National Instruments E Series manuel d'utilisation
- Voir en ligne ou télécharger le manuel d’utilisation
- 132 pages
- 0.55 mb
Aller à la page of
Les manuels d’utilisation similaires
-
Network Card
National Instruments NI PXI-7811R
8 pages 0.1 mb -
Network Card
National Instruments NI 6233
180 pages 2.84 mb -
Network Card
National Instruments NI 9215
34 pages 0.45 mb -
Network Card
National Instruments NI TB-2708
12 pages 0.83 mb -
Network Card
National Instruments SCXI-1125
101 pages 1.25 mb -
Network Card
National Instruments VXIpc
40 pages 0.21 mb -
Network Card
National Instruments Ultiboard
281 pages 3.08 mb -
Network Card
National Instruments NI PCI-6111
118 pages 1.13 mb
Un bon manuel d’utilisation
Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation National Instruments E Series. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel National Instruments E Series ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.
Qu'est ce que le manuel d’utilisation?
Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation National Instruments E Series décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.
Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.
Donc, ce qui devrait contenir le manuel parfait?
Tout d'abord, le manuel d’utilisation National Instruments E Series devrait contenir:
- informations sur les caractéristiques techniques du dispositif National Instruments E Series
- nom du fabricant et année de fabrication National Instruments E Series
- instructions d'utilisation, de réglage et d’entretien de l'équipement National Instruments E Series
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes
Pourquoi nous ne lisons pas les manuels d’utilisation?
Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage National Instruments E Series ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles National Instruments E Series et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service National Instruments en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées National Instruments E Series, comme c’est le cas pour la version papier.
Pourquoi lire le manuel d’utilisation?
Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif National Instruments E Series, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.
Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation National Instruments E Series. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.
Table des matières du manuel d’utilisation
-
Page 1
DAQCard E Series User Manual Multifunction I/O Cards for PCMCIA June 1996 Edition Part Number 321138A-01 Copyright 1996 National Instruments Corporation. All Rights Reserved. This document was created with FrameMaker 4.0.4[...]
-
Page 2
GPIB: gpib.support@natinst.com DAQ: daq.support@natinst.com VXI: vxi.support@natinst.com LabVIEW: lv.support@natinst.com LabWindows: lw.support@natinst.com HiQ: hiq.support@natinst.com VISA: visa.support@natinst.com E-mail: info@natinst.com FTP Site: ftp.natinst.com Web Address: http://www.natinst.com BBS United States: (512) 794-5422 or (800) 327-[...]
-
Page 3
Important Information Warranty The DAQCard E Series cards are warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This w[...]
-
Page 4
National Instruments Corporation v DAQCard E Series User Manual Table of Contents About This Manual Organization of This Manual ........................................................................................ xi Conventions Used in This Manual ................................................................................ xii National [...]
-
Page 5
T able of Contents DAQCard E Series User Manual vi National Instruments Corporation Digital I/O ..................................................................................................................... 3-12 Timing Signal Routing .................................................................................................. 3-13 P[...]
-
Page 6
T able of Contents National Instruments Corporation vii DAQCard E Series User Manual GPCTR0_UP_DOWN Signal .......................................................... 4-39 GPCTR1_SOURCE Signal .............................................................. 4-39 GPCTR1_GATE Signal ...................................................................[...]
-
Page 7
T able of Contents DAQCard E Series User Manual viii National Instruments Corporation Appendix F Customer Communication Glossary Index[...]
-
Page 8
T able of Contents National Instruments Corporation ix DAQCard E Series User Manual Figures Figure 1-1. The Relationship between the Programming Environment, NI-DAQ, and Your Hardware ................................................................................ 1-4 Figure 2-1. A Typical Configuration for the DAQCard E Series Card ...........[...]
-
Page 9
T able of Contents DAQCard E Series User Manual x National Instruments Corporation Figure 4-26. GPCTR0_OUT Signal Timing ................................................................ 4-39 Figure 4-27. GPCTR1_SOURCE Signal Timing ......................................................... 4-40 Figure 4-28. GPCTR1_GATE Signal Timing in Edge-Dete[...]
-
Page 10
National Instruments Corporation xi DAQCard E Series User Manual About This Manual This manual describes the electrical and mechanical aspects of each card in the DAQCard E Series product line and contains information concerning their operation and programming. Unless otherwise noted, text applies to all cards in the DAQCard E Series. The DAQCa[...]
-
Page 11
About This Manual DAQCard E Series User Manual xii National Instruments Corporation • Appendix B, Optional Cable Connector Descriptions , describes the connectors on the optional cables for the DAQCard E Series cards. • Appendix C, PC Card Questions and Answers , contains a list of common questions and answers relating to PC Card operation.[...]
-
Page 12
About This Manual National Instruments Corporation xiii DAQCard E Series User Manual names, functions, operations, variables, filenames, and extensions, and for statements and comments taken from program code. NI-DAQ NI-DAQ refers to NI-DAQ software unless otherwise noted. PC Card PC Card refers to a PCMCIA card. SCXI SCXI stands for Signal Con[...]
-
Page 13
About This Manual DAQCard E Series User Manual xiv National Instruments Corporation • Accessory installation guides or manuals—If you are using accessory products, read the terminal block and cable assembly installation guides. They explain how to physically connect the relevant pieces of the system. Consult these guides when you are making[...]
-
Page 14
National Instruments Corporation 1-1 DAQCard E Series User Manual Introduction Chapter 1 This chapter describes the DAQCard E Series cards, lists what you need to get started, describes the optional software and optional equipment, and explains how to unpack your DAQCard E Series card. About the DAQCard E Series Thank you for buying a National [...]
-
Page 15
Chapter 1 Introduction DAQCard E Series User Manual 1-2 National Instruments Corporation What You Need to Get Started To set up and use your DAQCard E Series card, you will need the following: ❏ One of the following cards: DAQCard-AI-16E-4 DAQCard-AI-16XE-50 ❏ DAQCard E Series User Manual ❏ One of the following software packages and docum[...]
