Aller à la page of
Les manuels d’utilisation similaires
Un bon manuel d’utilisation
Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation IBM SPSS 19. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel IBM SPSS 19 ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.
Qu'est ce que le manuel d’utilisation?
Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation IBM SPSS 19 décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.
Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.
Donc, ce qui devrait contenir le manuel parfait?
Tout d'abord, le manuel d’utilisation IBM SPSS 19 devrait contenir:
- informations sur les caractéristiques techniques du dispositif IBM SPSS 19
- nom du fabricant et année de fabrication IBM SPSS 19
- instructions d'utilisation, de réglage et d’entretien de l'équipement IBM SPSS 19
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes
Pourquoi nous ne lisons pas les manuels d’utilisation?
Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage IBM SPSS 19 ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles IBM SPSS 19 et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service IBM en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées IBM SPSS 19, comme c’est le cas pour la version papier.
Pourquoi lire le manuel d’utilisation?
Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif IBM SPSS 19, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.
Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation IBM SPSS 19. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.
Table des matières du manuel d’utilisation
-
Page 1
1 Using IBM SPSS 19* Descriptive Statistics SPSS Help. SPSS has a good online help system. Once SPSS is up and running, you can nd it by going to Help>T opics in the menu bar , i.e., click Help in the menu bar and then click T opics in the drop window that opens. Y ou will now be in the help contents window . Click T utorial . _______________[...]
-
Page 2
2 Y ou can then open any of the books comprising the tutorial by clicking on the + to get to the various subtopics. Once in a subtopic is open, you can just keep clicking on the right and left arrows to move through it page by page. I suggest going through the entire Overview booklet. Once you are working with a data set, and have an idea of what y[...]
-
Page 3
3 Sorting the Data . From the menu, choose Data>Sort Cases… , click the right arrow to move protein to the Sort by box, make sure Ascending is chosen, and click OK . Our data column is now in ascending order . However , the rst thing that come up is an output page telling you what has happened. Click the table with the Star on it to get bac[...]
-
Page 4
4 Click the Statistics... button, then make sure Descriptives and Percentiles are checked. W e will use 95% for Condence Interv al for Mean . Click Continue . Then click Plots... . Under Bo xplots , select F actor levels together , and under Descriptiv e , choose both Stem-and-leaf and Histogr am . Then click Continue .[...]
-
Page 5
5 Then click OK . This opens an output window with two frames. The frame on the left contains an outline of the data on the right.[...]
-
Page 6
6 The Standard Error of the Mean is a measure of how much the value of the mean may vary from repeated samples of the same size taken from the same distribution. The 95% Condence Interv al for Mean are two numbers that we would expect 95% of the means from repeated samples of the same size to fall between. The 5% T rimmed Mean is the mean after [...]
-
Page 7
7[...]
-
Page 8
8 Now click on a number on the horizontal axis and then click on Number Format . In the diagram to the left below , we see that we have 2 decimal places. The values in this window can be changed as desired. Next, click on one of the bars and then Binning in the Properties window . Suppose we want bars of width 20 beginning at 30. Check Custom , Int[...]
-
Page 9
9 Next choose P ercentiles from either output frame. The following comes up. Obviously , there are two dif ferent methods at work here. The formulas are given in the SPSS Algorithms Manual . T ypically , use the W eighed A verage . T ukey’ s Hinges was designed by T ukey for use with the boxplot. The box covers the Interquartile range (IQR) = Q 7[...]
-
Page 10
10 Then click back to Data View . From the menu, choose T ransform>Compute V ariable... . When the Compute V ariable window comes up, click Reset , and type cum_bin in the box labeled T arget V ariable . Scroll down the Function group: window to CDF & Noncentral CDF to select it, then scroll to and select Cdf .Binom in the Functions and Spec[...]
-
Page 11
1 1 Poisson Distribution. Let us assume that l =.5. W e will rst nd P(X ≤ x | .5)for x = 0, ..., 15, i.e., the cumula- tive probabilities. First put the numbers 0 through 15 in a column of a worksheet. (W e have already done this above. Again, you only need to enter the numbers whose cumulative probability you desire.) Then click V ari- abl[...]
-
Page 12
12 cumulative Poisson probabilities are now found in the column cum_pois. Now we want to put the individual Poisson probabilities into the column pois_pro . Do basically the same as above, except make the T arget V ariable “ pois_pro ,” and the Numeric Expression “ CDF . POISSON(number ,.5) - CDF .POISSON(number-1,.5) .” The Data View now l[...]
-
Page 13
13 The probability is now found in the column cum_norm . Staying with the normal distribution with mean 100 and standard deviation 20, suppose we with to nd P(90 ≤ X ≤135). Do as above except make the T arget V ariable “ int_norm ,” and the Numeric Expression “ CDF . NORMAL(135,100,20) - CDF .NORMAL(90,100,20) .” The probability is n[...]
-
Page 14
14 Condence Intervals and Hypothesis T esting Using t A Single Population Mean . W e found earlier that the sample mean of the data given on page 2, which you may have saved under the name protein.sav , is 73.3292 to four decimal places. W e wish to test whether the mean of the population from which the sample came is 70 as opposed to a true mea[...]
