Vai alla pagina of
Manuali d’uso simili
-
Network Card
Quatech ES-100
31 pagine 0.31 mb -
Network Card
Quatech Asynchronous Communications Adapter QSCLP-100
37 pagine 0.47 mb -
Network Card
Quatech DS-102
35 pagine 0.18 mb -
Network Card
Quatech HSU-200
55 pagine 2.04 mb -
Network Card
Quatech SSU-100
55 pagine 2.04 mb -
Network Card
Quatech DSU-300
55 pagine 2.04 mb -
Network Card
Quatech WLRG-RA-DP100
2 pagine 0.2 mb -
Network Card
Quatech DSC-100
34 pagine 0.41 mb
Un buon manuale d’uso
Le regole impongono al rivenditore l'obbligo di fornire all'acquirente, insieme alle merci, il manuale d’uso Quatech RS-232 SYNCHRONOUS. La mancanza del manuale d’uso o le informazioni errate fornite al consumatore sono la base di una denuncia in caso di inosservanza del dispositivo con il contratto. Secondo la legge, l’inclusione del manuale d’uso in una forma diversa da quella cartacea è permessa, che viene spesso utilizzato recentemente, includendo una forma grafica o elettronica Quatech RS-232 SYNCHRONOUS o video didattici per gli utenti. La condizione è il suo carattere leggibile e comprensibile.
Che cosa è il manuale d’uso?
La parola deriva dal latino "instructio", cioè organizzare. Così, il manuale d’uso Quatech RS-232 SYNCHRONOUS descrive le fasi del procedimento. Lo scopo del manuale d’uso è istruire, facilitare lo avviamento, l'uso di attrezzature o l’esecuzione di determinate azioni. Il manuale è una raccolta di informazioni sull'oggetto/servizio, un suggerimento.
Purtroppo, pochi utenti prendono il tempo di leggere il manuale d’uso, e un buono manuale non solo permette di conoscere una serie di funzionalità aggiuntive del dispositivo acquistato, ma anche evitare la maggioranza dei guasti.
Quindi cosa dovrebbe contenere il manuale perfetto?
Innanzitutto, il manuale d’uso Quatech RS-232 SYNCHRONOUS dovrebbe contenere:
- informazioni sui dati tecnici del dispositivo Quatech RS-232 SYNCHRONOUS
- nome del fabbricante e anno di fabbricazione Quatech RS-232 SYNCHRONOUS
- istruzioni per l'uso, la regolazione e la manutenzione delle attrezzature Quatech RS-232 SYNCHRONOUS
- segnaletica di sicurezza e certificati che confermano la conformità con le norme pertinenti
Perché non leggiamo i manuali d’uso?
Generalmente questo è dovuto alla mancanza di tempo e certezza per quanto riguarda la funzionalità specifica delle attrezzature acquistate. Purtroppo, la connessione e l’avvio Quatech RS-232 SYNCHRONOUS non sono sufficienti. Questo manuale contiene una serie di linee guida per funzionalità specifiche, la sicurezza, metodi di manutenzione (anche i mezzi che dovrebbero essere usati), eventuali difetti Quatech RS-232 SYNCHRONOUS e modi per risolvere i problemi più comuni durante l'uso. Infine, il manuale contiene le coordinate del servizio Quatech in assenza dell'efficacia delle soluzioni proposte. Attualmente, i manuali d’uso sotto forma di animazioni interessanti e video didattici che sono migliori che la brochure suscitano un interesse considerevole. Questo tipo di manuale permette all'utente di visualizzare tutto il video didattico senza saltare le specifiche e complicate descrizioni tecniche Quatech RS-232 SYNCHRONOUS, come nel caso della versione cartacea.
Perché leggere il manuale d’uso?
Prima di tutto, contiene la risposta sulla struttura, le possibilità del dispositivo Quatech RS-232 SYNCHRONOUS, l'uso di vari accessori ed una serie di informazioni per sfruttare totalmente tutte le caratteristiche e servizi.