-
Page 16
Chapter 1 Introduction National Instruments Corporation 1-3 DAQCard E Series User Manual LabWindows/CVI Data Acquisition Library, a series of functions for using LabWindows/CVI with National Instruments DAQ hardware, is included with the NI-DAQ software kit. The LabWindows/CVI Data Acquisition Library is functionally equivalent to the NI-DAQ so[...]
-
Page 17
Chapter 1 Introduction DAQCard E Series User Manual 1-4 National Instruments Corporation LabWindows/CVI, your application uses the NI-DAQ driver software, as illustrated in Figure 1-1. You can use your DAQCard E Series card, together with other PC, AT, EISA, DAQCard, and DAQPad Series DAQ and SCXI hardware, with NI-DAQ software. Register-Level [...]
-
Page 18
Chapter 1 Introduction National Instruments Corporation 1-5 DAQCard E Series User Manual Optional Equipment National Instruments offers a variety of products to use with your DAQCard E Series card, including cables, connector blocks, and other accessories, as follows: • Cables and cable assemblies, shielded and ribbon • Connector blocks, sh[...]
-
Page 19
Chapter 1 Introduction DAQCard E Series User Manual 1-6 National Instruments Corporation The following list gives recommended National Instruments cable assemblies that mate to your DAQCard I/O connector. ♦ DAQCard-AI-16E-4 PSHR68-68M, a shielded 68-position ribbon cable, with male-to- male connectors. This connects to an SH6868 or SH6850 shi[...]
-
Page 20
National Instruments Corporation 2-1 DAQCard E Series User Manual Installation and Configuration Chapter 2 This chapter explains how to install and configure a DAQCard E Series card. Installation Note: You should install your driver software before installing your hardware. Refer to your NI-DAQ release notes for software installation instructio[...]
-
Page 21
Chapter 2 Installation and Configuration DAQCard E Series User Manual 2-2 National Instruments Corporation Figure 2-1 shows an example of a typical configuration. Configuration Your DAQCard is completely software-configurable. Refer to your software documentation to install and configure your software. If you are using NI-DAQ, refer to your NI[...]
-
Page 22
Chapter 2 Installation and Configuration National Instruments Corporation 2-3 DAQCard E Series User Manual refer to the NI-DAQ release notes and follow the instructions given there for your operating system and LabVIEW. If you are using LabWindows/CVI, refer to your LabWindows/CVI release notes to install your application software. After you h[...]
-
Page 23
National Instruments Corporation 3-1 DAQCard E Series User Manual Hardware Overview Chapter 3 This chapter presents an overview of the hardware functions on your DAQCard E Series card. Figure 3-1 shows the block diagram for the DAQCard-AI-16E-4. Figure 3-1. DAQCard-AI-16E-4 Block Diagram Timing PFI / Trigger I/O Connector 3 PCMCIA Connector Dig[...]
-
Page 24
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-2 National Instruments Corporation Figure 3-2 shows a block diagram for the DAQCard-AI-16XE-50. Analog Input The analog input section of each DAQCard is software configurable. You can select different analog input configurations through application software designed to control the DAQCa[...]
-
Page 25
Chapter 3 Hardware Overview National Instruments Corporation 3-3 DAQCard E Series User Manual single-ended channels. Table 3-1 describes the three input configurations. For more information about the three types of input configuration, refer to the Analog Input Signal Connections section in Chapter 4, Signal Connections , which contains diagram[...]
-
Page 26
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-4 National Instruments Corporation The software-programmable gain on these cards increases their overall flexibility by matching the input signal ranges to those that the ADC can accommodate. The DAQCard-AI-16E-4 has gains of 0.5, 1, 2, 5, 10, 20, 50, and 100 and is suited for a wide va[...]
-
Page 27
Chapter 3 Hardware Overview National Instruments Corporation 3-5 DAQCard E Series User Manual DAQCard-AI-16XE-50 has a unipolar input range of 10 V (0 to 10 V) and a bipolar input range of 20 V ( ± 10 V). You can program polarity and range settings on a per channel basis so that you can configure each input channel uniquely. Note: You can cali[...]
-
Page 28
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-6 National Instruments Corporation Considerations for Selecting Input Ranges Which input polarity and range you select depends on the expected range of the incoming signal. A large input range can accommodate a large signal variation but reduces the voltage resolution. Choosing a smalle[...]
-
Page 29
Chapter 3 Hardware Overview National Instruments Corporation 3-7 DAQCard E Series User Manual You cannot disable dither on the DAQCard-AI-16XE-50. This is because the ADC resolution is so fine that the ADC and the PGIA inherently produce more than 0.5 LSB rms of noise. This is equivalent to having a dither circuit that is always enabled. Multic[...]
-
Page 30
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-8 National Instruments Corporation impedances are low. Refer to Appendix A, Specifications , for a complete listing of settling times for each of the DAQCards. When scanning among channels at various gains, the settling times may increase. When the PGIA switches to a higher gain, the si[...]
-
Page 31
Chapter 3 Hardware Overview National Instruments Corporation 3-9 DAQCard E Series User Manual Analog Trigger ♦ DAQCard-AI-16E-4 In addition to supporting internal software triggering and external digital triggering to initiate a data acquisition sequence, the DAQCard-AI-16E-4 also supports analog triggering. You can configure the analog trigg[...]
-
Page 32
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-10 National Instruments Corporation In below-low-level analog triggering mode, the trigger is generated when the signal value is less than lowValue . HighValue is unused. In above-high-level analog triggering mode, the trigger is generated when the signal value is greater than highValue[...]
-
Page 33
Chapter 3 Hardware Overview National Instruments Corporation 3-11 DAQCard E Series User Manual In inside-region analog triggering mode, the trigger is generated when the signal value is between the lowValue and the highValue . In high-hysteresis analog triggering mode, the trigger is generated when the signal value is greater than highValue , w[...]
