Intel 8080 manuel d'utilisation
- Voir en ligne ou télécharger le manuel d’utilisation
- 262 pages
- 41.06 mb
Aller à la page of
Les manuels d’utilisation similaires
-
Laptop
Intel M980NU
102 pages 7.75 mb -
Laptop
Intel nc6400
41 pages 0.88 mb -
Laptop
Intel 6910P
11 pages 0.19 mb -
Laptop
Intel 8051
44 pages 5.84 mb -
Laptop
Intel EES-5718
16 pages 0.95 mb -
Laptop
Intel TECRA S5
2 pages 0.51 mb -
Laptop
Intel microcomputer development system hardware
71 pages 5.57 mb -
Laptop
Intel Compaq nc6400
41 pages 0.92 mb
Un bon manuel d’utilisation
Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation Intel 8080. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel Intel 8080 ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.
Qu'est ce que le manuel d’utilisation?
Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation Intel 8080 décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.
Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.
Donc, ce qui devrait contenir le manuel parfait?
Tout d'abord, le manuel d’utilisation Intel 8080 devrait contenir:
- informations sur les caractéristiques techniques du dispositif Intel 8080
- nom du fabricant et année de fabrication Intel 8080
- instructions d'utilisation, de réglage et d’entretien de l'équipement Intel 8080
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes
Pourquoi nous ne lisons pas les manuels d’utilisation?
Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage Intel 8080 ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles Intel 8080 et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service Intel en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées Intel 8080, comme c’est le cas pour la version papier.
Pourquoi lire le manuel d’utilisation?
Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif Intel 8080, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.
Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation Intel 8080. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.
Table des matières du manuel d’utilisation
-
Page 1
[...]
-
Page 2
In December 1973 Intel shipped the first 8-bit, N-channel microprocessor, the 8080. Since then it has become the most widely used microprocessor in the industry. Applications of the 8080 span from large, intelligent systems terminals to decompression computers for deep sea divers. This 8080 Microcomputer Systems User's Manual presents all of t[...]
-
Page 3
CONTENTS INTRODUCTION General . Advantages of Designing with Microcomputers . . ii Microcomputer Design Aids iii Application Example . . . . . . . . . . . . . . . . . . . iii Application Table .. . . . . . . . . . . . . . . . . . . . iv CHAPTER 1- THE FUNCTIONS OF A COMPUTER A Typical Computer System 1-1 The Architecture of a CPU 1-1 Computer Opera[...]
-
Page 4
ROMs 8702A Erasable PROM (256 x 8) Data Sheet ... ............. ...... .. 5-37 8708/8704 Erasable PROM (1 K x 8) Data Sheet . . . . . . . . . . . . . . . . . . . . . . .. 5-45 8302 Mask ROM (256 x 8) Data Sheet . . . . . . . . . . . . . . . . . . . . . . .. 5-51 8308 Mask ROM (1 K x 8) Data Sheet . . . . . . . . . . . . . . . . . . . . . . .. 5-59 [...]
-
Page 5
Since their inception, digital computers have contin- uously become more efficient, expanding into new appli- cations with each major technological improvement. The advent of minicomputers enabled the inclusion of digital computers as a permanent part of various process control systems. Unfortunately, the size and cost of minicomputers in "ded[...]
-
Page 6
Product definition System and logic design Debug PC card layout Documentation Cooling and packaging Power distribution Engineering changes CONVENTIONAL SYSTEM Done with logic diagrams Done with conventional Lab Instrumentation Done with yellow wire PROGRAMMED LOGIC Simpl ified because of ease of incorporating features Can be programmed with design [...]
-
Page 7
APPLICATIONS EXAMPLE The 8080 can be used as the basis for a wide variety of calculation and control systems. The system configura- tions for particular applications will differ in the nature of the peripheral devices used and in the amount and the type of memory required. The applications and solutions de- scribed in this section are presented pri[...]
-
Page 8
APPLICATION PERIPHERAL DEVICES ENCOUNTERED Intelligent Terminals Cathode Ray Tube Display Printing Units Synchronous and Asynchronous data lines Cassette Tape Unit Keyboards Gaming Machines Keyboards, push buttons and switches Various display devices Coin acceptors Coin dispensers Cash Registers Keyboard or I nput Switch Array Change Dispenser Digi[...]
-
Page 9
This chapter introduces certain basic computer con- cepts. It provides background information and definitions which will be useful in later chapters of this manual. Those already familiar with computers may skip this material, at their option. A TYPICAL COMPUTER SYSTEM A typical digital computer consists of: a) A central processor unit (CPU) b) A[...]
-
Page 10
registers eliminates the need to "shuffle" intermediate re- sults back and forth between memory and the accumulator, thus improving processing speed and efficiency. Program Counter (Jumps, Subroutines and the Stack): The instructions that make up a program are stored in the system's memory. The central processor references the conten[...]
-
Page 11
Code or Operation Code. An eight-bit word used as an in- struction code can distinguish between 256 alternative actions, more than adequate for most processors. The processor fetches an instruction in two distinct operations. First, the processor transmits the address in its Program Counter to the memory. Then the memory returns the addressed byte [...]
-
Page 12
with a clearly defined activity is called a State. And the inter- val between pulses of the timing oscillator is referred to as a Clock Period. As a general rule, one or more clock periods are necessary for the completion of a state, and there are several states in a cycle. Instruction Fetch: The first state(s) of any instruction cycle will be dedi[...]
-
Page 13
from memory to output devices goes by way of the processor. Some peripheral devices, however, are capable of transferring information to and from memory much faster than the processor itself can accomplish the transfer. If any appreciable quantity of data must be transferred to or from such a device, then system throughput will be increased by 1-5 [...]
-
Page 14
[...]
-
Page 15
The 8080 is a complete 8-bit parallel, central processor unit (CPU) for use in general purpose digital computer sys- tems. It is fabricated on a single LSI chip (see Figure 2-1). using Intel's n-channel silicon gate MaS process. The 8080 transfers data and internal state information via an 8-bit, bidirectional 3- state Data Bus (00-07). Memory[...]
-
Page 16
ARCHITECTURE OF THE 8080 CPU The 8080 CPU consists of the following functional units: • Register array and address logic • Arithmetic and logic unit (ALU) • I nstruction register and control section • Bi-directional, 3-state data bus buffer Figure 2-2 illustrates the functional blocks within the 8080 CPU. Registers: The register section con[...]
-
Page 17
Arithmetic and Logic Unit (ALU): The ALU contains the following registers: • An 8-bit accumulator • An 8-bit temporary accumulator (ACT) • A 5-bit flag register: zero, carry, sign, parity and auxiliary carry • An 8-bit temporary register (TMP) Arithmetic, logical and rotate operations are per- formed in the ALU. The ALU is fed by the tempor[...]
-
Page 18
be synchronized with the pulses of the driving clock. Thus, the duration of all states are integral multiples of the clock period. To summarize then, each clock period marks a state; three to five states constitute a machine cycle; and one to five machine cycles comprise an instruction cycle. A full instruction cycle requires anywhere from four to [...]
-
Page 19
While no one instruction cycle will consist of more then five machine cycles, the following ten different types of machine cycles may occur within an instruction cycle: (1 ) FETCH (M1) (2) MEMORY READ (3) MEMORYWRITE (4) STACK REAO (5) STACK WRITE (6) INPUT (7) OUTPUT (8) INTERRUPT (9) HALT (10) HALT. INTERRUPT The machine cycles that actually do o[...]
-
Page 20
Symbols INTA* STACK °2 HLTA °3 OUT °4 M, °5 INP* °6 MEMR* 0 7 Instructions for the 8080 require from one to five machine cycles for complete execution. The 8080 sends out 8 bit of status informatton on the data bus at the beginning of each machine cycle (during SYNC time). The following table defines the status information. STATUS INFORMATION [...]
-
Page 21
G)_RESET Till READY + HLTA HOLD (3) SET INTERNAL HOLD F/F RESET INTERNAL HOLD F/F INT. INTE YES I I I I (31 I HOLD I MODE I I I I __ .J SET INTERNAL HOLD F/F YES (2) READY. HLTA NO READY ~~ I ... -------------~ READY 7 ?~~---- YES NO RESET HLTA NO NO RESET INTERNAL HOLD F/F HOLD SET INTERNAL INT F/F (1),NTE F/F IS RESET IF INTERNAL INT F/F IS SET. [...]
-
Page 22
The events that take place during the T3 state are determined by the kind of machine cycle in progress. In a FETCH machine cycle, the processor interprets the data on its data bus as an instruction. During a MEMORY READ or a STACK READ, data on this bus is interpreted as a data word. The processor outputs data on this bus during a MEMORY WRITE mach[...]
-
Page 23
~ ..... -- .. , ..... -- ... ,~ - FLOATING . _J BYTE ONE 411 _n~---frr~----Ifn~~n~~n,-- ......... n-.-- ....... n,--~n~---.n~ ......... n~----4 ~ _.J._J.J.J.L.IlLi.~~l.-.l:1cd:J. -~-- I UNKNOWN BYTE X INPUT DATA TO TWO ACCUMULATOR ---..-.-+--- .......... ..-- .... ---- - , . , , . ' ~_~J ~ __ J A15·0 ..... _ ....... SYNC -W I I DBIN [...]
-
Page 24
"data output delay" interval (tOO) following the </>2 clock's leading edge. Data on the bus remains stable throughout the remainder of the machine cycle, until replaced by up- dated status information in the subsequent T 1 state. Observe that a READY signal is necessary for completion of an OUTPUT machine cycle. Unless such an [...]
-
Page 25
INTERRUPT SEQUENCES The 8080 has the built-in capacity to handle external interrupt requests. A peripheral device can initiate an inter- rupt simply by driving the processor's interrupt (INT) line high. The interrupt (INT) input is asynchronous, and a request may therefore originate at any time during any instruction cycle. Internal logic re-c[...]
-
Page 26
Mn M n + 1 l--OR~ I I ¢l_n ~ n ~n n ~ n ¢2 -+--sLJJlL-..rrL~LJLLJTLJJ.lJL ! i : I I I I I! A'5·0 : I ! I -:- - - - - - - - - -:- - - - - - - - - 1 1 I FLOATING I OJ·O ~ .1 -I----------I---------- ...... --~ 'i. - - -..II I : HOLD U ~ I 1 REQUEST - (1) i HOLD ..... 1 ' READY HOLD F/F INTERNAL -+- --+- +--_J 1 I i i HLDA I (1) [...]
-
Page 27
HOLD SEQUENCES The SOSOA CPU contains provisions for Direct Mem- ory Access (DMA) operations. By applying a HO LD to the appropriate control pin on the processor, an external device can cause the CPU to suspend its normal operations and re- linquish control of the address and data busses. The proces- sor responds to a request of this kind by floati[...]
-
Page 28
TWH TWH ,...-+---- - - - - - - Tl ~--..-----~-- - - - - - - T, 91 92 A1S·0 PC 07-0 SYNC OBIN WAIT STATUS INFORMATION NOTE: ® Refer to Status Word Chart on Page 2-6 Figure 2-11. HALT Timing TO STATE NO TW orT 3 TO STATE YES Tl TO STATE Tl Figure 2-12. HALT Sequence Flow Chart. 2-14[...]
-
Page 29
Tn+i Tn+(i-1) Tn +3 Tn+2 Tn+1 ~~~~t==p----~--·_-~--- ,--~~-----+-----""'----"'~-+---""" Tn (1) cP1 A15.0~ __ .1 RESET INTERNAL RESET SYNC -+- ..... ..... -+- -/~-----~---- .... -_....I DBIN -+----- ..... ----- ..... ---- .... -----/~-----~---- .... -----I---.....I STATUS INFORMATION (0 I I 11lWHEN RESET SIGN[...]
-
Page 30
MNEMONIC OP CODE M1[1] M2 o SSS T3 T5 x X [3] x OAA-A, F LAGS[10] x T4 x x x x x (RP)-1 ~. (RP) + 1 ~~ x x (OOO)-TMP (TMP)+l-ALU x (SSS)-TMP (A)-ACT x (OOOJ-TMP (TMP) + 1-ALU (SSS)-TMP (A)-ACT (A)-ACT (SSS)-TMP (A)-ACT (SSS)-TMP (A)-ACT (SSS)-TMP (A)-ACT (SSS)-TMP (HL) ~ (SSS)-TMP T3 PC == PC +1 INST-TMP/IR PCOUT PC==PC+1 INST-TMP/lR STATUS T1 PC O[...]
-
Page 31
PC OUT STATUS[6] [9] [9] [9] M3 PC = PC + 1 PC = PC + 1 PC = PC + 1 PC = PC + 1 M4 2-17 M5[...]
-
Page 32
MNEMONIC OP CODE Ml[l] M2 07 0 6 0 5 0 4 03 0 2 0 1 DO Tl T2[2] T3 T4 T1 T2[2] T3 ANI data 1 1 1 0 0 1 1 0 PC OUT PC = PC + 1 INST-TMP/IA (A)-ACT PC = PC + 1 STATUS XAAr 1 0 1 0 S S S (A)-ACT (ACT)+(TPM)-A (SSS)-TMP XRAM 0 1 0 1 1 0 (A)-ACT XRI data 1 0 1 0 (A)-ACT PC = PC + 1 ORAr 0 1 1 0 S S S (A)-ACT (ACT)+(TMP)-A (SSS)-TMP ORAM 1 0 1 1 0 1 1 0 [...]