Dopo l'acquisto di successo di attrezzature/dispositivo, prendere un momento per familiarizzare con tutte le parti del manuale d'uso Quatech RS-232 SYNCHRONOUS. Attualmente, sono preparati con cura e tradotti per essere comprensibili non solo per gli utenti, ma per svolgere la loro funzione di base di informazioni e di aiuto.
Sommario del manuale d’uso
-
Pagina 1
MPA-100 RS-232 SYNCHRONOUS ADAPTER CARD User's Manual QUATECH, INC. TEL: (330) 665-9000 5675 Hudson Industrial Parkway FAX: (330) 665-9010 Hudson, Ohio 44236 http://www.quatech.com INTERFACE CARDS FOR IBM PC/AT AND PS/2[...]
-
Pagina 2
[...]
-
Pagina 3
Warranty Information Quatech Inc. warrants the MPA-100 to be free of defects for one (1) year from the date of purchase. Quatech Inc. will repair or replace any adapter that fails to perform under normal operating conditions and in accordance with the procedures outlined in this document during the warranty period. Any damage that results from impr[...]
-
Pagina 4
The information contained in this document cannot be reproduced in any form without the written consent of Quatech, Inc. Likewise, any software programs that might accompany this document can be used only in accordance with any license agreement(s) between the purchaser and Quatech, Inc. Quatech, Inc. reserves the right to change this documentation[...]
-
Pagina 5
Table of Contents 13-1 13. SPECIFICATIONS ............................................... . 12-1 12. DEFINITION OF INTERFACE SIGNALS ........................ . 11-6 11. EXTERNAL CONNECTIONS .................................... . 10-3 10.2 DCE Configuration ........................................... . 10-2 10.1 DTE Configuration ...................[...]
-
Pagina 6
MPA-100 User's Manual iv[...]
-
Pagina 7
1. INTRODUCTION The Quatech MPA-100 is a single channel, synchronous RS-232 compatible serial communication port for systems utilizing the architecture of the IBM AT personal computer or compatible. Figure 1 depicts the layout of th e MPA-100. Figure 1 MPA-100 Board Layout Quatech, Inc. MPA-100 U1 U2 SW1 SW2 U3 U4 U5 U6 U7 U8 X1 U16 U9 U10 U11 U12 [...]
-
Pagina 8
MPA-100 User's Manual 1-2[...]
-
Pagina 9
2. HARDWARE INSTALLATION If the default address and interrupt settin gs are sufficient, the MPA-100 can be quickly installed and put to use. The factory default settings are listed below in Table 1. Table 1 Default Resource Settings DMA/DRQ 1 DMA/DRQ 3 IRQ 5 300 hex RxDMA TxDMA Interrupt Address 1. If the default settings are correct, skip to step [...]
-
Pagina 10
MPA-100 User's Manual 2-2[...]
-
Pagina 11
3. ADDRESSING The MPA-100 occupies a continuous 8 byte block of I/O addresses. For example, if the base address is set to 300H, then the MPA-100 will occupy address locations 300H-307H. The base address of the MPA-100 may be set to any of the first 64 Kbytes (0 - FFFFH) of available I/O address space through the settings of dip switches SW1 and SW2[...]
-
Pagina 12
The first four bytes, Base+0 through Base+3, of address space on the MPA-100 contain the internal registers of the SCC. The next two locations Base+4 and Base+5 contain the Communications Register and the Configuration Register. The last two address port locations are reserved for future use. The entire address range of the MPA-100 is shown in Tabl[...]
-
Pagina 13
4. INTERRUPTS The MPA-100 supports eleven interrupt levels: IRQ2 -7, IRQ10 - 12, and IRQ14 - 15, and selects which interrupt level is in use through jumper packs J5 and J6. The MPA-100 has three interrupt sources: interrupt on terminal count, interrupt on test mode, and interrupt from the SCC. The interrupt source is selected by bits D4 and D5 of t[...]
