Agilent Technologies 8156A manuel d'utilisation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

Aller à la page of

Un bon manuel d’utilisation

Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation Agilent Technologies 8156A. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel Agilent Technologies 8156A ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.

Qu'est ce que le manuel d’utilisation?

Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation Agilent Technologies 8156A décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.

Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.

Donc, ce qui devrait contenir le manuel parfait?

Tout d'abord, le manuel d’utilisation Agilent Technologies 8156A devrait contenir:
- informations sur les caractéristiques techniques du dispositif Agilent Technologies 8156A
- nom du fabricant et année de fabrication Agilent Technologies 8156A
- instructions d'utilisation, de réglage et d’entretien de l'équipement Agilent Technologies 8156A
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes

Pourquoi nous ne lisons pas les manuels d’utilisation?

Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage Agilent Technologies 8156A ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles Agilent Technologies 8156A et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service Agilent Technologies en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées Agilent Technologies 8156A, comme c’est le cas pour la version papier.

Pourquoi lire le manuel d’utilisation?

Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif Agilent Technologies 8156A, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.

Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation Agilent Technologies 8156A. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.

Table des matières du manuel d’utilisation

  • Page 1

    S S 1 $ JLOHQW7 HFKQRORJLHV $$ WWHQXDWRU2SHU DWLQJ DQG 3U RJU DPPLQJ*X LGH[...]

  • Page 2

    Agilent Technologies GmbH Herrenberger Str. 130 71034 Böblingen Germany Notices Copyright © 1994- 2000 Agilent Technologi es Deutschl and G mbH. All rig hts res erve d. No part o f this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) witho ut prior agreement [...]

  • Page 3

    6DIHW 6XPPDU The followin g genera l safety prec autions mu st be observed du ring all phases of operation of this instrume nt. Failure to comply with the se pre cau tion s or wi th sp eci fic w arnin gs e lse wher e in this manu al vio late s saf ety s tand ards of design , man ufac tur e, and intend ed use of t he instrum ent. Agi lent T ech[...]

  • Page 4

    *528 1'7+ (,16758 0(17 T o min imize shock hazard, the instrument chassis and cover m ust be conne cted to a n elect rical prot ective earth grou nd. The instrument must be conne cted to the ac power mains thr ough a grounde d power cab le, with the ground wir e firmly con nected t o an electr ical ground ( safety grou nd) at the power o[...]

  • Page 5

    2WKHU6 DIHW ,QIRUPDWLRQ • Adjustment s describe d in this manu al are perf ormed w ith power supplied to the instrume nt while pro tective cove rs are remov ed. Be aware t h at energy at m any points, if contacted, r e sult in personal in jury . • Do not install sub stitute parts or p erform any unauthorize d modific ation to the instr u[...]

  • Page 6

    • The following work should b e carried out by a qualified electrician. All loc al electrical codes mu st be strictly observed: If the p lug on the cable does not fit th e power outlet, or if the ca b le is to be a ttached to a terminal block, cu t the cable at the plug end and rewi re it. The co lor coding used i n the cable depend s on th e cab[...]

  • Page 7

    &$87,2 1 The CAUTI ON sign denote s a hazard. It calls at tention to an operat ing pr ocedure , or the like , which, if n ot correc tly perfor med or adhered to, could result in damage to or destruc tion of part or a ll of the pro duct. Do not procee d beyond a CAUTION sign until the indicate d conditi ons are ful ly underst ood and me t. 6DIHW[...]

  • Page 8

    $ERXW 7KLV  0DQXDO 7KH6WUXFWXUHR IWKLV0DQ XDO This manual is divide d into 4 parts: • Chapte r 1 tells yo u how to set up your Atte nuator . • Chapte rs 2 to 6 shows yo u what y ou can do wit h your Att enuator . • Chapte rs 7 to 9 show you how y ou can remot ely progra m you r Attenu ator , using GPI B commands. • The a p[...]

  • Page 9

    6HUYLFH DQG 6XSS RUW Any ad justmen t, main tenan ce, or r epair of this pr oduct m ust be perfo rmed by qu alified personn el. Cont act your customer engin eer throug h your loc al Agilen t T echnologies Se rvice C enter . Y ou can find a li st of local ser vice represent atives on the W eb at: http://www .agilent-t ech.com/ser vices/Engli s[...]

  • Page 10

    [...]

  • Page 11

    11 T able of Contents 1 Getting S ta rted 1.1 Using the Attenuator ..............................................29 Using the Modif y Keys .............. ...................... .................. 29 1.2 Making an Attenuation Sweep .............................. 30 Making an Automatic Sweep ............... ....................... ...... 3 0 1.3 The [...]

  • Page 12

    12 T able of Contents 3.2 The Automatic Sweep ............................................48 Setting Up an Automatic Sweep .............. ....................... ... 48 Executing the Automatic Sweep .............. ...... ...... .............. 50 3.3 The Manual Sweep ................................................. 51 Setting Up a Manual Sweep ....[...]

  • Page 13

    13 T able of Contents 5.3 Selecting the Through-Power Mode ..................... 70 Deselecting the Thro ugh-Power Mode ................... ............ 71 Resetting the Through-Po w er Mode ................ .................. 71 5.4 Setting the Display Bright ness ..............................71 Resetting the Display Brightness ................ .[...]

  • Page 14

    14 T able of Contents 7.3 Returning the Instrument to Local Control ........ 83 7.4 How the Att enuator Receives and Transmits Messages 83 How the Input Queue Wo rks ............... ...................... ......... 83 The Output Queue ......................... ....................... .............. 84 The Error Qu eue ........... ..................[...]

  • Page 15

    15 T able of Contents *TST? ....................... ..... ...... ....................... ...................... . 103 *WAI ....... ...................... ....................... ....................... ...... 104 8.4 DISPlay Commands ................................................104 :DISPlay:BRIGhtness ................ ..... ...... ...... ..... .[...]

  • Page 16

    16 T able of Contents :SYSTem:ERRor? .. ....................... ....................... .............. 122 8.9 User Calibration Commands ................................. 123 Entering the User Calibration Data ................ .................... 123 9 Progra mming Examples 9.1 Example 1 - Checking Communication ................ 131 9.2 Example 2 [...]

  • Page 17

    17 T able of Contents A.6 Monitor Output ......... ............................................. 149 A.7 Optical Output ......................................................150 Disabling the Optical Output ..... ...................... .................. 150 A.8 GPIB Interface ...................................................... 150 Connector ...[...]

  • Page 18

    18 T able of Contents D Performance Tests D.1 Equipment Required .............................................175 D.2 Test Record ............................................................. 177 D.3 Test Failure .............................................................177 D.4 Instrument Specification .......................................177 [...]

  • Page 19

    19 T able of Contents E.5 Cleaning Instrument Housi n gs ............................. 257 E.6 Which Cleaning Procedure should I use ? ...........257 Light dirt ......................... ....................... ....................... ...... 257 Heavy dirt ...... ....................... ....................... ...................... . 257 E.7 How t[...]

  • Page 20

    20 T able of Contents E.15 How to clean instruments with a recessed lens inter- face ..................................................................................265 Preferred Procedure ....... ...... ..... ...... ....................... .............. 266 Procedure for Stubborn Dirt ........... ....................... .............. 266 E.16 [...]

  • Page 21

    21 T able of Contents F.2 GPIB Messages .......................................................276 Command Error s ............. ....................... ....................... ...... 2 76 Execution Errors .. ...... ...................... ....................... ............ 280 Device-Specific Erro rs .................... ....................... .[...]

  • Page 22

    22 T able of Contents[...]

  • Page 23

    23 Lis t of Figu res Figure 1-1 Th e Attenuator Keys .................................. .................................... .......... 29 Figure 1-2 Th e Modify Keys ............ .................................... .................................... . 30 Figure 1 - 3 The Parameters for an Au tomatic Sweep ............ ..........................[...]

  • Page 24

    24 Lis t of Figu res Figure B-2 Angl ed Contact Connect or Configuratio n ........................... ................... 160 Figure D- 1 Total Insertion L oss Test Setup 1, Opt ions 100, 101, 121 ...................... 179 Figure D- 2 Total Insertion L oss Test Setup 1, Opt ions 201, 221 .................... .......... 180 Figure D-3 Tot al Insert[...]

  • Page 25

    25 List of T ables Table 7-1 GPIB Ca pabilities ...................... ........................... .................................... . 82 Table 8- 1 Units and Allowed Mnemonics ............................ ........................... .......... 89 Table 8-2 Common Command Summary .. .................................... ..........................[...]

  • Page 26

    26 List of T ables[...]

  • Page 27

    1 1 Gett in g Started[...]

  • Page 28

    28 Gett in g Started This chapter introdu ces the features of the Agilent T echnologies 8156A. More detail is given on these features in th e following chapters. The main features of the Agilent 8156A, other than its use as an attenuator , are its bu il t-in sweep and back reflector app li cations, its through-p ower mode (which displays the power [...]

  • Page 29

    29 Getting Started Using the Attenu a tor 1.1 Using the Attenuator N O T E Before using the instrume nt , you should make su re that it is properly warmed up. The instrument is properly warmed up when it has been switched on for a minimum of 45 minutes. Failure to do thi s can cause err ors of up to 0. 04dB in the attenu ation. Set the attenuation [...]

  • Page 30

    30 Getting Started Making a n At tenuation Sweep Figure 1-2 The Modify Keys Editing a Num ber Use ⇐ and ⇒ to move the cursor from digit to digit when editing a number . Use ⇑ and ⇓ to chang e the value of a digit when editing a numb er . Editing a Non-Numeric Parameter Use ⇑ or ⇒ to increment the p arameter . Use ⇓ or ⇐ to decr emen[...]

  • Page 31

    31 Getting Started The Ma nual Sweep can edit the parameters fo r the sweep. START is the attenuation factor at which the sweep b egins, STOP is the attenuation factor that ends the sweep, STEP is the size o f the attenuation factor change, and DWELL is the time taken for each attenuation factor . Figur e 1-3 The Parameters for an Automatic Sweep I[...]

  • Page 32

    32 Getting Started Using your Attenuator a s a V ariable Back Reflector 1.4 Using yo ur Attenuator as a V ariable Ba ck Reflector N O T E Befor e using the instrument, you should make sure that it is properly warmed up. The instrument is properly warmed up when it has been switched on for a min imum of 45 minutes. Fa i lure to do this can cause err[...]

  • Page 33

    33 Getting Started Using the T hrough-P o wer Mode 1.5 Using the Through-Power Mode N O T E Before using the instrume nt , you should make su re that it is properly warmed up. The instrument is properly warmed up when it has been switched on for a minimum of 45 minutes. Failure to do thi s can cause err ors of up to 0. 04dB in the attenu ation. In [...]

