Warning: mysql_fetch_array() expects parameter 1 to be resource, boolean given in /home/newdedyk/domains/bkmanuals.com/public_html/includes/pages/manual_inc.php on line 26
Casio FX 2.0 PLUS manuale d’uso - BKManuals

Casio FX 2.0 PLUS manuale d’uso

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Vai alla pagina of

Un buon manuale d’uso

Le regole impongono al rivenditore l'obbligo di fornire all'acquirente, insieme alle merci, il manuale d’uso Casio FX 2.0 PLUS. La mancanza del manuale d’uso o le informazioni errate fornite al consumatore sono la base di una denuncia in caso di inosservanza del dispositivo con il contratto. Secondo la legge, l’inclusione del manuale d’uso in una forma diversa da quella cartacea è permessa, che viene spesso utilizzato recentemente, includendo una forma grafica o elettronica Casio FX 2.0 PLUS o video didattici per gli utenti. La condizione è il suo carattere leggibile e comprensibile.

Che cosa è il manuale d’uso?

La parola deriva dal latino "instructio", cioè organizzare. Così, il manuale d’uso Casio FX 2.0 PLUS descrive le fasi del procedimento. Lo scopo del manuale d’uso è istruire, facilitare lo avviamento, l'uso di attrezzature o l’esecuzione di determinate azioni. Il manuale è una raccolta di informazioni sull'oggetto/servizio, un suggerimento.

Purtroppo, pochi utenti prendono il tempo di leggere il manuale d’uso, e un buono manuale non solo permette di conoscere una serie di funzionalità aggiuntive del dispositivo acquistato, ma anche evitare la maggioranza dei guasti.

Quindi cosa dovrebbe contenere il manuale perfetto?

Innanzitutto, il manuale d’uso Casio FX 2.0 PLUS dovrebbe contenere:
- informazioni sui dati tecnici del dispositivo Casio FX 2.0 PLUS
- nome del fabbricante e anno di fabbricazione Casio FX 2.0 PLUS
- istruzioni per l'uso, la regolazione e la manutenzione delle attrezzature Casio FX 2.0 PLUS
- segnaletica di sicurezza e certificati che confermano la conformità con le norme pertinenti

Perché non leggiamo i manuali d’uso?

Generalmente questo è dovuto alla mancanza di tempo e certezza per quanto riguarda la funzionalità specifica delle attrezzature acquistate. Purtroppo, la connessione e l’avvio Casio FX 2.0 PLUS non sono sufficienti. Questo manuale contiene una serie di linee guida per funzionalità specifiche, la sicurezza, metodi di manutenzione (anche i mezzi che dovrebbero essere usati), eventuali difetti Casio FX 2.0 PLUS e modi per risolvere i problemi più comuni durante l'uso. Infine, il manuale contiene le coordinate del servizio Casio in assenza dell'efficacia delle soluzioni proposte. Attualmente, i manuali d’uso sotto forma di animazioni interessanti e video didattici che sono migliori che la brochure suscitano un interesse considerevole. Questo tipo di manuale permette all'utente di visualizzare tutto il video didattico senza saltare le specifiche e complicate descrizioni tecniche Casio FX 2.0 PLUS, come nel caso della versione cartacea.

Perché leggere il manuale d’uso?

Prima di tutto, contiene la risposta sulla struttura, le possibilità del dispositivo Casio FX 2.0 PLUS, l'uso di vari accessori ed una serie di informazioni per sfruttare totalmente tutte le caratteristiche e servizi.

Dopo l'acquisto di successo di attrezzature/dispositivo, prendere un momento per familiarizzare con tutte le parti del manuale d'uso Casio FX 2.0 PLUS. Attualmente, sono preparati con cura e tradotti per essere comprensibili non solo per gli utenti, ma per svolgere la loro funzione di base di informazioni e di aiuto.

Sommario del manuale d’uso

  • Pagina 1

    ALGEBRA FX 2.0 PLUS FX 1.0 PLUS User’s Guide 2 ( Additional Functions ) E http://world.casio.com/edu_e/[...]

  • Pagina 2

    CASIO ELECTRONICS CO ., L TD . Unit 6, 1000 North Circular Road, London NW2 7JD, U.K. Important! Please k eep your manual and all inf ormation handy for future ref erence.[...]

  • Pagina 3

    20010101 ••• ••••• •••• ••••• •• • ••••• ••••• ••••• ••• ••••• ••••• •••• ••••• ••• ••••• ••••• ••••• • •• ••••• •••• ••••• ••• ••••• ••••• [...]