-
Pagina 14
4.1 Using Terminal Count to Generate Interrupts The MPA-100 allows the option of generating an interrupt whenever the Terminal Count (TC) signal is asserted. Terminal Count is an indicator generated by the system’s DMA controller, which signals that the number of transfers programed into the DMA controller’s transfer register have occurred. Thi[...]
-
Pagina 15
5. JUMPER CONFIGURATIONS The MPA-100 utilizes various jumper blocks which allow the user to customize their hardware configuration. The following sections explain the function and setting of each of the jumper blocks on the MPA-100. 5.1 DTE/DCE Configuration - J2, J11, & J12 The jumper packs J2, J11, and J12 control the DTE/DCE configuration of[...]
-
Pagina 16
5.3 Interrupt Level Selection - J5 & J6 Jumper blocks J5 and J6 select the interrupt level that the MPA-100 utilizes. Interrupt levels IRQ2 - IRQ7 reside on J5, while interrupt levels IRQ10 - IRQ12 and IRQ14 - IRQ15 reside on J6. Table 5 and Table 6 summarize the jumper block selections for J5 and J6. The IRQ levels are also marked on the MPA-1[...]
-
Pagina 17
5.4 Transmit DMA Selection - J8 J8 Selects the DMA channel to be used for Transmit DMA. Three channels (1 - 3) are available on the MPA-100 for DMA. When selecting a DMA channel, both the DMA acknowledge (DACK) and the DMA request (DRQ) for the appropriate channel need to be selected. Table 7 summarizes the jumper block selections for J8. Table 7 J[...]
-
Pagina 18
NOTE: Since it is illegal to perform DMA on transmit and receive on the same DMA channel, jumper blocks J7 and J8 should never have the same pins connected. This could result in damage to the system. 5.6 SYNCA to RLEN Control - J7 J7 controls the signal path from the RLEN bit in the Communications Register to the SYNCA input to the SCC. If J7 is in[...]
-
Pagina 19
6. SCC GENERAL INFORMATION The Serial Communications Controller (SCC) is a dual channel, multi-protocol data communications peripheral. The MPA-100 provides a single channel for communications, however, to provide full DMA capabilities with complete modem control line support, both channels of the SCC can be utilized. The SCC can be software config[...]
-
Pagina 20
6.1 Accessing the Registers The mode of communication desired is established and monitored through the bit values of the internal read and write registers. The register set of the SCC includes 16 write registers and 9 read registers. These registers only occupy four address locations, which start at the MPA-100's physical base address that is [...]
-
Pagina 21
Example 2: Monitoring the status of the transmit and receive buffers in RR0 of Channel A. Register 0 is addressed by default if no register number is written to WR0 first. mov dx,base ; load base address add dx,ContA ; add control reg A offset (1) in ax,dx ; read the status Example 3: Write data into the transmit buffer of channel A. mov dx,base ; [...]
-
Pagina 22
and receive clocks. These clocks can be programmed in WR11 to come from the RTXC pin, the TRXC pin, the output of the BRG, or the transmit output of the DPLL. Programming of the clocks should be done before enabling the receiver, transmitter, BRG, or DPLL. Table 11 SCC write register description. External/Status interrupt control WR15 Miscellaneous[...]
-
Pagina 23
6.2 Baud Rate Generator Programming The baud rate generator (hereafter referred to as the BRG) of the SCC consists of a 16-bit down counter, two 8-bit time constant registers, and an output divide-by-two. The time constant for the BRG is programmed into WR12 (least significant byte) and WR13 (most significant byte). The equation relating the baud r[...]
-
Pagina 24
6.3 SCC Data Encoding Methods The SCC provides four different data encoding methods, selected by bits D6 and D5 in WR10. These four include NRZ, NRZI, FM1 and FM0. The SCC also features a digital phase-locked loop (DPLL) that can be programmed to operate in NRZI or FM modes. Also, the SCC contains two features for diagnostic purposes, controlled by[...]
