor (twisted pair) shielded cabl[...]

  • Página 71

    Figure 4-12. Cables For Use With Unbalanced Sources NOTE regarding Figure 4-12. For microphone cables, conect the shield to pin 1 at both ends of the XLR cable. For line-level signal cables, cut the shield as illustrated. Page 4-11[...]

  • Página 72

    Figure 4-13. Cables For Use With Balanced Sources Page 4-12[...]

  • Página 73

    designed to recognize only the difference in voltage between the two wires, and (hence the term “balanced differential input”). Should any electrostatic interfer- ence or noise cut across a balanced cable, the noise voltage will appear equally - with the same polarity - on both signal-carrying wires. The noise is therefore ignored or “rejecte[...]

  • Página 74

    where a transformer is desirable even if the input is electronically balanced. For example, where there is a signiftcant amount of electrostatic or electromagneti- cally induced noise, particularly high-frequency high- energy noise (the spikes from SCR dimmers, for ex- ample), the common mode rejection ratio (CMRR) of an electronically balanced inp[...]

  • Página 75

    4.5 Direct Boxes The so-called “direct box” is a device one uses to overcome several of the problems that occur when connecting electric guitars and some electronic key- boards to a mixing console. By using a transformer, the direct box provides important grounding isolation to protect a guitarist from inadvertent electrical shock in the event [...]

  • Página 76

    which is ideal. Each winding, each Faraday shield, and the transformer chassis shield should have separate leads. Figure 4-15. Passive Musical Instrument Direct Box (D.I. Box) Schematic Diagram Notes Regarding Figure 4-15: 1. C1 is a high quality, non-polar aluminum electro- lytic, such as Roederstein type EKU. Voltage rating should be 25 V or high[...]

  • Página 77

    4.5.2 Active Guitar Direct Box The active direct box shown here can be used at the output of a standard electric guitar, with or without an amplifier. Because of its very high input impedance, it can be used with a piezoelectric instrument pickup, taking the place of the preamp that is normally in- cluded with such pickups. This box is not meant fo[...]

  • Página 78

    Before actually mounting the selected components, it is wise to carefully plan out each rack with an eye to signal flow, heat flow, and weight distribution. It might be best to mount together components that function as a group: the equalizer, active crossover and power ampli- fier for a single loudspeaker or array, for example . On the other hand,[...]

  • Página 79

    SECTION 5 Gain Structure and Levels[...]

  • Página 80

    SECTION 5. GAIN STRUCTURE AND LEVELS Page 5-1 5.1 STANDARD OPERATING LEVELS There are a number of different “standard” operating levels in audio circuitry. It is often awkward to refer to a specific level (i.e., +4 dBu) when one merely wishes to describe a general sensitivity range. For this reason, most audio engineers think of operating level[...]

  • Página 81

    5.2 Dynamic Range and Headroom 5.2.1 What Is Dynamic Range? Every sound system has an inherent noise floor, which is the residual electronic noise in the system equipment (and/or the acoustic noise in the local envi- ronment). The dynamic range of a system is equal to the difference between the peak output level of the system and the noise floor. 5[...]

  • Página 82

    Figure 5-1. Dynamic Range and Headroom in Sound Systems Page 5-3[...]

  • Página 83

    5.2. 5 A General Approach To Setting Levels In a Sound System Just because individual pieces of sound equipment are listed as having certain headroom or noise and maximum output capability, there is no assurance that the sound system assembled from these components will yield performance anywhere near as good as that of the least capable component.[...]

  • Página 84

    Remember that with a 20 dB headroom figure, a power amplifier as powerful as 500 watts will operate at an average 5 watts output power. In some systems such as studio monitoring, where fidelity and full dynamic range are of utmost importance, and where sensitive loudspeakers are used in relatively small rooms, this low average power may be adequate[...]

  • Página 85

    dynamic range. Of course, another alternative is available: add more amplifiers and speakers so that the 5.3 Gain Overlap And Headroom desired headroom can be obtained while raising the As explained previously, the PM4000 can deliver average power level. +24 dBu output level, a level which exceeds the input sensitivity of most other equipment. A po[...]

  • Página 86

    Section 6 Optional Functions[...]

  • Página 87

    Section 6. Optiona l Functions The PM4000 is factory wired to suit what Yamaha engineers believe to be the greatest number of applica- tions. Yamaha recognizes, however, that there are certain functions which must be altered for certain specific applications. In designing the PM4000, a number of optional functions have been built in, and can be sel[...]