  • Pagina 4

    20010101 Contents Chapter 1 Ad vanced Statistics Application 1-1 Adv anced Statistics (ST A T) .............................................................. 1-1-1 1-2 T ests (TEST) .................................................................................... 1-2-1 1-3 Confidence Interval (INTR) ..............................................[...]

  • Pagina 5

    20010101 Adv anced Statistics Application 1-1 Ad vanced Statistics (ST A T) 1-2 T ests (TEST) 1-3 Confidence Interval (INTR) 1-4 Distribution (DIST) 1 Chapter[...]

  • Pagina 6

    20010101 1-1 Adv anced Statistics (ST A T) u u u u u Function Menu The follo wing shows the function menus for the ST A T Mode list input screen. Pressing a function key that corresponds to the added item displays a menu that lets you select one of the functions listed below . • 3 (TEST) ... T est (page1-2-1) • 4 (INTR) ... Confidence interval [...]

  • Pagina 7

    20010101 • Logar ithmic Reg ression ... MSE = Σ 1 n – 2 i =1 n ( y i – ( a + b ln x i )) 2 •E xponential Repression ... MSE = Σ 1 n – 2 i =1 n ( ln y i – ( ln a + bx i )) 2 •P ow er Regression ... MSE = Σ 1 n – 2 i =1 n ( ln y i – ( ln a + b ln x i )) 2 •S in Reg ression ... MSE = Σ 1 n – 2 i =1 n ( y i – ( a sin ( bx i [...]

  • Pagina 8

    20010101 4. After you are finished, press i to clear the coordinate values and the pointer from the displa y . · The pointer does not appear if the calculated coordinates are not within the display range. ·T he coordinates do not appear if [Off] is specified for the [Coord] item of the [SETUP] screen. · The Y -CAL function can also be used with [...]

  • Pagina 9

    20010101 u u u u u Common Functions • The symbol “ ■ ” appears in the upper right cor ner of the screen while e xecution of a calculation is being performed and while a graph is being drawn. Pressing A during this time terminates the ongoing calculation or draw operation (AC Break). • Pressing i or w while a calculation result or graph is[...]

  • Pagina 10

    20010101 1-2 T ests (TEST) The Z T est pro vides a var iety of diff erent standardization-based tests. The y mak e it possib le to test whether or not a sample accurately represents the population when the standard deviation of a population (such as the entire population of a country) is known from previous tests. Z testing is used f or market rese[...]

  • Pagina 11

    20010101 The following pages e xplain various statistical calculation methods based on the principles descr ibed abov e . Details concer ning statistical principles and terminology can be found in any standard statistics textbook. On the initial ST A T Mode screen, press 3 (TEST) to display the test men u, which contains the following items. • 3 [...]

  • Pagina 12

    20010101 Pe rf or m the f ollowing key operations from the statistical data list. 3 (TEST) b (Z) b (1-Smpl) The following shows the meaning of each item in the case of list data specification. Data ............................ data type µ .................................. population mean v alue test conditions (“ G µ 0 ” specifies two-tail t[...]

  • Pagina 13

    20010101 Calculation Result Output Example µ G 11.4 ........................ direction of test z .................................. z score p .................................. p-value o .................................. mean of sample x σ n -1 ............................. sample standard deviation (Displayed only f or Data: List setting.) n ..[...]

  • Pagina 14

    20010101 u u u u u 2-Sample Z T est This test is used when the standard deviations f or tw o populations are known to test the h ypothesis . The 2-Sample Z T est is applied to the normal distr ib ution. Z = o 1 – o 2 σ n 1 1 2 σ n 2 2 2 + o 1 : mean of sample 1 o 2 : mean of sample 2 σ 1 : population standard deviation of sample 1 σ 2 : popul[...]

  • Pagina 15

    20010101 o 1 ................................. mean of sample 1 n 1 ................................. siz e (positive integer) of sample 1 o 2 ................................. mean of sample 2 n 2 ................................. siz e (positive integer) of sample 2 After setting all the parameters, align the cursor with [Execute] and then press [...]

  • Pagina 16

    20010101 u u u u u 1-Prop Z T est This test is used to test for an unknown proportion of successes. The 1-Prop Z T est is applied to the normal distr ibution. Z = n x n p 0 (1– p 0 ) – p 0 p 0 : e xpected sample proportion n : s i z e of sample Pe rf or m the f ollowing key operations from the statistical data list. 3 (TEST) b (Z) d (1-Prop) Pr[...]