-
Pagina 25
7. DIRECT MEMORY ACCESS Direct Memory Access (DMA) is a way of transferring data on the ISA bus directly to and from memory, resulting in high data transfer rates with very low CPU overhead. The ISA bus DMA channel(s) to be used are selected through jumper packs J6 and J7. The sources for these requests originate from the SCC and can be programmed [...]
-
Pagina 26
When using the channel A DTR/REQ pin for transmit DMA the SCC must be programmed so that the request release timing of this pin is identical to the WAIT/REQ timing. This is done by setting bit D4 of write register 7 prime . NOTE: Even though the W/REQA pin can be used for both DMA transmit and DMA receive, obviously it cannot be used for both simul[...]
-
Pagina 27
8. CONFIGURATION REGISTER The MPA-100 is equipped with an onboard register used for configuring information such as DMA enables, DMA sources, interrupt enables, and interrupt sources. Below is a detailed description of the Configuration Register. The address of this register is Base+5. Table 13 details the bit definitions of the Configuration Regis[...]
-
Pagina 28
D1 -RXSRC, RECEIVE DMA SOURCE: When set (logic 1), this bit allows the source for Receive DMA to come from the W/REQB pin of channel B on the SCC. When cleared (logic 0), the source for Receive DMA comes from the W/REQA pin of channel A on the SCC. D0 -TXSRC, TRANSMIT DMA SOURCE: When set (logic 1), this bit allows the source for Transmit DMA to co[...]
-
Pagina 29
9. COMMUNICATIONS REGISTER The MPA-100 is equipped with an onboard Communications Register which gives the user options pertaining to the clocks and testing. The user can specify the source and type of clock to be transmitted or received. Test mode bits pertain only to the DTE versions and can be ignored if using a DCE configured MPA-100. The addre[...]
-
Pagina 30
D4 -REMOTE LOOPBACK ENABLE : When set (logic 1), this bit allows the DTE to test the transmission path up to and through the remote DCE to the DTE interface and the similar return transmission path. When cleared (logic 0), no testing occurs. If jumper J7 is in place the Remote Loopback is also used to control the Sync input of the Channel A data re[...]
-
Pagina 31
10. DTE/DCE CONFIGURATION As indicated earlier in this manual, the MPA-100 can be configured as either a Data Terminal Equipment (DTE) or a Data Communications Equipment (DCE) device. The differences between these configurations include signal definitions, connector pin out , and clocking options. In order to simplify matters, an in depth descripti[...]
-
Pagina 32
10.1 DTE Configuration The MPA-100 is configured as a DTE device by correctly setting jumper packs J2, J11 and J12. See Section 5, Table 3 for this configuration information. The control signals the DTE can generate are Request To Send (RTS) and Data Terminal Ready (DTR). It can receive the signals Carrier Detect (CD), Clear To Send (CTS), and Data[...]
-
Pagina 33
The testing signals the DTE can generate are the Local Loopback Test (LL) and the Remote Loopback Test (RL). These signals are generated from the onboard Communications Register. When a Test Mode (TM) condition is received, an interrupt can be generated on the DTE. Table 16 summarizes the signals on the DTE. Table 16 DTE Signals INTM o r Bit D7 of [...]
-
Pagina 34
Control signals the DCE can generate are the Clear to Send (CTS), Carrier Detect (CD), and Data Set Ready (DSR). It can receive the signals D ata Terminal Ready (DTR) and Ready to Send (RTS). All the control signals are handled through channel A of the SCC, with the exception of the CD signal, which is generated on the DTR/REQB pin (pin 24) of the [...]
-
Pagina 35
Table 17 DCE Signals INTM or Bit D7 of Comm Reg X TM Bit D4 of Comm Reg X RL Bit D5 of Comm. Reg X LL RTXC/TRXCB pin of SCC X X RxCLK TRXCA pin of SCC X TxCLK DTR/REQB pin of SCC X CD DTR/REQA pin of SCC X DSR DCDA of SCC X DTR RTSA pin of SCC X CTS CTSA pin of SCC X RTS SCC Pin or Register Bit Generated Received Signal MPA-100 User's Manual 1[...]
