Agilent Technologies 8922 manuel d'utilisation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Aller à la page of

Un bon manuel d’utilisation

Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation Agilent Technologies 8922. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel Agilent Technologies 8922 ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.

Qu'est ce que le manuel d’utilisation?

Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation Agilent Technologies 8922 décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.

Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.

Donc, ce qui devrait contenir le manuel parfait?

Tout d'abord, le manuel d’utilisation Agilent Technologies 8922 devrait contenir:
- informations sur les caractéristiques techniques du dispositif Agilent Technologies 8922
- nom du fabricant et année de fabrication Agilent Technologies 8922
- instructions d'utilisation, de réglage et d’entretien de l'équipement Agilent Technologies 8922
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes

Pourquoi nous ne lisons pas les manuels d’utilisation?

Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage Agilent Technologies 8922 ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles Agilent Technologies 8922 et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service Agilent Technologies en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées Agilent Technologies 8922, comme c’est le cas pour la version papier.

Pourquoi lire le manuel d’utilisation?

Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif Agilent Technologies 8922, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.

Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation Agilent Technologies 8922. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.

Table des matières du manuel d’utilisation

  • Page 1

    Assembly Le vel Repair HP/Agilent Technologies 8922 Series GSM Test Set Agilent Part No. 08922-90213 Printed in UK January 1998[...]

  • Page 2

    © Copyright 1998, Agilent T echnologies. All rights reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allo wed under the copyright la ws.[...]

  • Page 3

    i Introduction Introduction The HP/Agilent 8922 product family uses an assembly level repair service strategy. The HP/Agilent 8922 may be sent to an Agilent Technologies Sales and Service office or may be repaired on site. This book is used for both Agilent Technologies service and owner service. The HP/Agilent 8922 product family currently contain[...]

  • Page 4

    ii Introduction[...]

  • Page 5

    Contents Contents-1 Introduction i 1 Localizing the Problem Introduction 1-2 Localizing the Problem - Flow Chart (Po wer -Up) 1-3 Po wer-Up Checks 1-4 If Power -Up Checks F AILED 1-5 If Power -Up Happened Correctly 1-10 2 Running Diagnostics Introduction 2-2 Running Memory Card or R OM Based Diagnostics 2-3 Loading and Running the Ram T est 2-7 3 V[...]

  • Page 6

    Contents Contents-2 6 T roubleshooting the P ower Supply Introduction 6-2 Po wer Cord V erification 6-3 Line V oltage Selection / Line Fuse Replacement 6-5 T ransformer / Po wer Switch 6-6 A28 Po wer Supply 6-7 Where T o Go Next 6-8 7 Adjustments and Calibration Introduction 7-2 T imebase Adjustments 7-3 Periodic Calibrations 7-5 Sum Loop Adjustme[...]

  • Page 7

    Contents Contents-3 9 Replacing a Part Introduction 9-2 Replaceable Parts 9-3 Firmware Upgrades 9-29 10 Service Scr een Introduction 10-2 11 Self-T est Error Messages Introduction 11-2 12 Module I/O Specifications Introduction 12-2 A2 Audio Analyzer 2 12-3 A3 Audio Analyzer 1 12-5 A4 Modulation Distribution 12-8 A5 Premodulation Filter and NSM 12-[...]

  • Page 8

    Contents Contents-4 A28 Po wer Supply 12-58 A33 Hop Controller 12-59 13 Instrument Block Diagrams Introduction 13-2 14 Block Diagram Theory of Operation Introduction 14-2 T echnical Discussion 14-3 Block Diagram 1 14-4 Block Diagram 2 14-9 Block Diagram 3 HP/Agilent 8922B Only 14-15 Block Diagram 4 14-17 Block Diagram 5 14-18 15 Diagnostics Theory [...]

  • Page 9

    Contents Contents-5 16 Measurement Theory Introduction 16-2 17 GSM Theory Introduction 17-2 The GSM System 17-3 E-GSM, DCS1800 and PCS1900 Systems 17-4 Index 1[...]

  • Page 10

    Contents Contents-6 This Page Intentionally Left Blank[...]

  • Page 11

    1-1 1 Localizing the Problem[...]

  • Page 12

    1-2 Localizing the Problem Introduction Introduction This chapter helps to determine if a problem actually exists and which section of the instrument has a problem. This chapter comprises of four sections. ❒ Localizing the Problem Flow Chart (Power-Up) ❒ Power-Up Checks ❒ If Power-Up Failed • Power-Up Self Test Diagnostics ❒ If Power-Up H[...]

  • Page 13

    1-3 Localizing the Problem Localizing the Prob lem - Flow Chart (P ower -Up) Localizing the Problem - Flow Chart (Power-Up) See "Power Up Checks", in this Chapter , for details of the steps given in the flo w chart belo w . Figure 1-1 Localizing the Problem - Flow Chart P ower On F an On? Messages OK? Beep after K eys & Controls OK? [...]

  • Page 14

    1-4 Localizing the Problem P o wer-Up Chec ks Power-Up Checks The follo wing checks show whether the instrument is po wering up correctly . (a) Depress the power button on the front panel (see diagram). (b) Check that the fan on the rear panel is working. (c) Listen for a single “beep” after pressing the power switch. This can be from 6 to 20 s[...]

  • Page 15

    1-5 Localizing the Problem If P o wer-Up Chec ks F AILED If Power-Up Checks FAILED If the power up checks f ailed, continue with this section. ❒ If the fan did not start, see "T roubleshooting the Po wer Supply", Chapter 6. ❒ If the fan started, b ut any of the other po wer -up checks failed, see "Po wer -Up Self T est Diagnostic[...]

  • Page 16

    1-6 Localizing the Problem If P o wer-Up Chec ks F AILED Power-Up Self Test Diagnostics If the power -up sequence failed, the po wer -up self-tests can be re-run with the cov ers of f. The LED’ s on the controller board give the results of the po wer -up self-test. (a) Remove the instrument covers. Refer to the section "Top and Bottom Covers[...]

  • Page 17

    1-7 Localizing the Problem If P o wer-Up Chec ks F AILED The follo wing con ventions are used to represent the LED’ s throughout this chapter . LED Sequences The LED error sequence will show tw o states, pass or fail, which are outlined belo w . The suspect assembly is giv en in the follo wing tables, before moving on consult the section "Se[...]

  • Page 18

    1-8 Localizing the Problem If P o wer-Up Chec ks F AILED NO TE 1. The third patterns are only documented for a serial bus communication failure. This is represented by the two outside LED’s flashing. 2. The second and third patterns will be the same. It will appear as if the same pattern has flashed twice. For more than one error in the Agilent 8[...]

  • Page 19

    1-9 Localizing the Problem If P o wer-Up Chec ks F AILED Where to Go Next ❒ If the LED’s did not light at all, go to Chapter 6, "Troubleshooting the Power Supply". ❒ If an error messgae occurs, use it in Chapter 2, "Running Diagnostics" to choose which diagnostic test to run. See also Chapter 11 "Self Test Error Messa[...]

  • Page 20

    1-10 Localizing the Problem If P o wer-Up Happened Correctl y If Power-Up Happened Correctly If po wer-up happened correctly and no problem is indicated, this section is used to func- tionally check most of the hardware. The generators are checked first with e xternal mea- surements, then the analyzers are checked with the generator . The RF Gener[...]

  • Page 21

    1-11 Localizing the Problem If P o wer-Up Happened Correctl y Highlight the RF Output field (1) . Select A UX RF OUT from the list of choices. Set the RF Generator Amplitude field to 10 dBm (2) . Set the AF Generator Amplitude field to 1 V (3) . Figure 1-5 RF Analyzer Settings Where to Go Next • If the generators are within specifications, go [...]

  • Page 22

    1-12 Localizing the Problem If P o wer-Up Happened Correctl y Checking the RF Analyzer Using the RF Generator This section tests the RF Analyzer using the RF Generator as a signal source. This task assumes the same setting used in the previous section. • Connect the RF In/Out to the Aux RF Out. Figure 1-6 Front Panel Connections for the RF Analyz[...]

  • Page 23

    1-13 Localizing the Problem If P o wer-Up Happened Correctl y • Set the RF Analyzer Frequency field to 935 MHz (1) . • Set the RF Analyzer Amplitude field to 10 dBm (2) . • Set the Mod Source GMSK field to Off (3) . • Select More in the bottom right-hand corner of the screen (4) . Figure 1-7 RF Generator/Analyzer Settings 12 3 4[...]

  • Page 24

    1-14 Localizing the Problem If P o wer-Up Happened Correctl y • Select CW/AF ANL from the list of choices, and read the CW Freq (5) and CW Power (6) fields. Figure 1-8 CW Readings Where to Go Next • If the analyzer measurement was within the specification, go to the next section, “Checking the AF Analyzer using the AF Generator”. • If the[...]

  • Page 25

    1-15 Localizing the Problem If P o wer-Up Happened Correctl y Checking the AF Analzyer Using the AF Generator This section tests the AF Analyzer with the AF Generator as a source. The AF Generator settings are the same as the first task, and displays the CW MEAS/AF ANL screen. • Connect the AUDIO OUT to the AUDIO IN. Figure 1-9 Front Panel Conne[...]

  • Page 26

    1-16 Localizing the Problem If P o wer-Up Happened Correctl y Where to go next • If the analyzer measurement was within specification, go to Chapter 2, “Running Diagnostics” and run all the tests. • If the analyzer measurement was faulty, go to Chapter 2, “Running Diagnostics” and run the tests relating to the AF Analyzer.[...]

  • Page 27

    2-1 2 Running Diagnostics[...]

  • Page 28

    2-2 Running Diagnostics Introduction Introduction There are two types of diagnostics for the HP/Agilent 8922: diagnostic tests and the HP/ Agilent 8922B specific “RAM T est”. The latter is appropriate for the HP/Agilent 8922B only . The diagnostic tests are contained either on the memory card, part number 08922- 10003 or in R OM memory for ins[...]

  • Page 29

    2-3 Running Diagnostics Running Memory Card or R OM Based Diagnostics Running Memory Card or ROM Based Diagnostics Do these steps in the order shown 3 Press TESTS 1 - Press PRESET 2 - Insert Memory Card (Optional)[...]

  • Page 30

    2-4 Running Diagnostics Running Memory Card or R OM Based Diagnostics Move cursor here and press knob . For Memory Cards: If CARD is displayed, go to step 6, if not move the cur- sor to this field, press knob and continue at step 5. 4 6 Move cursor here and press knob . Follo w the instructions to start. 8 Select CARD 5 Select, AF_DIA GS, RF_DIA G[...]