-
Page 33
M3 M4 M5 SP OUT SP :: SP + 1 STATUS[15] SP OUT SP :: SP + 1 STATUS[15] (ACT)+(TMP)-A T1 WZOUT (WZ) + 1-PC STATUS[ll] PC OUT PC:: PC + 1 ~iA~~[ll,12] (WZ) + 1- PC STATUS[6] PC OUT PC:: PC + 1 ~iA~~~[11] (WZ) + 1-PC STATUS[6] ~~~TUJS[6] PC:: PC + 1 ~iA~~~[11,12] (WZ) + 1-PC ~~2~JS[15] Sp:: SP + 1 ~A~~~[ll] (WZ) +l-PC SPOUT Sp:: SP + 1 ~A~~1[11,12] (W[...]
-
Page 34
NOTES: 1. The first memory cycle (M 1) is always an instruction fetch; the first (or only) byte, containing the op code, is fetched during this cycle. 2. If the READY input from memory is not high during T2 of each memory cycle, the processor will enter a wait state (TW) until READY is sampled as high. 3. States T 4 and T5 are present, as required,[...]
-
Page 35
This chapter will illustrate, in detail, how to interface the 8080 CPU with Memory and I/O. It will also show the benefits and tradeoffs encountered when using a variety of system architectures to achieve higher throughput, de- creased component count or minimization of memory size. 8080 Microcomputer system design lends itself to a simple, modular[...]
-
Page 36
The following pages will cover the detailed design of the CPU Module with the 8080. The three Busses (Data, Address and Control) will be developed and the intercon- nection to Memory and I/O will be shown. Design philosophies and system architectures pre- sented in this manual are consistent with product develop- l"M ment programs underway at [...]
-
Page 37
OSCILLATOR CLOCK GENERATOR 7486 DB OB 74163 DC OC .......--...-------' 74S04 ~ 20MHz 330 330 ~""""--01 >- ...... ------------ ....... -------- .... OSC 7486 READY r-----IIIIII---- SYNC AUXILIARY FUNCTIONS WA IT REO ------41---1 0 a 74574 ClK '----........--410 74S74 ClK 0.......-..-.-----.. tf>1A (TTL) 74HOO 10--[...]
-
Page 38
Auxiliary Timing Signals and Functions The Clock Generator can also be used to provide other signals that the designer can use to simplify large system timing or the interface to dynamic memories. Functions such as power-on reset, synchronization of external requests (HOLD, READY, etc.) and single step, could easily be added to the Clock Generator [...]
-
Page 39
The input level specification impl ies that any semi- conductor memory or I/O device connected to the 8080 Data Bus must be able to provide a minimum of 3.3 volts in its high state. Most semiconductor mem- ories and standard TTL I/O devices have an output capability of between 2.0 and 2.8 volts, obviously a direct connection onto the 8080 Data Bus [...]
-
Page 40
INTERFACING THE 8080 CPU TO MEMORY AND I/O DEVICES The 8080 interfaces with standard semiconductor Memory components and I/O devices. In the previous text the proper control signals and buffering were developed which will produce a simple bus system similar to the basic system example shown at the beginning of this chapter. In Figure 3-6 a simple, [...]
-
Page 41
RAM memory must be provided, such as: Floppy Disk, Paper Tape, etc. The CPU treats RAM in exactly the same manner as ROM for addressing data to be read. Writing data is very similar; the RAM is issued an address during the first por- tion of the Memory Write cycle (T1 & T2) in T3 when the data that is to be written is output by the CPU and is s[...]
-
Page 42
I/O INTERFACE Figure 3-9. Isolated I/O. Memory Mapped I/O It is easy to see that from the list of possible "new" instructions that this type of I/O architecture could have a drastic effect on increased system throughput. It is concep- tually more difficult to understand than Isolated I/O and it does limit memory address space, but Memory [...]
-
Page 43
10--------...--- MEMR The second example uses Memory Mapped I/O and linear select to show how thirteen devices (8255) can be ad- dressed without the use of extra decoders. The format shown could be the second and third bytes of the LDA or STA in- structions or any other instructions used to manipulate I/O using the Memory Mapped technique. It is ea[...]
-
Page 44
The two (2) 8255s provide twenty four bits each of programmable I/O da~a and control so that keyboards, sen- sors, paper tape, etc., can be interfaced to the system. C/DCONTROL _____________________ 8251SELECT (ACTIVE LOW) Figure 3-13. 8251 Format. O-DATA 1-COMMAND The three 8212s can be used to drive long lines or LED indicators due to their high [...]
-
Page 45
A computer, no matter how sophisticated, can only do what it is "told" to do. One "tells" the computer what to do via a series of coded instructions referred to as a Pro- gram. The realm of the programmer is referred to as Soft- ware, in contrast to the Hardware that comprises the actual computer equipment. A computer's sof[...]
-
Page 46
Condition Flags: There are five condition flags associated with the exe- cution of instructions on the 8080. They are Zero, Sign, Parity, Carry, and Aux iI iary Carry, and are each represented by a l-bit register in the CPU. A flag is "set" by forcing the bit to 1; "reset" by forcing the bit to O. Unless indicated otherwise, whe[...]
-
Page 47
accumulator Register A addr 16-bit address quantity data 8-bit data quantity Symbols and Abbreviations: The following symbols and abbreviations are used in the subsequent description of the 8080 instructions: SYMBOLS MEANING Auxiliary Carry: If the instruction caused a carry out of bit 3 and into bit 4 of the resulting value, the auxiliary carry is[...]
-
Page 48
6. The last four lines contain incidental information about the execution of the instruction. The num- ber of machine cycles and states required to exe- cute the instruction are listed first. If the instruc- tion has two possible execution times, as in a Conditional Jump·, both times will be listed, sep- arated by a slash. Next, any significant da[...]
-
Page 49
high-order addr o I 0 I 1 I 1 1 1 1 0 I 1 I 0 low-order addr LOA addr (Load Accumulator direct) (A) ~ ((byte 3) (byte 2)) The content of the memory location, whose address is specified in byte 2 and byte 3 of the instruction, is moved to register A. 0 I 0 I 1 I 0 I 0 T 0 T 1 I 0 low-order addr high-order addr 5 16 direct none Cycles: States: Addres[...]
-
Page 50
ADC r (Add Register with carry) (A) ~ (A) + (r) + (CY) The content of register r and the content of the carry bit are added to the content of the accumulator. The result is placed in the accumulator. Cycles: States: Addressing: Flags: Arithmetic Group: This group of instructions performs arithmetic oper- ations on data in registers and memory. Unle[...]
-
Page 51
SUB M (Subtract memory) (A) ~ (A) - ((H) (L)) The content of the memory location whose address is contained in the Hand L registers is subtracted from the content of the accumulator. The result is placed in the accumulator. SBI data (Subtract immediate with borrow) (A) ~ (A) - (byte 2) - (CY) The contents of the second byte of the instruction and t[...]
-
Page 52
OCR M (Decrement memory) ((H) (L)) ..- ((H) (L)) - 1 The content of the memory location whose address is contained in the Hand L registers is decremented by one. Note: All condition flags except CY are affected. OAA (Decimal Adjust Accumulator) The eight-bit number in the accumulator is adjusted to form two four-bit Binary-Coded-Decimal digits by t[...]
-
Page 53
ANI data (AND immediate) (A) ~ (A) / (byte 2) The content of the second byte of the instruction is logicaJly anded with the contents of the accumu lator . The result is placed in the accumulator. The CY and AC flags are cleared. ORA r (OR Register) (A) ~ (A) V (r) The content of register r is inclusive-OR'd with the content of the accumulator[...]
-
Page 54
CPI data (Compare immediate) (A) (byte 2) The content of the second byte of the instruction is subtracted from the accumulator. The condition flags are set by the result of the subtraction. The Z flag is set to 1 if (A) = (byte 2). The CY flag is set to 1 if (A) < (byte 2). CMP M (Compare memory) (A) ((H) (L)) The content of the memory location [...]
-
Page 55
CMC (Complement carry) (CY)~ (CY) The CY flag is complemented. No other flags are affected. dress is specified in byte 3 and byte 2 of the current instruction. I 1 I 0 I 0 I 0 I 0 I 1 I 1 1 low-order addr high-order addr a , 0 , Cycles: States: Flags: 1 4 CY Cycles: States: Addressing: Flags: 3 10 immediate none STC (Set carry) (CY) ~ 1 The CY flag[...]
-
Page 56
Ccondition addr (Condition call) If (CCC), ((SP) -1) ~ (PCH) ((SP) - 2) ~ (PCl) (SP) ~ (SP) - 2 (PC) ~ (byte 3) (byte 2) If the specified condition is true, the actions specified in the CAll instruction (see above) are performed; otherwise, control continues sequentially. 1 ' 1 I C I C I c I 1 I o I 0 low-order addr high-order addr RST n (Rest[...]
-
Page 57
Stack, I/O, and Machine Control Group: FLAG WORD This group of instructions performs I/O, manipulates the Stack, and alters internal control flags. Unless otherwise specified, condition flags are not affected by any instructions in this group. D1 Do PUSH rp (Push) ((SP) - 1) ~ (rh) ((SP) - 2) ~ (rl) (SP) ~ (SP) - 2 The content of the high-order reg[...]
-
Page 58
XTHL (Exchange stack top with Hand L) (L) ~((SP)) (H) ~ ((SP) + 1) The content of the L register is exchanged with the content of the memory location whose address is specified by the content of register SP. The content of the H register is exchanged with the content of the memory location whose address is one more than the content of register SP. [...]
-
Page 59
INSTRUCTION SET Summary of Processor Instructions Instruction Code [11 Clock 121 Instruction Code [11 Clock [21 Mnemonic Description try 06 Os 04 03 02 0, DO Cycles Mnemonic Description 07 06 Os 04 03 02 0, DO Cycles MOV r1 ,r2 Move register to register 0 1 0 0 0 S S S 5 RZ Return on zero 1 0 0 '1 0 0 0 5/11 MOVM,r Move register to memory 0 1 [...]
-
Page 60
CPU Group 8224 Clock Generator 5-1 8228 System Controller ....... .............. .. 5-7 8080A Central Processor 5-13 8080A-1 Central Processor (1.3#ls) ••..•.••.••.••.• 5- 20 8080A-2 Central Processor (1.5#ls) •...•..•..•.••.. 5-24 MBOBOA Central Processor (_55° to +125°C) 5-29 ROMs 8702A Erasable PROM (256 x 8) . [...]
-
Page 61
8224 8228 8080A CPU Group 8080A-1 8080A-2 M8080-A[...]
-
Page 62
[...]
-
Page 63
Schottky Bipolar 8224 CLOCK GENERATOR AND DRIVER FOR 8080A CPU • Single Chip Clock Generator/Driver for 8080A CPU • Power-Up Reset for CPU • Ready Synchronizing Flip-Flop • Advanced Status Strobe • Oscillator Output for External System Timing • C.rystal Controlled for Stable System Operation • Reduces System Package Count The 8224 is [...]
-
Page 64
SCHOTTKY BIPOLAR 8224 FUNCTIONAL DESCRIPTION General The 8224 is a single chip Clock Generator/Driver for the S080A CPU. It contains a crystal-controlled oscillator, a "divide by nine" counter, two high-level drivers and several auxiliary logic functions. Oscillator The oscillator circuit derives its basic operating frequency from an exte[...]
-
Page 65
SCHOTTKY BIPOLAR 8224 STSTB (Status Strobe) At the beginning of each machine cycle the aOaOA CPU is- sues status information on its data bus. Th is information tells what type of action will take place during that machine cycle. By bringing in the SYNC signal from the CPU, and gating it with an internal timing signal (<1>1A), an active low st[...]
-
Page 66
SCHOTTKY BIPOLAR 8224 D.C. Characteristics T A = O°C to 70°C; Vee = +5.0V ±5%; Voo = +12V ±5%. Limits Symbol Parameter Min. Typ. Max. Units Test Conditions IF Input Current Loading -.25 rnA VF = .45V IR Input Leakage Current 10 J.lA VR = 5.25V Ve Input Forward Clamp Voltage 1.0 V 'e = -5mA VIL Input" Low" Voltage .8 V Vee = 5.0V [...]
-
Page 67
SCHOTTKY BIPOLAR 8224 A.C. Characteristics vcc = +5.0V ± 5%; Voo = +12.0V ± 5%; TA = O°C to 70°C Limits Test Symbol Parameter Min. Typ. Max. Units Conditions tq,1 cP1 Pulse Width 2tcy -- 20ns 9 t</>2 cP2 Pulse Width 5tcy _ 35ns 9 t01 cP1 to cP2 Delay 0 ns t02 cP2 to cP1 Delay 2tcy CL = 20pF to 50pF --14ns 9 t03 cP1 to cP2 Delay 2tcy 2tcy [...]
-
Page 68
SCHOTTKY BIPOLAR 8224 WAVEFORMS ......... ----to2-----..r 1'4------t</l2---~ ~-------------tey---------------.I <l>2fTTL) SYNC (FROM 8080A) RDYIN OR RESIN ~--------toss-------.....----- t..-----tORH------.t READY OUT RESET OUT VOLTAGE MEASUREMENT POINTS: cP1, cP2 Logic "0" = 1.0V, Logic "1" = 8.0V. All other signal[...]