-
Page 15
15 SPSS gives us the basic descriptives in the rst table. In the second table, we are given that the t -value for our test is 1.110 . The p -value (or Sig. (2-tailed) ) is given as .272 . Thus the p -value for our one-tailed test is one- half of that or .136 . Based on this test statistic, we would not reject the null hypothesis, for instance, f[...]
-
Page 16
16 and again press Add . Then hit OK and complete the V ariable View as follows. Returning to Data View gives a window whose beginning looks like that below . Now we wish to test the hypotheses H 0 : m 1 - m 2 = 0 H a : m 1 - m 2 ≠ 0 where m 1 refers to the population mean for the non-smokers and m 2 refers to the population mean for the smokers.[...]
-
Page 17
17 Then click Continue . As before, click Options... , enter 95 (or any other number) for Condence Inter- val , and again click Continue followed by OK . The rst table of output gives the descriptives. T o get the second table as it appears here, I rst double-clicked on the Independent Samples T est table, giving it a fuzzy border and brin[...]
-
Page 18
18 discount this hypothesis, so we will take our results from the Equal V ariances Assumed column. W e see that, with 30 degrees of freedom, we have t =-2.468 and p =.020, so we reject the null hypothesis H 0 : m 1 - m 2 = 0 at the a =.05 level of signicance. That we would reject this null hypothesis can also be seen in that the 95% Con- denc[...]
-
Page 19
19 The rst output table gives the descriptives and a second (not shown here) gives a correlation coefcient. From the third table, which has been pivoted to interchange rows and columns, we see that we have a t -score of 12.740. The fact that Sig.(2-tailed) is given as .000 really means that it is less than .001. Thus, for our one-sided test, [...]
-
Page 20
20 H 0 : m N = m F = m C H a : Not all of m N , m F , and m C are equal. From the menu we choose Analyze>Compare Means>One- W ay ANOV A... . In the window that opens, place volume under Dependent List and Smok er[smoking] u nder F actor . Then click P ost Hoc... For a post-hoc test, we will only choose T ukey (T ukey's HSD test) with Sig[...]
-
Page 21
21 Then we click options and choose Descriptive , Homogeneity of variance test , and Means plot . The Homogeneity of v ariance test calculates the Levene statistic to test for the equality of group variances. This test is not dependent on the assumption of normality . The Brown-Forsythe and W elch statistics are better than the F statistic if the a[...]
-
Page 22
22 The results of the T est of Homogeneity of V ariances is nonsignicant since we have a p value of .974 , showing that there is no reason to believe that the variances of the three groups are different from one another . This is reassuring since both ANOV A and T ukey's HSD have equal variance assumptions. W ithout this reassur- ance, inte[...]
-
Page 23
23 Simple Linear Regression and Corr elation W e will use the following 109 x-y data pairs for simple linear regression and correlation. The x 's are waist circumferences (cm) and the y 's are measurements of deep abdominal adipose tissue gathered by CA T scans. Since CA T scans are expensive, the goal is to nd a predictive equation. F[...]
-
Page 24
24 Then click OK to get the following scatter plot, which leads us to suspect that there is a signicant linear relation- ship. Regression. T o explore this relationship, choose Analyze>R egression>Linear ... from the menu, select and move y under Dependent and x under Independent(s) .[...]
-
Page 25
25 Then click Statistics... , and in the window that opens with Estimates and Model t already checked, also check Condence interv als and Descriptives . Then click Continue . Next click Plots... . In the window that opens, enter *ZRESID for Y and *ZPRED for X to get a graph of the standardized residuals as a function of the standardized predi[...]
-
Page 26
26 Then click Continue followed by OK to get the output. W e rst see the mean and the standard deviation for the two variables in the Descriptive Statistics . In the Model Summary , we see that the bivariate correlation coefcient r ( R ) is .819, indicating a strong positive linear relationship between the two variables. The coefcient of d[...]
-
Page 27
27 reject the null hypothesis of b =0. W e now return to the scatter plot. Double click on the plot to bring up the Chart Editor and choose Options>Y Axis R eference Line from the menu. In the window that opens, select Refernce Line and, from the drop- down menue for Set to: , choose Mean and then click Apply . Next, from the Chart Editor menu, [...]
-
Page 28
28[...]
-
Page 29
29 for the mean value m y|74.5 is ( 32.41572, 52.72078) , corresponding to the limits of the inner bands at x=74.5 in the scatter plot, and the 95% condence interval for the individual value y I (74.5)is (-23.7607,108.8972), correspond- ing to the limits of the outer bands at x =74.5. The rst pair of acronyms lmci and umci stand for “lower [...]
-
Page 30
30 W e see again that the Pearson Correlation r is .819, and from the Sig. of .000, we know that the p -value is less than .001 and so we would reject a null hypothesis of r =0. Multiple Regr ession W e will use the following data set for multiple linear regression. In this data set, required ram , amount of input , and amount of output , all in ki[...]