  • Page 31

    2-5 Running Diagnostics Running Memory Card or R OM Based Diagnostics Reading Memory Card Diagnostic Test Results T est Results Assemblies suspected to be defectiv e Probability Indicator T roubleshoot the assembly with the highest probability first and re-run test. Continue this process with all assemblies listed until the defect is found. See al[...]

  • Page 32

    2-6 Running Diagnostics Running Memory Card or R OM Based Diagnostics Selecting Memory Card Diagnostic Test Execution Conditions Where to Go Next: If any high-probability f ailures occurred, those assemblies can be replaced and the test re- run. When the tests pass, the performance tests can be run to verify performance (refer to Chapter 3). If lo [...]

  • Page 33

    2-7 Running Diagnostics Loading and Running the Ram T est Loading and Running the Ram Test Y our HP/Agilent 8922B comes with software to test the Data Buf fer . Loading the RAM Test 1 Locate the floppy disk labeled “08922-10001, 8922B Driver.” 2 Insert the disk into the drive. 3 Type MSI A: (substitute your drive specifier for A: if your drive [...]

  • Page 34

    2-8 Running Diagnostics Loading and Running the Ram T est This Page Intentionally Left Blank[...]

  • Page 35

    3-1 3 Verifying Performance[...]

  • Page 36

    3-2 V er ifying P erf ormance Introduction Introduction Because of the specialized nature of the HP/Agilent 8922 and the equipment required to support it, it is recommended that calibration and repair be performed only by specially equipped Agilent T echnologies service centers. A list of specifications and verfication tests can be found in the H[...]

  • Page 37

    3-3 V er ifying P erf ormance Using the Compatibility Switch f or the HP/Agilent 8922F/H or M/S To Load the Program in the Agilent 8922M/S. T o verify the performance of the HP/Agilent 8922H/M you need to con v ert the instrument back from an HP/Agilent 8922G, or con vert the HP/Agilent 8922F/S to an HP/Agilent 8922E. Y ou are no w ready to run the[...]

  • Page 38

    3-4 V er ifying P erf ormance Using the Compatibility Switch f or the HP/Agilent 8922F/H or M/S To Configure the GPIB Addresses 1) With the program loaded, type ``EDIT DEFAULT_ADDRESS'', press ENTER. 2) Modify each line to indicate the proper instrument address (700-730). It is no w possible to re-store the program as "PT_8922" [...]

  • Page 39

    4-1 4 Using the HP/Agilent 83210A Service Kit[...]

  • Page 40

    4-2 Using the HP/Agilent 83210A Ser vice Kit Introduction Introduction This section is a supplement to the diagnostics program for troubleshooting the HP/Agilent 8922 to the assembly lev el. The extender boards should be used when the diagnostics cannot correctly isolate a defectiv e assembly , or when it is necessary to verify the module le vel pe[...]

  • Page 41

    4-3 Using the HP/Agilent 83210A Ser vice Kit Configuring the RF Extender Configuring the RF Extender T o extend RF modules, it is necessary to use the RF e xtender board (08922-60129) with the correct coax jumper cables. These cables route the RF signals to and from the module and allo w the signal path to be accessed for measurements. The followi[...]

  • Page 42

    4-4 Using the HP/Agilent 83210A Ser vice Kit Configuring the RF Extender The follo wing example sho ws ho w to interpret table 4-2 and install the coax jumpers on the extender board. This e xample shows the configuration for the A13 assembly . Figure 4-1 RF Extender Board[...]

  • Page 43

    4-5 Using the HP/Agilent 83210A Ser vice Kit Extending Modules Extending Modules The modules shown in the follo wing table can be e xtended using the appropriate extender boards from the HP/Agilent 83210A Service Kit. Assemblies that cannot be extended can usually be accessed directly while the assembly is installed in the instrument. T able 4-2 Ex[...]

  • Page 44

    4-6 Using the HP/Agilent 83210A Ser vice Kit Making Measurements Making Measurements Audio / Digital Assemblies The extender boards for the audio and digital assemblies allo w the boards to be extended abov e the instrument. This provides better access to signals going to and from these assemblies. Refer to the “Block Diagrams” (chapter 13) or [...]

  • Page 45

    4-7 Using the HP/Agilent 83210A Ser vice Kit Making Measurements 3. Remove the correct coax jumper and connect a measurement instrument as shown in the following diagram. To measure signals going TO the module, measurements should be made on the lower row of connectors on the extender module. Outputs coming FROM the modules (going into the instrume[...]

  • Page 46

    4-8 Using the HP/Agilent 83210A Ser vice Kit Making Measurements This Page Intentionally Left Blank[...]

  • Page 47

    5-1 5 Troubleshooting the Controller/Display[...]

  • Page 48

    5-2 T roubleshooting the Controller/Displa y Introduction Introduction This chapter helps isolate problems in the control sections of the instrument, the sections are: • A1 Keyboard • A7 Controller • A8 Memory • A20 CRT Driver • A21 HP-IB Interface • A33 Hop Controller Problems in the Control sections can be broken into four types, thes[...]

  • Page 49

    5-3 T roubleshooting the Controller/Displa y P arallel Bus Parallel Bus The parallel bus is at the center of the control section. The parallel b us is defined as direct connections to the A7 Controller . These connections include the data b us, address b us and dedicated parallel control lines. The assemblies on the parallel bus are: • A1 Keyboa[...]

  • Page 50

    5-4 T roubleshooting the Controller/Displa y Serial Bus Serial Bus The serial bus controls man y of the assemblies through indi vidual serial control lines. The serial control lines are generated at the A33 Hop Controller . The A33 Hop Controller takes parallel data from the A7 Controller and de-multiple xes the data for the assemblies on the seria[...]

  • Page 51

    5-5 T roubleshooting the Controller/Displa y Display Display The display section contains the A22 CR T , and the A20 CR T Driv e. The A20 CR T Drive receiv es parallel data from the A7 Controller and generates the dri ve signals for the A22 CR T . The A20 CR T Dri v e is tested during the power -up self-tests for the ability to recei ve data and to[...]

  • Page 52

    5-6 T roubleshooting the Controller/Displa y Ke yboard Keyboard The A1 K eyboard assembly contains both the ke ys and the knob . The ke yboard is configured in a matrix with the rows being scanned with pulses from the A7 Controller and the columns being read by the controller . The column lines are pulled up through resistors and are pulled low wh[...]

  • Page 53

    5-7 T roubleshooting the Controller/Displa y Ke yboard If the pull-up voltages are present at the end of the ribbon cable and the v oltages are not pulled do wn when a key is pressed, the problem is most lik ely on the A1 Ke yboard assembly . If the pull up voltages are present and are pulled do wn when a key is pressed b ut the controller does not[...]

  • Page 54

    5-8 T roubleshooting the Controller/Displa y Ke yboard This Page Intentionally Left Blank[...]

  • Page 55

    6-1 6 Troubleshooting the Power Supply[...]

  • Page 56

    6-2 T roubleshooting the P ower Supply Introduction Introduction This chapter helps verify that the po wer supply is at fault when no indication for po wer is present upon po wer-up. If the po wer supply appears defecti ve, the problem can be localized to the line module, mains (line) fuse, transformer , po wer supply , regulator , motherboard, or [...]

  • Page 57

    6-3 T roubleshooting the P ower Supply P o wer Cord V erification Power Cord Verification Use this diagram to verify that the correct line cord is being used. T able 6-1 Line Cords PlugT ype Cable Agilent Part Number C D Plug Description Length, inches (mm) Cable Color For Use In Country 8120-1351 8120-1703 0 4 90/Straight BS1363A a 90 90 (229) 90[...]

  • Page 58

    6-4 T roubleshooting the P ower Supply P o wer Cord V erification 8120-2956 8120-2957 8120-3997 3 4 4 90/Straight 90/90 Straight/Straight 79 (201) Gra y Gra y Gra y Denmark 8120-4211 8120-4600 7 8 Straight IEC83-B1 a Straight/90 79 (201) 79 (201) Black Gra y South Africa, India 8120-1860 8120-1575 8120-2191 8120-4379 6 0 8 8 Straight CEE22-V1 (Sys[...]

  • Page 59

    6-5 T roubleshooting the P ower Supply Line V oltage Selection / Line Fuse Replacement Line Voltage Selection / Line Fuse Replacement Use this diagram to verify that the line module is set to the correct line v oltage, that the fuse is not blo wn, and that it is the correct value.[...]

  • Page 60

    6-6 T roubleshooting the P ower Supply T ransformer / P ower Switc h Transformer / Power Switch Use this diagram to verify that the correct v oltages are present when the instrument’ s po wer cord is connected. The table shows the e xpected v alues and pin numbers.[...]

  • Page 61

    6-7 T roubleshooting the P ower Supply A28 P o wer Supply A28 Power Supply Use this diagram to verify that the re gulated voltages are present and correct at the output of the power supply board, and at the mother board connection to the re gulator . Use this diagram also to check the fuses on the fuse board. The tables show the v oltages, connecto[...]

  • Page 62

    6-8 T roubleshooting the P ower Supply Where T o Go Next Where To Go Next If any part of the po wer supply is defecti ve refer to chapter 8 “ Assembly/Disassembly” and chapter 9 “Replacing a Part” for remo val and replacement. After the po wer supply is repaired, go to chapter 1 “Localizing the Problem” to verify that no other problems [...]

  • Page 63

    7-1 7 Adjustments and Calibration[...]

  • Page 64

    7-2 Adjustments and Calibration Introduction Introduction This chapter contains information to perform the necessary calibrations and adjustments for periodic maintenance or following repairs. Each year the timebase and periodic calibration adjustments should be performed. Also, the ov erall performance of the instrument should be verified each ye[...]

  • Page 65

    7-3 Adjustments and Calibration Timebase Adjustments Timebase Adjustments Standard Timebase Adjustment Procedure (Reference Calibration) NO TE This procedure should only be performed after the instrument has warmed up at least 30 minutes. It should be performed after replacement of the reference section A15, or if the instrument gives an error mess[...]

  • Page 66

    7-4 Adjustments and Calibration Timebase Adjustments Option 001 High Stability Timebase Adjustment Procedure 1. Remove the instrument top cover. Power up the instrument and let it warm up for approximately 1 hour. 2. Remove the rear-panel cable between the Opt. 001 REF OUT and REF IN connectors (if present). 3. Attach a high accuracy frequency coun[...]

  • Page 67

    7-5 Adjustments and Calibration P eriodic Calibrations Periodic Calibrations To Run the Periodic Self-Calibration Program 1. Press to access the TESTS screen. 2. Select the field to the right of the colon under Procedure . 3. Select ROM under the Choices: menu. 4. Select the field to the left of the colon under Procedure . 5. Select PER_CAL under t[...]