-
Page 69
Schottky Bipolar 8228 SYSTEM CONTROLLER AND BUS DRIVER FOR 8080A CPU • Sing.le Chip System Control for MCS:SO Systems • Built-in Bi-Directional Bus Driver for Data Bus Isolation • Allows the use of Multiple Byte Instructions (e.g. CAL:L) for Interrupt Acknowledge • User Selected Single Leve,1 Interrupt Vector (RST 7) • 28 Pin Dual In-Line[...]
-
Page 70
SCHOTTKY BIPOLAR 8228 FUNCTIONAL DESCRIPTION General The 8228 is a single chip System Controller and Data Bus driver for the 8080 Microcomputer System. It generates all control signals required to directly interface MCS-80™ family RAM, ROM, and I/O components. Schottky Bipolar technology is used to maintain low delay times and provide high output[...]
-
Page 71
SCHOTTKY BIPOLAR 8228 DATA BUS INTA MEMR MEM W CONTROL BUS I/O R I/OW 3 CONTROL BUSEN __ .... 22 a _ 18 WRn-------....., DBINt-=-1.:....7----..-----, HDLA ~2;.;.1 ~_--. 8080A °O~10~~-I CPU 011-9--l~-I °2~8--l~~ ..... 0 3 1-7--l~-I 0 4 1-3--l~-I °51-4--l~-I 0 6 .-5--l~~-I 0 7 .-6--l~~-I .... _----- (FROM 8224) STATUSSTROBE--...c1II STATUS WORD CH[...]
-
Page 72
SCHOTTKY BIPOLAR 8228 WAVEFORMS DBIN STATUS STROBE INTA, lOR, MEMR DURING HLDA HLDA --------+----+-----'1 8080 DATA BUS -----...".I'~~+--,.,.I"-------------------- lOW OR MEMW 8080 BUS DURING READ· ------- - - 8080 BUS DURING WRITE SYSTEM BUS DURING READ SYSTEM BUS DURING WRITE - - - - - - - - - < ~ we1= SYSTEM BUS ENABLE. j[...]
-
Page 73
SCHOTTKY BIPOLAR 8228 D.C. Characteristics TA = O°c to 70°C; Vee = 5V ±5%. Limits Symbol Parameter Min. Typ.[1] Max. Unit Test Conditions Ve Input Clamp Voltage, All Inputs .75 -1.0 V Vee=4.75V; le=-5mA IF Input Load Current, STSTB 500 IlA Vee=5.25V 02&06 750 IlA VF=O.45V Do, 01, 04, Os, Il A & 07 250 All Other Inputs 250 Il A IR Input L[...]
-
Page 74
SCHOTTKY BIPOLAR 8228 ADDRESS BUS DB O DB 1 DB 2 DB 3 DATA BUS DB 4 DBs DB 6 D~ INTA MEM R MEMW CONTROL BUS I/O R I/OW 2 25 - GND. · Ao Ao 20 26 A 1 +5V A 1 11 27 A 2 -5V A 2 28 29 -- A 3 +12V · A 3 30 A 4 A 4 31 As AS 32 A 6 A 6 8080A 33 A 7 CPU A 7 I- 34 AS AS 13 35 A g SYSTEM DMA REO. · HOLD A g 1 A 10 A 10 40 A 11 A 11 37 A 12 14 A 12 SYSTEM[...]
-
Page 75
intel® Silicon Gate MOS 8080 A SINGLE CHIP a-BIT N-CHANNEL MICROPROCESSOR The 8080A is functionally and electrically compatible with the Intel® 8080. • TTL Drive Capability • 2 J.Ls Instruction Cycle • Powerful Problem Solving Instruction Set • Six General Purpose Registers and an Accumulator • Sixteen Bit Program Counter for Directly A[...]
-
Page 76
· SILICON GATE MOS 8080'A - . 8080A FUNCTIONAL PIN DEFINITION The following describes the function of all of the 8080A I/O pins. Several of the descriptions refer to internal timing periods. _. . A 1 5. A O (oU1put three-state) ADDRESS BUS;.the address bus provides the address to memory (up to 64K 8-bit words) or denotes the I/O device number[...]
-
Page 77
SILICON GATE MOS 8080 A ABSOLUTE MAXIMUM RATINGS· Temperature Under Bias ' O°C to +70° C Storage T emperatu re . . . . . . . . . . . . . . . _65° C to + 150° C All Input or Output Voltages With Respect to VSS -0~3V to +20V Vcc, Voo and VSS With Respect to Vss -0.3V to +20V . Power Dissipation 1.5W *COMMENT: Stresses above those listed und[...]
-
Page 78
SILICON GATE MOS 8080A A.C. CHARACTERISTICS T A = O°C to 70°C, VOO = +12V ± 5%, VCC = +5V ± 5%, Vas = -5V ± 5%, Vss = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test Condition tCy[3] Clock Period 0.48 2.0 J1sec t r , tf ·Clock Rise and Fall Time 0 50 nsec ~1 f/J1 Pulse Width 60 nsec tq,2 cf>2 Pu.lse Width 220 nsec t01 Delay[...]
-
Page 79
SILICON GATE MOS 8080A A.C. CHARACTERISTICS (Continued) TA = O°C to 70°C, Voo = +12V ± 5%, Vee = +5V ± 5%, Vss = -5V'± 5%, V 5 5 = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test Condition t052 Data Setup Time to ~2 During DBIN 150 nsec tOH (1) Data Hold Time From ~2 During DBIN [1 ] nsec tiE [2) INTE Output Delay From ~2 [...]
-
Page 80
SILICON GATE MOS 8080 A INSTRUCTION SET The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate ad- dressing modes. Move, load, and· store instruction groups provide the ability to move either a or 16 bits of data between memory,' the six working registers and the accumulator using dire[...]
-
Page 81
SILICON GATE MOS 8080.A INSTRUCTION SET Summary of Processor Instructions Instruction Code [1 J Clock [2] Instruction Code (1) Clock[2J Mnemonic Description D7 D6 Os D4 D3 02 0, Do Cycles Mnemonic Description D7 06 Os 04 Da ~ 0, Do Cycles MOV r1 .r2 Move register to register 0 1 0 0 0 S S S 5 RZ Return on zero 1 1 0 0 , 0 0 0 5/11 MOVM,r Move regis[...]
-
Page 82
infel® Silicon Gate MOS 8080A-1 SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR • TTL Drive Capability • 1.3 J.Ls Instruction Cycle • Powerful Problem Solving Instruction Set • Six General Purpose Registers and an Accumulator • Sixteen Bit Program Counter for Directly Addressing up to 64K Bytes of Memory • Sixteen Bit Stack Pointer and Stac[...]
-
Page 83
SILICON GATE MOS 8080A-1 ABSOLUTE MAXIMUM RATINGS· Temperature Under Bias O°C to +70° C Storage Temperature -65°C to +150°C All I nput or Output Voltages With Respect to Vaa -0.3V to +20V Vee, VOO and Vss With Respect to Vaa -0.3V to +20V Power Dissipation ........... .. 1.5W *COMMENT: Stresses above those listed under 'Absolute Maxi- mum[...]
-
Page 84
SILICON GATE MOS 8080A-1 A. c. C HA RACTE RI STI CS CA UTlON: When operating the 8080A·l at or near full speed, care must be taken to assure precise timing compatibility between 8080A·', 8224 and 8228. TA = O°C to 70°C, Voo = +12V ± 5%, VCC = +5V ± 5%, VSS = -5V ± 5%, VSS = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test[...]
-
Page 85
SILICON GATE MOS 8080A-1 A.C. CHARACTERISTICS (Continued) T A = O°C to 70°C, Vo o = +12V ± 5%, Vee = +5V ± 5%, Vss = -5V ± 5%, V ss = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test Condition tOS2 Data Setup Time to ¢2 During DBIN 120 nsec tOH [1] Data Hold Time From ¢2 During DBIN [1] nsec tiE [2] INTE Output Delay From ¢2 [...]
-
Page 86
infel® Silicon Gate MOS 8080 A-2 SINGLE CHIP a-BIT N-CHANNEL MICROPROCESSOR • TTL Drive Capability • 1.5 J.Ls Instruction Cycle • Powerful Problem Solving Instruction Set • Six General Purpose Registers and an Accumulator • Sixteen Bit Program Counter for Directly Addressing up to 64K Bytes of Memory • Sixteen Bit Stack Pointer and Sta[...]
-
Page 87
SILICON GATE MOS 8080A-2 ABSOLUTE MAXIMUM RATINGS· Temperature Under Bias O°C to +70° C Storage T emperatu re .. . . . . . . . . . . . .. _65° C to + 150° C All Input or Output Voltages With Respect to Vas -0.3V to +20V Vee, Voo and Vs s With Respect to V ss -0.3V to +20V Power Dissipation . . . . .. 1.5W *COMMENT: Stresses above those listed [...]
-
Page 88
SILICON GATE MOS 8080A-2 A.C. CHARACTERISTICS T A = O°C to 70°C, Vee = +12V ± 5%, VCC = +5V ± 5%, V ss = -5V ± 5%, Vss = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test Condition tCy[31 Clock Period .38 2.0 /lsec t r , tf Clock Rise and Fall Time 0 50 nsec t¢1 (j>1 Pulse Width 60 nsec !¢2 l/>2 Pulse Width 175 nsec t01 D[...]
-
Page 89
SILICON GATE MOS 8080A-2 A.C. CHARACTERISTICS (Continued) TA = O°C to 70°C, VOD = +12V ± 5%, Vee = +5V ± 5%, V BB = -5V ± 5%, V ss = OV, Unless Otherwise Noted Symbol Parameter Min. Max. Unit Test Condition tOS2 Data Setup Time to <P2 During DBIN 130 nsec toH [1] Data Hold Time From </>2 During DBIN [1] nsec tiE [2] INTE Output Delay [...]
-
Page 90
[...]
-
Page 91
intel® . Silicon Gate MOS M8080A SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR • Full Military Temperature Range -55°C to +125°C • ±10% Power Supply Tolerance • 2 J-Ls Instruction Cycle • Powerful Problem Solving Instruction Set • Six General Purpose Registers and an Accumulator • Sixteen Bit Program Counter for Directly Addressing up [...]
-
Page 92
SILICON GATE MOS M8080A INSTRUCTION SET The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate ad- dressing modes. Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, in- [...]
-
Page 93
SILICON GATE MOS M8080A INSTRUCTION SET Summary of Processor Instructions Instruction Code (1) Clock (21 Instruction Code [n Clock (2) Mnemonic Description 07 06 Os 04 03 02 0, Do Cycles Mnemonic Description 07 06 Os 04 03 02 0 1 00 Cycles MOV r1 ,r2 Move register to register 0 1 0 0 0 S S S 5 RZ Return on zero 1 1 0 0 1 0 0 0 5/11 MOV M,r Move reg[...]
-
Page 94
SILICON GATE MOS M8080A M8080A FUNCTIONAL PIN DEFINITION The following describes the function of all of the M8080A I/O pi ns. Several of the descriptions refer to internal tim ing periods. A15-AO (output' three~state) ADDRESS BUS; the address bus provides the address to memory (up to 64K 8-bit words) or denotes the I/O device number for up to [...]
-
Page 95
SILICON GATE MOS M8080A ABSOLUTE MAXIMUM RATINGS* Temperature Under Bias -55°C to +125°C Storage T emperatu re .. . . . . . . . . . . . . . _65° C to + 150° C All Input or Output Voltages With Respect to VBB -0.3V to +20V Vcc, Voo and Vss With Respect to VBB -0.3V to +20V Power Dissipation . . . . . . . . . . . .. 1.7W *COMMENT: Stresses above [...]
-
Page 96
SILICON GATE MOS M8080A A.C. CHARACTERISTICS (Continued) T A = -55°C to +125°C, VOO = +12V ±10%, Vee = +5V ±10%, VBB = -5V ±10%, Vss = OV, Unless Otherwise Noted. Symbol Parameter Min. Max. Unit Test Condition tOS2 Data Setup Time to ¢2 During DBIN 130 nsee tOH [1] Data Hold Time From ¢2 During DBIN 50 nsee tiE (2) INTE Output Delay From ¢2[...]
-
Page 97
SILICON GATE MOS M8080A A.C. CHARACTERISTICS TA = -55°C to +125°C, Voo = +12V ±10%, Vee = +5V ±10%, VBB = -5V ±10%, Vss = OV, Unless Otherwise Noted. Symbol Parameter Min. Max. Unit Test Condition tCy[3] Clock Period 0.48 2.0 Jisec t r , tf Clock Rise and Fall Time 0 50 nsec t(/>l epl Pulse Width 60 nsec tep2 cI>2 Pulse Width 220 nsec t0[...]
-
Page 98
[...]
-
Page 99
8702A 8704 8708 ROMs 8302 8308 8316A[...]
-
Page 100
[...]
-
Page 101
Silicon Gate MOS 8702A 2048 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY • Inputs and Outputs TTL Compatible • Three-State Output - OR-Tie Capability • Simple Memory Expansion Chip Select Input Lead • Access Time -1.3 ~sec Max. • Fast Programming - 2 Minutes for All 2048 Bits • Fully Decoded, 256 x 8 Organization • St[...]