-
Page 34
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-12 National Instruments Corporation In low-hysteresis analog triggering mode, the trigger is generated when the signal value is less than lowValue , with the hysteresis specified by highValue . The analog trigger circuit generates an internal digital trigger based on the analog input si[...]
-
Page 35
Chapter 3 Hardware Overview National Instruments Corporation 3-13 DAQCard E Series User Manual Timing Signal Routing The DAQ-STC provides a very flexible interface for connecting timing signals to other boards or external circuitry. Your DAQCard uses the Programmable Function Input (PFI) pins on the I/O connector to connect to external circuitr[...]
-
Page 36
Chapter 3 Hardware Overview DAQCard E Series User Manual 3-14 National Instruments Corporation Programmable Function Inputs The 10 PFIs are connected to the signal routing multiplexer for each timing signal, and software can select one of the PFIs as the external source for a given timing signal. It is important to note that any of the PFIs can[...]
-
Page 37
National Instruments Corporation 4-1 DAQCard E Series User Manual Signal Connections Chapter 4 This chapter describes how to make input and output signal connections to your DAQCard E Series card via the DAQCard I/O connector. The I/O connector for the DAQCard E Series cards has 68 pins that you can connect to 68-pin accessories with the PSHR68[...]
-
Page 38
Chapter 4 Signal Connections DAQCard E Series User Manual 4-2 National Instruments Corporation Figure 4-1. I/O Connector Pin Assignment for the DAQCard-AI-16E-4 and DAQCard-AI-16XE-50 FREQ_OUT GPCTR0_OUT PFI9/GPCTR0_GATE DGND PFI6/WFTRIG PFI5/UPDATE* DGND +5 V DGND PFI1/TRIG2 PFI0/TRIG1 DGND DGND +5 V DGND DIO6 DIO1 DGND DIO4 Reserv[...]
-
Page 39
Chapter 4 Signal Connections National Instruments Corporation 4-3 DAQCard E Series User Manual Table 4-1. I/O Connector Signal Descriptions Signal Name Reference Direction Description AIGND — — Analog Input Ground—These pins are the reference point for single-ended measurements and the bias current return point for differential measuremen[...]
-
Page 40
Chapter 4 Signal Connections DAQCard E Series User Manual 4-4 National Instruments Corporation PFI1/TRIG2 DGND Input Output PFI1/Trigger 2—As an input, this is one of the PFIs. As an output, this is the TRIG2 signal. In pretrigger applications, a low-to-high transition indicates the initiation of the posttrigger conversions. TRIG2 is not used[...]
-
Page 41
Chapter 4 Signal Connections National Instruments Corporation 4-5 DAQCard E Series User Manual Table 4-2 shows the I/O signal summary for the DAQCard-AI-16E-4. PFI7/STARTSCAN DGND Input Output PFI7/Start of Scan—As an input, this is one of the PFIs. As an output, this is the STARTSCAN signal. This pin pulses once at the start of each analog i[...]
-
Page 42
Chapter 4 Signal Connections DAQCard E Series User Manual 4-6 National Instruments Corporation DGND DO — — — — — — VCC DO 0.45 Ω Short-circuit to ground 250 at V cc — — — DIO<0..7> DIO — V cc +0.5 13 at (V cc -0.4) 24 at 0.4 1.1 50 k Ω pu 1 SCANCLK DO — — 3.5 at (V cc -0.4) 5 at 0.4 1.5 50 k Ω pu EXTSTROBE* D[...]
-
Page 43
Chapter 4 Signal Connections National Instruments Corporation 4-7 DAQCard E Series User Manual FREQ_OUT DO — — 3.5 at (V cc -0.4) 5 at 0.4 1.5 50 k Ω pu AI = Analog Input DIO = Digital Input/Output pu = pullup DO = Digital Output ADIO = Analog/Digital Input/Output 1 DIO <6..7> are also pulled up with a 10 k Ω resistor. 2 Also pull[...]
-
Page 44
Chapter 4 Signal Connections DAQCard E Series User Manual 4-8 National Instruments Corporation Table 4-3 shows the I/O signal summary for the DAQCard-AI-16XE-50. Table 4-3. I/O Signal Summary, DAQCard-AI-16XE-50 Signal Name Drive Impedance Input/ Output Protection (Volts) On/Off Source (mA at V) Sink (mA at V) Rise Time (ns) Bias ACH<0..15&g[...]
-
Page 45
Chapter 4 Signal Connections National Instruments Corporation 4-9 DAQCard E Series User Manual PFI9/GPCTR0_GATE DIO — V cc +0.5 3.5 at (V cc -0.4) 5 at 0.4 1.5 50 k Ω pu GPCTR0_OUT DO — — 3.5 at (V cc -0.4) 5 at 0.4 1.5 50 k Ω pu FREQ_OUT DO — — 3.5 at (V cc -0.4) 5 at 0.4 1.5 50 k Ω pu AI = Analog Input DIO = Digital Input/Outp[...]
-
Page 46
Chapter 4 Signal Connections DAQCard E Series User Manual 4-10 National Instruments Corporation Analog Input Signal Connections The analog input signals are ACH<0..15>, AISENSE, and AIGND. The ACH<0..15> signals are tied to the 16 analog input channels of your DAQCard. In single-ended mode, signals connected to ACH<0..15> are [...]
-
Page 47
Chapter 4 Signal Connections National Instruments Corporation 4-11 DAQCard E Series User Manual the PGIA in different ways. Figure 4-2 shows a diagram of your DAQCard PGIA. The PGIA applies gain and common-mode voltage rejection and presents high input impedance to the analog input signals connected to your DAQCard. Signals are routed to the po[...]
-
Page 48
Chapter 4 Signal Connections DAQCard E Series User Manual 4-12 National Instruments Corporation Types of Signal Sources When configuring the input channels and making signal connections, you must first determine whether the signal sources are floating or ground-referenced. The following sections describe these two types of signals. Floating Sig[...]