  • Page 68

    7-6 Adjustments and Calibration Sum Loop Adjustment Procedure Sum Loop Adjustment Procedure This procedure should be performed whenev er Step Loop A Assembly (A26) or Sum Loop Assembly (A25) is replaced. It is not necessary to perform this adjustment for a periodic calibration. A spectrum analyzer is required to measure the instrument’ s output d[...]

  • Page 69

    7-7 Adjustments and Calibration Sum Loop Adjustment Procedure Second Adjustment 9. Now set the HP/Agilent 8922 frequency to 502 MHz. 10. Set the spectrum analyzer center frequency to 488.6 MHz with a span of 10 MHz per division. 11. Adjust R180 “GAIN” on top of Sum Loop (A25) until the signal on the spectrum analyzer is centered within 10 MHz. [...]

  • Page 70

    7-8 Adjustments and Calibration Sum Loop Adjustment Procedure This Page Intentionally Left Blank[...]

  • Page 71

    8-1 8 Assembly and Disassembly Procedures[...]

  • Page 72

    8-2 Assembly and Disassemb ly Procedures Introduction Introduction Removing and replacing assemblies is straightforward. This chapter contains tool lists, hints and drawings to help you do it ef fecti vely . Detailed step-by-step procedures are not gi ven for all assemblies. After replacing certain assemblies you will need to load new calibration d[...]

  • Page 73

    8-3 Assembly and Disassemb ly Procedures T op and Bottom Cover Remov al Top and Bottom Cover Removal 1. Remove four 2-pt. Pozidriv top bumper mounting screws. 2. Remove four 2-pt. Pozidriv side mounting screws and bumpers. 3. Remove four 2-pt. Pozidriv screws and standoffs. 4. Remove fourteen TX-10 screws and top cover. 5. Remove two TX-10 screws a[...]

  • Page 74

    8-4 Assembly and Disassemb ly Procedures Inside Protective Co vers Inside Protective Covers All cov ers can be remov ed with a TX-15 screw dri v er . Screws sho wn circled only require loosening. 12 CRT Br ack et 426 3 424 416- 421, 427- 456 502- 504 Nut 499- 501 W asher 506- 521 493- 498 114 Regular Mounting Brack et and 115-118 Screws (Not Shown)[...]

  • Page 75

    8-5 Assembly and Disassemb ly Procedures AF , Digital and RF Assemblies Remo val AF, Digital and RF Assemblies Removal A27 A28 A25 A13 A15 A11 A16 A18 A17 A14 A2 A3 A4 A5 A6 A9 A8 A7 A33 A34, (A,G) A37 (B) A31, (G) A36, (B) A32 A19 A20[...]

  • Page 76

    8-6 Assembly and Disassemb ly Procedures AF , Digital and RF Assemblies Remo val This can only be done once the top cover and inside protective covers have been removed. CA UTION Before pulling ring on the A8 Memory Board loosen the securing scre w . RELEASE LEVERS PULL RING Use a TX-10 T orx head screwdriver to loosen.[...]

  • Page 77

    8-7 Assembly and Disassemb ly Procedures A1 Front P anel Remo v al A1 Front Panel Removal Done with top, bottom, and inside protective covers removed. Removing Modules 1. Remove RF cover. 2. Remove RF modules. Disconnecting Cables 3. Disconnect RF cable on mixer assembly. (1/4-inch SMA connector) 4. Disconnect cable from connector J77 on motherboar[...]

  • Page 78

    8-8 Assembly and Disassemb ly Procedures A1 Front P anel Remo v al A1 6 7-11 (A1 Mounting Screws) 49-52, 54-63, 66 547 (T rim) 2 (F rame) 1 (P anel 31 (Nut under Dress) volume knob) 48 33 32 J1 70 W31 Pow e r Switch 34 38-43, 45, 46, 65 546 (T rim) 27-30 47 35 (T rim) 548 37 36 RFI Gaskets T op 532 Bottom 533 Right Side 528, 529 Left Side 530,531[...]

  • Page 79

    8-9 Assembly and Disassemb ly Procedures A10 P o wer Supply Regulator Remo val A10 Power Supply Regulator Removal Done with top cover removed. 1. Remove Digital cover. 2. Remove A33 Hop Controller to expose A10 screw. 3. Loosen TX-15 screw. 4. Disconnect attached cable and remove power regulator. Tools Required • TX-15 screw driver • TX-10 scre[...]

  • Page 80

    8-10 Assembly and Disassemb ly Procedures A11 Receiver Mixer Remo val A11 Receiver Mixer Removal Done with top cover removed. 1. Remove RF cover. 2. Remove at least three RF modules. 3. Remove three TX-10 screws. 4. Disconnect all cables and remove the A11 Receiver Mixer assembly. Tools Required • TX-15 screw driver • TX-10 screw driver • 1/4[...]

  • Page 81

    8-11 Assembly and Disassemb ly Procedures A11 Receiver Mixer Remo val 3 SIDE VIEW MIXER 1 2 T OP VIEW[...]

  • Page 82

    8-12 Assembly and Disassemb ly Procedures A12 Pulse Attenuator Remo val A12 Pulse Attenuator Removal Done with top cover removed. 1. Remove RF cover. 2. Remove at least three RF modules. 3. Remove two TX-10 screws. 4. Disconnect all cables and remove A12. Tools Required • TX-15 screw driver • TX-10 screwdriver • 1/4-inch wrench[...]

  • Page 83

    8-13 Assembly and Disassemb ly Procedures A12 Pulse Attenuator Remo val SIDE VIEW T OP VIEW 1 2 PULSE SWITCH 3[...]

  • Page 84

    8-14 Assembly and Disassemb ly Procedures A21 GPIB Interface Remov al A21 GPIB Interface Removal Done with top cover removed. 1. Remove four TX-15 power supply cover screws. 2. Remove two 7mm bolts. 3. Remove one TX-10 screws. 4. Disconnect ribbon cable. Tools Required • TX-15 screw driver • TX-10 screw driver • 7mm wrench[...]

  • Page 85

    8-15 Assembly and Disassemb ly Procedures A21 GPIB Interface Remov al 2 3 4 T OP VIEW 1[...]

  • Page 86

    8-16 Assembly and Disassemb ly Procedures A22 Display Remo v al A22 Display Removal Done with instrument top and bottom covers removed. 1. Do steps 1 through 11 of the A1 Front Panel removal instructions. NO TE The front panel assembly must be separated from the main chassis. Considerable pulling force is required to pull the front panel from the c[...]

  • Page 87

    8-17 Assembly and Disassemb ly Procedures A22 Display Remo v al 8 7 6 5 CR T SIDE VIEW 4 (4 places) 2 CR T 3[...]

  • Page 88

    8-18 Assembly and Disassemb ly Procedures A23 Input Section Remov al A23 Input Section Removal Done with instrument top and bottom cover removed. 1. Do steps 1 through 11 of the A1 Front Panel removal instructions. NO TE The front panel assembly must be separated from the main chassis. Considerable pulling force is required to pull the front panel [...]

  • Page 89

    8-19 Assembly and Disassemb ly Procedures A24 Attenuator Remo val A24 Attenuator Removal Done with instrument top and bottom covers removed. 1. Do steps 1 through 11 of the A1 Front Panel removal instructions. NO TE The front panel assembly must be separated from the main chassis. Considerable pulling force is required to pull the front panel from [...]

  • Page 90

    8-20 Assembly and Disassemb ly Procedures A28 P o wer Supply Remo val A28 Power Supply Removal Done with instruments top and bottom covers removed. 1. Remove power supply cover. 2. Remove standard plate. If installed remove option 001. 3. Remove five TX-10 screws that attach power supply board to the main chassis. 4. Remove the eight 2-pt. Pozidriv[...]

  • Page 91

    8-21 Assembly and Disassemb ly Procedures A28 P o wer Supply Remo val[...]

  • Page 92

    8-22 Assembly and Disassemb ly Procedures Fan Remo v al Fan Removal Done with top cover removed. 1. Remove four TX-15 power supply cover screws and remove cover. 2. Remove four 2-pt. fan mounting Pozidriv screws. 3. Disconnect cable and remove fan. Tools Required • TX-15 screw driver • 2-pt. Pozidriv[...]

  • Page 93

    8-23 Assembly and Disassemb ly Procedures Fan Remo v al[...]

  • Page 94

    8-24 Assembly and Disassemb ly Procedures T ransformer Remov al Transformer Removal Done with top and bottom covers removed. 1. Do steps 1 through 8 of the A28 Power Supply Removal instructions. 2. Disconnect cables and remove transformer using illustration below. Tools Required • TX-15 screw driver • 2-pt. Pozidriv • Soldering equipment • [...]

  • Page 95

    9-1 9 Replacing a Part[...]

  • Page 96

    9-2 Replacing a P ar t Introduction Introduction T o order parts contact your local Agilent T echnologies Sales and Service office. Assembly Replacements For most parts, you can either order a ne w assembly or an exchange assembly . Exchange assemblies are factory-repaired, inspected, and tested. If you order an exchange assembly you must return t[...]

  • Page 97

    9-3 Replacing a P ar t Replaceable P arts Replaceable Parts The follo wing tables and figures list part numbers for replaceable parts. For more information or details of replaceable parts, contact your local Agilent T echnologies Sales and Service Office.[...]

  • Page 98

    9-4 Replacing a P ar t Replaceable P arts T able 9-2 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .P art Number A1 08920-60201 3 1 BD A Y KEY 28480 08920-60201 J1 1250-1811 5 1 ADAPT FN F SMA (CONN, TP N) 00000 ORDER BY DESCRIPTION W31 08922-61037 8 1 SWITCH/SPKR HARNESS ASSY (G/H/M Only) 28480 08922-61037 W31 089[...]

  • Page 99

    9-5 Replacing a P ar t Replaceable P arts A1 6 7-11 (A1 Mounting Screws) 49-52, 54-63, 66 547 (T rim) 2 (F rame) 1 (P anel 31 (Nut under Dress) volume knob) 48 33 32 J1 70 W31 Pow e r Switch 34 38-43, 45, 46, 65 546 (T rim) 27-30 47 35 (T rim) 548 37 36 RFI Gaskets T op 532 Bottom 533 Right Side 528, 529 Left Side 530,531[...]

  • Page 100

    9-6 Replacing a P ar t Replaceable P arts T able 9-3 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number A2 08920-60212 7 1 A UDIO AN AL YZER 2 (Order 08920-61812) A3 08920-60171 6 1 A UDIO AN AL YZER 1 A4 08920-60209 1 1 MODULA TION DISTRIBUTION (Order 08920-61809) 28480 08920-60209 A5 08922-60105 9 1 PREMO[...]