-
Page 102
SILICON GATE MOS 8702A PIN CONNECTIONS The external lead connections to the 8702A differ, depending on whether the device is being programmed (1) or used in read. mode. (See following table.) 12 13 14 15 16 22 23 MODE . (Vee) (Program) (CS)· (V BB ) (V GG ) (Vee) (Vee) Read Vee Vee GND Vee V GG Vee Vee Programming GND Program Pulse GND Vee Pulsed [...]
-
Page 103
SILICON GATE MOS 8702A A.C. CHARACTERISTICS T A = 00 C to + 70°C, V cc = +5V ±5%, V oo = -9V ±5%, V GG = -9V ±5% unless otherwise noted SYMBOL TEST MINIMUM TYPICAL MAXIMUM UNIT Freq. Repetition Rate 1 MHz tOH Previous read data val id 100 ns tAcc Address to output delay 1.3 p.s t ovGG Clocked V GG set up [2] 1.0 JlS t es Chip select delay 400 n[...]
-
Page 104
SILICON GATE MOS 8702A TYPICAL CHARACTERISTICS '00 CURRENT VS. TEMPERATURE OUTPUT CURRENT VS. VDO SUPPLY VOLTAGE OUTPUT CURRENT VS. TEMPERATURE I ' Vee = +5V - r v oo = -9V - r V aa = -9V ' INPUTS" Vee - I. f' OUTPUTS ARE OPEN I I I I" '" I ~ NS=V ee I" I" I- -- ~ 'l CS = 0.0V' -[...]
-
Page 105
SILICON GATE MOS 8702A PROGRAMMING OPERATION D.C. AND OPERATING CHARACTERISTICS FOR PROGRAMMING OPERATION T A = 25°C, Vee = OV, V ss = +12V ± 10%, CS = OV unless otherwise noted SYMBOL TEST MIN. TYP. MAX. UNIT CONDITIONS I Ll1 P Address and Data Input 10 rnA V IN = -48V Load Current 'LI2P Program and V G G 10 rnA V IN = -48V Load Current &ap[...]
-
Page 106
SILICON GATE MOS 8702A SWITCHING CHARACTERISTICS FOR PROGRAMMING OPERATION PROGRAM OPERATION Conditions of Test: Input pulse rise and fall times :s 1J1sec CS = OV PROGRAM WAVEFORMS BINARY ADDRESS OF WORD TO BE PROGRAMMED I I I I I ~tvoi I ~ f--tATW ---.l tACH r-- I I I tACW----.l', I I BINARY COMPLEMENT OF ADDRESS OF WORD TO BE PROGRAMMED o---[...]
-
Page 107
SILICON GATE MOS 8702A PROGRAMMING INSTRUCTIONS FOR THE 8702A I. Operation of the 8702A in Program Mode Initially, all 2048 bits of the ROM are in the "0" state (output low). Information is introduced by seectively program- ming "1 "s (output high) in the proper bit locations. Word address selection is done by the same decoding[...]
-
Page 108
· :,[...]
-
Page 109
Silicon Gate MOS 8708/8704 8192/4096 BIT ERASABLE AND ELECTRICALLY REPROGRAM MABLE READ ONLY MEMORY • 8708 1024x8 Organization • 8704 512x8 Organization • Fast Programming - Typ. 100 sec. For All 8K Bits • Low Power During Programming • Access Time - 450 ns • Standard Power Supplies- +12V, ±5V • Static - No Clocks Required • Inputs[...]
-
Page 110
SILICON GATE MOS 8708/8704 Absolute Maximum Ratings~· Temperature Under Bias ,. -25°C to +85°C Storage Temperature -~5°C to +125°C All Input or Ou'tput Voltages with Respect to VBB (except Program) .... .. ....... ..... ..... .. .. +15V to -0.3V Program Input to VBB . . . . . . . . . . . . . . . . . . . . . . . . .. +35V to -O.3V Supply V[...]
-
Page 111
SILICON GATE MOS 8708/8704 A.C. Characteristics TA = O°C to 70°C, Vee = +SV ±S%, Vo o = +12V ±S%, Vee = -SV ±S%, Vss = OV, Unless Otherwise Noted. Symbol Parameter Min. Typ. Max. Unit tAce Address to Output Delay 280 4S0 ns teo Chip Select to Output Delay 120 ns tOF Chip De-Select to Output Float 0 120 ns tOH Address to Output Hold 0 ns Capaci[...]
-
Page 112
SILICON GATE MOS 8708/8704 PROGRAMMING OPERATION Description Initially, and after each erasure, all bits of the 8708/8704 are in the "1" state (Output High). Information is introduced by select- ively programming "0" into the desired bit locations. The circuit is set up for programming operation by raising the CS/WE input (Pin 2[...]
-
Page 113
SILICON GATE MOS 8708/8704 Waveforms (Logic levels and timing reference levels same as in the Read Mode unless noted otherwise.) A) Program Mode CS/WE = +12V ~ __ AD_D_R_ESS_1_....c ~_--·-·-·----.lX'---A-D-D-RE-SS-1-0-23--~ ADDRESS 0 ...---------------ONE PROGRAM LOOP ---------------.! I 26V ADDRESS DATA °1·0S PROGRAM PULSE OV-------II B)[...]
-
Page 114
SILICON GATE MOS 8708/8704 Typical Characteristics (Nominal supply voltages unless otherwise noted): OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE RANGE OF SUPPLY CURRENTS VS. TEMPERATURE 100 80 60 ALL POSSIBLE OPERATING CONDITIONS: Vee = 5.25V V oo = 12.6V V aa = -5.25V 40 20 pEEE]f!1EJEZPlEzz$m:=:2!:;·m··;:: } Icc o '--- __ ..I- __ ""&[...]
-
Page 115
Silicon Gate MOS 8302 2048 BIT MASK PROGRAMMABLE READ ONLY MEMORY • Static MOS - No Clocks Required • Simple Memory Expansion - Chip Select Input Lead • 24-Pin Dual-In-Line Hermetically Sealed Ceramic Package • Access Time-1 p'sec Max. • Fully Decoded, 256 x 8 Organization • Inputs and Outputs TTL Compatible • Three-State Output [...]
-
Page 116
SILICON GATE MOS 8302 Absolute Maximum Ratings ~~ Ambient Temperature Under Bias oOc to +70 o C Storage Temperature -65°C to +125 0 C Soldering Temperature of Leads (10 sec) ...... .. +300 o C Power Dissipation 2 Watts Input Voltages and Supply Voltages with respect to V cc +O.5V to -20V *COMMENT Stresses above those listed under II Absolute Maxim[...]
-
Page 117
SILICON GATE MOS 8302 A.C. Characteristics T A = (1J C to + 70°C, Vee = +5V ±5%, V oo = -9V ±5%, V GG = -9V ±5% unless otherwise noted SYMBOL TEST MINIMUM TYPICAL MAXIMUM UNIT Freq. Repetition Rate 1 MHz tOH Previous read data val id 100 ns tACC Address to output delay .700 1 JJ.s t ovGG Clocked V GG set up 1 JJ.s t cs Ch ip select delay 200 ns[...]
-
Page 118
SILICON GATE MOS 8302 Typical Characteristics 100 CURRENT VS. TEMPERATURE ACCESS TIME VS. LOAD CAPACITANCE OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE I vee = +5V - ~ v oo = -9V - v GG = -9V " INPUTS:: Vee - ~ I" OUTPUTS ARE OPEN I I I ' ~ I l' NSIIV ee ." '" "l CS= 0.0V' I I +1 +2 +3 +4 Ci I---+---+[...]
-
Page 119
Silicon Gate MOS 8308 8192 BIT STATIC MOS READ ONLY MEMORY Organization --1024 Words x 8 Bits • Fast Access - 450 ns • Directly Compatible with 8080 CPU at Maximl)m Processor Speed • Two Chip Select Inputs for Easy Memory Expansion • Directly TTL Compatible - All Inputs and Outputs • Three State Output - OR-Ti~ Capability • ·Fully Deco[...]
-
Page 120
SILICON GATE MOS 8308 Absolute Maximum Ratings* Ambient Temperature Under Bias -25°C to +85°C Storage Temperature -65°·C to-i-150°C Voltage On Any Pin With Respect To V aa ............ ..... -0 .. 3V to 20V Power Dissipation 1.0 Watt *COMMENT Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to t[...]
-
Page 121
SILICON GATE MOS 8308 - - A.C. Characteristics TA = oo.c to'+70~C, VCC = +5V ±5%; VO_D = +12V ±5%, VBB = -5V _±5%, VSS_= OV, Unless Otherwise Specif.i~d. Limits[2] Symbol Parameter Unit Min. Typ. Max. tACC Address to Output Delay Time 200- 450 ns tC01 Chip Select 1 to Output Dela.y~ime 85 160 ns teo 2 Chip Select 2 to O~tput Delay Time 125 [...]
-
Page 122
SILICON GATE MOS 8308 Typical Characteristics (Nominal supply voltages unless .otherwise noted.) 100 VS. TE""PERATURE (NORMALIZED) A OUTPUT CAPACITANCE VS. A OUTPUT DELAY +100 +50 o -50 -40 L..- __ ...I..- __ ...Io....- __ .......I.- __ --' -100 +40 r-----~--_r__--~---, ~ CAPACITANCE (pF) _ +20 t----+-----+----~<------f u W (I) ..[...]
-
Page 123
MCS™ CUSTOM ROM ORDER FORM 8308 ROM APp _ S# _ STO _ CUSTOMER _ P.O. NUMBER . _ OATE _ For Intel use only PPpp--------- zz, _ 00 _ OATE . _ All custom 8308 ROM orders must be submitted on this form. Programming information should be sent in the form of computer punched cards or punched paper tape per the formats designated on this order form. Add[...]
-
Page 124
a. Title Card MCS™ CUSTOM ROM ORPER _ FOR.M_ 8308 NO. OF OUTPUTS TITLE CARD 4 or 8 DESIGNATION CUSTOMER'S INTEL P/Nl '1 CUSTOMER'S DIVISION OR 1 DECIMAL NUMBER ~ INDICATING THE COMPANY NAME LOCATION CUSTOMER:S PIN I' i ~ TRUTH TABLE NUMBER ~"/~ G.:"-'·i-i·iNl('·~ CORP ::.,.o#1'i:: ,-:~AI?~ .!iLI~ h[...]
-
Page 125
intel® Silicon Gate MOS ROM 8316A 16,384 BIT STATIC MOS READ ONLY MEMORY Organization-2048 Words x 8 Bits -- . Access Time-SSO ns max • Single + 5 Volts Power Supply Voltage • Directly TTL Compatible - All Inputs and Outputs • Low Power Dissipation of 31.4 /LW/Bit Maximum • Three Programmable Chip Select Inputs for Easy Memory Expansion ?[...]
-
Page 126
SI~ICON GATE MOS ROM 8316A ABSOLUTE MAXIMUM RATINGS· Ambient Temperature Under Bias O°C to 70°C Storage Temperature -65°C to +150°C Voltage On Any Pin With Respect To Ground. . . . . . . . . . . . . . . . . . . . .. -0.5V to +7V Power Dissipation ~ . . 1.0 Watt D.C. AND OPERATING CHARACTERISTICS. T A = O°C to + 70°C, Vee = 5V ±5% unless oth[...]
-
Page 127
SILICON GATE MOS ROM 831.6A WAVEFORMS ADDRESS PROGRAMMABLE CHIP SELECTS tOF 5-63 OU~TVALID 1111.[...]
-
Page 128
S.ILICO.N GATE MOS ROM 8316A TYPICAL D.C. CHARACTERISTICS ACCESS TIME VS. AMBIENT TEMPERATURE V,N LIMITS VS. TEMPERATURE 50 60 70 10 20 TYPICAL 1.8 r----,r----r--.,r---r---.,r---r--_ 1.6 t----1t-----t----1t---t---I----f------f VCC:;;: 5.0V 1.2 t---t---l--t---t--------"t---t-------4 1.0 1ooo.---'1-----1_---'I--_"--_"--_.&[...]
-
Page 129
MCS™ CUSTOM ROM ORDER FORM 8316A ROM CUSTOMER,------------------ P.O. NUMBER ----.;. _ OATE _ APp _ S# ----:. STO _ For I ntel use only pppp-------- zz, _ 00 _ OATE _ All custom 8316A ROM orders must be submitted on this form. Programming information should be sent in the form of computer punched cards or punched paper tape per the formats design[...]
-
Page 130
a. Title Card NO. OF OUTPUTS TITLE CARD 4 or 8 CUSTOMER'S 1 DESIGNATION CUSTOMER'S INTEL PIN DECIMAL NUMBER 1 DIVISION OR I COM~ANY NAME LOCATION CUSTOMER'S PIN I INDICATING THE I' ,----....1..-------,,1 r--L-, ~ TRUTH TABLE NUMBER r--;,~·'I·~l.~I:.~·LL[!":':_~.~·r"!:-,""·~.;~'~l~r.·)~· [...]
-
Page 131
8101-2 8111-2 8102-2 8102A-4 81078-4 RAMs 5101 8210 8222[...]