-
Pagina 36
MPA-100 User's Manual 10-6[...]
-
Pagina 37
11. EXTERNAL CONNECTIONS The MPA-100 is designed to meet the RS-232 standard through a D-25 connector. The MPA-100 uses a D-25 short body male connector (labeled CN1) for both the DTE and DCE configurations. Jumper blocks J2, J11, and J12 configure the connector pin out. Table 18 and Table 19 display the pin out definitions for both configurations [...]
-
Pagina 38
Table 19 DCE Connector Pin Definitions D7 of COMM REG X TEST MODE 25 RTXC pins on SCC X TXCLK (DTE) 24 - - - N/C 23 - - - N/C 22 D4 of COMM REG X RL 21 DCDB on SCC X DTR 20 - - - N/C 19 D5 of COMM REG X LL 18 RTXC pins on SCC X RXCLK (DCE) 17 - - - N/C 16 TRXCA on SCC X TXCLK (DCE) 15 - - - N/C 14 - - - N/C 13 - - - N/C 12 N/A N/A N/A RXCLK (DTE) 1[...]
-
Pagina 39
Figure 6 MPA-100 DTE Output Connector Configuration 25 Test Mode (Output) 24 TxCLK (DTE) 23 N/C 22 N/C 21 RLBK (Output) 20 DTR 19 N/C 18 LLBK (Output) 17 RxCLK (DCE) 16 N/C 15 TxCLK (DCE) 14 N/C N/C 13 N/C 12 RxCLK (DTE) 11 N/C 10 N/C 9 CD 8 DGND 7 DSR 6 CTS 5 RTS 4 RxD 3 TxD 2 CGND 1 Figure 7 MPA-100 DCE Output Connector Configuration 14 N/C 15 Tx[...]
-
Pagina 40
MPA-100 User's Manual 11-4[...]
-
Pagina 41
12. DEFINITION OF INTERFACE SIGNALS CIRCUIT AB - Signal Ground CONNECTOR NOTATION: DGND DIRECTION: Not applicable This conductor directly connects the DTE circuit ground to the DCE circuit ground. CIRCUIT CC - DCE Ready (Data Set Ready) CONNECTOR NOTATION: DSR DIRECTION: From DCE This signal indicates the status of the local DCE by [...]
-
Pagina 42
CIRCUIT DD - Receiver Signal Element Timing (RxClk - DCE Source) CONNECTOR NOTATION: RXCLK (DCE) DIRECTION: From DCE This signal, generated by the DCE, provides the DTE with element timing information pertaining to the data transmitted by the DCE. The DTE can use this information for its received data. CIRCUIT CA - Request To Send CONNE[...]
-
Pagina 43
CIRCUIT RL - Remote Loopback CONNECTOR NOTATION: RLBK DIRECTION: To DCE This signal provides a means whereby a DTE or a facility test center may check the transmission path up to and through the remote DCE to the DTE interface and the similar return transmission path. CIRCUIT TM - Test Mode CONNECTOR NOTATION: TEST MODE DIRECTION: F[...]
-
Pagina 44
MPA-100 User's Manual 12-4[...]
-
Pagina 45
13. SPECIFICATIONS Bus interface: IBM AT 16-bit bus Controller: Serial Communications Controller, 10 MHz (determined by user, typically an AMD 85C30). Interface: DTE: male D-25 connector Transmit drivers: RS-232: MC1488 or compatible Receive buffers: RS-232: MC1489 or compatible I/O Address range: 0000H - FFFFH Interrupt levels: IRQ 2-7, 10-12, 14-[...]
-
Pagina 46
MPA-100 User's Manual Version 4.12 March 2004 Part No. 940-0037-412 MPA-100 User's Manual 13-2[...]