  • Page 101

    9-7 Replacing a P ar t Replaceable P arts[...]

  • Page 102

    9-8 Replacing a P ar t Replaceable P arts T able 9-4 Replaceable Parts Item Agilent P art Number C D Qty . Description Mfr . Code Mfr .Part Number A15 08922-61019 6 1 MOD-PCB REF SECTION 28480 08922-61019 A16 08922-61004 9 1 RECEIVER (Order 08922-61804) A17 08922-61013 0 1 STEP LOOP B MOD 28480 08922-61013 A18 08922-61045 8 1 SPECTRUM AN AL YZER (O[...]

  • Page 103

    9-9 Replacing a P ar t Replaceable P arts[...]

  • Page 104

    9-10 Replacing a P ar t Replaceable P arts T able 9-5 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .P art Number A28 08922-61043 6 1 POWER SUPPL Y 28480 08922-61043 08645-60132 6 1 BD A Y -PWR S STBD 28480 08645-60132 08645-60133 7 1 BD A Y -FUSE 28480 08645-60133 0515-1860 5 4 SCREW 1.5FM 3.5 TX 00000 ORDER BY DE[...]

  • Page 105

    9-11 Replacing a P ar t Replaceable P arts[...]

  • Page 106

    9-12 Replacing a P ar t Replaceable P arts T able 9-6 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number A31 08922-60247 9 1 MGSM / CODEC (E/F/G/H/M/S Only) 28480 08922-60147 A32 08922-60146 8 1 GSM CONTR OLLER (Order 08922-60176) 28480 08922-60146 A32 08922-60162 8 1 GSM CONTR OLLER (Order 08922-60176) 284[...]

  • Page 107

    9-13 Replacing a P ar t Replaceable P arts[...]

  • Page 108

    9-14 Replacing a P ar t Replaceable P arts T able 9-7 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number A22-W1 08920-61020 7 1 CABLE (RIBBON) CR T -MBOARD 28480 08920-61020 W1 08920-61012 7 1 CABLE RF OUT A TTEN 28480 08920-61012 W2 08922-61028 7 1 CABLE M-BD J14 TO SCOPE IN 28480 08922-61028 W3 08920-6101[...]

  • Page 109

    9-15 Replacing a P ar t Replaceable P arts W46 08922-61050 5 1 EMMI CABLE (G Only) 28480 08922-61050 W47 08922-61077 6 1 RIBBON 16 CND 28480 08922-61077 W48 08922-61078 7 1 RIBBON 26 CND 28480 08922-61078 W49 08922-61080 1 1 CABLE 28480 08922-61080 W50 08922-61081 2 1 CABLE 28480 08922-61081 W51 08922-61082 3 1 CABLE SMC TO SMC 28480 08922-61081 W5[...]

  • Page 110

    9-16 Replacing a P ar t Replaceable P arts[...]

  • Page 111

    9-17 Replacing a P ar t Replaceable P arts[...]

  • Page 112

    9-18 Replacing a P ar t Replaceable P arts T able 9-8 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number 1 5040-3881 2 1 TOP FLANGE 00000 ORDER BY DESCRIPTION 3 5060-4475 4 2 SIDE FLANGE 00000 ORDER BY DESCRIPTION 6 5001-8663 6 1 INTERNAL LID 00000 ORDER BY DESCRIPTION 9 0515-1114 2 4 SCREW (M4X10) 00000 OR[...]

  • Page 113

    9-19 Replacing a P ar t Replaceable P arts[...]

  • Page 114

    9-20 Replacing a P ar t Replaceable P arts T able 9-9 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number 3 08922-61011 8 1 A Y -FRAME, (CHASSIS). 28480 08922-61011 12 08922-00004 1 1 CR T BRACKET 28480 08922-00004 114 08922-00030 3 1 BRACKET -REG, PCA 28480 08922-00030 115-117 0515-1950 4 3 SCREW MACH M3 X [...]

  • Page 115

    9-21 Replacing a P ar t Replaceable P arts 12 CRT Br ack et 426 3 424 416- 421, 427- 456 502- 504 Nut 499- 501 W asher 506- 521 493- 498 114 Regular Mounting Brack et and 115-118 Screws (Not Shown) 458 (Opt. 001) 244 240 GPIB Mounting Brack et and 241-242 Screws 252 492 T op Cov er (B, E and G) 505 Bottom Plate (B,E and G)[...]

  • Page 116

    9-22 Replacing a P ar t Replaceable P arts T able 9-10 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .P art Number 21 0515-0456 3 1 SMM4.0 20MML 00000 ORDER BY DESCRIPTION 91-95 0515-1860 5 1 SCREW 1.5 FM 3.5 TX 00000 ORDER BY DESCRIPTION 96-100 3050-0227 3 5 W ASHER .375 OD 00000 ORDER BY DESCRIPTION 119 08922-000[...]

  • Page 117

    9-23 Replacing a P ar t Replaceable P arts[...]

  • Page 118

    9-24 Replacing a P ar t Replaceable P arts T able 9-11 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number 22,23, 112,113 0515-0380 2 4 SMM4.0 10SEMPNTX 00000 ORDER BY DESCRIPTION 24,25 0515-2126 8 2 SMM3.0 6SEMPNTX 00000 ORDER BY DESCRIPTION 83-86, 104-107 0515-1331 5 8 SCREW M4 X 6 00000 ORDER BY DESCRIPTI[...]

  • Page 119

    9-25 Replacing a P ar t Replaceable P arts T able 9-12 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number 79-82, 108-111 0515-1331 1 8 SCREW M4 X 6 00000 ORDER BY DESCRIPTION 203,204 0515-0380 2 2 SMM4.0 10SEMPNTX 00000 ORDER BY DESCRIPTION 561 0515-0380 2 1 SMM4.0 10SEMPNTX 00000 ORDER BY DESCRIPTION[...]

  • Page 120

    9-26 Replacing a P ar t Replaceable P arts T able 9-13 Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .Part Number Serial Prefix 3216A and Below 209 08922-00005 2 1 PLA TE REAR P ANEL (A Only) 28480 08922-00005 Serial Prefix 3217A and Abov e 209 08922-00073 4 1 PLA TE REAR P ANEL (A Only) 28480 08922-00073 211,212[...]

  • Page 121

    9-27 Replacing a P ar t Replaceable P arts ([...]

  • Page 122

    9-28 Replacing a P ar t Replaceable P arts T able 9-14 Miscellaneous Replaceable Parts Item Agilent Part Number C D Qty . Description Mfr . Code Mfr .P art Number 26,205-207 1400-0249 0 4 CABLE TIE 00000 ORDERBY DESCRIPTION 53 08590-80007 0 1 LBL W ARNING-CRT 00000 ORDER BYDESCRIPTION 64,208 1400-1391 5 3 CLAMP CABLE 00000 ORDER BY DESCRIPTION 67-6[...]

  • Page 123

    9-29 Replacing a P ar t Firmware Upgrades Firmware Upgrades In The Agilent 8922M HOST and GSM Firmware are upgraded using an external controller or Personnal Computer . In The HP/Agilent 8922A, B, E, G, F, H, S The firmware for the HP/Agilent 8922A,B,E,G,F ,H,S is grouped in single ROM sets. These sets are listed below . It is recommended that a c[...]

  • Page 124

    9-30 Replacing a P ar t Firmware Upgrades This Page Intentionally Left Blank[...]

  • Page 125

    10-1 10 Service Screen[...]

  • Page 126

    10-2 Ser vice Screen Introduction Introduction This chapter describes the fields on the service screen. The service screen is intended to support component lev el repair and the features are of greatest use with component le vel documentation. Component lev el documentation is beyond the scope of this book and Agilent T echnologies does not curren[...]

  • Page 127

    10-3 Ser vice Screen Introduction 4. Counter Connection This field selects the frequency test point. The frequenc y will be counted and displayed in the frequency field. 5. Gate Time This field selects the gate time used by the frequency counter . 6. Latch This field selects the data latch to be read or written to. 7. Value This field displays[...]

  • Page 128

    10-4 Ser vice Screen Introduction This Page Intentionally Left Blank[...]

  • Page 129

    11-1 11 Self-Test Error Messages[...]

  • Page 130

    11-2 Self-T est Error Messages Introduction Introduction This chapter lists the error messages that appear on the status line of the display and on the message screen when the self-tests are run on power -up. This list does not include all of the messages that can appear under all circumstances. ”Battery Backed RAM Initialized. Structures corrupt[...]

  • Page 131

    12-1 12 Module I/O Specifications[...]

  • Page 132

    12-2 Module I/O Specifications Introduction Introduction This chapter contains tables of module input/output specifications. These do not include tables for some of the digital boards due to complexity . In most cases it will be quicker to v erify digital failures using board swap than to v erify through measurement. This chapter is used with the[...]

  • Page 133

    12-3 Module I/O Specifications A2 A udio Analyzer 2 A2 Audio Analyzer 2 Use extender card 08920-60142 Power Supplies Inputs AUDIO INPUT MUX DC AUDIO INPUT +5 V J1(21,22) 200 mA +12 V J1(19) 80 mA -12 V J1(20) 80 mA GND (Analog) J1(6,7,10,13,14,17,18) GND (Digital) J1(23,24,25,27) From A3 Audio Analyzer 1 Selected Input — FIL_A UD J1(12) Input Z [...]

  • Page 134

    12-4 Module I/O Specifications A2 A udio Analyzer 2 Outputs AUDIO OUT MEAS MUX SPEAKER T o A19 Measurement Board A UD2_VM J1(11) Selected path = POS/NEG peak detectors. Input = FIL T_A UD Response T ime < 1 ms (Rise time) DC Offset < ± 15 mV Detector Range 0.424 to 5 V Peak Selected path = Pre Notch RMS detectors. Input=FIL T_A UD Specifie[...]

  • Page 135

    12-5 Module I/O Specifications A3 A udio Analyzer 1 A3 Audio Analyzer 1 Use extender card 08920-60142. The Primary function of Audio Analyzers 1 and 2 is to provide oscilloscope functions. Power Supplies Inputs AUDIO INPUT MUX +5 V J1(21,22) 20 mA +12 V J1(19) 60 mA -12 V J1(20) 60 mA GND (Analog) J1(3,4,8,12,13,17,18) GND (Digital) J1(23,24,26,27[...]