-
Page 31
31 Choose Analyze>R egression>Linear ... from the menu, select and move minutes under Dependent and ram , input , and output , in that order , under Independent(s) . Then ll in the options for Statistics , Plots , and Save exactly as you did for simple linear regression. Finally , click OK to get the output. W e rst see the mean and the[...]
-
Page 32
32 1.049x 3 . From the last two rows of numbers in the table, one gets that 95% condence intervals are (-.694,2.645) for a , (.061,.138) for b 1 , (.000,.487) for b 2 , and (.692,1.407) for b 3 . The t test is used for testing the various null hypotheses b i =0. It can be used similarly to test the null hypothesis a =0, but this is of much less [...]
-
Page 33
33 Finally , consider the residual plot below . On the horizontal axis are the standardized y values from the data points, and on the vertical axis are the standardized residuals for each such y . If all the regression assumptions were met for our data set, we would expect to see random scattering about the horizontal line at level 0 with no notica[...]
-
Page 34
34 Then click back to Data View . From the menu, choose T ransform>Compute V ariable... . When the Compute V ariable window comes up, click R eset , then type lny in the box labeled T arget V ariable . Then scroll down the Function Group window to Arithmetic and then down the Functions and Special V ariables window to Ln to select it and press t[...]
-
Page 35
35 Choosing a Model using Curve Estimation. T o nd an appropriate model for a given data set, such as the one in the previous section, choose Analyz e>Regression>Curve Estimation... . In the Curve Estimation window that opens, enter y under Dependent(s) , x under Independent with V ariable selected, and make sure Include constant in equati[...]
-
Page 36
36 Finally , click OK . W e show below the output for the Quadratic model. The regression equation is ŷ=336.790- 693.691x+295.521x 2 . The other data, although arranged differently , is similar to that for linear and multiple regression. W e do note that the Standard Error is 1 1 1.856. Although they are not shown here, the regression equation for[...]
-
Page 37
37 Chi-Squar e T est of Independence For data, we will use a survey of a sample of 300 adults in a certain metropolitan area where they indicated which of three policies they favored with respect to smoking in public places. W e wish to test if there is a relationship between education level and attitude to- ward smoking in public places. W e test [...]
-
Page 38
38 This is not very well documented, but the rst thing we need to do for c 2 is to tell SPSS which column contains the frequency counts. Choose Data>W eight Cases... from the menu, and in the window that opens, choose W eight cases by and move the variable count under Frequency V ariable . Then click OK . Now choose Analyze>Descriptive Sta[...]
-
Page 39
39 Check Observed and Expected under Counts , followed by Continue and OK . The rst table of output simply provides a table of the Counts and the Expected Counts if the variables are independent. From the second table, the Pearson Chi-Square statistic is 22.502 with a p -value ( Asymp . Sig. (2-sid- ed) ) of .001. Thus, for instance, we would re[...]
-
Page 40
40 From the menu, choose Analyze>Nonpar ametric T ests>Legacy Dialogs>2 Related Samples... . In the window that opens, rst click output followed by the arrow to make it V ariable 1 for Pair 1 , then con- stant followed by the arrow to make it V ariable 2 . Make sure Wilcoxon is checked. If you want descriptive statistics and/or quartile[...]
-
Page 41
41 The Z in the second table is the standardized normal approximation to the test statistic, and the Asymp. Sig (2-tailed) of .140, which we will use as our p -value, is estimated from the normal approximation. Because of the size of this p -value, we will not reject the null hypothesis at any of the usual levels of signicance. The Mann-Whitney [...]
-
Page 42
42 Put 1 in the box for Group 1 and 2 in the box for Group 2 . Then click Continue . Y ou may click Options... if you want the output to include descriptive statistics and/or quartiles. Finally , click OK to get the output. W e see from the rst table, after ranking the hemoglob values from least to greatest, the Mean R ank and Sum of R anks for [...]
-
Page 43
43 T o create the control chart(s), click Analyze>Quality Control>Control Charts... from the menu bar , and in the window that opens, select X -Bar , R, s under V ariable Charts and make sure Cases are units is checked under Data Organization . Then click Dene , and in the new window that opens, move g_per_l under Process Measurement and d[...]
-
Page 44
44 Click Options , and enter 2 for Number of Sigmas . After clicking Continue, since we have specications for the mean, we click Statistics... , and in the window that opens, based on our specied mean and standard deviation, enter 50.756 for Upper and 49.244, Lower for Specication Limits , and 50 for T arget . Then select Estimate using S-[...]
-
Page 45
45 Control Charts for the Proportion. T o illustrate control charts for the proportion, we use the number of defec- tives in samples of size 100 from a production process for twenty days in August. August: 6 7 8 9 10 1 1 12 13 14 15 Defectives: 8 15 12 19 7 12 3 9 14 10 August: 16 17 18 19 20 21 22 23 24 25 Defectives: 22 13 10 15 18 1 1 7 15 24 2 [...]
-
Page 46
46 Now click Options, and enter 3 for Number of Sigmas . Then click Continue followed by OK to get the control chart, which is again pretty much self-explanatory . W e see that the process is out of control on August 24 and 25, although it is hard to call too few defectives out of control.[...]