  • Pagina 17

    20010101 u u u u u 2-Prop Z T est This test is used to compare the propor tion of successes. The 2-Prop Z T est is applied to the nor mal distribution. Z = n 1 x 1 n 2 x 2 – p (1 – p ) n 1 1 n 2 1 + x 1 : data value of sample 1 x 2 : data value of sample 2 n 1 : s i z e of sample 1 n 2 : s i z e of sample 2 ˆ p : estimated sample propor tion P[...]

  • Pagina 18

    20010101 p 1 > p 2 ............................ direction of test z .................................. z score p .................................. p-value ˆ p 1 ................................. estimated propor tion of sample 1 ˆ p 2 ................................. estimated propor tion of sample 2 ˆ p .................................. e[...]

  • Pagina 19

    20010101 k k k k k t T ests u u u u u t T est Common Functions Y ou can use the f ollowing graph analysis functions after dr a wing a g r aph. • 1 (T) ... Displa ys t score . Pressing 1 (T) di spla ys the t score at the bottom of the display , and displa ys the pointer at the corresponding location in the graph (unless the location is off the gra[...]

  • Pagina 20

    20010101 u u u u u 1-Sample t T est This test uses the hypothesis test for a single unkno wn population mean when the population standard deviation is unkno wn. The 1-Sample t T est is applied to t -distr ib ution. t = o – 0 µ σ x n –1 n o : mean of sample µ 0 : assumed population mean x σ n -1 : sample standard deviation n : s i z e of sam[...]

  • Pagina 21

    20010101 Calculation Result Output Example µ G 11.3 ...................... direction of test t ................................... t score p .................................. p-value o .................................. mean of sample x σ n -1 ............................. sample standard deviation n .................................. size of sa[...]

  • Pagina 22

    20010101 u u u u u 2-Sample t T est 2-Sample t T est compares the population means when the population standard deviations are unknown. The 2-Sample t T est is applied to t -distribution. The following applies when pooling is in eff ect. t = o 1 – o 2 n 1 1 + n 2 1 x p n –1 2 σ x p n –1 = σ n 1 + n 2 – 2 ( n 1 –1) x 1 n –1 2 +( n 2 ?[...]

  • Pagina 23

    20010101 The following shows the meaning of each item in the case of list data specification. Data ............................ data type µ 1 ................................. sample mean v alue test conditions (“ G µ 2 ” specifies two-tail test, “< µ 2 ” specifies one-tail test where sample 1 is smaller than sample 2, “> µ 2 ?[...]

  • Pagina 24

    20010101 Calculation Result Output Example µ 1 G µ 2 ........................... direction of test t ................................... t score p .................................. p-value df ................................. degrees of freedom o 1 ................................. mean of sample 1 o 2 ................................. mean of s[...]

  • Pagina 25

    20010101 u u u u u LinearReg t T est LinearReg t T est treats paired-v ar iab le data sets as ( x , y ) pairs , and uses the method of least squares to deter mine the most appropriate a , b coefficients of the data for the regression f or mula y = a + bx . It also determines the correlation coefficient and t value , and calculates the e xtent of th[...]

  • Pagina 26

    20010101 Calculation Result Output Example β G 0 & ρ G 0 .............. direction of test t ................................... t score p .................................. p-value df ................................. degrees of freedom a .................................. constant ter m b .................................. coefficient s ....[...]

  • Pagina 27

    20010101 k k k k k χ 2 T est χ 2 T est sets up a n umber of independent groups and tests h ypothesis related to the propor tion of the sample included in each group . The χ 2 T est is applied to dichotomous variab les (var iab le with tw o possible values , such as yes/no). Expected counts F ij = Σ x ij i =1 k × Σ x ij j =1 k ΣΣ i =1 j =1 x[...]

  • Pagina 28

    20010101 After setting all the parameters, align the cursor with [Execute] and then press one of the function k e ys shown below to perf orm the calculation or dr a w the g r aph. • 1 (CALC) ... P erforms the calculation. • 6 (DRA W) ... Draws the g r aph. Calculation Result Output Example χ 2 ................................. χ 2 val ue p ..[...]

  • Pagina 29

    20010101 k k k k k 2-Sample F T est 2-Sample F T est tests the h ypothesis for the ratio of sample variances . The F T est is applied to the F distr ibution. F = x 1 n –1 2 σ x 2 n –1 2 σ Pe rf or m the f ollowing key operations from the statistical data list. 3 (TEST) e (F) The following is the meaning of each item in the case of list data s[...]