  • Page 136

    12-6 Module I/O Specifications A3 A udio Analyzer 1 Outputs T o Audio Analyzer 2 FIL_A UD J1(15) Output Z < 1 Ω Unit Gain Opamp Selected Inputs (DEMOD_A UD,MOD_MON,EXT_SCOPE, A UX_IN2, DET_LO) T otal Path Accuracy 0.02 to 10 kHz ± 0.45 % 0.02 to 25 kHz ± 1.05 % 0.02 to 75 kHz ± 7.7 % 0,20,40 dB, No Filters DC Offset < 13 mV 0 dB Gain &l[...]

  • Page 137

    12-7 Module I/O Specifications A3 A udio Analyzer 1 T o A19 Measurement Board A UD1_VM J1(16) Output Z > 1 Ω Unity Gain buf fer DC Offset < ± 9 mV Selected input =Range/Over -v oltage detector Response T ime < 1 ms (Rise time) DC Offset ± 15 mV Specified input range .29 to 5 Vp Accuracy ± 2% 20 Hz to 50kHz B.W . (3 dB) 20 Hz to >[...]

  • Page 138

    12-8 Module I/O Specifications A4 Modulation Distribution A4 Modulation Distribution Use extender card 08920-60141 Power Supplies Inputs AFG1 and AFG2 are both sine wa ve signals with the audio frequenc y set on the RF Generator page, the attenuation takes place on the modulation distrib ution board. T o obtain a signal for measuring AFG2, select [...]

  • Page 139

    12-9 Module I/O Specifications A4 Modulation Distribution Outputs The output of A UDIO_OUT_HI can be set on the RF Analyzer page. T o route the input signal AFG1 to the output AM_MOD, access the SER VICE Screen. Select the latch ’ dstr_mod_destination’ and change the v alue to an y odd number (for example ’3’). Select ’ dstr_afg1_to_mod?[...]

  • Page 140

    12-10 Module I/O Specifications A5 Premodulation Filter and NSM A5 Premodulation Filter and NSM Use extender card 08922-60132. Power Supplies Inputs Clock signal input is a square wa ve of duty c ycle 50% and approximately 4.4Vp-p when measured on an oscilloscope. T o vie w on a spectrum analyzer , set centre frequency to 270 kHz and span to 540 k[...]

  • Page 141

    12-11 Module I/O Specifications A5 Premodulation Filter and NSM The PMF_D A T A signal is difficult to measure accurately without a high speed oscilloscope or logic analyzer . Using a Spectrum Analyzer, an increased noise floor can be seen when probed about the centre frequency of 270 kHz. Using an oscilloscope, the signal can be measured at 4.4[...]

  • Page 142

    12-12 Module I/O Specifications A5 Premodulation Filter and NSM Figure 4-1 Typical Oscilloscope Display Serial I/O Channel 1 = 500.0 mvolts/div Offset = 1.810 volts T rigger mode: Edge on positive edge on Chan1 Timebase = 20.0 ns/div Dela y = 0.000 s T r igger Lev els Ch. 1 P arameters P-P V olts = 3.187 volts Chan1 = 1.810 volts Rise Time = 13.66[...]

  • Page 143

    12-13 Module I/O Specifications A6 Signaling Source/Anal yzer A6 Signaling Source/Analyzer Use extender card 08920-60140. Power Supplies Inputs +12 V J1(9) 21 mA +5 V J1(37,39,40) 650 mA -12 V J1(10) 41 mA D_Ground J1(13,14,31,32) A_Ground J1(2,7) From A2 Audio Ananlyzer 2 PR OC_A UD J1(11) Input Impedance 41.6 k Minimum Input Le vel 0.2 Vpk Maxim[...]

  • Page 144

    12-14 Module I/O Specifications A6 Signaling Source/Anal yzer Outputs For le vels and setting up signals for measuring, see “ A4 Modulation Distribution”, page 12-8. T o A4 Modulation Distribution Assembly AFG1 J1(3), AFG2 J1(5) Freq Range DC to 25 kHz Freq Resolution 0.1 Hz Freq Accuracy 0.01 % of setting Output le vel (Max) 2.5 Vpk Output Lv[...]

  • Page 145

    12-15 Module I/O Specifications A9 Global T est and Demod A9 Global Test and Demod Use extender card 08922-60133. Power Supplies Inputs The 10.7 MHz is orginated from the A16 Recei v er . It is do wn con verted to 700 kHz ± 50 kHz within the Global T est and Demod assembly . T o obtain a reading either with an oscilloscope (See Figure 4-2 on page[...]

  • Page 146

    12-16 Module I/O Specifications A9 Global T est and Demod Figure 4-2 Expected Output Channel 1 = 500.0 mvolts/div Offset = -50.00 volts T rigger mode: Edge on positive edge on Chan1 Timebase = 20.0 ns/div Dela y = 0.0000 s T rigger Lev els Ch. 1 P arameters P-P V olts = 1.468 volts Chan1 = -50 mvolts Rise Time = 27.540 ns F all Time = 27.000 ns Ho[...]

  • Page 147

    12-17 Module I/O Specifications A9 Global T est and Demod Figure 4-3 on page 12-17 shows the expected oscilloscope reading. This signal can also be clearly seen on a spectrum analyzer . Figure 4-3 Expected Display From A15 Reference Section 20M_REF_A J1(11) W av e Shape: Sine Frequency: 20 MHz ± 1 ppm Requires Ext Ref of 1 ppm Lev el: > 0 dBm [...]

  • Page 148

    12-18 Module I/O Specifications A9 Global T est and Demod T o set up this signal for measuring, follow the same procedure as for "10.7M_IF J1(7)", page 12-15, by running the RF Diagnostics. The signal can be seen on a spectrum analyzer or measured on an oscilloscope, see Figure 4-4 on page 12-18 for a typical reading. Figure 4-4 Typical [...]

  • Page 149

    12-19 Module I/O Specifications A11 Receiver Mixer A11 Receiver Mixer No extender card required. Power Supplies Inputs NO TE: Ensure the reference setting and RF Analyzer are set to the same frequency. LO (Local Oscillator) Frequency will be 114.3 MHz or 614.3 MHz a way from frequency set on RF Analyzer page depending on which one is furthest away[...]

  • Page 150

    12-20 Module I/O Specifications A11 Receiver Mixer Figure 4-5 Typical Display Channel 1 = 130.0 mvolts/div Offset = 0.000 volts T rigger mode: Edge on positive edge on Chan1 Timebase = 875 ps/div Delay = 0.0000 s T r igger Le vels Ch. 1 P arameters P-P V olts = 387.5 mvolts Chan1 = 0.000 volts Rise Time = 410 ps F all Time = 420 ps Holdoff = 70.00[...]

  • Page 151

    12-21 Module I/O Specifications A11 Receiver Mixer Outputs NO TE: To measure RCVR_IN, the connection must T’ed and a DC blocking capacitor used on the measurement cable. This is to maintain the DC controlling voltage from A16 Receiver, which controls the filters within the receiver mixer. It also the blocking capacitor prvents the controlling vo[...]

  • Page 152

    12-22 Module I/O Specifications A13 Output A13 Output Use extender card 08922-90129. Use coax jumpers on Plug 1, pins 3, 17 and Plug 3, pin 13. Power Supplies Inputs2 OUT_1G_REF only present for RF Generator frequencies from 0 to 291 MHz, used for frequency translation. +5 V J2(4) 50 mA +12 V J2(2) 310 mA − 12 V J2(3) 80 mA +38 V J2(1) 10 mA GND[...]

  • Page 153

    12-23 Module I/O Specifications A13 Output See "A4 Modulation Distribution", page 12-8 for measurement procedure. Outputs From A4 Modulation Distribution AM_MOD J2(7) Input Z 25 k Ω 5000 pF parallel shunt. Sensiti vity 25% AM / V T o A12 Pulse Attenuator (Coax jumper connection) MAIN_RF_OUT J3(13) Freq Main Band 501 to 1000 MHz Di vide[...]

  • Page 154

    12-24 Module I/O Specifications A14 Pulse Driver A14 Pulse Driver Use extender card 08922-60129. Use coax jumpers on Plug 1, pins 3, 13 and 17. Plug 3, pins 3, 9 and 17. Power Supplies Inputs +15 V J2(2) -15 V J2(3) +5 V J2(4) Ground J3(1-2,4-8,10-16,18-20) J1(1,4,6-12,14,16,18-19) From A15 Reference Section 1M_REF_C P3(3) Frequency: 1 MHz ± 5 Hz[...]

  • Page 155

    12-25 Module I/O Specifications A14 Pulse Driver Outputs T o 13 MHz output on Rear Panel 13M_REF_OUT_A P3(17) W av eshape: Sine Le vel: >7.5 dBm Nominal Output Impedance: 50 Ω Amplitude 3.75 Vp-p 1.7 V rms T o A34 R TI Assembly 13M_REF_OUT_B W av eshape: Frequency and Harmonics HP/Agilent 8922E,G,H, M Only Lev el: >7.5 dBm Amplitude 5.3 Vp[...]

  • Page 156

    12-26 Module I/O Specifications A15 Reference A15 Reference Use extender card 08922-60129. Use coax jumpers on Plug 1, pins 3, 9, 13 and 17. Plug 3, pins 9, 13 and 17. Power Supplies Inputs T o test, check for presence of 13 MHz out on BNC Rear Panel. +15 V J2(2) 90 mA -15 V J2(3) 60 mA +5 V J2(4) 400 mA Ground J3(3,6-8,10-12,14-16,18-19) J1(1-2,4[...]

  • Page 157

    12-27 Module I/O Specifications A15 Reference Hop Control Outputs T o A33 Hop Controller J2(5,8,9) Lev els: TTL Clock Rate: ≅ 180 kHz (bursts) Amplitude +5 Vdc T o Rear Panel EX_10M_REF_OUT J1(13) W av eshape: Sine Harmonics: <-25 dBc Signal Lev el: >+7.5 dBm Spurious at >5 kHz offsets: <-110 dBc Nominal Output Impedance: 50 Ω T o [...]

  • Page 158

    12-28 Module I/O Specifications A15 Reference Figure 4-6 Typical Display Figure 4-7 Typical Display T o A14 Pulse Dri ver 1M_REF_C J3(2) Frequency: 1 MHz ± 5 Hz See Figure 4-7 on page 12-28 Le vels: CMOS Duty Cycle: 800 ns low , 200 ns high Amplitude ≅ 1 Vdc W av eshape square wav e (not a true square wa ve) Duty Cycle 20% 800 ns 200 ns 4.8 Vp-[...]

  • Page 159

    12-29 Module I/O Specifications A15 Reference T o A18 Spectrum Analyzer SA_20M_REF J3(5) Frequency: 20 MHz ± 100 Hz W av eshape: Sine Harmonics: <-25 dBc Subharmonics: <-30 dBc Signal Lev el: >+3 dBm (+10 dBm typical) Spurious at >5 kHz offsets: <-70 dBc Amplitude 1 V rms 2.8 Vp-p T o A19 Measure Assembly (Readings same as SA_20M_R[...]