-
Page 49
Chapter 4 Signal Connections National Instruments Corporation 4-13 DAQCard E Series User Manual Figure 4-3 summarizes the recommended input configuration for both types of signal sources. Figure 4-3. Summary of Analog Input Connections Input Differential (DIFF) Single-Ended — Ground Referenced (RSE) Single-Ended — Nonreferenced?[...]
-
Page 50
Chapter 4 Signal Connections DAQCard E Series User Manual 4-14 National Instruments Corporation Differential Connection Considerations (DIFF Input Configuration) A differential connection is one in which the DAQCard analog input signal has its own reference signal or signal return path. These connections are available when the selected channel [...]
-
Page 51
Chapter 4 Signal Connections National Instruments Corporation 4-15 DAQCard E Series User Manual Differential Connections for Ground-Referenced Signal Sources Figure 4-4 shows how to connect a ground-referenced signal source to a channel on a DAQCard configured in DIFF input mode. With this type of connection, the PGIA rejects both the common-mo[...]
-
Page 52
Chapter 4 Signal Connections DAQCard E Series User Manual 4-16 National Instruments Corporation Differential Connections for Nonreferenced or Floating Signal Sources Figure 4-5 shows how to connect a floating signal source to a channel on a DAQCard configured in DIFF input mode. Figure 4-5 shows two bias resistors connected in parallel with the[...]
-
Page 53
Chapter 4 Signal Connections National Instruments Corporation 4-17 DAQCard E Series User Manual without any resistors at all. This connection works well for DC-coupled sources with low source impedance (less than 100 Ω ). However, for larger source impedances, this connection leaves the differential signal path significantly out of balance. N[...]
-
Page 54
Chapter 4 Signal Connections DAQCard E Series User Manual 4-18 National Instruments Corporation Single-Ended Connection Considerations A single-ended connection is one in which the DAQCard E Series card analog input signal is referenced to a ground that can be shared with other input signals. The input signal is tied to the positive input of th[...]
-
Page 55
Chapter 4 Signal Connections National Instruments Corporation 4-19 DAQCard E Series User Manual Single-Ended Connections for Floating Signal Sources (RSE Configuration) Figures 4-6 shows how to connect a floating signal source to a channel on a DAQCard configured for RSE mode. Single-Ended Connections for Grounded Signal Sources (NRSE Configura[...]
-
Page 56
Chapter 4 Signal Connections DAQCard E Series User Manual 4-20 National Instruments Corporation Figure 4-7 shows how to connect a grounded signal source to a channel on a DAQCard configured for NRSE mode. Common-Mode Signal Rejection Considerations Figures 4-4 and 4-7 show connections for signal sources that are already referenced to some groun[...]
-
Page 57
Chapter 4 Signal Connections National Instruments Corporation 4-21 DAQCard E Series User Manual Digital I/O Signal Connections The digital I/O signals are DIO<0..7> and DGND. The DIO<0..7> signals make up the DIO port, and DGND is the ground reference signal for this port. You can program all lines individually to be inputs or outpu[...]
-
Page 58
Chapter 4 Signal Connections DAQCard E Series User Manual 4-22 National Instruments Corporation Figure 4-8 shows DIO<0..3> configured for digital input and DIO<4..7> configured for digital output. Digital input applications include receiving TTL signals and sensing external device states such as the state of the switch shown in the [...]
-
Page 59
Chapter 4 Signal Connections National Instruments Corporation 4-23 DAQCard E Series User Manual The data acquisition signals are explained in the Data Acquisition Timing Connections section later in this chapter. The general-purpose timing signals are explained in the General-Purpose Timing Signal Connections section later in this chapter. All [...]
-
Page 60
Chapter 4 Signal Connections DAQCard E Series User Manual 4-24 National Instruments Corporation Programmable Function Input Connections There are a total of 13 internal timing signals that you can externally control from the PFI pins. The source for each of these signals is software selectable from any of the PFIs when you want external control[...]
-
Page 61
Chapter 4 Signal Connections National Instruments Corporation 4-25 DAQCard E Series User Manual shows a typical pretriggered data acquisition sequence. The description for each signal shown in these figures is included later in this chapter. Figure 4-10. Typical Posttriggered Acquisition Figure 4-11. Typical Pretriggered Acquisition 1 30 42 TRI[...]
-
Page 62
Chapter 4 Signal Connections DAQCard E Series User Manual 4-26 National Instruments Corporation SCANCLK Signal SCANCLK is an output-only signal that generates a pulse with the leading edge occurring approximately 50 to 100 ns after an A/D conversion begins. The polarity of this output is software-selectable but is typically configured so that a[...]
-
Page 63
Chapter 4 Signal Connections National Instruments Corporation 4-27 DAQCard E Series User Manual EXTSTROBE* Signal EXTSTROBE* is an output-only signal that generates either a single pulse or a sequence of eight pulses in the hardware-strobe mode. An external device can use this signal to latch signals or to trigger events. In the single-pulse mo[...]
-
Page 64
Chapter 4 Signal Connections DAQCard E Series User Manual 4-28 National Instruments Corporation Figures 4-14 and 4-15 show the input and output timing requirements for the TRIG1 signal. The DAQCard also uses the TRIG1 signal to initiate pretriggered data acquisition operations. In most pretriggered applications, the TRIG1 signal is generated by[...]
-
Page 65
Chapter 4 Signal Connections National Instruments Corporation 4-29 DAQCard E Series User Manual TRIG2 Signal Any PFI pin can externally input the TRIG2 signal, which is available as an output on the PFI1/TRIG2 pin. Refer to Figure 4-11 for the relationship of TRIG2 to the data acquisition sequence. As an input, the TRIG2 signal is configured in[...]