  • Page 34

    34 Getting Started Selecting the W avelengt h Calibration and It s F unct ion • to reposition the filter so that the attenuation stays constan t, or • to change the attenu ati on factor on the display to sho w the wavelength dependence. Y ou use this to set the wav elength for an unknown source (you alter the waveleng th until the displayed att[...]

  • Page 35

    2 2 Using the Attenuator[...]

  • Page 36

    36 Using the Attenuator This chapter descr i bes the use of the Agilent T echnologies 81 56A as an attenuator . There is an example given at the end of this chapter .[...]

  • Page 37

    37 Using the Attenuator Setting Up the H ardw are 2.1 Setting Up the H ardware T o use the attenuator , you need to s et up the hardware as shown in the figure below . Figure 2-1 The Hardware Configuration fo r th e Attenu ator N O T E Before using the instrume nt , you should make su re that it is properly warmed up. The instrument is properly war[...]

  • Page 38

    38 Using the Attenuator Setting Up the At ten uation 2.2 Setting Up the Attenuation The attenuation can be set in two different ways. This section describes how to set the attenuation by sp ecifyin g the atten uation factor and an offset (called a calibration f act or). “ Selecting the Through -Power Mode ” on pag e 70 des cri bes how t o set t[...]

  • Page 39

    39 Using the Attenuator Setting Up the Att enuation Resetting the Attenu ation Fa ctor T o reset the attenuation factor , press and hold A TT until the value resets (this takes approximately two seconds). The at tenuation factor resets so that the f il ter attenuation is zero, that is Att(dB) = Cal(d B) Entering a Calibration Factor The calibration[...]

  • Page 40

    40 Using the Attenuator Setting Up the At ten uation 1. pres s C AL , and 2. ed i t the factor using th e Modify keys (see “ Using the Modify Keys ” on pa ge 2 9). Resetting the Cali bration Factor T o reset the calibration factor , press and hold C AL until the value resets to zero (this takes approximately two seconds). Th e calibration facto[...]

  • Page 41

    41 Using the Attenuator Setting Up the Att enuation unknown source (you alter the wavelength until the displayed attenu at ion matc hes t he measured attenua tion). There ar e two sets of wavelength calibration dat a, one made in the factory , individuall y , for your instrument. Th e user defines the other . For more d etails on these topics, see [...]

  • Page 42

    42 Using the Attenuator Example, Setting t he Calibration 2.3 Example, Setting the Calibration This example uses the Agilent 8156A Attenuator , with a HP 8153A multimeter with one source and one sen sor . The conn ectors for this system are all HMS-10. W e set u p the hard war e, and measur e the insertio n loss of the system and us e this value to[...]

  • Page 43

    43 Using the Attenuator Example, Sett ing the Calibra ti on N O T E Under normal circumstances you should leave the in struments to warmup. (The multimeter needs around 20 minutes to warmup. The attenuator needs around 45 minutes with the shutter open to warmup.) W arming up is necessary for a ccuracy of the sensor , and the output power of the sou[...]

  • Page 44

    44 Using the Attenuator Example, Setting t he Calibration c. Set the wavelength on the attenuato r to that of the source: i. Press λ . ii. Use the modify keys to edit the value f or the wavelength. d. R eset the calibrati on factor , by press ing and holdin g C AL for two s econds. e. Reset the attenuation factor , by pressing and holdin g A TT fo[...]

  • Page 45

    3 3 Making an At tenuation Sweep[...]

  • Page 46

    46 Making an At tenuation Sweep This chapter describes how to make an attenuation sweep with th e Agilent T echnologies 8156A Attenuator . An example is given at the end of the ch apter .[...]

  • Page 47

    47 Maki ng a n A tt e nua t i on Swee p Configuring th e Hardwa re 3.1 Co nfig uri ng th e Ha rdw are T o use the attenuator for a sweep, you need to set up the h ardware as shown in the f igure below . (This is the con figuration as giv en for simple attenuation in chapter 2). Figure 3-1 The Hardware Configuration fo r th e Attenu ator N O T E Bef[...]

  • Page 48

    48 Maki ng a n A tt e nua t i on S wee p The Automatic Sweep 3.2 The Automatic Sweep An automatic sweep is one where stepping from one attenuation factor to the next is done by the inst rum e nt. Setting Up an Automatic Swe ep There are fou r parameters for the automatic sweep • START is th e attenuation f actor at w hich the s weep begin s. • [...]

  • Page 49

    49 Maki ng a n A tt e nua t i on Swee p The Automatic Sweep Figur e 3-2 The Parameters for an Automatic Sweep Starting the Settin g Up T o select the automatic sweep 1. Press S WP . 2. If it is not already set, use ⇑ or ⇓ to set SWEEP to AUTO . Figure 3- 3 Selecting the Automatic Sweep Appl ication Editing th e Parameters T o ed it th e value o[...]

  • Page 50

    50 Maki ng a n A tt e nua t i on S wee p The Automatic Sweep 6. Edit the valu e of STOP wi th the Modify keys. 7. Press S WP again to g et STEP . 8. Edit the valu e of STEP wi th the Modify keys. 9. Press S WP again to g et DWELL . 10. Edit the v al u e of DWELL with the Modify keys. See “ Using the Modify Keys ” on pag e 29 for information on [...]

  • Page 51

    51 Maki ng a n A tt e nua t i on Swee p The Ma nual Sweep Figure 3- 4 Running the Automatic Sweep If there is something wrong with a parameter ( if STEP is zero, for example), this parameter is shown on the disp lay fo r editin g . Edit the parameter , and p res s E XEC again. Repeating the Sweep When the sweep is finished ( SWEEP READY is shown at[...]

  • Page 52

    52 Maki ng a n A tt e nua t i on S wee p The Ma nual Sweep • STEP is the size of the attenu ati on factor change. This value i s always positive, ev en for a sweep of decreasing att enuation factor . STEP cannot be set to a value greater than the dif ference between START and STOP . Starting the Settin g Up T o select the manual sweep 1. Press S [...]

  • Page 53

    53 Maki ng a n A tt e nua t i on Swee p The Ma nual Sweep Resetting the Parameters T o reset any of the sweep parameters, press and hold S WP until the value reset s (thi s take s appr oxi mat el y two second s). START and STOP reset s o that the filter attenuation ( inside the instrument) is zero, th at is Star t = Cal or Stop = C al See “ Enter[...]

  • Page 54

    54 Maki ng a n A tt e nua t i on S wee p Example, an Auto matic Attenu at ion Sweep Changing the Attenuation in a Manual Sweep T o go to the n ext attenuation factor in the sweep, press ⇑ or ⇒ . T o go to the p revious attenuation factor in the sweep, press ⇓ or ⇐ . 3.4 Example, an Automatic Attenuation Sweep This example uses the Agilent 8[...]

  • Page 55

    55 Maki ng a n A tt e nua t i on Swee p Example, a n Aut o matic Attenu ation Sweep c. Use the Modify keys to set STEP to 0.500d B. 5. Set th e dwel l time. a. Press S WP . b. Use the Modify keys to set DWELL to 1.00s. 6. Execute the sweep a. Press S WP . b. Make sure th e output is enabled (press E NB /D IS u ntil the LED lights). c. Press E XEC .[...]

  • Page 56

    56 Maki ng a n A tt e nua t i on S wee p Example, an Auto matic Attenu at ion Sweep[...]

  • Page 57

    4 4 Using your Attenuator as a V ariable Back Reflector[...]

  • Page 58

    58 Using your Attenuator as a V ariable Back Reflector This chapter descr i bes how you can use y our attenuator as a variable back ref l ector . An example u sing the back reflector kit (option 203 with option 201) is given at the end of the chapter .[...]

  • Page 59

    59 Using your Attenuator as a V ariable Back Reflector Configuring th e Hardwa re 4.1 Co nfig uri ng th e Ha rdw are T o use the attenuator as a back ref lector, you need to set up the hardware as s hown in the figure bel ow . NOTE If this you r first time to use the att enuat or as a back r ef lector , you first need to make some measurements. The[...]

  • Page 60

    60 Using your Att enuator as a V ariable Back Reflector Setting Up the Software 4.2 Setting Up the So ftware There are fou r factors that influence the back reflection o f the attenuator . Th es e are 1. th e insertion loss of the attenu ator ( INS LOSS ), 2. th e retur n loss of the attenuator ( RL INPUT ), 3. the reference return loss you are usi[...]

  • Page 61

    61 Using your Attenuator as a V ariable Back Reflector Setting Up the Software T o s tart setting up the Back Reflector applicatio n 1. Press B ACK R EFL . After pressing this th e firs t para m e ter ( INS LOSS ) is ready to for editing. 2. Edit the v alue i nsert ion lo ss with the Mo dify ke ys. 3. Press B ACK R EFL . 4. Edit the value reference[...]

  • Page 62

    62 Using your Att enuator as a V ariable Back Reflector Example, Setting a Return Lo ss If you ha ve already set up the appl i cation, and are currently operating the instrum ent as an attenuator , 1. Press B ACK R EFL , and then, 2. Press E XEC . Figure 4- 3 Executing the Back Reflector Application The value shown at the top left of the display is[...]

  • Page 63

    63 Using your Attenuator as a V ariable Back Reflector Exampl e, Sett ing a Return Lo ss 1. Configure the hardware as shown in the figure below: Figure 4- 4 Hardware Configuration f or V a riable Return L oss a. Connect the instrum ent to the electric supply . b. Swit ch on the instrument. 2. Res et the ins trum ent. N O T E If someone else is usi [...]

  • Page 64

    64 Using your Att enuator as a V ariable Back Reflector Example, Setting a Return Lo ss[...]

  • Page 65

    5 5 Setting Up the System[...]

  • Page 66

    66 Setting Up the System This chapter describes how to set the va rious system parame ters for your a tt e nuat or .[...]

  • Page 67

    67 Setting Up the System Setting the GPIB Add ress 5.1 Setting the G PIB Address T o set the GPIB address of the attenuator 1. Press S YST . 2. Edit the val u e fo r ADDRESS u sin g t he M odif y ke y s. Resetting the GPIB Address To r e s e t ADDRESS , pre ss a nd hold S YST until the value resets (this takes approximately two s econds). ADDRESS r[...]

  • Page 68

    68 Setting Up the System Selecting the W avelengt h Calibration and It s F unct ion Setting the Function of the W avelength Calibra t ion This compensation can b e used • to reposition the filter so that the attenuation stays constan t, or • to change the attenu ati on factor on the display to sho w the wavelength dependence. Y ou use this to s[...]