  • Pagina 30

    20010101 After setting all the parameters, align the cursor with [Execute] and then press one of the function k e ys shown below to perf orm the calculation or dr a w the g r aph. • 1 (CALC) ... P erf or ms the calculation. • 6 (DRA W) ... Draws the g r aph. Calculation Result Output Example σ 1 G σ 2 .......................... direction of t[...]

  • Pagina 31

    20010101 k k k k k ANO V A ANO V A tests the hypothesis that the population means of the samples are equal when there are multiple samples. One-W ay ANO V A is used when there is one independent v ar iable and one dependent variab le . Two - Wa y ANOV A is used when there are tw o independent variab les and one dependent variab le . Pe rf or m the [...]

  • Pagina 32

    20010101 Calculation Result Output Example One-W ay ANO V A Line 1 (A) .................... Factor A df valu e, SS val ue , MS valu e, F value , p-value Line 2 (ERR) ............... Error df va lu e, SS val ue, MS va lue Tw o - W a y ANO V A Line 1 (A) .................... Factor A df valu e, SS val ue , MS valu e, F value , p-value Line 2 (B) ....[...]

  • Pagina 33

    20010101 k k k k k ANO V A (T w o-W a y) u u u u u Description The nearby tab le shows measurement results f or a metal product produced by a heat treatment process based on two treatment levels: time (A) and temper ature (B). The e xperiments were repeated twice each under identical conditions . Pe rf or m analysis of v ar iance on the f ollo wing[...]

  • Pagina 34

    20010101 u u u u u Input Example u u u u u Results 1-2-25 T ests (TEST)[...]

  • Pagina 35

    20010101 1-3 Confidence Interval (INTR) A confidence inter v al is a r ange (interv al) that includes a statistical value, usually the population mean. A confidence inter v al that is too broad makes it difficult to get an idea of where the population value (true value) is located. A narro w confidence inter val, on the other hand, limits the popul[...]

  • Pagina 36

    20010101 u u u u u General Confidence Interval Precautions Inputting a value in the range of 0 < C-Level < 1 for the C-Le vel setting sets you value y ou input. Inputting a v alue in the r ange of 1 < C-Lev el < 100 sets a value equiv alent to your input divided by 100. # Inputting a value of 100 or greater , or a negative value causes [...]

  • Pagina 37

    20010101 k k k k k Z Interval u u u u u 1-Sample Z Interval 1-Sample Z Interval calculates the confidence inter val f or an unknown population mean when the population standard deviation is kno wn. The following is the confidence interval. Left = o – Z α 2 σ n Right = o + Z α 2 σ n Ho w e ver , α is the le vel of significance. The value 100 [...]

  • Pagina 38

    20010101 After setting all the parameters, align the cursor with [Execute] and then press the function key shown belo w to perform the calculation. • 1 (CALC) ... P erforms the calculation. Calculation Result Output Example Left .............................. inter v al lower limit (left edge) Right ............................ inter v al upper l[...]

  • Pagina 39

    20010101 The following shows the meaning of each item in the case of list data specification. Data ............................ data type C-Le vel ........................ confidence level (0 < C-Lev el < 1) σ 1 ................................. population standard de viation of sample 1 ( σ 1 > 0) σ 2 ................................. [...]

  • Pagina 40

    20010101 u u u u u 1-Prop Z Interv al 1-Prop Z Interval uses the n umber of data to calculate the confidence inter val f or an unknown propor tion of successes. The following is the confidence interval. The v alue 100 (1 – α ) % is the confidence le vel. Left = – Z α 2 Right = + Z x n n 1 n x n x 1 – x n α 2 n 1 n x n x 1 – n :s i z e of[...]

  • Pagina 41

    20010101 u u u u u 2-Prop Z Interval 2-Prop Z Interval uses the n umber of data items to calculate the confidence interval for the defference between the proportion of successes in two populations. The following is the confidence interval. The v alue 100 (1 – α ) % is the confidence le vel. Left = – – Z α 2 x 1 n 1 x 2 n 2 n 1 n 1 x 1 1– [...]

  • Pagina 42

    20010101 Left .............................. inter v al lower limit (left edge) Right ............................ inter v al upper limit (r ight edge) ˆ p 1 ................................. estimated sample propotion for sample 1 ˆ p 2 ................................. estimated sample propotion for sample 2 n 1 ................................[...]