-
Page 66
Chapter 4 Signal Connections DAQCard E Series User Manual 4-30 National Instruments Corporation Figures 4-16 and 4-17 show the input and output timing requirements for the TRIG2 signal. STARTSCAN Signal Any PFI pin can externally input the STARTSCAN signal, which is available as an output on the PFI7/STARTSCAN pin. Refer to Figures 4-10 and 4-1[...]
-
Page 67
Chapter 4 Signal Connections National Instruments Corporation 4-31 DAQCard E Series User Manual scan. The sample interval counter is started if you select internally triggered CONVERT*. As an output, the STARTSCAN signal reflects the actual start pulse that initiates a scan. This is true even if the starts are externally triggered by another PF[...]
-
Page 68
Chapter 4 Signal Connections DAQCard E Series User Manual 4-32 National Instruments Corporation The CONVERT* pulses are masked off until the DAQCard generates the STARTSCAN signal. If you are using internally generated conversions, the first CONVERT* will appear when the onboard sample interval counter reaches zero. If you select an external CO[...]
-
Page 69
Chapter 4 Signal Connections National Instruments Corporation 4-33 DAQCard E Series User Manual Scans generated by either an internal or external STARTSCAN signal are inhibited unless they occur within a data acquisition sequence. Scans occurring within a data acquisition sequence may be gated by either the hardware (AIGATE) signal or software [...]
-
Page 70
Chapter 4 Signal Connections DAQCard E Series User Manual 4-34 National Instruments Corporation The ADC switches to hold mode within 60 ns of the selected edge. This hold-mode delay time is a function of temperature and does not vary from one conversion to the next. Separate the CONVERT* pulses by at least one conversion period. The sample inte[...]
-
Page 71
Chapter 4 Signal Connections National Instruments Corporation 4-35 DAQCard E Series User Manual mode, the first active edge disables the STARTSCAN signal, and the second active edge enables STARTSCAN. The AIGATE signal can neither stop a scan in progress nor continue a previously gated-off scan; in other words, once a scan has started, AIGATE d[...]
-
Page 72
Chapter 4 Signal Connections DAQCard E Series User Manual 4-36 National Instruments Corporation UISOURCE Signal Any PFI pin can externally input the UISOURCE signal, which is not available as an output on the I/O connector. The UI counter uses the UISOURCE signal as a clock to time the generation of the UPDATE* signal. You must configure the PF[...]
-
Page 73
Chapter 4 Signal Connections National Instruments Corporation 4-37 DAQCard E Series User Manual General-Purpose Timing Signal Connections The general-purpose timing signals are GPCTR0_SOURCE, GPCTR0_GATE, GPCTR0_OUT, GPCTR0_UP_DOWN, GPCTR1_SOURCE, GPCTR1_GATE, GPCTR1_OUT, GPCTR1_UP_DOWN, and FREQ_OUT. GPCTR0_SOURCE Signal Any PFI pin can extern[...]
-
Page 74
Chapter 4 Signal Connections DAQCard E Series User Manual 4-38 National Instruments Corporation The 20 MHz or 100 kHz timebase normally generates the GPCTR0_SOURCE signal unless you select some external source. GPCTR0_GATE Signal Any PFI pin can externally input the GPCTR0_GATE signal, which is available as an output on the PFI9/GPCTR0_GATE pin[...]
-
Page 75
Chapter 4 Signal Connections National Instruments Corporation 4-39 DAQCard E Series User Manual input (High-Z) at startup. Figure 4-26 shows the timing of the GPCTR0_OUT signal. GPCTR0_UP_DOWN Signal This signal can be externally input on the DIO6 pin and is not available as an output on the I/O connector. The general-purpose counter 0 will cou[...]
-
Page 76
Chapter 4 Signal Connections DAQCard E Series User Manual 4-40 National Instruments Corporation Figure 4-27 shows the timing requirements for the GPCTR1_SOURCE signal. The maximum allowed frequency is 20 MHz, with a minimum pulse width of 23 ns high or low. There is no minimum frequency limitation. The 20 MHz or 100 kHz timebase normally genera[...]
-
Page 77
Chapter 4 Signal Connections National Instruments Corporation 4-41 DAQCard E Series User Manual Figure 4-28 shows the timing requirements for the GPCTR1_GATE signal. GPCTR1_OUT Signal This signal is available only as an output on the GPCTR1_OUT pin. The GPCTR1_OUT signal monitors the TC board general-purpose counter 1. You have two software-sel[...]
-
Page 78
Chapter 4 Signal Connections DAQCard E Series User Manual 4-42 National Instruments Corporation GPCTR1_UP_DOWN Signal This signal can be externally input on the DIO7 pin and is not available as an output on the I/O connector. General-purpose counter 1 counts down when this pin is at a logic low and counts up at a logic high. This input can be d[...]
-
Page 79
Chapter 4 Signal Connections National Instruments Corporation 4-43 DAQCard E Series User Manual DAQCard. Figure 4-30 shows the GATE signal referenced to the rising edge of a source signal. The gate must be valid (either high or low) for at least 10 ns before the rising or falling edge of a source signal for the gate to take effect at that sourc[...]
-
Page 80
Chapter 4 Signal Connections DAQCard E Series User Manual 4-44 National Instruments Corporation Field Wiring Considerations Environmental noise can seriously affect the accuracy of measurements made with your DAQCard if you do not take proper care when running signal wires between signal sources and the DAQCard. The following recommendations ap[...]
-
Page 81
National Instruments Corporation 5-1 DAQCard E Series User Manual Calibration Chapter 5 This chapter discusses the calibration procedures for your DAQCard E Series card. If you are using the NI-DAQ device driver, that software includes calibration functions for performing all of the steps in the calibration process. Calibration refers to the pr[...]
-
Page 82
Chapter 5 Calibration DAQCard E Series User Manual 5-2 National Instruments Corporation the CalDACs with values either from the original factory calibration or from a calibration that you subsequently performed. This method of calibration is not very accurate because it does not take into account the fact that the DAQCard measurement and output[...]