  • Page 69

    69 Setting Up the System Selecting the W avelengt h Calibration and It s F unct ion Selecting the W avelength Calibration Data Y ou enter the u s er wavelength calibration data over the GPIB (see “ User Calibration C ommands ” on pa ge 1 23) . Using your own wavelength calibratio n data, you can use the attenuator to compensate for the total wa[...]

  • Page 70

    70 Setting Up the System Selecting the Through-Po wer M ode 5.3 Select ing the Thro ugh-Pow er Mode In the through-power mod e, the instrument sh o ws the power that gets through the attenuator on the disp lay (that is the power at the output) rather than the attenuation. When you select the throu gh- power mode the attenuation facto r ( in dB) bec[...]

  • Page 71

    71 Setting Up the System Setting the Displ ay Brightnes s Deselecti ng the Through-Powe r Mode When you switch the throug h-power mode off, the last set calibration factor becomes active, and the attenuation factor is set so that the filter attenuation does no t change. 1. Press S YST repeatedly u ntil THRUPOWR is sho w n a t th e bott o m of th e [...]

  • Page 72

    72 Setting Up the System Selecting the Setting used at Power-On 5.5 Select ing the Setting used at Power -On This parameter selects the instru m ent setting that is used at power- on. 1. Press S YST repeatedly until P ON SET is shown at the bottom of th e dis pl ay . 2. Use M o di fy key s to se lect the se tt ing. LAST is the setting that was in u[...]

  • Page 73

    73 Setting Up the System Selecting the Shutter State at Power On LOCKOUT means that the shutter cannot be enabled or dis abled (Local Lock Out) wh i le the instrument i s being operated over the GPIB. Resetting the E NB /D IS Loc k Out To r e s e t SHUTTER , press and hold S YS T until the value resets (this takes approximately two s econds). SHUTT[...]

  • Page 74

    74 Setting Up the System Setting t h e Display Resolu tion 5.8 Setting the Di splay Resolutio n This parameter sets the reso lut ion o f the atten uati on fact or and the calibration factor on the screen. 1. Press S YST repeatedly until RESOLUT is show n at t he bot tom of the display . 2. Use M o di fy key s to se lect the se tt ing. 1/100 sets a [...]

  • Page 75

    6 6 Storing and Recalling Settings[...]

  • Page 76

    76 Storing and Recalling Settings This chapter describes how to store instrument settings to memory , and how to re cal l them. A setting consists of the wavelength, calib rat ion and attenuat ion factors, all the application p arameters, and the system parameters with the exceptions of the display resol ution, the power on setting, and the GPIB ad[...]

  • Page 77

    77 Storing and Recalling Set tings Storing the Setting 6.1 Storing the Setting T o s tore the current instrument setting 1. Press S TORE . 2. Select the location wh ere you want to store the sett ing, using th e ⇑ or the ⇓ . 3. Press E XEC . 6.2 Recall ing a Setting Resetting the Instru m ent T o reset the instrument, you should recall the defa[...]

  • Page 78

    78 Storing and Recalling Set tings Recalling a Setting 1. Press R ECALL . 2. Select th e lo cation from which you want to recall the settin g , usin g the ⇑ or th e ⇓ . 3. Press E XEC .[...]

  • Page 79

    7 7 Pr ogramming the Attenuator[...]

  • Page 80

    80 Pr ogramming the Attenuator This chapter gives general inform atio n on how to control the attenuator remotely . Descriptions for the actual commands for the attenuator are given in the following chapters. The in formation in these chapters is specific to the attenuator , and assumes that you are already familiar with pro gramming the GPIB.[...]

  • Page 81

    81 Programming the Attenuato r GPIB Interface 7.1 GPIB Interface The interface us ed by the attenuator is the GPIB (General Purpo s e Interface Bus). This is the interface us ed for communication between a co ntroller and an externa l device, such as the attenuator . The GPIB conforms to IEEE stand ard 488-1978, ANSII standard MC 1.1 an d IEC recom[...]

  • Page 82

    82 Programming the Attenuato r GPIB Interface • The SCPI Co nsortium . Standa r d Command s for Pr ogr ammable Instr uments . Published pe r iodically by various publis hers. T o obtain a copy of this manual, contact y our Agilent T echnologies representative. The attenuator interfaces to the GPIB as defined by the IEEE Standards 488.1 and 488.2.[...]

  • Page 83

    83 Programming the Attenuato r Setting the GPIB Add ress 7.2 Setting the G PIB Address Y ou can on l y set the GPIB address from the f ront panel. See “ Setting the GPIB Address ” on pag e 67. The default GPIB addres s is 28. 7.3 Returning the Instr ument to Local Control If the instr ument has been operated in remote th e only k eys yo u can u[...]

  • Page 84

    84 Programming the Attenuato r How the Attenuator Receives and T ransmits Messages b. Clears Bit 7 (MSB). 2. No modification i s made insi de strings or bi nary blocks. Outside strings and binary blocks, th e following mo difications are made: a. Lower- case characters are converted to upp er-case. b. The characters 00 16 to 09 16 and 0 B 16 to 1F [...]

  • Page 85

    85 Programming the Attenuato r Some No tes ab ou t P rogram ming a nd Synt ax Di agra m Conventions If more than 29 errors are pu t into the queue, the message ’ -350 <Queue Overf low> ’ is placed as the l ast message in th e queue. 7.5 Some Notes about Programming a nd Syntax Diagram Conventions A program mess age is a message containing[...]

  • Page 86

    86 Programming the Attenuato r Some No tes ab ou t P rogram min g a nd Synt ax Di agra m Conventions The first colon can be left out for the first command or query in your message . That is, the example given above could also be sent as INP:WAV 1313 . Command an d Query Syntax All characters not b et ween angled br ackets must be sent exactly as sh[...]

  • Page 87

    8 8 Remote Commands[...]

  • Page 88

    88 Remote Commands This chapter gives a list of the remote commands, for use with the GPIB. In the remote co mmand descriptions the par t s given in upp er-case characters must be given. The parts in lower -case characters can also be given, bu t they are optional.[...]

  • Page 89

    89 Remote C ommands Units 8.1 Units The units and all the allowed mnemonics are given in the table below . T able 8-1 U nit s and Allowed Mnemo nics Where units are specified w ith a command, only the Default is shown, by the f ull range of mnemonics can be used. 8.2 Command Summary T able 8-2 Common Co mmand Sum mary Unit Default Allowed Mnemonics[...]

  • Page 90

    90 Remote C ommands Command Summary T abl e 8- 3 Com mand Li st *OPC? <value> Operation Complete Query *OPT? <string> Option s Query *RCL <location> 0 9 Recall Instrument Settin g *RST Reset Command *SAV <location> 1 9 Save Instrument Setting *SRE <value> 0 255 Service Request Enab le C ommand *SRE? <value> 0 255[...]

  • Page 91

    91 Remote C ommands Command Summary :LCMode OFF | ON | 0 | 1 :LCMode? 0 | 1 :INPut :OFFSet <value>| MIN | DE F | MAX DB -99. 999dB 99.999d B 0.000dB :DISPlay :OFFSet? <value> DB :OFFSet? MIN <value> DB :OFFSet? DEF <value> DB :OFFSet? MAX <value> DB :INPut :WAVelength <value>| MIN | DE F | MAX M 1200n m 1650 nm 1[...]

  • Page 92

    92 Remote C ommands Command Summary [ :STATe ] OFF | ON | 0 | 1 [ :STATe? ] 0 | 1 :APOWeron DIS | LAST | 0 | 1 :APOWeron? 0 | 1 :STATus :OPERation [ :EVENt ] ? <value> :CONDition? <value> :ENABle <value> :ENABle? <value> :NTRansition <value> :NTRansition? <value> :PTRansition <value> :PTRansition? <value[...]

  • Page 93

    93 Remote C ommands The Com mon Co mmands † These are specified mini mum and maximum values, with the calibration factor ( :INPut:OFFSet ) s et to zero. Actual values depend on the instrument, and the calibrati on factor . ‡ These values are interd ependent start va lue + (( number ofstep-1 ) × step va l ue ) ≤ 1650 nm 8.3 The Common Command[...]

  • Page 94

    94 Remote C ommands The Com mon Co mmands The following figure s h ows how the registers are or ganized. Figur e 8-1 Co m mon Status Regi sters * The questionable and operatio n status trees are described in “ ST A Tus Co mmands ” on page 1 14. N O T E Unused bits in any of the r egisters return 0 when you read them. SRQ, T he Se rvice Reque st[...]

  • Page 95

    95 Remote C ommands The Com mon Co mmands poll. The RQS bit is not af fected by the condition that caus ed the SRQ. The serial poll comman d transfers the value of the Status Byte register to a var i able. *CLS Syntax *CLS Definition The *CLS comman d clears the following: • Error queue • Standard event status register (ESR) • Status byt e re[...]

  • Page 96

    96 Remote C ommands The Com mon Co mmands • By sending a v alue of zero The register is not changed by the *RST and *CLS commands. T able 8 -4 The Event Status Enab le Register *ESE? The standard event status enable query r et urns the contents of the standard event status enable register . Example OUTPUT 728;"*ESE 21" OUTPUT 728;"[...]

  • Page 97

    97 Remote C ommands The Com mon Co mmands T able 8- 5 The Stan dard Event St at u s R egi st er Example OUTPUT 728;"*ESR?" ENTER 728; A$ *IDN? Syntax *IDN? Definition The identification qu ery commands the instrument to id entify itself over the interface. Respon se: HEWLETT-PACKARD, HP8156A, mmmmmmmmmm, n.nn Example DIM A$ [100] OUTPUT 7[...]

  • Page 98

    98 Remote C ommands The Com mon Co mmands *OPC Syntax *OPC Definition The instrument parses and executes all program message units in the in put queue and sets the operation complete bit in the stan dard event status register (ESR) . This command can be used to avoid filling the input queue before the previous commands have finished executing. *OPC[...]

  • Page 99

    99 Remote C ommands The Com mon Co mmands (High per formance, high return loss version), the string r eturned is High Performance, 0, High Return Loss . Example OUTPUT 728;"*OPT?" ENTER 728;A$ *RCL Syntax *RCL <wsp> <location> 0 ≤ location ≤ 9 Definition An instrument setti ng from the internal RAM is made the actu al inst[...]

  • Page 100

    100 Remote C ommands The Com mon Co mmands • Service request enable reg i ster (SRE) • Standard event status enable r egister (ESE) The commands and parameters of the res et state are listed in the following table. T able 8-6 Reset State (Default Setting) Example OUTPUT 728;"*RST" *SA V Syntax *SAV <wsp> <location> 1 ≤ l[...]

  • Page 101

    101 Remote C ommands The Com mon Co mmands Definition The instrument setting is sto red in RAM. Y ou can store settin gs in locations 1-9. The scop e of the saved setting is iden tical with the scope of the standard setting d escribed i n “ *RST ” on page 99 . Example OUTPUT 728;"*SAV 3" *SRE Syntax *SRE <wsp> <value> 0 ?[...]