-
Page 132
[...]
-
Page 133
Silicon Gate MOS 8101-2 1024 BIT (256 x 4) STATIC MOS RAM WITH SEPARATE 1/0 • 256 x 4 Organization to Meet Needs for Small System Memories • Access Time - 850 nsec Max. • Single + 5V Supply Voltage • Directly TTL Compatible - All Inputs and Output • Static MOS - No Clocks or Refreshing Required • Simple Memory Expansion - Chip Enable In[...]
-
Page 134
SILICON GATE MOS 8101-2 Absolute Maximum Ratings* Ambient Temperature Under Bias. . . . .. O°C to 70° C Storage T emperatu re .. ......... -65 0 C to + 150 0 C Voltage On Any Pin With Respect to Ground. . . . . . . .. -0.5V to +7V Power Dissipation . . . . . . . . . . . .. 1 Watt *COMMENT: Stresses above those listed under ''Absolute Ma[...]
-
Page 135
SILICON GATE MOS 8101-2 A.C. Characteristics READ CYCLE T A = o°c to 70°C, Vee = 5V ±5~/~, unless otherwise specified. Symbol Parameter =I Min. Typ. Max. Unit Test Conditions -- ~--_._--- tRey Read Cycle ~ ns ----- .- --.-- tA Access Time 850 ns ____ ._. __ u. ___________ ~--- ~._----~._--- teo Chip Enable To Output 6~._~~ (See below) --_._-_ ..[...]
-
Page 136
[...]
-
Page 137
Silicon Gate MOS 8111-2 1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE • Organization 256 Words by 4 Bits • Access Time - 850 nsec Max. • Common Data Input and Output • Single + 5V Supply Voltage • Directly TTL Compatible - All Inputs and Output • Static MOS - No Clocks or Refreshing Required • Simple Memory Expa[...]
-
Page 138
SILICON GATE MOS 8111-2 Absolute Maximum Ratings* Ambient Temperature Under Bias. . . . .. O°C to 70°C Storage Temperature -65°C to +150°C Voltage On Any Pin With Respect to Ground . . . . . . . .. -0.5V to +7V Power Dissipation 1 Watt *COMMENT: Stresses above those listed under ''Absolute Maximum Rating" may cause permanent dama[...]
-
Page 139
SILICON GATE MOS 8111-2 A.C. Characteristics READ CYCLE T A = o°c to 70°C, Vee = 5V ±5%, unless otherwise specified. Symbol Parameter Min. Typ. Max. Unit Test Conditions tRCY Read Cycle 850 ns tA Access Time 850 ns tco Chip Enable To Output 650 ns (See below) too Output Disable To Output 550 ns tOF [1] Data Output to High Z State 0 200 ns tOH Pr[...]
-
Page 140
[...]
-
Page 141
Silicon Gate MOS 8102-2 • Simple Memory Expansion - Chip Enable Input • Fully Decoded - On Chip Address Decode • Inputs Protected - All Inputs Have Protection Against Static Charge • Low Cost Packaging -16 Pin Plastic Dual-In-Line Configuration 1024 BIT FULLY DECODED STATIC MOS RANDOM ACCESS MEMORY • Access Time - 850ns Max. • Single + [...]
-
Page 142
SILICON GATE MOS 8102-2 ABSOLUTE MAXIMUM RATINGS· Ambient Temperature Under Bias Storage Temperature Voltage On Any Pin With Respect To Ground Power Dissipation -O.5V to +7V . 1 Watt *COMMENT: Stresses above those listed under "Absolute Maxi- mum Rating" may cause permanent damage to the device. This is a stress rating only and functiona[...]
-
Page 143
SILICON GATE MOS 8102-2 A.C. CHARACTERISTICS T A = ooe to 70 o e, Vee = 5V ±5% unless otherwise specified SYMBOL READ CYCLE PARAMETER LIMITS --·---r----mT---- _.~~_~ ... _ ... l}YP._... ..L _~?<~. _._ UNIT os ns ns ns ns --t R-e------r-R--EA~D-C-Y--C-L-E--·------- --_ .. --------- 85o-·-···T -._- "--r .-_._.- --"---'- ~~~~~[...]
-
Page 144
SILICON GATE MOS 8102·2 TYPICAL D.C. CHARACTERISTICS INPUT CURRENT VS. INPUT VOLTAGE -7.5 -1 OUTPUT SINK CURRENT VS. bUTPUT VOLTAGE 1.5 1.0 VOL (VOLTS) 0.5 VIN (VOLTS) EFFECTIVE INPUT CHARACTERISTIC I Vee g 5.0V ~~~b~.J VIL MAX. ( VIH MIN. V IN (VOLTS) +1 +2 +3 +4 +5 +6 Vee~ 5.0V r TYPICAL +5 -5 +2.5 OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE OUTPUT[...]
-
Page 145
Silicon Gate MOS 8102A-4 1024 BIT FULLY DECODED STATIC MOS RANDOM ACCESS MEMORY • Access Time -450 ns Max. • Single + 5 Volts Supply Voltage • Directly TTL Compatible - All Inputs and Output • Static MOS - No Clocks or Refreshing Required • Low Power - Typically 150 mW • Three-State Output - OR-Tie Capability • Simple Memory Expansion[...]
-
Page 146
SILICON GATE MOS 8102A-4 ABSOLUTE MAXIMUM RATINGS· Ambient Temperature Under Bias Storage Temperature Voltage On Any Pin With Respect To Ground Power Dissipation -O.5V to +7V 1 Watt *COMMENT: Stresses above those listed under "Absolute Maxi- mum Rating" may cause permanent damage to the device. This is a stress rating only and functional[...]
-
Page 147
SILICON GATE MOS 8102A-4 A. C. Characteristics T A = O°C to 70°C, Vee = 5V ±5% unless otherwise specified Limits Symbol Parameter TypJ1 ] Unit Min. Max. READ CYCLE tRC Read Cycle 450 ns tA Access Time 450 ns tco Chip Enable to Output Time 230 ns tOHl Previous Read Data Valid with Respect to Address 40 ns tOH2 Previous Read Data Valid with Respec[...]
-
Page 148
SILICON GATE MOS 8102A-4 Typical D. C. and A. C. Characteristics POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE POWER SUPPLY CURRENT VS. SUPPLY VOLTAGE 15 o 10 20 30 40 50 60 70 T A (OC) Vee (VOLTS) I f-- T A "'25°C- V ./ / ~PICAL /r / I 35 5 1 10 15 25 30 ct ! 20 I I VeeMAX.- ............ -.............. ~ TYPICAL r--- ___ ........ - 20 4[...]
-
Page 149
Silicon Gate MOS 81078·4 FULLY DECODED RANDOM ACCESS 4096 BIT DYNAMIC MEMORY * Access Time·· 270 ns max. * Read, Write Cycle Times--470 ns max. * Refresh Period -- 2 ms • Low Cost Per Bit • Address Registers • Low Standby Power Incorporated on the Chip • Easy System Interface • Simple Memory Expansion- • Only One High Voltage Chip Se[...]
-
Page 150
SILICON GATE MOS 81078·4 Absolute Maximum Ratings* Temperature Under Bias ooc to 70°C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to +150 0 C All I nput or Output Voltages with Respect to the most Negative Supply Voltage, Vee . . . . . . . . . . . [...]
-
Page 151
SILICON GATE MOS 81078·4 ADDRESS CAN CHANGE 0 14-----------t ce (300) ----------~ 'JH -- ... --~-+------------------------_t-;-.....,r_----.,...-- tAC(O)- ....... -~ V ,HC ----+-----+-I..-oI!""!!----------------------- ..... CE t cO (2S0) ---------.1 . ._----..-- t:(~ ~ OoUT ..... IMP~6~NCE 1-_....iI ... V_A_L_ID_-_-_-:.::=~~ ~:~~~[...]
-
Page 152
SILICON GATE MOS 81078·4 A. C. Characteristics T A = oOc to 70 0 C, V oo = 12V ± 5%, V CC = 5V ± 10%, Va a = -5V ± 5%, READ, WRITE, AND READ MODIFY /WRITE CYCLE vss = OV, unless otherwise noted. Symbol Parameter Min. Max. Unit Conditions tREF Time Between Refresh 2 ms tAC Address to CE Set Up Time 0 ns tAC is measured from end of address transi[...]
-
Page 153
SILICON GATE MOS 81078·4 Typical Characteristics Fig. 1. 100 AV VS. TEMPERATURE Fig. 2. TYPICAL 100 AVERAGE VS. CYCLE TIME t CE = 300ns ---f'~-t--""'~_t__-___t_-__1 I I tCE = 230n5 O~- ......... ---....---'O""--------..-- ........... -----I o 200 400 600 800 1000 1200 1400 13 t----+----+--I'---;----t-....-..[...]
-
Page 154
SILICON GATE MOS 81078·4 Read Modify Write Cycle£1] Symbol Parameter Min. Max. Unit Conditions t RWC Read Modify Write( RMW) 590 ns tT = 20ns Cycle Time t CRW CE Width During RMW 420 3000 ns WC WE to CE on 0 ns t w WE to CE off 150 ns C load = 50pF, Load = One TTL Gate, twp WE Pulse Width 50 ns Ref = 2.0V tow DIN to WE Set Up 0 ns t OH DIN Hold T[...]
-
Page 155
SILICON GATE MOS 81078·4 Typical Current Transients Ys. Time 100 200 300 400 500 0 100 200 300 400 500 I I I I I I I I I I I CE ~ WRITE J READ CYCLE CYCLE 30 20 A J Ice 10 (rnA) 0 V V 2.0 1.5 NORMALIZED 100 1.0 0.5 a 20 Iss 10 (rnA) 0 -10 --f- .... AP---....~~----IDo2 TYPICAL Applications Refresh The 81078-4 is refreshed by either a read cycle[...]
-
Page 156
SILICON GATE MOS 81078·4 Typical System Below is an example of a 16K x 8 bit memory circuit. Device decoding is done with the CE input. All devices are unselected during refresh with CS input. The 8210, 8205 and 8212 are standard Intel products. REFRESH 0----+0- CS 8228 {MEMW MEMR------------- 8080 1 ~~ Do .-------t'/~-----.....I I/.~-------[...]
-
Page 157
intel e Silicon Gate CMOS 5101, 5101-3, 5101L, 5101L·3 1024 BIT (256 x 4) STATIC CMOS RAM *Ultra Low Standby Current: 15 nA/Bit for the 5101 • Fast Access Time - 650 ns • Single +5 V Power Supply • CE 2 Controls Unconditional Standby Mode • Directly TTL Compatible - All Inputs and Outputs • Three-State Output The Intel® 5101 and 5101-3 [...]
-
Page 158
SILICON GATE CMOS 5101,5101-3, 5101L, 5101L-3 Absolute Maximum Ratings * Ambient Temperature Under Bias. . . .. O°C to 70°C Storage Temperature -65°C to +150°C Voltage On Any Pin With Respect to Ground .... -0.3V to Vee +0.3V Maximum Power Supply Voltage +7.0V Power Dissipation ............. .... .. 1 Watt *COMMENT: Stresses above those listed [...]
-
Page 159
SILICON GATE CMOS 5101,5101-3, 5101L, 5101L-3 A.C. Characteristics for 5101, 5101· 3, 5101 L, 5101 L- 3 READ CYCLE T A = o°c to 70°C, Vcc = 5V ±5%, unless otherwise specified. Symbol Parameter Min. Typ. Max. Unit Test Conditions tAC Read Cycle 650 ns tA Access Time 650 ns teol Chip Enable (CE1) to Output 600 ns Chip Enable (CE2) to Output 700 ([...]
-
Page 160
SILICON GATE CMOS 5101,5101-3, 5101L, 5101L-3 Waveforms WRITE CYCLE DATA IN STABLE 14----- t ew1 --- ... 1..------- t we ------~ ~I----- t CW2 ------.t 1..---- tDw---~ --. tAW 104----t wP ----.I ~ __ -+ __ RIW CE2 DATA IN ADDRESS 00 (COMMON I/O) (4) CE2 DATA OUT ADDRESS READ CYCLE ..-- _ 00 (COMMON I/O) (3] NOTES: 1. Typical values are for TA = 25?[...]
-
Page 161
Schottky Bipolar 8210 TTL-TO-MOS LEVEL SHIFTER AND HIGH VOLTAGE CLOCK DRIVER • Four Low Voltage Drivers • One High Voltage Driver • TTL and OTl Compatible Inputs • Outputs Compatible with 8107A MOS Memories • Operates from Standard Bipolar and MOS Power Supplies • Maximum MOS Device Protection - Output Clamp Diodes The I ntel®821 0 is [...]
-
Page 162
SCHOTTKY BIPOLAR 8210 A.C. Characteristics TA = O°C to 70°C, VCC = 5.0V ± 5%, VDD = 12V ± 5% Symbol Parameter Min. Typ. Max. Unit tLd+ Delay Plus Rise Time for Low Voltage Drivers 5 13 20 ns tLd- Delay Plus Fall Time for Low Voltage Drivers 5 13 20 ns tHd+ Delay Plus Rise Time for High Voltage Driver 10 30 40 ns tHd- Delay Plus Fall Time for Hi[...]