  • Page 160

    12-30 Module I/O Specifications A15 Reference For measurement procedure and w av eform, refer to "A5 Premodulation Filter and NSM", page 12-10. Refer to "A9 Global T est and Demod", page 12-15, for measurement procedure and wa veform. T o A5 Premodulation Filter and NSM 10M_REF_B J3(17) Frequency: 10 MHz ± 50 Hz W av eshape: S[...]

  • Page 161

    12-31 Module I/O Specifications A15 Reference OUT_1G_REF is only present for RF Generator settings up to 291 MHz. Used for frequency translation. Refer to "A13 Output", page 12-22, for readings. T o A16 Recei ver Assembly 500M_REF J1(17) Frequency: 500 MHz ± 2.5 kHz W av eshape: Sine Signal Lev el: 0 dBm ± 2 dB Harmonics: <-25 dBc S[...]

  • Page 162

    12-32 Module I/O Specifications A16 Receiver A16 Receiver Use extender card 08922-60129. Use coax jumpers on Plug 1, pins 3, 7 and 13. Plug 3, pins 3, 9 and 13. Power Supplies Inputs CA UTION Connection must be T’ed and measurement line must ha ve DC blocking capacitor . Refer to "A11 Receiver Mix er", page 12-19, for full measurement [...]

  • Page 163

    12-33 Module I/O Specifications A16 Receiver Outputs Figure 4-8 Typical Display T o test Pulse Demod apply RF Carrier with AM modulation to RF Input, measure Pulse Demod Out on oscilloscope ≅ 180 mV x %MOD NO TE: Ensure correct settings on RF Analyzer page (frequency/amplitude). If the RF Input level is greater than 5 dBm below RF Analyzer setti[...]

  • Page 164

    12-34 Module I/O Specifications A16 Receiver T o test FM Demod apply RF Carrier with FM modulation to RF Input, measure FM Demod on oscilloscope. NO TE: Ensure correct settings on RF Analyzer page (frequency/amplitude). If the RF Input level is greater than 5 dBm below RF Analyzer setting, the measurement will not register. Refer to "A9 Globa[...]

  • Page 165

    12-35 Module I/O Specifications A16 Receiver T o A18 Spectrum Analyzer SA_114.3_M J3(13) Frequency: 114.3 MHz ± 5 MHz Lev el -20 dBm T o A19 Measurement Assembly V oltmeter MUX A UX7_VM J2(7) V oltage range: ± 5 V[...]

  • Page 166

    12-36 Module I/O Specifications A18 Spectrum Analyzer A18 Spectrum Analyzer Use extender card 08922-60129. Use coax jumpers on Plug 1, pins 3 and 17. Plug 2, pin 17. Power Supplies Inputs +12 V J2(2) 165 mA -12 V J2(3) 300 mA +5 V J2(4) 225 mA Ground J1(1,2,4-20) J3(1-16,18-20) From A16 Receiv er (Needs Reference Input to obtain a reading) SA_114.[...]

  • Page 167

    12-37 Module I/O Specifications A18 Spectrum Analyzer Outputs From A19 Measurement Assembly SWP_STR T J1(6) Le vels: CMOS High = Sweep Start Low = Sweep Stop CLK_REF_SA J2(8) Serial Bus E/I_SA J2(9) to/from A33 D A T_REF_SA J2(5) Hop Controller Le vels: TTL Clock Rate: ≅ 80 kHz (bursts) T o A19 Measurement Assembly SA_SCPT J1(7) Output Impedance[...]

  • Page 168

    12-38 Module I/O Specifications A19 Measurement A19 Measurement Use extender card 08920-60138. Power Supplies +5 V J1(15,16) J2(21,24) 420 mA +12 V J2(26) 120 mA -12 V J2(25) 120 mA +38 V J3(17) < 1 mA +12 V Aux J2(28) 0 mA[...]

  • Page 169

    12-39 Module I/O Specifications A19 Measurement Inputs V oltmeter Multiplexer +5 J2(24,21) J1(15,16) +12 J2(26) - FM Motherboard +38 J3(17) - FM Motherboard -12 J2(25) +12 A UX J2(28) IN_TEMP J3(4) IN_V OL T J3(5) DET_LO J3(7) DET_HI J3(6) A UD1_VM J3(8) - FM A udio Analyzer 1 A UD2_VM J3(3) - FM A udio Analyzer 2 RI_VM_ID J3(10) RI_VM J2(12) RSYN[...]

  • Page 170

    12-40 Module I/O Specifications A19 Measurement Scope Multiplexer PR OC_A UD J3(24) - FM A udio Analyzer 2 A2 SA_SCP J3(23) - From Spectrum Analyzer A18 RI_SCP J3(26) - From Spectrum Analyzer A18 A UX_SCP J3(21) DET_LO Internal DET_HI Internal GR OUND Internal CALIBRA TION REFERENCE Internal No Minimum Input Max Input 10 V Input Z > 1 M Ω (No[...]

  • Page 171

    12-41 Module I/O Specifications A19 Measurement Counter Inputs A UDIO1_CNT J1(6) - FM A udio Analyzer 1 A3 RI_CNT J1(8) IN_CNT J1(5) - From Input Section A23 IF_CNT J1(9) - From Global Board A9 TIME B ASE REF 20 MHz J3(29) MIXED_IF Internal STRIG Internal GND Internal 20 MHz T ime Base Standard The 20 MHz Sine wa ve dri v es a divide by 2 circuit [...]

  • Page 172

    12-42 Module I/O Specifications A19 Measurement Trigger Input Scope T rigger Internal SIGN_SCP_TRIG J1(10) RI_SCP_TRIG J1(7) EXT_TRIG J1(4) INTERNAL TRIGGER Inter nal T rigger Logic SIGN_SCP_TRIG HCMOS (V ih > 4 V , V il < 1 V) RI_SCP_TRIG HCMOS EXT_TRIG HCMOS Maximum Input ± 15 V EXT_TRIG[...]

  • Page 173

    12-43 Module I/O Specifications A23 Input (HP/Agilent 8922A.B,E,F ,G,H) Only A23 Input (HP/Agilent 8922A.B,E,F,G,H) Only NO TE: Applies to Mechanical Attenuator only. No extender card required. Power Supplies Inputs T o av oid remo ving bottom cov er and motherboard covers, measure MAIN_RF_OUT on A13 output section. +12 V J6(9) 215 mA +5 V J6(12) [...]

  • Page 174

    12-44 Module I/O Specifications A23 Input (HP/Agilent 8922A.B,E,F ,G,H) Only Outputs From Front Panel RF IN/OUT Output J1 Freq Range .4 to 1000 MHz From Front Panel A UX RF OUT J2 Freq Range .4 to 1000 MHz Relati ve path loss with respect to siggen input,thru path (0 dB). .4 MHz Loss < 1 dB 1000 MHz Loss < 6 dB Relati ve path loss with respe[...]

  • Page 175

    12-45 Module I/O Specifications A23 Input (HP/Agilent 8922A.B,E,F ,G,H) Only Measure using known reference signal, refer to "A11 Recei v er Mixer", page 12-19, for procedure. T o A11 Recei ver Mix er 1st_MIX_IN J5 Freq Range .4 to 1000 MHz Output Le vel Normal − 12 dBm to − 22 dBm Underrange − 22 dBm to − 50 dBm[...]

  • Page 176

    12-46 Module I/O Specifications A23 Input (HP/Agilent 8922A.B,E,F ,G,H) Only T o A19 Measurement Assembly IN_V OL T J6(15) A UTO_RNG_DET Prescaler A GC RF peak detector v oltage. Output Lev el 4.71 ± .5 V When AGC has acti v e control. A UTO_RNG_ALC Prescaler A GC modulator control voltage. Range 0 to + 4 V TEMP_DET T emperature sensor voltage. N[...]

  • Page 177

    12-47 Module I/O Specifications A23 Input (Agilent 8922M/S Only) A23 Input (Agilent 8922M/S Only) NO TE: Applies to Electronic Attenuator only. No extender card required. Power Supplies Inputs T o av oid remo ving bottom cov er and motherboard covers, measure MAIN_RF_OUT on A13 output section. +12 V J6(9) 226 mA max +5 V J6(12) 15 mA -12 V J6(10) [...]

  • Page 178

    12-48 Module I/O Specifications A23 Input (Agilent 8922M/S Only) Outputs Measure using kno wn reference signal, refer to "A11 Receiv er Mixer", page 12-19, for procedure. From Front Panel A UX RF OUT J2 Freq Range 20 to 1000 MHz Relati ve path loss with respect to siggen input,thru path (0 dB). 20 MHz Loss < 6 dB 1000 MHz Loss < 8 [...]

  • Page 179

    12-49 Module I/O Specifications A23 Input (Agilent 8922M/S Only) T o A19 Measurement Assembly IN_V OL T J6(15) TEMP_DET T emperature sensor voltage. Nominal Output 2.98 ± .1 V olts @ 25 Deg C Sensivitity 10 mV / C DUPLEX_DET Duplex port RF peak detector V oltage. Nominal 100 mV ± 20 mV @ +10 dBm T rip Le vel 785 mV ± 10 mV ANT_DET Antenna port [...]

  • Page 180

    12-50 Module I/O Specifications A25 Sum Loop A25 Sum Loop Use extender card 08922-60129. Use coax jumpers on Plug 1, pin 3. Plug 3, pins 3, 17. Power Supplies Inputs +15 V J2(2) 300 mA -15 V J2(3) 70 mA +5 V J2(4) 100 mA Ground J1(1-2,4-20) J3(1-2,4-16,18-20) From A27 D A C/Upcon verter D A C_UP_OUT J3(3) Frequency: 13.4 MHz ± 50 kHz + Modulation[...]

  • Page 181

    12-51 Module I/O Specifications A25 Sum Loop If dif ficulty is found measuring STEP_LP_OUT , set RF Generator to 250 MHz and use oscilloscope settings from list shown belo w . Outputs From A26 Step Loop A STEP_LP_OUT/A J3(17) Frequency: 486 - 1015 MHz Resolution: 100 kHz Le vel: 3 dB ± 3 dB - on spectrum analyzer W av eshape sine Channel 1 = 200[...]

  • Page 182

    12-52 Module I/O Specifications A25 Sum Loop Change frequency on RF Generator page. Select modulation types on or of f. On spectrum analyzer , GMSK Modulation can be seen between centre frequency and first harmonics by le vel of increased noise floor . T o A13 Output SGS_500_1000M J1(3) Frequency: 500 to 1015 MHz Lev el: 0 dBm ± 2 dB Harmonics:[...]