  • Page 102

    102 Remote C ommands The Com mon Co mmands N O T E Bit 6 cann ot be mas ked. *SRE? The service request enab le query returns the contents of t he service reques t enable register . Example OUTPUT 728;"*SRE 48" OUTPUT 728;"*SRE?" ENTER 728; A$ *STB? Syntax *STB? Definition The read status byte query returns the contents of the st[...]

  • Page 103

    103 Remote C ommands The Com mon Co mmands *TST? Syntax *TST? Definition The self-test query comm ands the instrument to perform a self-test and place the results of the test in the ou tput queue. Returned valu e: 0 ≤ value ≤ 65535. This value is the sum of the results for the individual tests T abl e 8-9 The Se lf T est Resul ts So 16 would me[...]

  • Page 104

    104 Remote C ommands DISPlay Comma nds The self-test does no t require op erator interaction beyond send ing th e *TST? query . Example OUTPUT 728;"*TST?" ENTER 728; A$ *W AI Syntax *WAI Definition The wait-to-continue co mmand prevents the instrum ent from executing any further commands, all pending operations are completed. Example OUTP[...]

  • Page 105

    105 Remote C ommands DISPlay Comma nds Des cript ion The quer y ret urns th e brig htne ss o f th e di spla y , where 0 means leas t brightness, and 1 means full br ightness . Example OUTPUT 728;":DISP:BRIG 0.5" OUTPUT 728;":DISP:BRIG?" ENTER 728;A$ :DISPlay:ENABle Syntax :DISPlay:ENABle <wsp> OFF | ON | 0 | 1 Des cript io[...]

  • Page 106

    106 Remote C ommands INPut Co mman ds 8.5 INPut C ommands :INPut:A TT enuation Syntax :INPut:ATTenuation <wsp> <value>[ DB ]| MIN | DEF | MAX Des cript ion This command sets the attenuation factor for the instrument. The attenuation factor is used, with the calibratio n factor (see ) to s et the filter attenuation. Attenuation fi lter ([...]

  • Page 107

    107 Remote C ommands INPut Co mman ds OUTPUT 728;":INP:ATT?" ENTER 728;A$ :INPut:LCMode Syntax :INPut:LCMode <wsp> OFF | ON | 0 | 1 Des cript ion This comm and s ets the func tion of the wavelength calibration. That is, whethe r the wavelength calibration data is to be used to reposition the filter to keep the attenuation factor con[...]

  • Page 108

    108 Remote C ommands INPut Co mman ds Des cript ion This command s ets the calibration factor for the instrument. This factor does not af fect the filter attenuation. It is used to offset the values for the attenuation factor . The calibration factor is used, with the attenuation factor (see “ :INPut:A TT enuation ” on page 106) to set t h e at[...]

  • Page 109

    109 Remote C ommands INPut Co mman ds Des cript ion This command s ets the calibration factor for the instrument from the current attenuation factor . The fil ter attenuation is not affected. The offset is set so that the attenuation factor becomes zero. Cal NEW (dB) = -Att filter (dB) = Cal OL D (dB) - Att OLD (dB) Example OUTPUT 728;":INP:OF[...]

  • Page 110

    1 10 Remote C ommands OUTPut Co mman ds The minimum value for the wavelength is 1200nm. The default value is 1310nm. The maximum value is 1650nm. :INPut:W A V elen gth? Syntax :INPut:WAVelength? [<wsp> MIN | DEF | MAX ] Des cript ion The query r et urns the current wavelength, in meters. By sendi ng MIN , DEF , o r MAX wi th the query the min[...]

  • Page 111

    111 Remote C ommands OUTPut Commands calibration factor (see ) to set the attenuation factor to the required value for use as the base value for t he through-power Cal New = (Thr ough - Power Base - Att) + Ca l Current When you switch the abso lu te power mode OFF , the last set calibratio n factor becomes active, and the attenuation factor is set [...]

  • Page 112

    1 12 Remote C ommands OUTPut Co mman ds Example OUTPUT 728;":INP:ATT?" ENTER 728; Att OUTPUT 728;":INP:OFFS?" ENTER 728; Cal Newcal = Basepow - Att + Cal OUTPUT 728;":INP:OFFS ";Newcal OUTPUT 728;":OUTP:APM ON" OUTPUT 728;":OUTP:APM?" ENTER 728;A$ :OUTPut:POW er Syntax :OUTPut:POWer <wsp> <[...]

  • Page 113

    113 Remote C ommands OUTPut Commands :OUTPut:POW er? Syntax :OUTPut:POWer? [<wsp> MIN | DEF | MAX ] Des cript ion The query r eturns the current thro ugh-power , in dBm. ThroughPow er(dBm ) = Through Powe r Bas e (dBm ) + Att filter@Bas e ( d B )-A t t filter (dB ) By send ing MIN , DEF , or MAX with the query the mini mum, default or maximum[...]

  • Page 114

    1 14 Remote C ommands ST A T us Comma nds :OUTPut:[:S T A T e]:A POW eron Syntax :OUTPut[:STATe]:APOWeron <wsp> DIS | LAST | 0 | 1 Des cript ion This command sets the state of the output shutter at power on, that is , whether it is clo sed, or takes the state at po w er- off. DIS or 0 closes the sh utter at po wer on, and n o power gets thr o[...]

  • Page 115

    115 Remote C ommands ST A T us Comma nds • A condition register (COND itio n), which contains the current status.This reg ister is updated continuously . It is not changed by having its contents read. • The event r egister (E VENt), which co ntains the output from the transition registers. The contents o f this reg ister are cleared when it is [...]

  • Page 116

    1 16 Remote C ommands ST A T us Comma nds Figure 8-2 The Status Registers :ST A T us:OPERation:CONDition? Syntax :STATus:OPERation:CONDition? Des cript ion This query reads the contents of the OPERation:CONDitio n register . Only three bits of the condition register are used: • Bit 1, which is 1 when the motor that positions the attenuator f ilte[...]

  • Page 117

    117 Remote C ommands ST A T us Comma nds • Bit 7, which is 1 after the instr u ment has repositioned the attenua tor filter due to a change in temper at ure. Example OUTPUT 728;":STAT:OPER:COND?" ENTER 728;A$ :ST A T us:OPERation:ENABle Syntax :STATus:OPERation:ENABle <wsp> <value> Des cript ion This command sets the bits in[...]

  • Page 118

    1 18 Remote C ommands ST A T us Comma nds • Bit 1, which is 1 when the motor that positions the attenuator f ilter is s ettling. • Bit 3, which is 1 while the ins tr umen t is performing an attenuation sweep. • Bit 7, which is 1 after the instr u ment has repositioned the attenua tor filter due to a change in temper at ure. Example OUTPUT 728[...]

  • Page 119

    119 Remote C ommands ST A T us Comma nds Des cript ion This command sets the bits in the P TRansition register . Setting a bit in this register enables a positive t ransition (0 → 1) in the cor responding bit in the CONDitio n register to set the bit in the EVENt register . :ST A T us:OPERation:P TRansition? Syntax :STATus:OPERation:PTRansition? [...]

  • Page 120

    120 Remote C ommands ST A T us Comma nds a bit in this register to 1 enables the corresponding bit in the EVENt reg ister to affect b i t 3 of the Status Byte. :ST A T us:QUEStionable:ENABle? Syntax :STATus:QUEStionable:ENABle? Des cript ion This query retur ns the current contents of the QUEStionable:ENABle regist er . Example OUTPUT 728;":ST[...]

  • Page 121

    121 Remote C ommands ST A T us Comma nds Des cript ion This command sets th e bits in th e NTRansition register . Setting a bit in this register enables a negative transitio n (1 → 0) in the corr espond ing bit in the CONDitio n register to set the bit in the EVENt register . :ST A T us:QUEStionable:NTRansition? Syntax :STATus:QUEStionable:NTRans[...]

  • Page 122

    122 Remote C ommands SYST em Com mands OUTPUT 728;":STAT:QUES:PTR?" ENTER 728;A$ :ST A T us:PRESet Syntax :STATus:PRESet Des cript ion This command pr esets all the enable registers and transition filters for both the OPERatio n and QUEStio nable nodes. • All the bits in th e ENABle r egisters are s et to 0 • All the bits in the P TRa[...]

  • Page 123

    123 Remote C ommands User Calibration Command s Example OUTPUT 728;":SYST:ERR?" ENTER 728;A$ 8.9 User Calibration Comm ands Entering user calibration da ta can only be done over the GPIB. Th is is done us ing the commands d escribed here. Enteri ng the User C alib ration Data T o enter the data for the user calibration data, you will need[...]

  • Page 124

    124 Remote C ommands User Calibration Command s This is done with the :UCALibration:STARt command 10. λ = λ Start 1 1. Rep eat th e follo win g steps until λ > λ Stop . a. Set λ on the tunable l aser source, the attenuato r and the powe r me t er . b. Read the power ( Power ). c. Power = -Power . d. Set th e us er cali bratio n value to Pow[...]

  • Page 125

    125 Remote C ommands User Calibration Command s The error -2 21 indicates that there is a conflict inherent in the start parameters fo r the user calibration. That is, the s t art_value and/o r step_value is inv a lid . The error 201 indicates that the u ser calibration is currently o n , and calibration data cannot be changed. Switch the u s er ca[...]

  • Page 126

    126 Remote C ommands User Calibration Command s Switch the state off (u sing OFF or 0 ) to use the factory-made calibr ati on. Switch the state on (usin g ON or 1 ) to use the user calibr atio n data. N O T E If you ar e using the instrum ent in an environment wher e the temperature changes , you should not use the user wavelength calibration data,[...]

  • Page 127

    127 Remote C ommands User Calibration Command s The value that you send with this command, is the attenuation for t he next calibr ation point . The wavelength of the calibration point is updated automatically . The first piece of data is for the start wav el ength specified by the :UCAL:START command. T he default value for the value is dB. The va[...]

  • Page 128

    128 Remote C ommands User Calibration Command s[...]

  • Page 129

    9 9 Pr ogramming Examples[...]

  • Page 130

    130 Pr ogramming Examples This chapter gi ves some programming examp les. The language used for the programming is BASIC 5.1 L anguage System used on HP 9000 Series 200/30 0 computers. These programmin g examples do not cover th e full command set for the instrument. They are intended only as an introduc tion to the method o f programming the i nst[...]

  • Page 131

    131 Programm i ng Examples Exampl e 1 - Checking Comm unication 9.1 Example 1 - Checking Communicati on Function This program s ends a queries, and d i splays the reply . List ing 10 !------------------------------------ 20 ! 30 ! Agilent 8156A Programming Example 1 40 ! 50 ! A Simple Communications Check 60 ! 70 !----------------------------------[...]