  • Página 88

    6.1 Removing and Installing A Module Figure 6-1. Removal of PM4000 Module 1. Turn the Power OFF first, before removing or installing a module. 2. Loosen the screws at the top and bottom of the rear panel input/output strip corresponding to the module being removed (except Master section modules). These screws are not retained so be sure to grasp th[...]

  • Página 89

    6.2 Mono Input Direct Out Jack: Pre-Fader or Post-Fader (switch) Pre-ON or Post-ON Switch (jumper) A slide switch in each input module permits the Direct Out point to be altered. As shipped, the console is set so that the Direct Out point is derived after the EQ and Fader (technically speaking, it comes after the VCA which is controlled by the fade[...]

  • Página 90

    6.3 Mono Input Aux Sends: Pre Fader & EQ or Pre Fader/post EQ Ten slide switches in each input module permit each of the eight mono auxiliary sends and the two stereo aux sends to be altered. As shipped, the console is wired so that if the front-panel aux PRE/OFF/POST switch is set to PRE position, the aux send is derived ahead of the the fader[...]

  • Página 91

    6.4 Mono Input Cue/Solo Switch: Pre- Fader or Follow MT PRE Switch so that the take-off point for the cue/solo signal tracks the signal feed to the channel’s LED level meter. In this way, the cue/solo feed will be post-fader (or post- As shipped from the factory, the mono input channel CUE/SOLO switch applies signal to the left and right cue buss[...]

  • Página 92

    6.5 Stereo Input Cue/Solo Switch: Pre- Fader or Follow MT PRE Switch so that the take-off point for the cue/solo signal tracks the signal feed to the channel's LED level meter. In this way, the cue/solo feed will be post-fader (or post-VCA to As shipped from the factory, the stereo channel CUE/ be more exact) until the METER PRE switch is set [...]

  • Página 93

    6.6 Mono & Stereo Input Channel MT POST mode, the meter indicates the level after the PRE Switch: Pre- or Post-ON Switch Fader and the channel ON switch. By chaning the jumpers as indicated, the POST function can be made to Two jumpers in each mono input module (four on each stereo input module) permit the channel level meter’s MT PRE switch [...]

  • Página 94

    6.7 Stereo Input Channel Insert In/Out for example, when one wishes to the send to the signal Jacks: Pre-EQ or Post-EQ processor... for example, to apply the boost prior to compression. However, sometimes one wishes to equal- Four jumpers in each stereo input module permit the two pair of Insert In/Out points to be altered separately. ize equalize [...]

  • Página 95

    6.8 Stereo Input Channel Aux Sends: switch is set to PRE position, the aux send is derived Pre Fader & EQ or ahead of the the fader and equalizer (but after the high Pre Fader/Post EQ pass filter). In situations where it is desirable to apply channel EQ to the send, the internal slide switch for Eight slide switches in each stereo input module [...]

  • Página 96

    6.9 Stereo Input Channel Aux Sends 1-8: L+R Blend or Stereo Pairs and right inputs to the channel. Moving the switch changes the signal take-off points so that the odd- numbered Aux Sends derive signal from the channel’s A single slide switch in each stereo input module left input path, and the even-numbered Aux Sends changes the signal source fo[...]

  • Página 97

    6.10 Stereo Input Channel Stereo Aux Aux Sends each carry discrete left and right signals Sends 1 & 2: L+R Blend or Stereo from the channel input. Moving the switch changes the signal take-off points so that the L and R sides of each Pairs stereo Aux Send both carry the same mono L+R com- A slide switch in each stereo input module changes bined[...]

  • Página 98

    6.11 Stereo Input Channel Feed to Determination of which stereo modules actually Monitor Module ST IN 3 or ST IN 4 contribute to the monitors when the monitor module’s ST IN3 or ST IN4 switch is engaged is dependent on the The Monitor module has provisions for selection and monitoring of signals assigned from the “Stereo In 3” position of a s[...]

  • Página 99

    6.12 Phase Switch Function: Change Polarity of Both L and R inputs, or of L Only As shipped, the Stereo Input Module’s Phase Swich (Ø) [8S], which is really a polarity switch, reverses the polarity of both the left and right inputs to the module. If you wish to alter the polarity of the left input with respect to the right input, you must reset [...]

  • Página 100

    6.13 Stereo Input Module: Output Enable Jumpers to Group, Stereo and Aux Busses The stereo input module may be used as an effects return module. In this case, it could be disastrous if an incoming signal were to be assigned to the bus which is feeding the signal processor whose output is coming into the module. In other words, at the press of the w[...]