  • Page 183

    12-53 Module I/O Specifications A17, A26 Step Loop A17, A26 Step Loop Use extender card 08922-60129. Use coax jumpers on Plug 1, pin 3. Plug 3, pin 3. Power Supplies Inputs For measurement procedure refer to "A15 Reference", page 12-26. +15 V J2(2) 250 mA -15 V J2(3) 100 mA +5 V J2(4) 450 mA Ground J1(1-2,4-20) J3(1-2,4-20) From A15 Refe[...]

  • Page 184

    12-54 Module I/O Specifications A17, A26 Step Loop Outputs See "A25 Sum Loop", page 12-50, for measurement procedure. Step Loop B(A17) T o achie ve lo west frequency from a v ailable range (to compensate for digital oscilloscope frequency range to measure higher RF frequencies), select 380.8 MHz from RF analyzer page (This uses 495.1 MHz[...]

  • Page 185

    12-55 Module I/O Specifications A17, A26 Step Loop T o A19 Measurement Board A UX1/2_VM J2(6) V oltage Range: -5 V to +5 V - typically +5 Vdc for default/Preset settings[...]

  • Page 186

    12-56 Module I/O Specifications A27 D A C/Upconverter A27 DAC/Upconverter Use extender card 08922-60129. Use coax jumpers on Plug 1, pins 7, 9 and 13. Plug 3, pin 15. Power Supplies Inputs See "A5 Premodulation Filter and NSM", page 12-10, for measurement procedure. The NSM_IF_D A T A can be probed on SMC connectors Plug 1 (pins 7, 9 and[...]

  • Page 187

    12-57 Module I/O Specifications A27 D A C/Upconverter See "A15 Reference", page 12-26, for measurement procedure. Outputs See "A25 Sum Loop", page 12-50, for measurement procedure. Channel 2 = 500.0 mvolts/div Offset = 1.450 volts T rigger mode: Edge on negative edge on Chan2 Timebase = 50.0 ps/div Delay = 0.0000 s T r igger Le[...]

  • Page 188

    12-58 Module I/O Specifications A28 P o wer Supply A28 Power Supply This spec is for the complete assembly which includes the transformer and plug-in boards. Input ❒ Overvoltage protected. ❒ +21 Volts and +25 Volt supplies always on, all other supplies controlled with front panel power switch. ❒ Short circuit protected. ❒ Thermal shutdown [...]

  • Page 189

    12-59 Module I/O Specifications A33 Hop Controller A33 Hop Controller Power Supplies Inputs Hop Control Input Bus +15 V J21(100) < 5 mA -15 V J21(40,59,60,61,91,92) 0 mA (not used) +5 V J21(99)J2(1) < 1 A Ground J21(17,18,42,43,56,69,87,93,94) HOP_ADDR J21(5-15) Amplitude: TTL lev els High driv e requirement: 100 µ A Lo w driv e requirement[...]

  • Page 190

    12-60 Module I/O Specifications A33 Hop Controller From Rear Panel RX_HOP J21(3) Amplitude: TTL lev els High driv e requirement: 100 µ A Lo w driv e requirement: -2 mA T riggered by: Rising edge From Rear Panel SEQ_HOP J21(2) Amplitude: TTL lev els High dri ve requirement: 100 µ A Low dri v e requirement: -2 mA T riggered by: Rising edge From Re[...]

  • Page 191

    12-61 Module I/O Specifications A33 Hop Controller Host Processor Interface Outputs Front Panel Input PULSE_MOD_IN J21(68) ON latency: ≅ 25 µ S OFF latency: ≅ 10 µ S Amplitude: TTL le vels High: No attenuation of sig gen output Low: Attenuate sig gen output High driv e requirement: 100 µ A Low dri v e requirement: -1 mA GADDR J21(57,58,62-6[...]

  • Page 192

    12-62 Module I/O Specifications A33 Hop Controller Fast Hop Busses I/O Clock, Data, and Enable Slow Busses Clock, Data, and Enable INPUT SECTION J21(40,46,44) STEP LOOP/A J21(29,27,30) STEP LOOP/B J21(37,35,36) PREMOD FIL TER & NSM J21(25,23,26) Amplitude: TTL Le vels Clock Rate: 1 MHz (bursted) RECEIVER J21(41,39,34) OUTPUT SECTION J21(41,39,[...]

  • Page 193

    13-1 13 Instrument Block Diagrams[...]

  • Page 194

    13-2 Instrument Block Diagrams Introduction Introduction This chapter contains the block diagrams for the HP/Agilent 8922A/B/E/F/G/H/M/S. Additional information for troubleshooting to the block diagram lev el can be found in the follo wing chapters. Chapter 4, Using the Service Kit, explains ho w to use the HP/Agilent 83210A Service Kit to extend t[...]

  • Page 195

    13-3 Instrument Block Diagrams Introduction Block Diagram 3 Block Diagram 3 contains circuits found only in the HP/Agilent 8922B. These circuits are used with the RF Generator circuits (BD2) to generate GSM signals. These circuits can only be controlled with the rear-panel GPIO connector on the HP/Agilent 8922B. Block Diagram 4 Block Diagram 4 illu[...]

  • Page 196

    13-4 Instrument Block Diagrams Introduction This Page Intentionally Left Blank[...]

  • Page 197

    14-1 14 Block Diagram Theory of Operation[...]

  • Page 198

    14-2 Block Diag ram Theor y of Operation Introduction Introduction The HP/Agilent 8922 is a specialized instrument designed to test GSM and PCN mobile radios and base station transmitters. The HP/Agilent 8922A contains the analog audio and RF hardware necessary to generate 0.3 Gaussian Minimum Shift K ey (GMSK) signals. Digital hardware has been ad[...]

  • Page 199

    14-3 Block Diag ram Theor y of Operation T echnical Discussion Technical Discussion The HP/Agilent 8922 can be di vided into two instruments, a signal generator and a signal analyzer . This discussion is intended to follow the block diagrams in chapter 13. The assemblies in Block Diagrams 1 and 2 are cov ered first. These are the primary assemblie[...]

  • Page 200

    14-4 Block Diag ram Theor y of Operation Block Dia gram 1 Block Diagram 1 RF Analyzer Audio Analyzer Spectrum Analyzer A23 Input A24 High Power Attenuator The A23 Input assembly is both the input for the RF Analyzer section and the final output from the RF Generator section. Additional information on how the A23 Input assembly is used in the signa[...]

  • Page 201

    14-5 Block Diag ram Theor y of Operation Block Dia gram 1 is limited. The diagnostics also verify the input filters and a connecti vity check is pro vided to verify the connections going into and out of the A23 Input assembly . This section is a likely cause of po wer measurement problems, especially if the diagnostics pass indicating that the mea[...]

  • Page 202

    14-6 Block Diag ram Theor y of Operation Block Dia gram 1 T o measure this signal it is necessary to “tee” the connection so that the dc control v oltage is always a v ailable to the A11 Recei ver Mix er assembly from the A16 Recei ver assembly . It is then possible to measure the dc voltages with an e xternal voltmeter or using a blocking capa[...]

  • Page 203

    14-7 Block Diag ram Theor y of Operation Block Dia gram 1 The primary measurements of the A9 Global T est and Demod assembly are phase, frequency , and amplitude information of the 0.3 GMSK modulation signals. The A9 Global T est and Demod assembly measures these by digitizing the 700 kHz IF signal and using high speed DSP hardware and algorithms. [...]

  • Page 204

    14-8 Block Diag ram Theor y of Operation Block Dia gram 1 two analyzer modules provide gain, attenuation, and distrib ution functions of the audio signals. The A19 Measurement assembly does the actual voltage measurement. The interconnection of these modules is shown on Block Diagram 1. The diagnostics for these modules are extensi ve. Lik e the ha[...]

  • Page 205

    14-9 Block Diag ram Theor y of Operation Block Dia gram 2 Block Diagram 2 RF Generator AF Generator A15 Reference The A15 Reference assembly contains the circuits necessary to generate reference signals for the other assemblies in the HP/Agilent 8922. The A15 Reference assembly can be locked to an external signal of 1, 2, 5, 10 or 13 MHz or can ope[...]

  • Page 206

    14-10 Block Diag ram Theor y of Operation Block Dia gram 2 Compared to common modulation formats like AM, FM, and phase modulation, the 0.3 GMSK format is more complex and requires special equipment (like the HP/Agilent 8922) to generate and analyze signals. A brief explanation is included here as an ov ervie w of the format of 0.3 GMSK. The 0.3 GM[...]

  • Page 207

    14-11 Block Diag ram Theor y of Operation Block Dia gram 2 necessary to do manual troubleshooting to find out if the A5 Premod Filter and NSM assembly is correctly locking to these other clock signals. By using the service screen and viewing the latch (NSM_PMF_CLK), it can be determined if the loop is locked. A “1” on the latch indicates lock,[...]

  • Page 208

    14-12 Block Diag ram Theor y of Operation Block Dia gram 2 T o speed up the operation during frequency changes, a Sum Loop pretune line is provided by the A26 Step Loop A assembly and dri ves the A25 Sum Loop assembly . This pretunes the VCO in the A25 Sum Loop assembly to allow it to lock more quickly as the A26 Step Loop A and A27 D A C/Upcon ver[...]

  • Page 209

    14-13 Block Diag ram Theor y of Operation Block Dia gram 2 A12 Pulse Attenuator In addition to 0.3 GMSK modulation, the RF signals must also be pulse modulated because the GSM system uses TDMA (time division multiple xing). The function of the A12 Pulse Attenuator assembly is to pass the RF output signal with 0 dB, 30 dB or > 80 dB of attenuatio[...]

  • Page 210

    14-14 Block Diag ram Theor y of Operation Block Dia gram 2 A4 Modulation Distribution A6 Signaling Source/Analyzer These modules are le veraged from an earlier product, the HP/Agilent 8920A, which is primarily an analog communications test set. Many of the audio circuits in these assemblies are not used by the HP/Agilent 8922 and will not be cov er[...]

  • Page 211

    14-15 Block Diag ram Theor y of Operation Block Dia gram 3 HP/Agilent 8922B Only Block Diagram 3 HP/Agilent 8922B Only The HP/Agilent 8922B contains 3 modules: A35 “B” Reference; A36 FIFO/GPIO; and A37 Sequence Controller assemblies that are not used in either the HP/Agilent 8922A or HP/Agilent 8922G. The function of these three modules can onl[...]