  • Page 132

    132 Programm i ng Examples Example 2 - Status Registers a nd Queues 9.2 Example 2 - Status Registers and Queues Function This program s ends a commands and quer ies typed in by the user . The contents of the s tatus byte and the stan dard event status regis ter are displayed. These registers are upd at ed for each new command, and each time a Servi[...]

  • Page 133

    133 Programm i ng Examples Example 2 - Status Registers an d Queues 340 PRINT TABXY(4,10); "^^^^^^^^ " 350 PRINT TABXY(4,11); " +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+" 360 PRINT TABXY(4,12); " ::::::::: " 370 PRINT TABXY(4,13); " +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+" 380 PRINT TABXY(4,14); " PON URQ CME EXE DDE QY[...]

  • Page 134

    134 Programm i ng Examples Example 2 - Status Registers a nd Queues 890 Value=Value-Bit 900 ! 910 ! If MAV is set, then get and display the output que ue contents 920 ! 930 IF Z=0 THEN 940 IF Bit=16 THEN 950 ENTER Att;A$ 960 PRINT TABXY(21,18);A$ 970 END IF 980 END IF 990 ! 1000 ! If the bit is not set, then display 0 1010 ! 1020 ELSE 1030 PRINT TA[...]

  • Page 135

    135 Programm i ng Examples Exampl e 3 - Mea suring and I ncluding th e Insertion Los s 9.3 Example 3 - Measuri ng and Including the Insert ion Lo ss Function This pr o gram pe rform s the sam e seq u ence as th e samp le sess ion given in chapter 1. That is, to measure the in ser tio n loss of the attenuator , and put this in to the calib rat ion f[...]

  • Page 136

    136 Programm i ng Examples Example 3 - Mea suring and I ncluding th e Ins ertion Loss b. Connect both instruments to the electric s upply . c. Switch on both ins truments. N O T E Under normal circumstances you should leave the instruments to warmup. (The multimeter needs around 20 minutes to warmup. T he attenuator needs around 45 minutes with the[...]

  • Page 137

    137 Programm i ng Examples Exampl e 3 - Mea suring and I ncluding th e Insertion Los s List ing 10 !------------------------------------ ----- 20 ! 30 ! Programming Examp le 3 40 ! 50 ! Measuring the Ins ertion Loss and using it as a Cal factor 60 ! 70 !------------------------------------ ----- 80 ! 90 ! Definitions and I nitializations 100 ! 110 [...]

  • Page 138

    138 Programm i ng Examples Example 3 - Mea suring and I ncluding th e Ins ertion Loss 530 ! 540 OUTPUT Mm;"sour2:po w:stat on" 550 OUTPUT Att;"outp on " 560 ! 570 ! Read in the power now (the insertion loss of the atte nuat or) 580 ! and put it into t he calibration factor on the attenuator. 590 ! 600 OUTPUT Mm;"read1:po w?[...]

  • Page 139

    139 Programm i ng Examples Example 4 - Runni ng an Attenua t ion Sweep 9.4 Example 4 - Running an Attenuation Swe ep Function W e set up th e instrument to sw eep from 0dB to 5dB with an interval of 0.5dB, dwelling for a second at each attenuation factor . The requiremen t s are an Agilent 815 6 A Attenuator . List ing 10 !-------------------------[...]

  • Page 140

    140 Programm i ng Examples Example 4 - Runni ng an Attenua tion Sweep[...]

  • Page 141

    A A Installation[...]

  • Page 142

    142 Installation This appendix provides installati on instructions for the atten uator . It also includes information about initial inspection and damage claims, preparation for use, packaging, storag e, and shipment.[...]

  • Page 143

    143 Installation Safety Co n siderations A.1 Safety Consid erations The attenuator is a Class 1 in strument ( that is, an instrument w ith an exposed metal chassis directly connected to earth via th e power supply cable). The symbo l used to show a pro tectiv e earth terminal in the instrume nt is Before oper ati on, review the instrument and man u[...]

  • Page 144

    144 Installation AC Line Power Suppl y Requirements A.3 AC Line Power Supply Requ irements The Agilent T echnologies 8156A can operate f rom any single- phase AC power source that s upplies between 100V and 240V at a frequency in the range from 50 to 60 Hz. The maximum power consumption is 40V A with all options inst alled. Line Power Cabl e In acc[...]

  • Page 145

    145 Installation AC Line Power Suppl y Requirements • Befor e switching on the instrument, the protective earth terminal of the instrument must be connected to a protective co n ductor . Y ou can do this by using the power cord supplied with the instrument. • It is prohibited to interrupt the pr otective earth connection intentiona lly . The fo[...]

  • Page 146

    146 Installation AC Line Power Suppl y Requirements Replacing the Battery This instrument co ntains a lithium battery . Replacing theb attery should be carried out only by a qualified electrician or by Agilent T echnologies service personnel. There is a danger of ex plos ion if the battery is incor rectly rep laced. Replace only with the s ame or a[...]

  • Page 147

    147 Installation AC Line Power Suppl y Requirements Figure A-3 Releasing the Fuse Holder 2. Pu ll the fuse holder out of the in str ument. Figure A-4 The Fuse Holder 3. Check and replace the fus e as necessary making sur e that the fuse is always in the top position of the fuse hol der, and th e bri dge is in th e botto m. 4. Place the fuse holder [...]

  • Page 148

    148 Installation Operating and Storage Envir onment A.4 Operating and Storage Envir onment The following summar izes the Agilent 8156A operating environment r anges. In order for t he attenuator to meet specifications, the operating environment must be within these limits. WA R N I N G The Agilent 8156A is not designed for outdoor use. T o prevent [...]

  • Page 149

    149 Installation Switching on the Attenuator rear , and at least 25mm (1inch) of clearance at each side. Failure to provide adequate air clear ance may result in excessive internal temperature, redu cing instrument reliability . Figu re A-5 Correc t Posi t io n i ng o f the A tte nuat or A.5 Sw itching on the Attenuator When you switch on th e atte[...]

  • Page 150

    150 Installation Optical Output coupling ratio, and its wavelength d e pendence, for the Mon ito r Output yourself. A.7 Opti cal Output C A U T I O N The attenuator is supplied with either a straight conta ct connector or an angled con tact connect or (Option 20 1). Make sur e that you only use the correct cables with your chosen output. See “ Co[...]

  • Page 151

    151 Installation GPIB Interface Connector The following fig u re shows the connector and pi n assignments. Conne c tor Part N umbe r: 12 51 -0 293 Figur e A-6 GPIB Connector C A U T I O N Agilent T echnologies products deliver ed now are equipped with connectors ha ving ISO me t r ic- thread ed lo ck screws and stud mo unts (ISO M3.5 × 0.6 ) that [...]

  • Page 152

    152 Installation Claims and Repacka ging GPIB Logic Levels The attenuator GPIB lines use st andard TTL logic, as follows: • T r ue = L ow = d igi tal gr oun d or 0V dc t o 0.4 Vdc • Fals e = High = op e n or 2. 5Vdc to 5V dc All GPIB lines have LOW assertion states. High states are held at 3.0Vdc by pull-ups with in the instrume nt. When a line[...]

  • Page 153

    153 Installation Claims and Repacka ging 1. W r a p ins tru me nt in h eavy pap er or pl a stic . 2. Use strong shipping cont ainer . A double wall carton m ade of 350-pound test material is adequate. 3. Use enough shock abs orbing mater ial (3 to 4 inch layer) aroun d all sides of the instrum ent to provide a firm cushion and prevent move m ent in[...]

  • Page 154

    154 Installation Claims and Repacka ging[...]

  • Page 155

    B B Accessories[...]

  • Page 156

    156 Accessories[...]

  • Page 157

    157 Accessories Instrume nt and O pt ions B.1 Instrument and Op tions T able B-1 Mainframe * Kit consists of 1 ea Agilent 81000SI, Agilent 8 100 0FI, Agilent 811 13PC, Agilent 81000UM, Agilent 81000BR B.2 GPIB C ables and Adapters The GPIB connector is comp at ible with the connectors on the following cables and ad apters. • GPIB Cable, 10833A, 1[...]

  • Page 158

    158 Accessories Connector Interfaces and Other Acces sories • GPIB Cable, 108 33D, 0.5 m (1.6 ft.) • GPIB Adapt er , 10834A, 2. 3 cm extender . B.3 Connector Interf aces and Other Access ories The attenuator is supplied with one of three connector interface options. • All options other than option 201 are supplied with a straight contact conn[...]

  • Page 159

    159 Accessories Connector Interfaces and Other Acces sories Figure B-1 Straight Contact Co nnector Con figuration T able B-2 Connector Interface Description Agilen t Model No. Biconi c 81000WI D4 81000 G I Diamond HMS-10/HP 81000AI DIN 47 256 81000 SI FC/P C 81000FI SC 81000 KI ST 81000 VI[...]

  • Page 160

    160 Accessories Connector Interfaces and Other Acces sories Option 201, Angled Contact Connector If you want to use angled contact connectors (such as FC/APC, Diamond HRL-10, DIN, o r SC/APC ) to connect to the instrument , you mu st 1. attach your connector interface (see the list o f connector interfaces below) to the inter face adapter, 2. then [...]

  • Page 161

    161 Accessories Connector Interfaces and Other Acces sories T able B-3 Connector Interface Description Agilent Model No. Diamond HR L-10 (DIN) 81000SI FC/APC 81000FI SC/APC 81000KI[...]

  • Page 162

    162 Accessories Connector Interfaces and Other Acces sories[...]

  • Page 163

    C C Specifications[...]

  • Page 164

    164 Specifications[...]

  • Page 165

    165 Specifications Definition of T erms C.1 Definition of T erms Attenuation accuracy The dif ference between the displayed loss a n d → excess loss. Conditions : Attenuation adjustment prior to measureme nt. That is, adjustment of the measu red attenuation at the highest s etting so that it equals the attenuation settin g, for example by adjusti[...]

  • Page 166

    166 Specifications Definition of T erms Measur ement: either with a fib er-loop type polarization controller using the polarization scanning method, or with a wavelength type polarization controller using the Mueller met hod. Polarization mode dispersion The change o f transit time caused by changing the i nput polarization state, expres s ed in fs[...]

  • Page 167

    167 Specifications Specifications C.2 Specificat ions Specifications describe the in s trument ’ s warranted perfor mance. Supplementary per formance characteristics describe the instrumen t ’ s non-warranted typical performan ce. Specifications are measured at 1310nm and 1550n m using a laser source, si ngle -mode fibe r and Agile nt 81000A I [...]