-
Page 163
SCHOTTKY BIPOLAR 8210 Absolute Maximum Ratings* Temperature Under Bias o°c to 70°C Storage Temperature -65°C to +150°C Supply Voltage, Vee -0.5 to +7V Supply Voltage, V oo -0.5 to +13V All Input Voltages -1.0 to +5.5V Outputs for Low Voltage Drivers . . . . . . .. -0.5 to +7V Outputs for Clock Driver -1.0 to +13V Power Dissipation at 25°C 2W *[...]
-
Page 164
SCHOTTKY BIPOLAR 8210 Typical System Below is an example of a 16K x 8 bit memory circuit. Device decoding is done with the CE input. All devices are unselected during refresh with CS i~put. The 8210, 8205 and 8212 are standard Intel products. REFRESH 0-----+--1 cs 8228 {MEMW MEMR -----4 __ -----~ 8080 f ~~ Do .-------i"J"I------ ........ [...]
-
Page 165
Schottky Bipolar 8222 DYNAMIC MEMORY REFRESH CONTROLLER BLOCK DIAGRAM • I nternal Address Multiplexer • Up to 6 Ro . (64x 64,t}' 'ff PIN CONFIGURATION • Adjustable Refresh Request Oscillator • Ideal for 8107A, 81078 4K RAM Refresh START CYCLE CYC. REQ. REFRESH ACK BUSY REQUEST REF. ON a LOGIC REFREQ CYREQ STARTCY ADDRESS INPUT A [...]
-
Page 166
[...]
-
Page 167
I/O 8212 8255 8251[...]
-
Page 168
[...]
-
Page 169
Schottky Bipolar 8212 EIGHT-BIT INPUT/OUTPUT PORT • Fully Parallel 8-Bit Data Register and Buffer • Service Request Flip-Flop for Interrupt Generation • Low Input Load Current - .25 mA Max. • Three State Outputs • Outputs Sink 1.5 mA • 3.65V Output High Voltage for Direct Interface to 8080 CPU or 8008 CPU • Asynchronous Register Clear[...]
-
Page 170
SCHOTTKY BIPOLAR 8212 OUTPUT BUFFER -INTERNAL SR FLIP-FLOP CLR (OS1- 0S 2) STB -SR tNT 0 0 0 , , 0 , 0 , 0 , 1 '- 0 0 , 1 0 1 0 , 0 0 1 , 1 , ~I , 0 ~D18-------~ ..... ~ 01 7 -------+-1-1 DATA LATCH ff§> D IS ------- .............. IE> CLR-----001 ~~_ ....... --' (ACTIVE LOW) ~ MO ----to4' __ ~ [jj>STB-- ............ [[>[...]
-
Page 171
SCHOTTKY BIPOLAR 8212 8080 Status Latch 8008 System 8080 System: 8 Input Ports 8 Output Ports 8 Level Priority Interrupt Applications Of The 8212 -- For Microcomputer Systems I Basic Schematic Symbol VII II Gated Buffer VIII III Bi-Directional Bus Driver IX IV Interrupting Input Port V Interrupt Instruction Port VI Output Port I. Basic Schematic Sy[...]
-
Page 172
SCHOTTKY BIPOLAR 8212 BI-DIRECTIONAL BUS DRIVER III. Bi-Directional Bus Driver A pair of 8212's wired (back-to-back) can be used as a symmetrical drive, bi-directional bus driver. The devices are controlled by the data bus input control which is connected to D81 on the first 8212 and to D82 on the second. One device is active, and acting as a [...]
-
Page 173
SCHOTTKY BIPOLAR 8212 VI. Output Port (With Hand-Shaking) The 8212 can be used to transmit data from the data bus to a system output. The output strobe could be a hand-shaking signal such as "reception of data" from the device that the system is outputting to. It in turn, can interrupt the system signifying the re- ception of data. The se[...]
-
Page 174
SCHOTTKY BIPOLAR 8212 VIII. 8008 System This shows the 8212 used in an 8008 microcomputer system. They are used to multiplex the data from three different sources onto the 8008 input data bus. The three sources of data are: memory data, input data, and the interrupt instruction. The 8212 is also used as the uni-directional bus driver to provide a p[...]
-
Page 175
SCHOTTKY BIPOLAR 8212 . IX. 8080 System This drawing shows the 8212 used in the I/O section of an 8080 microcomputer system. The system con- sists of 8 input ports, 8 output ports, 8 level priority systems, and a bidirectional bus driver. (The data bus within the system is darkened for emphasis). Basically, the operation would be as follows: The 8 [...]
-
Page 176
SCHOTTKY BIPOLAR 8212 8080 ADDRESS .:... BUS (See Note 1) A O -' A 1 --+- A 2 --+- 8205 ~ ~ E 1 ::=:- ~ --0 E 2 ::- Vee - .. E_ 3 __ .. I/O DEVICE SELECTOR ST;~;T:¢ ST: 212 tt:7:::~~llllltnn~ 8212 => ~:~~T ~ ;:N~~- :IIII[ _~L~ee? INP -- ...... ----t-t-t-t-t-+--+-t------------+-6 STATUS BITS - STROBE 2 ---. STB INPUT ~ PORT 2 L-Y 8212 8212 [...]
-
Page 177
SCHOTTKY BIPOLAR 8212 Absolute Maximum Ratings· Temperature Under Bias Plastic .. -65°C to + 75°C Storage Temperature -65°C to +160°C All Output or Supply Voltages - 0.5 to + 7 Volts ,All Input Voltages -1.0 to 5.5 Volts Output Currents 125 mA D.C. Characteristics T A = O°C to + 75°C 'V ee = +5V ±5°k *COMMENT: Stresses above those lis[...]
-
Page 178
SCHOTTKY BIPOLAR 8212 Typical Characteristics INPUT CURRENT YS. INPUT YOLTAGE OUTPUT CURRENT VS. OUTPUT "LOW" YOLTAGE .8 .6 .4 .2 O'---~~'-----'-----.L..------' o « E I- 60 z w a: a: :::J u I- 40 :;) a. .... :;) 0 20 100 ....----.,...----.,...----~--____. Vee = +5.0V 801-----1----1----+--------4 +3 +2 +1 o -1 -2 r ~ V[...]
-
Page 179
SCHOTTKY BIPOLAR 8212 Timing Diagram DATA 1.5Vy----------y.5V _____ -J. I;==t pw ~I_ tH :.j'---- STB or oSl • oS2 1.5vl ''-1._5V _ ~twE=J OUTPUT -/'10-: - - - - - -- oSl. OS2 1.5Vj 1.5V ________ l_tE_~ r _ ~E~~~W_) __ ~-t-D-~---- Y VOH OUTPUT X ~----,~t- VOL ~tpw~ f I I .5V eLR 1.5V . 11.5V ~~~~~~~~~~~~1r----- DO ><&qu[...]
-
Page 180
SCHOTTKY BIPOLAR 8212 A.C. Characteristics T A = O°C to + 75°C Vee = +5V ± 5% Symbol Parameter Limits Unit Test Conditions Min. Typ. Max. t pw Pulse Width 30 ns t pd Data To Output Delay 30 ns t we Write Enable To Output Delay 40 ns t set Data Setu·p Time 15 ns t h Data Hold Time 20 ns t r Reset To Output Delay 40 ns t s Set To Output Delay 30 [...]
-
Page 181
Silicon Gate MOS 8255 PROGRAMMABLE PERIPHERAL INTERFACE • 24 Programmable I/O Pins • Completely TTL Compatible • Fully Comp.atible with MCS™-8 and MCS TM'_80 Microprocessor Families • Direct Bit Set/Reset Capability Easing Control Application Interface • 40 Pin Dual In-Line Package • Reduces System Package Count The 8255 is a gen[...]
-
Page 182
SILICON GATE MOS 8255 8255 BASIC FUNCTIONAL DESCRIPTION General The 8255 is a Programmable Peripheral Interface (PPI) de- vice designed for use in 8080 Microcomputer Systems. Its function is that of a general purpose I/O component to inter- face peripheral equipment to the 8080 system bus. The functional configuration of the 8255 is programmed by t[...]
-
Page 183
SILICON GATE MOS 8255 (RESET) Reset: A "high" on this input clears all internal registers in- cluding the Control Register and all ports (A, B, C) are set to the input mode. Group A and Group B Controls The functional configuration of each port is programmed by the systems software. In essence, the 8080 CPU "out- puts" a control[...]
-
Page 184
SILICON GATE MOS 8255 8255 DETAILED OPERATIONAL DESCRIPTION Mode Selection There are three basic modes of operation that can be select- ed by the system software: Mode 0 - Basic Input/Output Mode 1 - Strobed Input/Output Mode 2 - Bi-Directional Bus When the RESET input goes "high" all ports will be set to the Input mode (Le., all 24 lines[...]
-
Page 185
SILICON GATE MOS 8255 CONTROL WORD r 0 7 t 0 6 I 0 5 1 0 4 I 0 3 1 O 2 I 0, I DO I I I I L BIT SET/RESET ,x X x, 1 = SET I 0:: RESET DON'T CARE BIT SELECT o 1 2 3 4 5 6 7 o 1 o 1 o 1 o 1 801 o 0 1 1 o 0 1 1 B,-l o 0 o 0 11 1 1 B21 BIT SET/RESET FLAG Om ACTIVE When Port C is being used as status/control for Port A or B, these bits can be set or[...]
-
Page 186
SILICON GATE MOS 8255 MODE 0 PORT DEFINITION CHART A B GROUPA GROUPB 04 PORTC PORTC 03 01 DO PORTA (UPPER) # PORT B (LOWER) 0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT 0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT 0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT 0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT 0 1 0 0 OUTPUT INPUT 4 OUTPUT OUTPUT 0 1 0 1 OUTPUT INPUT 5 OUTPUT INPUT 0 1 1[...]
-
Page 187
SILICON GATE MOS 8255 CONTROL WORD #4 A 18 , 8255 ,4 c{ , . • ,4 -, B 1 8 I CONTROL WORD #5 0 , 0 5 P~.PBO CONTROL WORD #8 0 7 0 6 Os 0 4 0 3 ,0 2 0, DO A . ,8 I 8255 ,4 c{ , . . ,4 -, B 18 -, CONTROL WORD #9 0 7 0 6 0 5 0 4 0 3 O 2 0, DO A ,8 -, 8255 ,4 c{ -, . • ,4 , B ,8 I CONTROL WORD #6 0 7 0 6 0 5 0 4 0 3 A ,8 -, 8255 14 c{ ,4 , B ' [...]
-
Page 188
SILICON GATE MOS 8255 CONTROL WORD #12 0 7 0 6 0 5 0 4 03 O 2 01 A ,8 F 8255 c{ · ,4 / • . ,4 , B ,8 I ~ CONTROL WORD #13 0 7 0 6 0 5 0 4 0 3 O 2 0, DO CONTROL WORD #14 0 7 0 6 0 5 0 4 0 3 O 2 0, DO A . ,8 I 8255 c{ . ,4 I . • ,4 B . ,8 I CONTROL WORD #15 0 7 0 6 0 5 0 4 0 3 O 2 0, DO A ,8 7 8255 , 4 c{ I ,4 7 B ,8 I A ,8 8255 ,4 c{ 1 ,4 7 B ,[...]
-
Page 189
SILICON GATE MOS 8255 Input Control Signal Definition STB (Strobe (nput) A "low" on this input loads data into the input latch. IBF (Input Buffer Full F/F) A "high" on this output indicates that the data has been loaded into the input latch; in essence, an acknowledgement ISF is set by the falling edge of the STB input and is re[...]
-
Page 190
SILICON GATE MOS 8255 PC, OBF B P~.PBo 8 r- - -, I INTE I I A I __ .J MODE 1 (PORT A) MODE 1 (PORT B) CONTROL WORD CONTROL WORD 0 7 0 6 Os 0 4 0 3 O 2 0, Do INTEA Controlled by bit set/reset of PC 6. INTE B Controlled by bit set/reset of PC 2. Output Control Signal Definition OBF (Output Buffer Full F/F) The OBF output will go ~'Iow" to i[...]
-
Page 191
SILICON GATE MOS 8255 Combinations of Mode 1 Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed I/O applications. PA 7 -PA O 8 PC 7 OBF A PC 6 -+-- ACK A PC 3 INTRA 2 PC 4 • 5 I/O PB 7 -PB o PC 2 STB B PC, IBF B PC o INTR B CONTROL WORD PC, 2 PC 6 • 7 ..-.;-.-.. I/O P~-PBO 8 PA 7 -PAo[...]
-
Page 192
SILICON GATE MOS 8255 CONTROL WORD Mode 2 Control Word OBF A pC 200 ACK A 1 = INPUT 0= OUTPUT PORTB r--l 1 = INPUT IN;E I PC 4 . STB A 0= OUTPUT L __ J PC s IBF A WR GROUP B MODE 0= MODE 0 1 = MODE 1 3 AD PC 200 . I / • I/O Mode 2 INTR '----" 1 IBF DATA BUS (BETWEEN I/O CHIP - - - - - - - - AND I/O DEVICE) DATA I/O DEVICE -+- I/O CHIP [...]