  • Pagina 43

    20010101 o .................................. mean of sample x σ n -1 ............................. sample standard deviation ( x σ n -1 > 0) n .................................. size of sample (positive integer) After setting all the parameters, align the cursor with [Execute] and then press the function key shown belo w to perform the calcul[...]

  • Pagina 44

    20010101 The following confidence interv al applies when pooling is not in effect. The v alue 100 (1 – α ) % is the confidence le vel. Left = ( o 1 – o 2 )– t df α 2 Right = ( o 1 – o 2 )+ t df α 2 + n 1 x 1 n –1 2 σ n 2 x 2 n –1 2 σ + n 1 x 1 n –1 2 σ n 2 x 2 n –1 2 σ C = df = 1 C 2 n 1 –1 + (1 – C ) 2 n 2 –1 + n 1 x 1[...]

  • Pagina 45

    20010101 o 1 ................................. mean of sample 1 x 1 σ n -1 ............................ standard deviation ( x 1 σ n -1 > 0) of sample 1 n 1 ................................. size (positive integer) of sample 1 o 2 ................................. mean of sample 2 x 2 σ n -1 ............................ standard deviation ( x[...]

  • Pagina 46

    20010101 1-4 Distrib ution (DIST) There is a variety of diff erent types of distr ibution, b ut the most well-known is “normal distr ib ution, ” which is essential f or perfor ming statistical calculations. Nor mal distribution is a symmetr ical distribution centered on the g reatest occurrences of mean data (highest frequency), with the freque[...]

  • Pagina 47

    20010101 u u u u u Common Distribution Functions After drawing a graph, you can use the P-CAL function to calculate an estimated p-value for a par ticular x va lu e. The following is the general procedure f or using the P-CAL function. 1. After dr awing a graph, press 1 (P-CAL) to display the x value input dialog bo x. 2. Input the v alue you want [...]

  • Pagina 48

    20010101 k k k k k Normal Distribution u u u u u Normal Probability Density Nor mal probability density calculates the probability density of nomal distribution from a specified x value. Nor mal probability density is applied to standard nor mal distribution. πσ 2 f ( x ) = 1 e – 2 2 σ ( x – µ ) 2 µ ( σ > 0) Pe rf or m the f ollowing k[...]

  • Pagina 49

    20010101 u u u u u Normal Distribution Pr obability Nor mal distrib ution probability calculates the probability of nor mal distribution data f alling between two specific values. πσ 2 p = 1 e – dx 2 2 σ ( x – µ ) 2 µ a b ∫ a : lo w er boundar y b : upper boundar y Pe rf or m the f ollowing key operations from the statistical data list. [...]

  • Pagina 50

    20010101 Calculation Result Output Example p .................................. nor mal distribution probability z:Low ........................... z:Low value (con ver ted to standardize z score for lower value) z:Up ............................. z:Up value (conv er ted to standardize z score for upper v alue) u u u u u In verse Cumulative Normal D[...]

  • Pagina 51

    20010101 After setting all the parameters, align the cursor with [Execute] and then press the function key shown belo w to perform the calculation. • 1 (CALC) ... P erforms the calculation. Calculation Result Output Examples x ....................................... inverse cum ulativ e nor mal distr ibution (T ail:Left upper boundar y of integ r[...]

  • Pagina 52

    20010101 k k k k k Student- t Distribution u u u u u Student- t Pr obability Density Student- t probability density calculates t probability density from a specified x va lu e. f ( x ) = Γ Γ df π – df + 1 2 2 df 2 df + 1 df x 2 1+ Pe rf or m the f ollowing key operations from the statistical data list. 5 (DIST) c (T) b (P .D) Data is specified[...]

  • Pagina 53

    20010101 u u u u u Student- t Distribution Pr obability Student- t distrib ution probability calculates the probability of t distr ib ution data f alling between two specific values. p = Γ Γ df π 2 df 2 df + 1 – df +1 2 df x 2 1+ dx a b ∫ a :l ow er boundar y b : upper boundary Pe rf or m the f ollowing key operations from the statistical da[...]

  • Pagina 54

    20010101 Calculation Result Output Example p .................................. Student- t distrib ution probability t:Lo w ........................... t:Low v alue (input lower v alue) t:Up ............................. t:Up v alue (input upper v alue) k k k k k χ 2 Distribution u u u u u χ 2 Pr obability Density χ 2 probability density calcula[...]