  • Page 168

    168 Specifications Specifications • [2] Includes insertion lo ss of two HMS-10 connectors . T ypical variation over tem perature range <0.3dBpp. • [3] Measured at constant temperature. • [4] W ith narrow lin ewid th lasers, such as DFB lasers, power fluctuations up to 0.2dBpp may occur . T ab le C -2 Moni t or Outp ut Opti ons • [1] T yp[...]

  • Page 169

    169 Specifications Specifications T abl e C-3 Mul timod e Optio ns • [1] T ypical, depends on performan ce of external connector • [2] Includes insertion lo ss of two HMS-10 connectors . T ypical variation over temp erature range <0.3dBpp. • [3] Measured at constant temperature. Supplementary Performance Character istics Minimum Attenuatio[...]

  • Page 170

    170 Specifications Specifications λ : Entering of wavelength for automatic correction of attenuatio n using typical correction values. Cal: Of fset factor to adjust the attenuation factor on the display within ± 99.999dB rang e. Disp → Cal: Sets attenuation value on the dis pl a y to 0.0 00d B. Swp: Manual or automatic up or down attenuation sw[...]

  • Page 171

    171 Specifications Other Specifications Install at i on Cate go ry (IEC 664 ) II Pollution Degree (IE C 6 64) 2 Specifications valid at non-cond ensing cond itio ns. Power: 100/1 10/ 220/240V rms , ± 10%, 90V A max, 48-400Hz. Battery Ba ck-Up: (for non-vo latile m em ory) W ith the instrument s witched off all current modes and data will b e maint[...]

  • Page 172

    172 Specifications Declaration o f Conformity C.4 Declaratio n of Conformity Manufacturer: Agilent T ech nologies Deutsch land Gm bH Optical Communication Measurem ent Divis ion Herrenber ger Str . 130 D-71034 B ö blingen W e declare t he system Pr oduct Name: Optical Attenuator Model Numb ers: 8156A Pr oduct Options: Al l conf orms t o the fo llo[...]

  • Page 173

    D D Performance T ests[...]

  • Page 174

    174 Performance T ests The procedu res in this section test t he optical perfo rmance of the instrument. The complete specifications to which the Ag ilent T echnologies 8156A is tested are given in Appendix C. All tests can be perfo rmed without access to the interior of the i nstrument. The perform ance tests referspecifically to tests us ing the [...]

  • Page 175

    175 Performan ce T ests Equipment Required D.1 Equipment Required The equipment required for the performance test is listed in the table below . Any equipment which satisfies the critical specifications of the equipm ent given in the table, may be substituted for the reco mmen ded models.[...]

  • Page 176

    176 Performan ce T ests Equipment Required T able D-1 Equipment Re quired for the Agilent 8156A (131 0 /1550nm) Instrument/Accessory Recommende d HP/ Agilent Mo del Required for Option 100 101 12 1 201 22 1 350 P o w e r M e t e r 8 1 5 3 A M a i n f r a m e w i t h xxxxxx CW La ser S ourc es 131 0/1550 nm 815 52SM and 81553 SM o r 8 1 5 5 4 S M xx[...]

  • Page 177

    177 Performan ce T ests T est Record D.2 T est Record Results of th e performance test may be tabulated on the T est Record provided at the end of the test procedures. I t is recommended th at you fill out the T est Record and refer to it while doing the test. Since the test limits and setu p inf ormation are printed on the T est Record for easy re[...]

  • Page 178

    178 Performan ce T ests Performance T est T ech no logy (NIST), will be covered in a manual change supplement, or r evis ed manual. Such specifications supers ede any that were previously publish e d . D.5 Performance T est The performance test given in this sect ion includes the T otal Insertion Lo ss T es t, the Attenuation Accuracy T est, the At[...]

  • Page 179

    179 Performan ce T ests Performance T est I. T otal Insertion Loss T est Carry out th e following In sertion Loss T est at 1310nm and 1550nm with single-mod e fiber s usin g the th e equipment listed previou sly . 1. Turn the instruments on and allow th e ins tr ume n ts to warm up. 2. Connect the equipment as shown in the appropriate T otal Inser [...]

  • Page 180

    180 Performan ce T ests Performance T est Figu re D-2 T ota l Ins e rtio n L oss T est Setu p 1, Op ti on s 201 , 22 1 Figur e D-3 T otal Insert ion Loss T est Setup 1, O ption 350 3. On the DUT , p ress and hold A TT to reset th e atten uation to minimum (any attenuation shown on the display is d u e to the calibration factor). 4. Zero the Power-m[...]

  • Page 181

    181 Performan ce T ests Performance T est Figur e D-4 T otal Inserti on Loss T est Se tup 2, Options 100, 101, 121 Figur e D-5 T otal Inserti on Loss T est Se tup 2, Options 201, 221[...]

  • Page 182

    182 Performan ce T ests Performance T est Figur e D-6 T otal Insert ion Loss T est Setup 2, O ption 350 7. Enable the attenuator output and record the power meter reading (in dB) in the T est Record and check that it is wi thin specifications. II. Linearity/Attenuation Accuracy T est Carry out the following Attenu ation Accuracy tests at 1310nm and[...]

  • Page 183

    183 Performan ce T ests Performance T est 1. Set th e atten uator as follows: λ as required CAL to 0.00 dB AT T to 0.00 dB 2. Connect the equipment as shown in the appropriate T otal Inser tion Lo ss T es t Setup 2. N O T E Use a t a pe to fix the fibers on the table. Don ’ t touch the fibers during the measurement to p revent changes of state o[...]

  • Page 184

    184 Performan ce T ests Performance T est III. Attenuation Repeatability T est Use the same equipment, test setu p and inst rument settings as u sed for the Attenuation Accuracy test (see the appropriate T otal Insert ion Loss T est Setup 2) . 1. Set th e Agilent 8156A attenuation to 1 dB and press D ISP → R EF on th e pow er me ter. 2. Set th e [...]

  • Page 185

    185 Performan ce T ests Performance T est IV . Return Loss T est Options 100, 101, and 12 1 1. Make sure that all connectors are carefully clean ed. 2. Connect the source to the HP 81534A I nput. Attach the high return loss connector of the patchcord to the Output (the high return loss connector on these cables is the connector w ith the orange sle[...]

  • Page 186

    186 Performan ce T ests Performance T est 6. Press P ARAM to select the [lambda] parameter . Edit this parameter and set it to the current wavelen gth of the source. 7. Enable the source. 8. Press P ARAM to select the CAL REF parameter (th e current value for the known return lo ss is displayed with R: at the side of the character fie l d). 9. Atta[...]

  • Page 187

    187 Performan ce T ests Performance T est Figure D-8 Return Loss T est Set up 2 , Options 100, 1 01 Figure D-9 Return Loss T est Setup 2, Optio n 1 21 Options 201 and 221 Specifications Agilent 8156A Return Loss Option 201 >6 0 dB Option 2 21 >60dB[...]

  • Page 188

    188 Performan ce T ests Performance T est 1. Make sure that all connectors are carefully clean ed. 2. Connect the source to the HP 8 1 534A Input. Attach the high return loss connector of the patchcord to the Output (the high return loss connector on these cables is the connector w ith the orange sleeve). Us ing tape, fix the cables to the table. F[...]

  • Page 189

    189 Performan ce T ests Performance T est 11 . P r e s s D ISP → R EF (the value read should now b e 0.98dB, the same as the va lue entered for R:). 12. Press P ARAM to select the REF AUX parameter . 13. T erm inate the cable by wrapping the fiber five times arou nd the shaft of a screwdriver . 14. Press D ISP → R EF (the instrument set s the t[...]

  • Page 190

    190 Performan ce T ests Performance T est Figur e D-12 Return Los s T est Setup 2, Option 221[...]

  • Page 191

    191 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional D.6 V . Polarization Dependent Loss (PDL): Optional T able D-2 Equipm ent for the PDL test 1 1 The equipment is described fo r a test setu p with a polarizatio n controll er with op tion 021 (str aight conn ector). If you want to use a polarization controller with a different c[...]

  • Page 192

    192 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional 2 Instead of a s tandard HP 81521B+ Depolar i zing Filt er Agilent 81000DF , an HP 81521 B #001 can also be used, as this option is especially designed f or low PDL. Polarization Dependant Loss T est (Mueller method) 1. Connect the equipment as show n in Figure D-13 a. Make sur[...]

  • Page 193

    193 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional C A U T I O N The patchcord fro m the source to the polarizat ion controller - with the isolator - must not move during and between all measur emen ts. The patchcords between the polarization contr o ller and the op tical head mu st not move fr om the begi nning of the r efere [...]

  • Page 194

    194 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional already selected. c. Modify the filter setting to find the maximum sign a l transmission th rough the polarization contro ller : • Select the most significant d ig it by usin g the cursor key . Use the Modify knob to adjust the displayed ang le slowly until th e power reading[...]

  • Page 195

    195 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional a. Select the λ /2 Retarder Plate. Press λ /2 b. Modi f y the λ /2 plate setting to the sam e angle as th e polarization filter found in item 6c. c. Press E NTER d. Note the angle as " λ /2 Plate Setting, Linear Horizontal Polarization" in the T est Record. Determ[...]

  • Page 196

    196 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional approximated: The associated T est record will look like this by adding the appropriate values to thos e of the Linear Horizontal polarized light. 10. Measure the Refer ence Power a. Linear Horizontal po larized light. Keep the setting from the polarizer an d the λ /4 and λ /[...]

  • Page 197

    197 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional b. Linear V ertical polarized ligh t. • Set the λ /4 an d λ /2 Retarder Plates to th e "corrected wavelength dependent posi tio ns" for Linear V ertical polarized light. Y ou need to select the λ /4 and λ /2 Retarder plates by pres sing λ /4 and λ /2 respectiv[...]

  • Page 198

    198 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional C A U T I O N The patchcords between the polarization contr o ller an d the opti cal head must not move until the measurements ar e finished. 12. Set the 8156A Attenuator (DUT) to 0dB using the modify keys. Figur e D-14 PDL T est Setu p 2: Power after DUT 13. Measure the optica[...]

  • Page 199

    199 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional • Read the power that is displayed on the power meter and note it as P DUT01 in the test record. b. Linear V ertical polarized ligh t. • Set the λ /4 and λ /2 Retarder Plates to the "cor rected wavelength dependent posi tio ns" for Linear V ertical polarized lig[...]

  • Page 200

    200 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional 14. Calculate a. the Mueller coefficients b. the Minimum and Maximum transmissi on, and finall y c. the Polarization Dependent Loss (PDL) as described in th e tes t record. 15. Laser set up fo r the higher wavelength a. Set the laser source to 131 0nm (nominal) b. Swit ch the l[...]