-
Page 193
SILICON GATE MOS 8255 MODE 2 AND MODE 0 (INPUT) MODE 2 AND MODE 0 (OUTPUT) PC 3 INTRA PC 3 INTRA PA 7 -PA O PA 7 -PAo ~ OBF A P~ OBF A CONTROL WORD PC 6 . ACK A CONTROL WORD PC 6 . ACK A 0 7 0 6 05 04 03 O 2 0, DO 0 7 0 6 0 5 0 4 0 3 O 2 0, DO PC 4 STB A PC 4 . STB A PC 2 .() PC 5 IBF A PC 2 .() PC 5 IBF A 1 = INPUT 1 = INPUT O=OUTPUT 0= OUTPUT 3 3[...]
-
Page 194
SILICON GATE MOS 8255 MODE DEFINITION SUMMARY TABLE MODE 0 IN OUT PAO IN OUT PA1 IN OUT PA2 IN OUT PA3 IN OUT PA4 IN OUT PAS IN OUT PAe IN OUT PA7 IN OUT PBO IN OUT P81 IN OUT PB2 IN OUT PB3 IN OUT PB4 IN OUT PB5 IN OUT PBe IN OUT PB7 IN OUT PCO IN OUT PC, IN OUT PC2 IN OUT PC3 IN OUT PC4 IN OUT PCS IN OUT PC6 IN OUT PC7 IN OUT MODE 1 IN OUT IN OUT[...]
-
Page 195
SILICON GATE MOS 8255 Printer Interface APPLICATIONS OF THE 8255 TERMINAL ADDRESS STi PC 3 - PAo R o 8255 PA, R, PA 2 R 2 FULLY PA 3 R 3 DECODED KEYBOARD PA 4 R 4 MODE 1 _ PAs R s (INPUT) PA 6 SHIFT PA 7 CONTROL PC 4 STROBE PC s ACK ~ - PB o B o PB, B, PB 2 B 2 BURROUGHS SELF·SCAN PB 3 B 3 DISPLAY PB 4 B 4 PBs B s MODE 1 _ PB 6 BACKSPACE (OUTPUT) [...]
-
Page 196
SILICON GATE MOS 8255 STi PC 3 r-- PB O Do PB, 0, PB 2 O 2 PB 3 0 3 FLOPPY DISK PB 4 . . 0 4 CONTROLLER AND DRIVE PBs D S MODE 2- PB 6 0 6 PB 7 0 7 PC 4 DATA STB PC S ACK (IN) PC 7 DATA READY _Pe 6 ACK (OUT) 8255 PC 2 TRACK "0" SENSOR PC o SYNC READY PC, INDEX r- PAO ENGAGE HEAD PAl FORWARD/REV. P~ READ ENABLE MODE 0 _ P~ WRITE ENABLE (OU[...]
-
Page 197
~v ~V "",,-/7 "v '7 8080 MEMORY 8255 CPU ROM AND 8255 MODE 2 RAM A ~~ ..t. ~ 8255 MODE 2 SILICON GATE MOS 8255 I r--- ~---- MASTER CPU SYSTEM BUS (0, A, AND C) I- ----, ,-- 1-- --.--- t- ----, I I I I I I I MASTER I/O L J 8080 CPU MEMORY I/O 8080 CPU MEMORY I/O Distributed I ntell igence Multi-Processor Interface 5-129[...]
-
Page 198
SILICON GATE MOS 8255 D.C. CHARACTERISTICS TA = o°c to 70°C; Vee = +5V ±5%; vss = OV Symbol Parameter Min. Typ. Max. Unit Test Conditions Vil Input Low Voltage .8 V V IH Input High Voltage 2.0 V Val Output Low Voltage .4 V IOl = 1.6mA VOH Output High Voltage 2.4 V IOH = -50JlA (-1 OOJlA for D .B. Port) IOH[1] Darlington Drive Current 2.0 rnA VOH[...]
-
Page 199
SILICON GATE MOS 8255 INPUT A1,AO .. t RP ~ ~ ~ 7 I[ .--t'R---' ~tHR-----" >: K tAR ~tRA--" ~~ :~ ~tCR----' t RC ~ JV :0- ----- -- -- ---- ~ t RD .. too .. Mode 0 (Basic Input) A1,AO cs OUTPUT twp .. ~ { ,-- 7 f-- ~tDW~ ~twD--' )( K tAW .. twA .. )( JK .. t cw .. twc ~ r-- J )( . twB -------. Mode 0 (Basic Out[...]
-
Page 200
SILICON GATE MOS 8255 IBF ~tRI INTR INPUT FROM _ PERIPHERAL I...-----t ps -----.· Mode 1 (Strobed Input) INTR OUTPUT Mode 1 (Strobed Output) 5-132[...]
-
Page 201
SILICON GATE MOS 8255 . WR tAO OBF INTR ACK STB IBF PERIPHERAL _ BUS DATA FROM PERIPHERAL TO 8255 Mode 2 (Bi-directional) 5-133 DATA FROM 8255 TO 8080[...]
-
Page 202
[...]
-
Page 203
Silicon Gate MOS 8251 PROGRAMMABLE COMMUNICATION INTERFACE .. Synchronous and Asynchronous Operation • Synchronous: 5-8 Bit Characters Internal or External Character Synchronization Automatic Sy.nc Insertion • Asynchronous: 5-8 Bit Characters Clock Rate -1,16 or 64 Times Baud Rate Break Character Generation 1, 1 1 h, or 2 Stop Bits False Start [...]
-
Page 204
SILICON GATE MOS 8251 8251 BASIC FUNCTIONAL DESCRIPTION General The 8251 is a Universal Synchronous! Asynchronous Re- ceiver/Transmitter designed specifically for the 8080 Micro- computer System. like other I!O devices in the 8080 Micro- computer System its functional configuration is programmed by the systems software for maximum flexibility. The [...]
-
Page 205
SILICON GATE MOS 8251 Modem Control The 8251 has a set of control inputs and outputs that can be used to simplify the interface to almost any Modem. The modem control signals are general purpose in nature and can be used for functions other than Modem control, if necessary. DSR (Data Set Ready) The DSR input signal is general purpose in nature. Its[...]
-
Page 206
For Example: SILICON GATE MOS 8251 Receiver Buffer The Receiver accepts serial data, converts this serial input to parallel format, checks for bits or characters that are unique to the communication technique and sends an "assembled" character to the CPU. Serial data is input to the RxD pin. Receiver Control This functional block manages [...]
-
Page 207
SILICON GATE MOS 8251 DETAILED OPERATION DESCRIPTION General The complete functional definition of the 8251 is program- med by the systems software. A set of control words must be sent out by the CPU to initialize the 8251 to support the desired communications format. These control words will program the: BAUD RATE, CHARACTER LENGTH, NUMBER OF STOP[...]
-
Page 208
SILICON GATE MOS 8251 Mode Instruction Definition The 8251 can be used for either Asynchronous or Synchro- nous data communication. To understand how the Mode Instruction defines the functional operation of the 8251 the designer can best view the device as two separate components sharing the same package. One Asynchronous the other Synchronous. The[...]
-
Page 209
SILICON GATE MOS 8251 o 0 1 1 5 6 7 8 BITS BITS BITS BITS L.....- -.. PARITY ENABLE (1 = ENABLE) (0 = DISABLE) 1 0 CHARACTER LENGTH o L.....- .. EVEN PARITY GENERATION/CHECK 1 c EVEN 0=000 Synchronous Mode (Transmission) The TxD output is continuously high until the CPU sends its first character to the 8251 which usually is a SYNC character. When t[...]
-
Page 210
SILICON GATE MOS 8251 COMMAND INSTRUCTION DEFINITION Once the functional definition of the 8251 has been pro- grammed by the Mode Instruction and the Sync Characters are loaded (if in· Sync Mode) then the device is ready to be used for data communication. The Command Instruction controls the actual operation of the selected format. Func- tions suc[...]
-
Page 211
SILICON GATE MOS 8251 APPLICATIONS OF THE 8251 ADDRESS BUS ADDRESS BUS CONTROL BUS CONTROL BUS DATA BUS DATA BUS r----' I EIA TO TTL :. QJ) I CONVERT I PHONE (OPT) 8251 L ____ J :: ASYNC LINE MODEM INTER· BAUD RATE CRT FACE TxC GENERATOR TERMINAL 8251 Asynchronous Serial Interface to CRT Terminal, DC-9600 Baud Asynchronous Interface to Teleph[...]
-
Page 212
SILICON GATE MOS 8251 D.C. Characteristics: Symbol Parameter Min. Typ. Max. Unit Test Conditions V,L Input Low Voltage Vss-·5 0.8 V VIH Input High Voltage 2.0 Vee V VOL Output Low Voltage 0.45 V IOl = 1.6mA VOH Output High Voltage 2.2 V IOH = -1001lA ( DB o-7) IOH = -1001lA (Others) IOL Data Bus Leakage 50 IJ.A VOUT = 4.5V ILl Input Load Current 1[...]
-
Page 213
SILICON GATE MOS 8251 A.C. Characteristics: TA = o°c to 70°C; VCC = 5.0V ±5%; Vss = OV Symbol Parameter Min. Typ. Max. Unit Test Conditions tCY Clock Period .420 1.35 JlS t</JW Clock Pulse Width 220 300 ns tR,tF Clock Rise and Fall Time 0 50 ns tWR WRITE Pulse Width 430 ns tos Data Set-Up Time for WR ITE 0 ns tOH Data Hold Time for WR ITE 65 [...]
-
Page 214
SILICON GATE MOS 8251 READ AND WRITE TIMING CID,CS. ..,1'----------------""1"---------"1'-- D 7 -D O -----..--'I~ ~-- t DS -------1~ .. -- *WRITE ------J---..:.-/'..--- twR 1 ""-'-----...,t.......--- ·WRITE AND READ PULSES HAVE NO TIMING LIMITATION WITH RESPECT TO ClK. TRANSMITTER CLOCK AND DA[...]
-
Page 215
Peripherals 8205 8214 8216/8226[...]
-
Page 216
[...]
-
Page 217
Schottky Bipolar 8205 HIGH SPEED 1 OUT OF 8 BINARY DECODER • 110 Port or Memory Selector • Simple Expansion - Enable Inputs • High Speed Schottky Bipolar Technology - 18ns Max. Delay • Directly Compatible with TTL Logic Circuits • Low Input Load Current - .25 mA max., 1/6 Standard TTL Input Load • Minimum Line Reflection - Low Voltage D[...]
-
Page 218
SCHOTTKY BIPOLAR 8205 FUNCTIONAL DESCRIPTION Decoder The 8205 contains a one out of eight binary decoder. It ac- cepts a three bit binary code and by gating this input, creates an exclusive output that represents the value of the input code. For example, if a binary code of 101 was present on the AO, A 1 and A2 address input lines, and the device w[...]
-
Page 219
SCHOTTKY BIPOLAR 8205 APPLICATIONS OF THE 8205 The 8205 can be used in a wide variety of applications in microcomputer systems. I/O ports can be decoded from the address bus, chip select signals can be generated to select memory devices and the type of machine state such as in 8008 systems can be derived from a simple decoding of the state lines (S[...]
-
Page 220
SCHOTTKY BIPOLAR 8205 Logic Element Example Probably the most overlooked application of the 8205 is that of a general purpose logic element. Using the lion-chip" enabl ing gate, the 8205 can be configu red to gate its de- coded outputs with system timing signals and generate strobes that can be directly connected to latches, flip-flops and one[...]
-
Page 221
SCHOTTKY BIPOLAR 8205 ABSOLUTE MAXIMUM RATINGS· T emperatu re Under Bias: Ceram ic Plastic Storage Temperature All Output or Supply Voltages All Input Voltages Output Cu rrents -65°C to +125° C -65°C to +75°C -65°C to +160 0 C -0.5 to +7 Volts -1.0 to +5.5 Volts 125 rnA *COMMENT Stresses above those listed under "Absolute Maximum Rat- in[...]
-
Page 222
SCHOTTKY BIPOLAR 8205 8205 SWITCHING CHARACTERISTICS CONDITIONS OF TEST: TEST LOAD: Input pulse amplitudes: 2.5V Input rise and fall times: 5 nsec between 1V and 2V Measurements are made at 1.5V 390n 2K All Transistors 2N2369 or Equivalent. e L = 30 pF ---..1'1 1'--- ___ _____ ~ __ t+_-_' .... t++ I-: =b~:.:~-I.-,..-------- I , , , ,[...]
-
Page 223
Schottky Bipolar 8214 PRIORITY INTERRUPT CONTROL UNIT • Eight Priority Levels • Current Status Register • Priority Comparator • Fully Expandable • High Performance (50ns) • 24-Pin Dual In-Line Package The 8214 is an eight level priority interrupt control unit designed to simplify interrupt driven microcomputer systems. The PICU can acce[...]
-
Page 224
SCHOTTKY BIPOLAR 8214 INTERRUPTS IN MICROCOMPUTER SYSTEMS Microcomputer system design requires that I/O devices such as keyboards, displays, sensors and other components re- ceive servicing in an efficient method so that large amounts of the total systems tasks can be assumed by the micro- computer with little or no effect on throughput. The most c[...]
-
Page 225
SCHOTTKY BIPOLAR 8214 FUNCTIONAL DESCRIPTION General 'he 8214 is a device specifically designed for use in real time, interrupt driven, microcomputer systems. Basically it is an eight (8) level priority control unit that can accept eight different interrupt requests, determine which has the highest priority, compare that level to a software ma[...]