-
Page 83
Chapter 5 Calibration National Instruments Corporation 5-3 DAQCard E Series User Manual perform an external calibration very often. You can externally calibrate your DAQCard by calling the NI-DAQ calibration function. To externally calibrate your DAQCard, use a very accurate external reference. The reference should be several times more accurat[...]
-
Page 84
National Instruments Corporation A-1 DAQCard E Series User Manual Specifications Appendix A This appendix lists the specifications of each DAQCard in the DAQCard E Series. These specifications are typical at 25 ° C unless otherwise noted. DAQCard-AI-16E-4 Analog Input Input Characteristics Number of channels .......................... 16 singl[...]
-
Page 85
Appendix A Specifications for DAQCard-AI-16E-4 DAQCard E Series User Manual A-2 National Instruments Corporation Input coupling ................................... DC Max working voltage (signal + common mode) ................ Each input should remain within ± 11 V of ground Overvoltage protection ...................... ± 25 V powered on, ±[...]
-
Page 86
Appendix A Specifications for DAQCard-AI-16E-4 National Instruments Corporation A-3 DAQCard E Series User Manual Transfer Characteristics Relative accuracy ............................. ± 0.5 LSB typ dithered, ± 1.5 LSB max undithered DNL .................................................. ± 0.5 LSB typ, ± 1.0 LSB max No missing codes .....[...]
-
Page 87
Appendix A Specifications for DAQCard-AI-16E-4 DAQCard E Series User Manual A-4 National Instruments Corporation Crosstalk ........................................... -80 dB, DC to 100 kHz Stability Recommended warm-up time ............ 15 min Offset temperature coefficient Pregain ........................................ ± 5 µ V/ ° C Postg[...]
-
Page 88
Appendix A Specifications for DAQCard-AI-16E-4 National Instruments Corporation A-5 DAQCard E Series User Manual Digital I/O Number of channels .......................... 8 input/output Compatibility .................................... TTL/CMOS Power-on state ................................... Input (High-Z) Data transfers ..................[...]
-
Page 89
Appendix A Specifications for DAQCard-AI-16E-4 DAQCard E Series User Manual A-6 National Instruments Corporation Triggers Analog Trigger Source ............................................... ACH<0..15>, external trigger (PFI0/TRIG1) Level ................................................. ± full-scale, internal; ± 10 V, external Slope [...]
-
Page 90
Appendix A Specifications for DAQCard-AI-16E-4 National Instruments Corporation A-7 DAQCard E Series User Manual Note: These power usage figures do not include the power used by external devices that are connected to the fused supply present on the I/O connector. Note also that under ordinary operation, the DAQCard has a current requirement of[...]
-
Page 91
National Instruments Corporation A-8 DAQCard E Series User Manual DAQCard-AI-16XE-50 Analog Input Input Characteristics Number of channels ........................... 16 single-ended or 8 differential (software-selectable) Type of ADC ..................................... Successive approximation Resolution .....................................[...]
-
Page 92
Appendix A Specifications for DAQCard-AI-16XE-50 National Instruments Corporation A-9 DAQCard E Series User Manual Transfer Characteristics Relative accuracy .............................. ± 1.5 LSB typ, ± 1.75 LSB max DNL .................................................. +1.5, -0.75 LSB typ, +1.75, -1.0 LSB max No missing codes ...........[...]
-
Page 93
Appendix A Specifications for DAQCard-AI-16XE-50 DAQCard E Series User Manual A-10 National Instruments Corporation Dynamic Characteristics Bandwidth Gain = 1, 2 .................................. 69 kHz Gain = 10 .................................... 66 kHz Gain = 100 .................................. 39 kHz Settling time for full-scale step [...]
-
Page 94
Appendix A Specifications for DAQCard-AI-16XE-50 National Instruments Corporation A-11 DAQCard E Series User Manual Digital I/O Number of channels .......................... 8 input/output Compatibility .................................... TTL/CMOS Power-on state ................................... Input (High-Z) pulled up via 100 k Ω Data t[...]
-
Page 95
Appendix A Specifications for DAQCard-AI-16XE-50 DAQCard E Series User Manual A-12 National Instruments Corporation DMA modes ...................................... Single transfer, demand transfer Triggers Digital Trigger Compatibility .................................... TTL Response ........................................... Rising or fall[...]
-
Page 96
National Instruments Corporation B-1 DAQCard E Series User Manual Optional Cable Connector Descriptions Appendix B This appendix describes the connectors on the optional cables for the DAQCard E Series cards. Figure B-1 shows the pin assignments for the 68-pin AI connector. This connector is available when you use the PSHR68-68M or PR6868 cable[...]
-
Page 97
Appendix B Optional Cable Connector Descriptions DAQCard E Series User Manual B-2 National Instruments Corporation Figure B-1. 68-Pin AI Connector Pin Assignments FREQ_OUT GPCTR0_OUT PFI9/GPCTR0_GATE DGND PFI6/WFTRIG PFI5/UPDATE* DGND +5 V DGND PFI1/TRIG2 PFI0/TRIG1 DGND DGND +5 V DGND DIO6 DIO1 DGND DIO4 Reserved Reserved Reserved [...]
-
Page 98
Appendix B Optional Cable Connector Descriptions National Instruments Corporation B-3 DAQCard E Series User Manual Figure B-2 shows the pin assignments for the 50-pin AI connector. This connector is available when you use the SH6850 or R6850 cable assemblies with the PSHR68-68M. Figure B-2. 50-Pin AI Connector Pin Assignments GPCTR0_OUT PFI8/GP[...]
-
Page 99
National Instruments Corporation C-1 DAQCard E Series User Manual PC Card Questions and Answers Appendix C This appendix contains a list of common questions and answers relating to PC Card (PCMCIA) operation. The questions are grouped according to the type of information requested. You may find this information useful if you are having difficul[...]