  • Page 201

    201 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156 A Page 1 of 8 T est Facility: _________ ___________ ___________ _______ _________ ___________ ___________ _______ _________ ___________ ___________ _______ _________ ___________ ___________ _______ Repo rt No. Date: Cust omer : Te s t e d [...]

  • Page 202

    202 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilen t 8156A Optio n 100 Page 2 of 8 Model _ _ __________ Module Report No. __ _____ D ate ________ T est Equipment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2a1. CW Las er Sources 1310nm 2a2. CW Las er Sources 1550nm 2b. CW[...]

  • Page 203

    203 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 100 Page 3 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 100 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximum Spec. Measurement Unc[...]

  • Page 204

    204 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 100 Page 4 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 100 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 205

    205 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 100 Page 5 of 8 Model Agilen t 8156A At tenu ator Opt i on 100 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 206

    206 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 100 Page 6 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 100 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 207

    207 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 100 Page 7 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 100 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 208

    208 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 100 Page 8 of 8 Model Agilen t 8156A At tenu ator Opt i on 100 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 209

    209 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for th e Agilent 8156A Option 101 Page 2 of 8 Model _ _ __________ Module Report No. __ _____ Date ______ __ T est Equipment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2a1. CW Las er Sources 1310nm 2a2. CW Las er Sources 1550nm 2b. C W[...]

  • Page 210

    210 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 101 Page 3 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 101 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 211

    21 1 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 101 Page 4 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 101 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 212

    212 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 101 Page 5 of 8 Model Agilen t 8156A At tenu ator Opt i on 101 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 213

    213 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 101 Page 6 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 101 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 214

    214 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 101 Page 7 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 101 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 215

    215 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 101 Page 8 of 8 Model Agilen t 8156A At tenu ator Opt i on 101 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 216

    216 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilen t 8156A Optio n 121 Page 2 of 8 Model _ _ __________ Module Report No. __ _____ Date ______ __ T est Equipment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2a1. CW Las er Sources 1310nm 2a2. CW Las er Sources 1550nm 2b. CW[...]

  • Page 217

    217 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 121 Page 3 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 121 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 218

    218 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 121 Page 4 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 121 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 219

    219 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 121 Page 5 of 8 Model Agilen t 8156A At tenu ator Opt i on 121 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 220

    220 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 121 Page 6 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 121 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 221

    221 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 121 Page 7 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 121 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 222

    222 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 121 Page 8 of 8 Model Agilen t 8156A At tenu ator Opt i on 121 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 223

    223 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for th e Agilent 8156A Option 201 Page 2 of 8 Model _ _ __________ Module Report No. __ _____ Date ______ __ T est Equipment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2a1. CW Las er Sources 1310nm 2a2. CW Las er Sources 1550nm 2b. C W[...]

  • Page 224

    224 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 201 Page 3 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 201 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 225

    225 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 201 Page 4 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 201 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 226

    226 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 201 Page 5 of 8 Model Agilen t 8156A At tenu ator Opt i on 201 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximum Spec. Measu rement U[...]

  • Page 227

    227 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 201 Page 6 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 201 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 228

    228 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 201 Page 7 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 201 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 229

    229 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 201 Page 8 of 8 Model Agilen t 8156A At tenu ator Opt i on 201 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 230

    230 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilen t 8156A Optio n 221 Page 2 of 8 Model _ _ __________ Module Report No. __ _____ Date ______ __ T est Equipment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2a1. CW Las er Sources 1310nm 2a2. CW Las er Sources 1550nm 2b. CW[...]

  • Page 231

    231 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 221 Page 3 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 221 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 232

    232 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 221 Page 4 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 221 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 233

    233 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 221 Page 5 of 8 Model Agilen t 8156A At tenu ator Opt i on 221 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measurement U[...]

  • Page 234

    234 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 221 Page 6 of 8 Mode l Ag ile nt 8156A At tenuat or Opt ion 221 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 235

    235 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 221 Page 7 of 8 Mode l Ag ile nt 8156A At ten uat or Opt ion 221 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 236

    236 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 221 Page 8 of 8 Model Agilen t 8156A At tenu ator Opt i on 221 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 237

    237 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156 A Option 350 Page 2 of 5 Model __ __________ Mod ule Report No. ___ ____ Date _______ _ T est Equi pment Used: Description Model No. T race No. Cal. Due Date 1. Power Meter 2. LED So urce 1300nm 3. O p t Se ns or M odu le 4. Connector I nt[...]

  • Page 238

    238 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 350 Page 3 of 5 Mode l Ag ile nt 8156A At tenuat or Opt ion 350 No. ___ ____ ___ ____ _ Dat e_ _____ ____ _____ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 239

    239 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 81 56A Option 350 Page 4 of 5 Mode l Ag ile nt 8156A At ten uat or Opt ion 350 No. ___ ____ _____ ___ Date___ _____ ____ ___ Te s t No. T est Description perfo r med at ___ ____ _____ __ ___nm Mini mum Spec. Result Maximu m Spec. Measurement Un[...]

  • Page 240

    240 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est for the Agilent 8156A Option 350 Page 5 of 5 Model Agilen t 8156A At tenu ator Opt i on 350 No. ____ ____ _____ __ Da te__ _____ __ ____ __ Te s t No. T est Description perf or med at __ ____ _____ ____ __ nm Mi ni mum Spec. Result Maximu m Spec. Measu rement [...]

  • Page 241

    241 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est Agilent 8156 A : V . Polarization De pen dent Lo ss T est (optional) Page 1 of 6 T est Facility: _________ ___________ ___________ _______ _________ ___________ ___________ _______ _________ ___________ ___________ _______ _________ ___________ ___________ ___[...]

  • Page 242

    242 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Performance T est Agilent 8156A: V . Polarization Dependent Loss T es t Page 2 of 6 T est Equipment Us ed: Description HP/Agilent Model No. T race No. Cal. Due Date 1. Polari zat ion Controller 8169A #021 _______ ____ ___________ ____/ ____/____ 2. Lightwave Multimeter Mainfram[...]

  • Page 243

    243 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Mueller C oeff icient s: m 11 = (P DUT01 / P 01 + P DUT02 / P 02 ) /2 = ___________ ______ ____ m 12 = (P DUT01 / P 01 - P DUT02 / P 02 ) /2 = ___________ __________ m 13 = (P DUT03 / P 03 ) - m 11 = _______ ____________ ___________ m 14 = (P DUT04 / P 04 ) - m 11 = _______ ___[...]

  • Page 244

    244 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Minimum a nd maximu m trans mis sion: Performance T est Agilent 8156 A: V . Polarization Dependent Loss T est Page 4 of 6 T Max m 11 m 12 2 m 13 2 m 14 2 ++ + _______ ____ _____ ____ _____ ___ == T Min m 11 m 12 2 m 13 2 m 14 2 ++ – _____ _____ ____ _____ ____ ____ _ == Polar[...]

  • Page 245

    245 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Mueller C oeff icient s: m 11 = (P DUT01 / P 01 + P DUT02 / P 02 ) /2 = ___________ ______ ____ m 12 = (P DUT01 / P 01 - P DUT02 / P 02 ) /2 = ___________ __________ m 13 = (P DUT03 / P 03 ) - m 11 = _______ ____________ ___________ m 14 = (P DUT04 / P 04 ) - m 11 = _______ ___[...]

  • Page 246

    246 Performan ce T ests V . Polarization Dependent Loss (PDL): Optional Minimum a nd maximu m trans mis sion Performance T est Agilent 8156 A: V . Polarization Dependent Loss T est Page 6 of 6 T Max m 11 m 12 2 m 13 2 m 14 2 ++ + _______ ____ _____ ____ _____ ___ == T Min m 11 m 12 2 m 13 2 m 14 2 ++ – _____ _____ ____ _____ ____ ____ _ == Polari[...]

  • Page 247

    E E Cleaning In form at ion[...]

  • Page 248

    248 Cleaning In form at ion The following Cleaning Instr u ctions contain some g en eral safety precautions, which must be obser ved during all phases of cleaning. Consult your s pecific optical device manuals or guides fo r full information on safety m a tter s. Please try , whenever possible, to use physically con tacting connectors, and dry conn[...]

  • Page 249

    249 Cleaning Info rmat i on Safety Precautions E.1 Safety Precautions Please follow the followin g safety rules: • Do not remove instrument covers wh en operating. • Ensure that the instrument is switched off throughout the cleaning procedures . • Use of contro ls or adjustments or perfo rmance of procedures other than thos e specified may re[...]

  • Page 250

    250 Cleani ng Info rmat ion What do I need for pr oper cleaning? means that they can cover a part of the end o f a fiber core, and as a result will reduce th e perf ormance of your syst em. Furthermore, the power density ma y burn dust in to the fiber and cause additional damage (for example, 0 dBm optical power in a sing le mo d e fib er c aus e s[...]

  • Page 251

    251 Cleaning Info rmat i on What do I need for pr oper cleaning? Dust and shutt er cap s All of Agilent T echnologies ’ lightwave instruments are delive red with either laser shutter caps or dust caps on the lightwave adapter . Any cables com e wi th covers to pr otect the cable ends from dama g e or c onta min ati o n. W e suggest these protecte[...]

  • Page 252

    252 Cleani ng Info rmat ion What do I need for pr oper cleaning? hygiene produ cts (for example, a supermar ket or a chemist ’ s shop) . Y ou may be able to obtain various sizes of swab. If this is th e case, select the smallest size for yo ur smallest devices. Ensure that you use natural cotton swabs. Foam swabs will o ft en leave behind filmy d[...]

  • Page 253

    253 Cleaning Info rmat i on What do I need for pr oper cleaning? cleaning purposes h as soft bristles, which will not produces scratch es. There are many different kinds o f pipe cleaner available from tobacco shops. The best way to use a pipe cleaner is to push it in and o ut of the device opening (for example, when cleaning an i nterface). While [...]

  • Page 254

    254 Cleani ng Info rmat ion What do I need for pr oper cleaning? • Microscope with a magnification range about 50X up to 300X • Ultrasonic bath • W arm water and liqu id soap • Premoistened cleaning wipes • Polymer film • Infrare d Sensor Card Micros cope with a magnification range about 50X up to 300X A micros cope can be found in most[...]

  • Page 255

    255 Cleaning Info rmat i on What do I need for pr oper cleaning? water , as this may cause mechanical stress, which can damage your optical device. Ensure that your liquid soap has no abrasiv e properties or perfume in it. Y ou should also avoid normal washing-up liquid, as it can cover your dev ice in an iridescent film after it has been air-dried[...]