-
Page 226
SCHOTTKY BIPOLAR 8214 Control Signals The 8214 also has several inputs that enable the designer to synchronize the interrupt issued to the microprocessor and to allow or disallow such an issuance. Also, signals are pro- vided that perm it simple expansion to other 8214s so that more than eight levels can be controlled. INTE, elK The INTE (Interrupt[...]
-
Page 227
SCHOTTKY BIPOLAR 8214 APPLICATIONS OF THE 8214 8 Level Controller (8080) The most common of applications of the 8214 is that of an eight level priority structure for 8080 or 8008 microcom- puter systems. Shown in the figure below is a detailed logic schematic of a simple circuit that will accept eight input requests, maintain current status, issue [...]
-
Page 228
SCHOTTKY BIPOLAR 8214 DO 8080 BI-ol RECTIONAL BUS ~ ~ ~ ~ ~ ~ ~ ~ 0 5 T 0 4 ~ I T ~ ~ I IT ~ I I I T 0 7 ~10K mmn ~ INT p23 I I I I I I I I c4> '(808~Np1N 14) 1K~ ~ ~: INTE • I I I I • I 7 I INTE ~2 (TIL) • I I I I ,6 cl ClK ETLG INT I:> 5 I I I ~ b 11 I STB PRIORITY ARRAY EN (FROM I/O PORT DECODER) GND : Do 0, 7 0 9 2 16 ~3 8212 1[...]
-
Page 229
SCHOTTKY BIPOLAR 8214 APPLICATIONS OF THE 8214 Cascading the 8214 When greater than eight levels of interrupts must be priori- tized and serviced, the 8214 can be cascaded with other 8214s to support such an .architecture. On the previous page a simple circuit is shown that can con- trol 16 levels of interrupt and is easily expandable to sup- port [...]
-
Page 230
SCHOTTKY BIPOLAR 8214 D.C. AND OPERATING CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS* Temperature Under Bias O°C to 70°C Storage Temperature -65°C to +150°C All Output and Supply Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5V to +7V All Input Voltages. . . . . . . . . . . . . . [...]
-
Page 231
SCHOTTKY BIPOLAR 8214 A.C. CHARACTERISTICS AND WAVEFORMS TA = o°c to +70°C, vcc = +5V ±5% Limits Symbol Parameter Min. Typ.[1] Max. Unit tCY ClK Cycle Time 80 50 ns tpw ClK, ECS, INT Pulse Width 25 15 ns tlSS I NTE Setup Time to ClK 16 12 ns t,SH I NTE Hold Time after ClK 20 10 ns tETCS[2] ETlG Setup Time to ClK 25 12 ns tETCH[2] ETlG Hold Time [...]
-
Page 232
SCHOTTKY BIPOLAR 8214 WAVEFORMS ENLG -----------------"'j( -------- -J. _ NOTES: (1) Typical values are for T A = 25°C ,Vee = 5.0V. (2) Required for proper operation if ISE is enabled during next clock pulse. (3) These times are not required for proper operation but for desired change in interrupt flip-flop. (4) Required for new request[...]
-
Page 233
Schottky Bipolar 8216/8226 4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER • Data Bus Buffer Driver for 8080 CPU • Low Input Load Current - .25 mA Maximum • High Output Drive Capability for Driving System Data Bus • 3.65V Output High Voltage for Direct Interface to 8080 CPU • Three State Outputs • Reduces System Package Count The 8216/8226 is a[...]
-
Page 234
SCHOTTKY BIPOLAR 8216/8226 FUNCTIONAL DESCRIPTION DB, DB, ----OOB O ------oOB O '--------1- ----0 cs OlEN cs 0 0 Ol~ DB 1 0 OB~ DO 0 1 }HIGH IMPEDANCE 1 1 01 3 0-------+----1 >--+--.. 01, 0-------+---1 "--4--.. DO, o------t--~ I--~---' OlEN ~-------- ...... 003o------t-----c: 1-----+- ...... 01 0 0----- .... "---1---.. OOoo--[...]
-
Page 235
SCHOTTKY BIPOLAR 8216/8226 APPLICATIONS OF 8216/8226 . 15 4 01 OlEN 3 0 0 2 DO DB OB o 7 0 1 6 OB 1 5 9 8216 8226 10 D 2 11 OB 2 12 13 DB 3 0 3 14 cs SYSTEM 8080 OATA 15 BUS 01 OlEN 3 D 4 OB OB 4 DO 6 Os DB s 8216 8226 10 0 6 OB 6 0 7 13 DB 7 CS The 8216/8226 can be used in a wide variety of other buf- fering functions in microcomputer systems such[...]
-
Page 236
SCHOTTKY BIPOLAR 8216/8226 D.C. AND OPERATING CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS* Temperature Under Bias ' O°C to 70°C Storage Temperature -6SoC to +150°C All Output and Supply Voltages. ................... . .. ............. ..... .... .... . .. -O.5V to +7V All Input Voltages -1.0V to +5.5V Output Currents . . . . . . . . . . . . . [...]
-
Page 237
SCHOTTKY BIPOLAR 8216/8226 WAVEFORMS INPUTS -'X'-:,_5V _ l--t FD OUTPUT ENABLE .5V ---+---V OH f VOL .5V A.C. CHARACTERISTICS TA = O°C to +70°C, Vcc = +5V ±5% Limits Symbol Parameter Min. Typ,£1] Max. Unit Conditions TpD1 Input to Output Delay DO Outputs 15 25 ns CL=30pF,R 1 =300n R2=600n TpD2 Input to Output Delay DB Outputs 8216 20 [...]
-
Page 238
[...]
-
Page 239
Coming Soon 8253 8257 8259[...]
-
Page 240
[...]
-
Page 241
Silicon Gate MOS 8253 PROGRAMMABLE INTERVAL TIMER GATE 0 It uses nMOS technology ~----"OUT2 ClKO ClK2 ClK 1 ...------..OUT 0 COU':;TER 14'-_ GATE 2 COUNTER #1 GATE 1 .....---. OUT 1 z. ~Jmodes'of operation are v "'."- ~O S" ,9 • Count Binary or BCD • Single +5V SUPR • 24 Pin Dual-in-li CONTROL WORD REGI[...]
-
Page 242
SILICON GATE MOS 8253 8253 PRELIMINARY FUNCTIONAL DESCRIPTION GATE 2 GATE 0 ClK 1 CLKO CLK2 OUT2 OUT 1 GATE 1 COUNTER #2 READ/ WRITE lOGIC DATA BUS BUFFER INTERNAL BUS cs-------' AD --___.a WR -----+C11 8253 Block Diagram. In Microcomputer-based systems the most common inter- face is to a mechanical device such as a printer head or step- per m[...]
-
Page 243
Silicon Gate MOS 8257 PROGRAMMABLE DMA CONTROLLER ORO 3 oACK 2 OACK 3 ORO 2 OACK 1 OACK 0 +-- ORO 1 cl}mputer systems. Its pri- allow the peripheral to ac- ; the system bus. I t also keeps "grar11mable terminal count has ~<, amon9,$fl'e four channels, program- for s~~tbred data transfers, an auto- /'dur!~:~i)DMA cycles. There are [...]
-
Page 244
SILICON GATE MOS 8257 8257 PRELIMINARY FUNCTIONAL DESCRIPTION The transfer of data between a mass storage device such as a floppy disk or mag cassette and system RAM memory is often limited by the speed of the microprocessor. Removing the processor during such a transfer and letting an auxiliary device manage the transfer in a more efficient manner[...]
-
Page 245
Silicon Gate MOS 8259 PROGRAMMABLE INTERRUPT CONTROLLER r up to 64 vectored priority technology and requires a IR 0 4---IR 1 REQUEST IR 2 LATCH 4--- IR 3 INTERRUPT MASK .-- IR 4 REQUESTS REGISTER 4--- IR 5 "'-IR6 "'-IR7 READ! WRITE LOGIC • Individual Request Mask Capability • Single + 5V Sup (No Clocks) • 28 Pin Dua ckage [...]
-
Page 246
SILICON GATE MOS 8259 8259 PRELIMINARY FUNCTIONAL DESCRIPTION I INTERRUPT REQUESTS 8259 IRQ IRQ IRQ IRQ IRQ IRQ IRQ IRQ 765 4 ~ 2 1 0 SLAVE PROG. ADDRESS BUS (16) 8259 System Interface. In microcomputer systems, the rate at which a peripheral device or devices can be serviced determines the total amount of system tasks that can be assigned to the c[...]
-
Page 247
CPU GROUP ROMs RAMs I/O PERIPHERAL COMING SOON Intel Standard Number Product Package Of Pins Comments Number Type 8224 C 0 P 16 - 8228 C 0 P 28 8080A C 40 Including 8080A-1, 8080A-2 and M8080A 8702A C 24 8708/4 C 24 - 8302 C P 24 8308 C P 24 8316A C P 24 8101-2 C P 22 8111-2 C P 18 8102-2 C P 16 8102A-4 C P 16 - 81078-4 C P 22 5101 C P 22 8210 0 P [...]
-
Page 248
PACKAGING INFORMATION Dimensions in inches and (millimeters). 16-LEAD CERAMIC DUAL IN-LINE PACKAGE (C) 16-LEAD CerDIP DUAL IN-LINE PACKAGE (D) I---l-~ ~ TYP . .11012,7941 ~:[O:::JJ I .735~ I .830 121,0821 ~!2.ill1_ .023 10,5841 :Q!Q~- . 06511.651 ~~ .070 (1,778) 16-LEAD PLASTIC DUAL IN-LINE PACKAGE (P) 1a-LEAD CERAMIC DUAL IN-LINE PACKAGE (C) f-[...]
-
Page 249
PACKAGING INFORMATION Dimensions in inches and (millimeters). 22-LEAD PLASTIC DUAL IN-LINE PACKAGE (P) PIN 1 ~ I ·34o~ .360 19.144) .126 13.175) I 1;r==i="-.=:::::p;;;;;r==:p;;;;r=;~==p:;r=::::p;:;;;;r=:::;;:::;;r==Fr===r;;;;;:;==;:;:or="'~ .025 10,635) I . 1.090 ~) I I RjF. 1.110128.194) ---l- .02010,508) - - - - - ::r~ :t MIN. .16[...]
-
Page 250
SALES AND MARKETING OFFICES U.S. SALES AND MARKETING OFFICES U.S. MARKETING HEADQUARTERS NATIONAL SALES MANAGER 3065 Bowers Avenue Hank O'Hara Santa Clara, California 95051' 3065 Bowers Avenue Tel (408) 246-7501 Sanla Clara. California 95051' TWX: 910-338-0026 Tel (408) 246·7501 TELEX: 34-6372 TWX 910-338·0026 TELEX' 34-6372 U[...]
-
Page 251
u.s. DISTRIBUTORS u.s. DISTRIBUTORS WEST ARIZONA Cramer/Arizona 2643 East University Drive Phoenix 85034 Tel: (602) 263·1112 Hamilton/Avnet Electronics 2615 South 21st Street Phoenix 85034 Tel: (602) 275·7851 CALIFORNIA Hamilton/Avnet Electronics 575 E. Middlefield Road Mounlain View 94040 Tel: (415) 961·7000 Hamillon/Avnet Electronics 8917 Comp[...]
-
Page 252
[...]
-
Page 253
NOTES: _[...]
-
Page 254
[...]
-
Page 255
NOTES: _[...]
-
Page 256
[...]
-
Page 257
NOTES: _[...]
-
Page 258
INSTRUCTION SET Summary of Processor Instructions Instruction Code 11 J Clock(2) Instruction Code 11 J Clock (2) Mnemonic Description 07 06 Os 04 03 02 0, Do Cycles Mnemonic Description 07 06 Os 04 03 02 0, Do Cycles MOV r1 • r2 Move register to register 0 1 0 0 0 S S S 5 RZ Return on zero 0 0 '1 0 0 0 5/11 MOVM.r Move register to memory 0 1[...]
-
Page 259
~ INSTRUCTION SET Summary of Processor Instructions By Alphabetical Order Instrumon Cod.lll Clock 121 Illstrudion Cod.(1) C1cckl2J Mnemonic Desaiptioll 07 06 0 5 04 03 02 01 DO Cychs Mn.mollie Description 07 06 05 04 03 02 01 Do Cychs ACI Add immediate to A with MVI M Move immediate memory 1 1 0 1 1 0 10 tarry MVlr Move immediate register D D 0 1 1[...]
-
Page 260
Dear Customer, Please fill out the card below completely to make sure your name is entered accurately on the MCS-BO Registered Users List. This assures you of getting the latest information on all new MCS-BO Product Develop- ments and Application Literature. Any comments or suggestions regarding MCS-BO would be appreciated. Sincerely, Ken McKenzie [...]
-
Page 261
· ·1 c c @ BJ lt~ .- e E .S=! ~ :s .. c LC INTEL CORPORATION Microcomputer Systems 3065 Bowers Avenue Santa Clara, CA 95051 PLACE STAMP HERE[...]
-
Page 262
inter INTEL CORPORATION 3065 Bowers Avenue, Santa Clara. California 95051 (408) 246-7501 Primed in U.5.A.fMC5-662-Q975/40K[...]