-
Page 100
Appendix C PC Card Questions and Answers DAQCard E Series User Manual C-2 National Instruments Corporation Operation 1. My PC Card works when inserted before power-on time, but it does not work when hot inserted. What is wrong? You may have an interrupt conflict. If you have a utility such as MSD.EXE , run it to determine the allocated interrup[...]
-
Page 101
Appendix C PC Card Questions and Answers National Instruments Corporation C-3 DAQCard E Series User Manual by Card Services and/or the memory manager. Second, you can attempt to determine all of the memory that Card Services can possibly use and then exclude all but that memory from use by Card Services. 2. How do I determine all of the memory [...]
-
Page 102
Appendix C PC Card Questions and Answers DAQCard E Series User Manual C-4 National Instruments Corporation managers often consume an enormous amount of memory, and you will need to determine what memory is really usable by Card Services. When you have determined what memory is available for Card Services, reinstall your memory manager and make [...]
-
Page 103
National Instruments Corporation D-1 DAQCard E Series User Manual Common Questions Appendix D This appendix contains a list of commonly asked questions and their answers relating to usage and special features of your DAQCard E Series card. General Information 1. What are the DAQCard E Series cards? The DAQCard E Series cards are switchless and [...]
-
Page 104
Appendix D Common Questions DAQCard E Series User Manual D-2 National Instruments Corporation channel at 250 kS/s or two channels at 125 kS/s per channel illustrates the relationship. Notice, however, that some DAQCard E Series cards have settling times that vary with gain and accuracy. See Appendix A for exact specifications. 4. What type of 5[...]
-
Page 105
Appendix D Common Questions National Instruments Corporation D-3 DAQCard E Series User Manual Analog Input and Output 1. I’m using my DAQCard in differential analog input mode and I have connected a differential input signal, but my readings are random and drift rapidly. What’s wrong? Check your ground reference connections. Your signal may[...]
-
Page 106
Appendix D Common Questions DAQCard E Series User Manual D-4 National Instruments Corporation 3. What is the difference in timebases between the Am9513 counter/timer and the DAQ-STC? The DAQ-STC-based boards have a 20 MHz timebase. The Am9513-based boards have a 1 or 5 MHz timebase. 4. The counter/timer examples supplied with NI-DAQ are not com[...]
-
Page 107
Appendix D Common Questions National Instruments Corporation D-5 DAQCard E Series User Manual 7. How does NI-DAQ treat bogus missed data transfer errors that can arise during DMA-driven GPCTR buffered-input operations? When doing buffered transfers using GPCTR function calls with DMA, you can call GPCTR_Watch to indicate dataTransfer errors. NI[...]
-
Page 108
National Instruments Corporation E-1 DAQCard E Series User Manual Power-Management Modes Appendix E This appendix describes the power-management modes of the DAQCard E Series cards. • Normal Mode—This is the normal operating mode of the DAQCard E Series cards in which all the circuits are fully functional. See the specifications for each DA[...]
-
Page 109
Appendix E Power -Management Modes DAQCard E Series User Manual E-2 National Instruments Corporation Table E-1. DAQCard E Series Power-Management Modes Normal Mode Power-Down Mode Analog Input Functional. Protected to ± 25 V. Impedance > 1 G Ω . Nonfunctional. Draws negligible power. Protected to ± 10 V. Impedance = 1.0 k Ω , which is [...]
-
Page 110
National Instruments Corporation F-1 DAQCard E Series User Manual Customer Communication Appendix F For your convenience, this appendix contains forms to help you gather the information necessary to help us solve your technical problems and a form you can use to comment on the product documentation. When you contact us, we need the information [...]
-
Page 111
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide range of technical information. You can access FaxBack from a touch-tone telephone at (512) 418-1111. You can submit technical support questions to the appropriate applications engineering team through e-mail at the Internet addresses listed below. Remembe[...]
-
Page 112
Technical Support Form Photocopy this form and update it each time you make changes to your software or hardware, and use the completed copy of this form as a reference for your current configuration. Completing this form accurately before contacting National Instruments for technical support helps our applications engineers answer your questions m[...]
-
Page 113
DAQCard E Series Hardware and Software Configuration Form Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a new copy of this form each time you revise your software or hardware configuration, and use this form as a reference for your current configuration. Completing this form accurate[...]
-
Page 114
Documentation Comment Form National Instruments encourages you to comment on the documentation supplied with our products. This information helps us provide quality products to meet your needs. Title: DAQCard E Series User Manual Edition Date: June 1996 Part Number: 321138A-01 Please comment on the completeness, clarity, and organization of the man[...]
-
Page 115
National Instruments Corporation G-1 DAQCard E Series User Manual Glossary Symbols ˚ degrees – negative of, or minus Ω ohms / per % percent ± plus or minus + positive of, or plus square root of +5 V +5 VDC source signal Prefix Meaning Value p- pico- 10 - 12 n- nano- 10 - 9 µ - micro- 10 - 6 m- milli- 10 - 3 k- kilo- 10 3 M- mega- 10 6 G-[...]
-
Page 116
Glossary DAQCard E Series User Manual G-2 National Instruments Corporation A A amperes AC alternating current ACH analog input channel signal A/D analog-to-digital ADC A/D converter ADIO analog/digital input/output AI analog input AIGATE analog input gate signal AIGND analog input ground signal AISENSE analog input sense signal AOGND analog out[...]
-
Page 117
Glossary National Instruments Corporation G-3 DAQCard E Series User Manual CMOS complementary metal-oxide semiconductor CMRR common-mode rejection ratio CONVERT* convert signal CTR counter D D/A digital-to-analog DAC D/A converter DAC0OUT analog channel 0 output signal DAC1OUT analog channel 1 output signal DAQ data acquisition DAQCard data acq[...]
-
Page 118
Glossary DAQCard E Series User Manual G-4 National Instruments Corporation EISA Extended Industry Standard Architecture EPROM erasable programmable read-only memory EXTREF external reference signal EXTSTROBE external strobe signal F F farads FIFO first-in-first-out FREQ_OUT frequency output signal ft feet G GPCTR0_GATE general purpose counter 0[...]