  • Page 256

    256 Cleani ng Info rmat ion Preserv in g Connectors E.4 Preserving Connectors Listed below are some hints on ho w best to keep your connectors in the best possible condition. Maki ng Connections Before you make any connection y ou must ensure that all cables and connectors ar e clean. If they are dirty , use the appropriate cleaning procedure. When[...]

  • Page 257

    257 Cleaning Info rmat i on Cleaning In strumen t Housing s and dirty the surface of the d evice. In addition, the characteristics of your dev i ce can be cha nged and your measu rement results affected. E.5 Cleaning In strument Housings Use a dry an d very soft cotton tissue to clean the inst rument housing and th e keypad. Do not open the in stru[...]

  • Page 258

    258 Cleani ng Info rmat ion How to clean connectors E.7 How to clean connectors Cleaning conn ectors is difficult as the cor e diameter of a single- mode fibe r is o nl y abou t 9 µ m. This generally means you cannot see streaks or scratches on the surface. T o be certain of the condition of the surface of your connector and to check it after clea[...]

  • Page 259

    259 Cleaning Info rmat i on How to clean connector a d apters 1. Mo isten a new cotton-swab with iso p ropyl alcohol. 2. Clean the connector by rub bing the cotton-swab over the sur face using a small circular movem ent. 3. T ake a new , dry s oft-tissue and remove the alcohol, dissolved sediment and d ust, by rubbing gen tly over the surface using[...]

  • Page 260

    260 Cleani ng Info rmat ion How to clean connector interfa ces 1. Clean the adapter by r u bbing a new , dry cotton-swab over the surface using a small circular movement. 2. Blow away any remaining lin t with compressed air . Procedure for St ubbor n Dir t Use this procedur e particularly when there is greasy dirt o n the adapter: 1. Moi sten a new[...]

  • Page 261

    261 Cleaning Info rmat i on How to clean bar e fiber adapters the surface using a s mall circular movement. 3. Blow away any remaining lin t with compressed air . Procedure for St ubbor n Dir t Use this procedur e particularly when there is greasy dirt o n the interface: 1. Mo isten a new pipe-cleaner with isopropyl alcohol. 2. Cl ean the interface[...]

  • Page 262

    262 Cleani ng Info rmat ion How to clean lenses 1. Blow away any dust or d irt wit h compressed air . Procedure for St ubbor n Dir t Use this procedur e particularly when there is greasy dirt o n the adapter: 1. Cl ean the adapter by p ushing and pullin g a new , dry pip e-cleaner into the opening. Rotate the pi pe-clean er slowly as you do this. C[...]

  • Page 263

    263 Cleaning Info rmat i on How to clean instruments with a fixed connector interf ace Procedure for St ubbor n Dir t Use this procedur e particularly when there is greasy dirt o n the lens: 1. Mo isten a new cotton-swab with iso p ropyl alcohol. 2. Clean the lens by rubbing the cotton-swab over the surface using a small circular movement. 3. Using[...]

  • Page 264

    264 Cleani ng Info rmat ion How to clean instruments with an optical glass plate Never try to open the instrument and clean the optical block by yourself, because it is easy to s cratch optical components, and cause them to be m isaligned. E.13 How to clean instruments w ith an optical glass plate Some instruments, f or example, the optical heads f[...]

  • Page 265

    265 Cleaning Info rmat i on How to clean instruments with a r ecessed lens interface interface. The invisible emitted light is project onto the card and becomes visible as a small circular spot. Pr eferr ed P roced ure Use the following proce dure on most occas ions. 1. Clean the interface by rubbin g a new , dry cotton-swab over the surface using [...]

  • Page 266

    266 Cleani ng Info rmat ion How to clean instruments with a r ecessed lens interface Keep your dust and shutter caps on, when your instrumen t is not in use. This should prevent it fr om getting too dirty . If you must clean such instruments, please refer the instrument to the skilled personnel of Agilent ’ s service team. Pr e ferred Procedur e [...]

  • Page 267

    267 Cleaning Info rmat i on How to clean optical devices which ar e sensitive to mechanical stress and pressure E.16 How to clean optica l devices which are sensitive to mechan ical stress and pressur e Some optical devices, such as the Agilent 81000B R Reference Reflector , which has a go ld plated surface, are very sens it ive to mechanical stres[...]

  • Page 268

    268 Cleani ng Info rmat ion How to clean metal filters or attenuator gratings E.17 How to clean metal filters or attenuator gratings This kind of device is extremely fragile. A misalignment of the grating leads to inaccur ate measurements. Never touch the surface of the metal filter or atte nuator grating. Be very careful wh en using or cleaning th[...]

  • Page 269

    269 Cleaning Info rmat i on Addi tion al Cle ani ng Inf orm at ion • How to clean bare fib er ends • How to clean lar ge area lenses and mirrors How to clean bare fiber ends Bare fiber end s are often used for splices or , together with other optical components, to create a parallel beam. The end of a f i ber can o fte n be sc rat che d. Y ou m[...]

  • Page 270

    270 Cleani ng Info rmat ion Addi tion al Cle ani ng Inf orm at ion 1. Blow away any dust or d irt wit h compressed air . Procedure for St ubbor n Dir t Use this procedur e particularly when there is greasy dirt o n the lens: C A U T I O N Only use water if yo u are sure that your device does not corro d e. Do not use hot wat er as this can lead to [...]

  • Page 271

    271 Cleaning Info rmat i on Other Cleaning Hints Alternative Procedur e B If your lens is sensitive to water then: 1. Mo isten the lens or the mirror with iso pro p yl alcohol. 2. T ake a new , dry s oft-tissue and remove the alcohol, dissolved sediment and d ust, by rubbing gen tly over the surface using a small circular movement. 3. Blow away rem[...]

  • Page 272

    272 Cleani ng Info rmat ion Other Cleaning Hints and so on. T o be absolutely certain that a cleanin g paper is applicable, please ask th e s alesperson or the manufacturer . Immersion oil and other index matching compounds Do not use immersion o il or other inde x matching compound s with optical sensors equipped with recessed lenses. They are lia[...]

  • Page 273

    F F Err or messages[...]

  • Page 274

    274 Err or Messages[...]

  • Page 275

    275 Error Messages Displ ay Messages F .1 Dis play M essage s FAIL nnnn indicates that the se l f test has failed. The number nnnn is a four digit hexadecimal nu mber that indicates which part of the self tes t has fa il ed. So FAIL0010 would mean that the DSP (Digital Signal Processor) Communicat i ons had fail ed , F AIL0012 would mean that the D[...]

  • Page 276

    276 Error Messages GPIB Mes sages F .2 GPIB Messages Command Er rors These are error me ssages in the range -100 to -199. They indicate that a syntax er ror has been detected by the pars er in a command, such as incorrect data, incorrect commands, or misspelled or mistyped com mands. A command erro r is signaled by the command error bit (bit 5) in [...]

  • Page 277

    277 Error Messages GPIB M essag es -108 Parameter not allowed More parameters were receiv ed f or a command than were expected. -109 Missing parameter Fewer parameters were r eceived than the command requires. -1 10 Command header error A command header is the mnemon ic part of the co mmand (the part not containing parameter information . This erro[...]

  • Page 278

    278 Error Messages GPIB Mes sages -121 Invalid character in number An invalid character was found in numeric data (note, this may include and alphabetic ch aracter in a decimal data, or a "9" in octal dat a). -123 Exponent too large The exponen t must be less than 3 2000. -124 T oo many digits The mantissa of a decimal number can have a m[...]

  • Page 279

    279 Error Messages GPIB M essag es -141 Invalid character data The character data is incorrect or inappropriate. -144 Character data too long Character data can have a maximum of 12 character s. -148 Character data not allowed Character data was fou nd where none is allowed. -150 String data error This error i ndicates that the parser has fo und an[...]

  • Page 280

    280 Error Messages GPIB Mes sages Execu tio n Errors These are error me ssages in the range -200 to -299. They indicate that an execution error has been detected by the execution control block . An execution erro r is signaled by the execution error b it (bit 4) in the event status register . -200 Execution error This indicates that an ex ecution e[...]

  • Page 281

    281 Error Messages GPIB M essag es -223 T oo m uch data The b loc k, ex pres s ion , or st rin g da t a was too l ong for t he instrument to han dl e. -224 Illegal parameter value One value from a list of possible values was expected. The parameter received was no t found in the list. -240 Hardwar e error Indicates that a command could not be execu[...]

  • Page 282

    282 Error Messages GPIB Mes sages -314 Save/r e call memory lost The nonvolatile data saved by the *SAV command h as been lost. -315 Configuration memory lost The nonvolatile configuration data saved by the instrum ent has been lost. -330 Self-test failed Further information ab out the self-test failu re is available b y usin g *TST? . -350 Queue o[...]

  • Page 283

    283 Error Messages GPIB M essag es -430 Query DEADLOCKED A condition causing a deadlocked query has occurred (fo r example, both the inpu t and the ou t put buffer are full an d the device cannot continue). -440 Query UNTERMINA TED after indefinite r e sponse T wo queries were received in the s ame message. The error occurs on the second query if t[...]

  • Page 284

    284 Error Messages GPIB Mes sages[...]

  • Page 285

    285 Index Symbols *CLS .....................95, 96, ................101 *ES E .....................95 *ES E? ................... 96 *ES R? ...................96 *IDN? ...................97 *OPC ....................95, 98 *OPC? ...................95, 98 *OPT? ...................98 *RCL ....................99 *RST .....................96, 99, .......[...]

  • Page 286

    286 Index Resetting ...........50 E Earth .....................144 Editing Non-numeric ....... 30 Numeric ............30 ENABle .................105, 117, ..............119 ENABle register ...... 115, 122 ENABle? ................105, 117, ..............120 Error queue .............84, 95, ................122 ERRor? ..................122 Errors ....[...]

  • Page 287

    287 Index Local .....................83 LOCKOUT .............72 Long form ..............85 M Maintenance ...........143 MANUAL ..............52 Manufacturer ..........97 MAV .....................84, 95, ................101, 102 Message available ....84 Message exchange ...83 Reception ..........83 Message terminator Input ................84, 85 Out[...]

  • Page 288

    288 Index Questionable status ..101, 102, ..............114, 115, ..............122 Conditio n register . 119 Enable re gister .... 119, 120 Event regi ster ......120 Negative transition register 120, ...121 Positive tra nsition register 121 R Repeatability ........... 166 Request S ervice .......94 Resetting the in str ument 54, 63, ..............[...]

  • Page 289

    289 Index T Temperature Cooling .............148 Operating ..........148 Sto rin g .............. 148 Temperature var i ation 116, 118 Wavelen gth calibration d ata ...........69 The .......................60 the ........................60 Through pow er ........112, 113 Default ............. 113 Maximu m ..........113 Minim um ..........113 Throug[...]