  • Pagina 55

    20010101 Calculation Result Output Example p .................................. χ 2 probability density # Current V -Window settings are used f or graph drawing when the SET UP screen's [Stat Wind] setting is [Manual]. The V - Window settings below are set automatically when the [Stat Wind] setting is [A uto]. Xmin = 0, Xmax = 11.5, Xscale = [...]

  • Pagina 56

    20010101 u u u u u χ 2 Distrib ution Probability χ 2 distribution probability calculates the probability of χ 2 distribution data falling betw een two specific values. p = Γ 1 2 df df 2 x e dx 2 1 df 2 –1 x 2 – a b ∫ a :l ow er boundar y b : upper boundary Pe rf or m the f ollowing key operations from the statistical data list. 5 (DIST) d[...]

  • Pagina 57

    20010101 Calculation Result Output Example p .................................. χ 2 distribution probability k k k k k F Distrib ution u u u u u F Probability Density F probability density calculates the probability density function f or the F distr ib ution at a specified x va lu e. Γ n 2 x d n n 2 – 1 2 n Γ 2 n + d Γ 2 d d nx 1 + n + d 2 f [...]

  • Pagina 58

    20010101 Calculation Result Output Example p .................................. F probability density # V-Windo w settings f or graph dr awing are set automatically when the SET UP screen's [Stat Wind] setting is [A uto]. Current V - Window settings are used for graph drawing when the [Stat Wind] setting is [Manual]. 1-4-13 Distribution (DIST)[...]

  • Pagina 59

    20010101 u u u u u F Distribution Pr obability F distribution probability calculates the probability of F distr ib ution data falling between two specific values. p = Γ n 2 dx x d n n 2 –1 2 n Γ 2 n + d Γ 2 d d nx 1 + n + d 2 – a b ∫ a : lower boundary b : upper boundar y Pe rf or m the f ollowing key operations from the statistical data l[...]

  • Pagina 60

    20010101 Calculation Result Output Example p .................................. F distribution probability 1-4-15 Distribution (DIST)[...]

  • Pagina 61

    20010101 k k k k k Binomial Distribution u u u u u Binomial Probability Binomial probability calculates a probability at a specified value for the discrete binomial distr ib ution with the specified number of tr ials and probability of success on each trial. f ( x ) = n C x p x (1– p ) n – x ( x = 0, 1, ·······, n ) p : success probabili[...]

  • Pagina 62

    20010101 Calculation Result Output Example p .................................. binomial probability u u u u u Binomial Cumulative Density Binomial cumulative density calculates a cumulative probability at a specified v alue f or the discrete binomial distribution with the specified number of tr ials and probability of success on each tr ial. Pe rf[...]

  • Pagina 63

    20010101 After setting all the parameters, align the cursor with [Execute] and then press the function key shown belo w to perform the calculation. • 1 (CALC) ... P erforms the calculation. Calculation Result Output Example p ......................................... probability of success 1-4-18 Distribution (DIST) 20011101[...]

  • Pagina 64

    20010101 k k k k k Po isson Distribution u u u u u Po isson Probability Po isson probability calculates a probability at a specified value for the discrete P oisson distribution with the specified mean. f ( x ) = x! e – x µ µ ( x = 0, 1, 2, ···) µ :m ean ( µ > 0) Pe rf or m the f ollowing key operations from the statistical data list. 5[...]

  • Pagina 65

    20010101 u u u u u P oisson Cumulative Density Po isson cumulativ e density calculates a cumulativ e probability at specified value for the discrete Poisson distribution with the specified mean. Pe rf or m the f ollowing key operations from the statistical data list. 5 (DIST) g (P oissn) c (C .D) The following shows the meaning of each item when da[...]

  • Pagina 66

    20010101 k k k k k Geometric Distrib ution u u u u u Geometric Probability Geometr ic probability calculates the probability at a specified v alue, and the number of the trial on which the first success occurs, for the geometr ic distrib ution with a specified probability of success. f ( x ) = p (1– p ) x – 1 ( x = 1, 2, 3, ···) Pe rf or m t[...]

  • Pagina 67

    20010101 u u u u u Geometric Cumulative Density Geometr ic cumulativ e density calculates a cumulative probability at specified value , the nu mber of the trial on which the first success occurs, f or the discrete geometr ic distr ib ution with the specified probability of success. Pe rf or m the f ollowing key operations from the statistical data [...]