-
Page 119
Glossary National Instruments Corporation G-5 DAQCard E Series User Manual I ICTR input counter I/O input/output I OH current, output high I OL current, output low IRQ interrupt request signal ISA Industry Standard Architecture L LED light emitting diode LSB least significant bit M m meter MB megabytes of memory MSB most significant bit N NC no[...]
-
Page 120
Glossary DAQCard E Series User Manual G-6 National Instruments Corporation P PC personal computer PCMCIA Personal Computer Memory Card Association PFI Programmable Function Input PGIA Programmable Gain Instrumentation Amplifier ppm parts per million pu pullup PWRDOWN power down signal R RAM random access memory REF reference rms root mean squar[...]
-
Page 121
Glossary National Instruments Corporation G-7 DAQCard E Series User Manual T TC terminal count signal t gh gate hold time t gsu gate setup time t gw gate pulse width THD total harmonic distortion t out output delay time TRIG trigger signal t sc source clock period t sp source pulse width TTL transistor-transistor logic U UI update interval UISO[...]
-
Page 122
Glossary DAQCard E Series User Manual G-8 National Instruments Corporation V in volts in V O volts, output V OH volts, output high V OL volts, output low V ref reference voltage W W watts WFTRIG waveform generation trigger signal[...]
-
Page 123
National Instruments Corporation I -1 DAQCard E Series User Manual Index Numbers +5 V signal description, 4-3 power connections, 4-22 A ACH<0..15> signal analog input connections, 4-10 DAQCard-AI-16E-4 (table), 4-5 DAQCard-AI-16XE-50 (table), 4-8 description, 4-3 AIGATE signal, 4-34 to 4-35 AIGND signal analog input connections, 4-10 to 4[...]
-
Page 124
Index DAQCard E Series User Manual I -2 National Instruments Corporation block diagrams DAQCard-AI-16E-4, 3-1 DAQCard-AI-16XE-50, 3-2 bulletin board support, F-1 C cables. See also I/O connectors. custom cabling, 1-5 to 1-6 field wiring considerations, 4-44 optional equipment, 1-5 part numbers for connectors, 1-6 calibration, 5-1 to 5-3 adjusti[...]
-
Page 125
Index National Instruments Corporation I -3 DAQCard E Series User Manual ground-referenced signal sources, 4-15 illustration, 4-15 nonreferenced or floating signal sources, 4-16 to 4-17 illustration, 4-16 recommended configuration (figure), 4-13 single-ended connections, 4-18 floating signal sources (RSE), 4-19 grounded signal sources (NRSE), 4[...]
-
Page 126
Index DAQCard E Series User Manual I -4 National Instruments Corporation G general-purpose timing signal connections, 4-37 to 4-43 FREQ_OUT signal, 4-43 GPCTR0_GATE signal, 4-38 GPCTR0_OUT signal, 4-38 to 4-39 GPCTR0_SOURCE signal, 4-37 to 4-38 GPCTR0_UP_DOWN signal, 4-39 GPCTR1_GATE signal, 4-40 to 4-41 GPCTR1_OUT signal, 4-41 GPCTR1_SOURCE si[...]
-
Page 127
Index National Instruments Corporation I -5 DAQCard E Series User Manual differential connections DIFF input configuration, 4-14 floating signal sources, 4-16 to 4-17 ground-referenced signal sources, 4-15 nonreferenced signal sources, 4-16 to 4-17 recommended configuration (figure), 4-13 single-ended connections, 4-18 to 4-20 floating signal s[...]
-
Page 128
Index DAQCard E Series User Manual I -6 National Instruments Corporation PFI0/TRIG1 signal DAQCard-AI-16E-4 (table), 4-6 DAQCard-AI-16XE-50 (table), 4-8 description, 4-3 PFI1/TRIG2 signal DAQCard-AI-16E-4 (table), 4-6 DAQCard-AI-16XE-50 (table), 4-8 description, 4-4 PFI2/CONVERT* signal DAQCard-AI-16E-4 (table), 4-6 DAQCard-AI-16XE-50 (table), [...]
-
Page 129
Index National Instruments Corporation I -7 DAQCard E Series User Manual programmable function inputs (PFIs). See PFIs (programmable function inputs) . programmable gain instrumentation amplifier. See PGIA (programmable gain instrumentation amplifier) . Q questions and answers DAQCard E Series questions analog input and output, D-3 general info[...]
-
Page 130
Index DAQCard E Series User Manual I -8 National Instruments Corporation SCANCLK signal, 4-26 SISOURCE signal, 4-35 STARTSCAN signal, 4-30 to 4-33 TRIG1 signal, 4-27 to 4-28 TRIG2 signal, 4-29 to 4-30 typical posttriggered acquisition (figure), 4-25 typical pretriggered acquisition (figure), 4-25 UISOURCE signal, 4-36 general-purpose timing sig[...]
-
Page 131
Index National Instruments Corporation I -9 DAQCard E Series User Manual T technical support, F-1 to F-2 temperature DAQCard-AI-16E-4, A-7 DAQCard-AI-16XE-50, A-12 theory of operation. See hardware overview . timebases, 3-14 timing connections, 4-22 to 4-43 data acquisition timing connections, 4-24 to 4-36 AIGATE signal, 4-34 to 4-35 CONVERT* s[...]
-
Page 132
Index DAQCard E Series User Manual I -10 National Instruments Corporation U UISOURCE signal, 4-36 unipolar input DAQCard-AI-16E-4, 3-3 DAQCard-AI-16XE-50, 3-4 to 3-5 mixing bipolar and unipolar channels (note), 3-5 unpacking DAQCard E Series, 1-6 V VCC signal DAQCard-AI-16E-4 (table), 4-6 DAQCard-AI-16XE-50 (table), 4-8 W Windows 95, configurin[...]