  • Page 212

    14-16 Block Diag ram Theor y of Operation Block Dia gram 3 HP/Agilent 8922B Only A37 Sequence Controller The A37 Sequence Controller assembly contains the switches which cause an HP/Agilent 8922B to function like an HP/Agilent 8922B instead of an HP/Agilent 8922A. Acti v ating the switches causes the Clock, Data, Pulse Modulation, and Frequency Hop[...]

  • Page 213

    14-17 Block Diag ram Theor y of Operation Block Dia gram 4 Block Diagram 4 This block diagram illustrates the assemblies that are unique to the HP/Agilent 8922E/F/ G/H. These modules are primarily digital and represent the hardware necessary to create the digital protocol to set up and maintain a phone call with a GSM mobile phone. A special diagno[...]

  • Page 214

    14-18 Block Diag ram Theor y of Operation Block Dia gram 5 Block Diagram 5 This block diagram illustrates the busses that interconnect the instrument controllers (A7 Controller , A32 GSM Controller , A34 GSM R TI, and A37 Sequence Controller) with the other assemblies. Chapter 5 “T roubleshooting the Controller/Display” contains information abo[...]

  • Page 215

    15-1 15 Diagnostics Theory[...]

  • Page 216

    15-2 Diagnostics Theor y Introduction Introduction This chapter describes what is tested by the memory card based or R OM based diagnostics and ho w to interpret the lev el of certainty that is attached to failure reports. This chapter is broken into sections for each of the diagnostic tests and a section for ho w to interpret results. This chapter[...]

  • Page 217

    15-3 Diagnostics Theor y AF_DIA GS AF_DIAGS Audio Frequency Generators 1 and 2 This test checks the A6 Signaling Source/Analyzer assembly . As a test signal, a digital “1” ex ercises D A Cs on the output of the A6 Signaling Source/Analyzer assembly to v erify voltage range, using the v oltmeter at the LFS1_VM and LFS2_VM outputs. Preliminary Au[...]

  • Page 218

    15-4 Diagnostics Theor y AF_DIA GS Audio Analyzer 1 Internal Paths This test checks the A3 Audio Analyzer 1 assembly . Using the AFG1 output of the A6 Signaling Source/Analyzer assembly (through the A4 Modulation Distribution assembly), the 12 internal paths of the A3 Audio Analyzer 1 are checked. T wo of the paths are not used in the HP/Agilent 89[...]

  • Page 219

    15-5 Diagnostics Theor y RF_DIA GS RF_DIAGS Reference This test checks the A15 Reference Section assembly . 10 MHz Lock Detector State The 10 MHz VCO is measured using the counter; ho wev er , the counter uses the reference so the measurement is an indication that the counter is working. This verifies that both the reference and the count signal a[...]

  • Page 220

    15-6 Diagnostics Theor y RF_DIA GS RF Generator Step Loop This test checks the A26 Step Loop A assembly . RF Generator Loop 1 MHz Reference Detector This test checks for the presence of a reference. RF Generator Loop Lock Detector State The lock detector is checked at se veral frequencies. RF Generator Loop Output Detector The le vel detector is ch[...]

  • Page 221

    15-7 Diagnostics Theor y RF_DIA GS Open Loop ALC Drive This test opens the ALC loop and checks the voltage that appears on the output of the modulator with the D A C at full scale, measured at the OUT_ALC_DRIVE using the voltmeter referenced to the -6 Vdc measurement. Output Detector, Detector Caps The output capacitors are switched in and out and [...]

  • Page 222

    15-8 Diagnostics Theor y RF_DIA GS RF Detectors 1 The lo w and high sensitivity detectors are check ed both with and without a signal present. Step Attenuator The step attenuator is checked by switching in one pad at a time. RF Detectors 2 The filter output detector is checked with no signal present. Filter Output Detector, Signal Present The fil[...]

  • Page 223

    15-9 Diagnostics Theor y RF_DIA GS RF Analyzer Loop 1 MHz Reference Detector This test checks for the presence of the 1 MHz reference. RF Analyzer Loop Lock Detector This test checks the loop for lock at sev eral frequencies. Loop B Output Detector This test checks the lev el detector at se veral frequencies. Spectrum Analyzer This test checks the [...]

  • Page 224

    15-10 Diagnostics Theor y RF_DIA GS Down Converters (With Spectrum Analyzer) Test The RF generator is fed to the recei ver IF through the A23 Input and A11 Recei v er Mixer assemblies to the second mixer in the recei ver . The signal is measured by the spectrum analyzer at three frequencies at the SA_114.3M output. IF Counter Test The signal is mea[...]

  • Page 225

    15-11 Diagnostics Theor y MS_DIA GS MS_DIAGS External Reference Ext Reference Present Detector The external reference detector is read. Ext Reference Lock Detector The 10 MHz loop lock detector is read. Ext Reference Lock Out; the external reference lock out is checked by locking out the external reference and checking the e xternal reference lock [...]

  • Page 226

    15-12 Diagnostics Theor y GSM and DCS Diagnostic T ests GSM and DCS Diagnostic Tests Each of these tests performs a functional check on the instrument by generating a test signal and looping the signal back to the measurement hardware. The tests with titles beginning with E are for use with an HP/Agilent 8922E. T ests with titles beginning with G a[...]

  • Page 227

    15-13 Diagnostics Theor y Interpreting Results Interpreting Results When a failure occurs, a message is displayed sho wing the number of failures and the probability that the failure is caused by the assembly being tested. If the probability is not high, more measurements may be necessary to verify the failure. The probability assigned is based on [...]

  • Page 228

    15-14 Diagnostics Theor y Interpreting Results This Page Intentionally Left Blank[...]

  • Page 229

    16-1 16 Measurement Theory[...]

  • Page 230

    16-2 Measurement Theor y Introduction Introduction This chapter describes which blocks of the instrument are used in the various measurements. The measurements described include the following: • BIT ERROR • DSP ANL • OUT RF SP • PULSE • CW MEAS/AF ANL • SCOPE • SPEC ANL The descriptions are giv en in terms of which path the signal und[...]

  • Page 231

    16-3 Measurement Theor y Introduction DSP ANL • A23 Input • A11 Receiver Mixer • A16 Receiver • A9 Global Test and Demod The DSP analyzer measurements digitally analyze the signal under test. The signal is le veled and con v erted to a 10.7 MHz IF and routed to the A9 Global T est and Demod assembly where the signal is digitized and the act[...]

  • Page 232

    16-4 Measurement Theor y Introduction CW MEAS/AF ANALYZER • A23 Input • A19 Measurement • A11 Receiver Mixer • A16 Receiver • A3 Audio Analyzer 1 • A2 Audio Analyzer 2 • A4 Modulation Distribution The CW measurements are power and frequenc y . For the po wer measurement, the detector is in the A23 Input assembly and is measured by the[...]

  • Page 233

    16-5 Measurement Theor y Introduction assembly digitizes the signals from the A18 Spectrum Analyzer assembly . After the measurement is done the measurement numbers are sent to the A7 Controller to be sent to the display section.[...]

  • Page 234

    16-6 Measurement Theor y Introduction This Page Intentionally Left Blank[...]

  • Page 235

    17-1 17 GSM Theory[...]

  • Page 236

    17-2 GSM Theor y Introduction Introduction The HP/Agilent 8922 product family is designed to measure and generate signals for the GSM digital cellular telephone system. The HP/Agilent 8922 is both a signal generator and a measuring receiv er . This chapter describes GSM system signals that are generated and receiv ed by the HP/ Agilent 8922. The GS[...]

  • Page 237

    17-3 GSM Theor y The GSM System The GSM System The GSM system uses two frequency bands ranging from 890 to 915 MHz and 935 to 960 MHz. The bands are broken into 125 channels spaced 200 kHz apart. The GSM system uses one band to transmit and one to recei ve. The lo wer frequency band (890-915 MHz) is used for the Mobile telephone to Base station lin[...]

  • Page 238

    17-4 GSM Theor y E-GSM, DCS1800 and PCS1900 Systems E-GSM, DCS1800 and PCS1900 Systems GSM900 is the original GSM system, using frequencies in the 900 MHz band and designed for wide area cellular operation. Mobiles with output powers from 1 to 8W are typical. DCS1800 is an adaptation of GSM900. The term GSM can be used collectiv ely to describe the[...]

  • Page 239

    Index-1 Symbols ”B” Reference theory, 14-15 Numerics 1 GHz and 500 MHz Level Detectors theory, 15-5 1 GHz Oscillator Lock Detector State theory, 15-5 10 MHz Fine and Coarse DACs State theory, 15-5 10 MHz Lock Detector State theory, 15-5 13 MHz Oscillator Lock Detector theory, 15-7 A A1 part number, 9-4, 9-5 troubleshooting, 5-2 A1 Front Panel r[...]

  • Page 240

    Index Index-2 part number, 9-8 Service Kit, 4-5 specs, 12-56 theory, 14-11 A27 DAC/Upconverter diagnostics, 15-5 A28 part location, 9-9 part number, 9-8, 9-10 specs, 12-58 A28 Power Supply Removal, 8-20 A29 part location, 9-13 part number, 9-12 A3 part number, 9-6 Service Kit, 4-5 specs, 12-5 theory, 14-7 A3 Audio Analyzer 1 diagnostics, 15-4 A31 p[...]

  • Page 241

    Index Index-3 theory, 14-9 Block Diagram 3 theory, 14-15 Block Diagram 4 theory, 14-17 Block diagram 5 theory, 14-18 Block Diagram Theory of Operation, 14- 2 block diagrams, 13-2 C calibration data, 8-2 Calibration Lost, 14-9 calibrations, 7-2 Carrier Level DAC theory, 15-6 CODEC Assembly theory, 14-17 Controller Service Kit, 4-5 troubleshooting, 5[...]

  • Page 242

    Index Index-4 specs, 12-47 Input Section theory, 15-7 Instrument Block Diagrams, 13-2 K Keyboard troubleshooting, 5-2, 5-6 L line cord, 6-3 Line Fuse, 6-5 line module, 6-5 Line Voltage, 6-5 Loop B Output Detector theory, 15-9 M Measurement Service Kit, 4-5 specs, 12-38 theory, 14-18 Memory Service Kit, 4-5 memory card, 8-2 diagnostics, 2-1 Modulati[...]

  • Page 243

    Index Index-5 RF Analyzer Loop Lock Detector theory, 15-9 RF Analyzer Step Loop theory, 15-8 RF Detectors 1 theory, 15-8 RF Detectors 2 theory, 15-8 RF Generator theory, 14-9 RF Generator Loop 1 MHz Reference Detector theory, 15-6 RF Generator Loop Lock Detector State theory, 15-6 RF Generator Loop Output Detector theory, 15-6 RF Generator Step Loo[...]

  • Page 244

    Index Index-6[...]