  • Página 101

    6.14 Master Module: Group-to-Matrix Assigned Pre or Post Group Master Fader stereo house mix from the eight subgroups, yet you need as many as eight additional mono or five stereo mixes. The mix matrix alone allows for only one stereo and A slide switch in each master module permits the module’s group send to the mix matrix to be altered. As ship[...]

  • Página 102

    6.15 Stereo Master to Matrix ST Bus: Pre or Post ST Master Fader A slide switch in Stereo Master module enables the signal applied to the matrix stereo bus from that module to be derived from two different points. As shipped, the switch is preset so the matrix is fed its signal after the Stereo Master fader [58] so that adjust- ments in the stereo [...]

  • Página 103

    6.16 Installation of Optional Input Transformers The PM4000 standard input module is equipped with a balanced, differential input preamplifier for the XLR connector. That preamp, along with some circuitry for the resistive attenu- ation pads, is located on a small printed circuit board that “piggy back” mounts to the module’s main circuit boa[...]

  • Página 104

    6.15 Hints on Circuitry For Remote Control of the VCA Masters and Mute Groups The VCA/MUTE CONTROL connector on the PM4000 rear panel is provided primarily so that two consoles may be linked, and just one console’s VCA MASTER FADERS and/or MUTE MASTER switches will affect both consoles input channels. However, it is possible to create an independ[...]

  • Página 105

    YAMAHA SUFFIX VALUE OR PART# QUAN ITE M LETTER TYPE UA21410 2 K MYLAR CAPACITOR 0.01 uF, 50 V HU07543 1 F METALIZED FILM RESISTOR 430 ohm, ¼ W HU07610 4 F METALIZED FILM RESISTOR 1 kohm, ¼ W HU07620 1 F METALIZED FILM RESISTOR 2 kohm, ¼ W HU07710 4 F METALIZED FILM RESISTOR 10 kohm, ¼ W HU07712 F 1 METALIZED FILM RESISTOR 12 kohm, ¼ W HU07713 [...]

  • Página 106

    Section 7 Operating Notes and Hints[...]

  • Página 107

    Section 7. Operating Notes and Hints This section is not meant to be comprehensive. Instead, it focuses on a few areas which we feel require special attention, or where a better understanding of the function can lead to far more utility or better sound quality from the PM4000. 7.1 Console Gain Structure In the GAIN STRUCTURE AND LEVELS section of t[...]

  • Página 108

    Given the correct GAIN and PAD settings, adjust the channel Fader to its nominal (0 dB) setting. This setting provides the best range of control, with some boost available if the signal must be raised in the mix, and plenty of resolution for fading the signal down in the mix. Now the channel HP Filter and EQ can be set as desired. If a particular E[...]

  • Página 109

    Fader, which is changeable via internal preset switches; the Group bus calibration must still be done first to establish the proper levels on the group busses ahead of the Group Masters. The same concept applies to the stereo bus.) Here, a similar approach can be used, monitoring the matrix outputs one at a time with the Matrix CUE switch, adjustin[...]

  • Página 110

    7.1.9 Channel Muting and Gain Structure As pointed out earlier, adding inputs to a mix will increase mix levels. If optimum mix levels are estab- lished with some input channels muted, and those channels are later turned on (either with the channel ON/off switch or with the channel MUTE and MASTER MUTE switches), then the bus levels may increase un[...]

  • Página 111

    trolled Amplifier) in the input module. The audio signal flowing through that VCA is, in turn, increased or decreased in level according to the control voltage applied to the VCA. One advantage of the VCA is that the control voltage applied to it can come from more than one point. In fact, when one or more of the input channel’s VCA ASSIGN switch[...]

  • Página 112

    NOTE: Channels and outputs are selected at random in this illustration. The VCA Master Fader controls multiple input channels, and their outputs to all bus- ses (assuming Post-fader AUX sends). There is no single insert IN/OUT point that can process this VCA-controlled group of inputs, however. NOTE: Channels and outputs are selected at random in t[...]

  • Página 113

    On the other hand, if one “pulls down” the conven- tional Group Master Fader in the first example above, the level of the double-assigned input will only drop 3 dB, whereas pulling down a VCA Master Fader will completely kill any input channel assigned to that VCA group. Ultimately, the selection of VCA or conventional Group Master Fader assign[...]

  • Página 114

    The Mix Matrix is Located on the Top portion of Master Modules 1-8 Figure 7-3. Front Panel View and Block Diagram of PM4000 Mix Matrix Page 7-8[...]

  • Página 115

    7.2.4.1 The Mix Matrix In General Sound Reinforcement Instead of feeding the house sound system directly from the Group outputs [130], or the Stereo output [133], the sound system can be fed from the Matrix outputs [131]. The Group busses and Stereo bus would then be used for mixing sub-groups of different sources; i.e., brass, drum/percussion, lea[...]

  • Página 116

    into the corresponding matrix channels, and fed to the house sound system which is driven by the matrix outputs. A related use for the MTRX SUB IN connectors is to inject a test signal for speaker setup and testing. While the PM4000 test oscillator can be assigned to the Group or Stereo busses, which, in turn, feed the matrix, it is likely that the[...]

  • Página 117

    moment the choir is called upon, thus reducing noise, the “hollow” sound from those open mics, and removing the extra stress on the choir members of having to keep absolutely still during the entire service. These are but a few of the ways that the PM4000’s ability to mute overlapping groups of input channels can be used to advantage. NOTE: W[...]

  • Página 118

    7.2.6 Stereo Panning To the Eight Group Mixing Busses The input channel bus assignment is very flexible. One can assign a channel directly to the stereo bus using the ST switch [3], and the PAN pot will place the signal between the left and right sides of that stereo bus. However, if the PAN switch [2] is engaged, then the PAN pot will place the ch[...]

  • Página 119

    Section 8 Applications[...]

  • Página 120

    Section 8. Applications 8.1 General The PM4000 is designed primarily for audio mixing in live sound reinforcement applications. Its exceptional flexibility, however, will undoubtedly appeal to those who need a high quality audio mixing console for other applications, including TV show and music video production, AV audio production, and general rec[...]

  • Página 121

    maintain an ideal S/N ratio while avoiding tape satura- tion. At the same time, the mix matrix can create working mixes of those groups, with levels adjusted for more “listenable” reference monitoring or foldback. Alternately, some of the aux mix busses can be used for performer cue mixes or foldback, while others can be used for effects sends [...]

  • Página 122

    With eight auxiliary sends, and four aux returns, it’s easy to utilize the most sophisticated effects. The aux returns, which can each be used for a mono or stereo source, have two-band, sweep-frequency equalization. If even more returns are needed, input channels may be used (they each have four-band parametric equalization with plenty of overla[...]

  • Página 123

    8.2.2 The Mix Matrix Allows the 8 Groups Plus the Stereo Bus to Function as 10 Subgroups. It is relatively straightforward to use the mix matrix to create up to eight mono outputs or four stereo out- puts from the eight subgroups and the stereo bus. However, it is equally easy to use the stereo bus not to create a stereo mix, but instead to create [...]

  • Página 124

    Figure 8-3. System Diagram For 5 Independent Stereo Output Mixes via the Stereo Bus and the Mix Matrix Page 8-5[...]

  • Página 125

    8.2.4 How to Use the VCA Masters Plus the Group Master Faders to Obtain the Functional Equivalent of 16 Subgroups. Let’s assume the object is to obtain a stereo output (or a pair of mono outputs). Some input channels can be assigned to the Group busses via their assign switches [1]. The eight Group Master Faders [42] then control these eight subg[...]

  • Página 126

    8.2.5 Using More Than One VCA Master to Control the Same Input Channels In Order To Handle Overlapping Scenes. In a multi-scene theatrical presentation, or a multi- set concert, to name a couple of examples, it may be necessary to mix the same input channels at different levels to suit changing stage requirements. Rather than have the console opera[...]

  • Página 127

    Section 9 Maintenance[...]

  • Página 128

    Section 9. Maintenance 9.1 Cleaning The Console 9.1.1 The Console and Power Supply Exterior The console and power supply are painted with a durable finish. To avoid damage to the paint, control knobs, switch caps and other parts, DO NOT USE SOLVENTS. Instead, keep the console as free of dust as practical. Cover it when not in use, and brush or vacu[...]

  • Página 129

    9.2 Meter Lamp Replacement The VU meters and meter-assign indicators are illuminated by LEDs which should not require replace- ment. Contact your Yamaha dealer or service facility should a meter illumination LED fail. 9.3 Where To Check If There Is No Output In general, when something appears not to be working properly in a sound system, it is nece[...]

  • Página 130

    9.4 What To Do In Case of Trouble The PM4000 is supported by Yamaha’s worldwide network of factory trained and qualified dealer service personnel. In the event of a problem, contact your nearest Yamaha PM4000 dealer. For the name of the nearest dealer, contact one of the Yamaha offices listed below. Yamaha Corporation Nakazawa-Cho 10-1, Hamamatsu[...]

  • Página 131

    [...]

  • Página 132

    YAMAHA VN02300[...]