Agilent Technologies PN 8510-16 manual

1
2
3
4
5
6
7
8
9
10
11
12

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Agilent Technologies PN 8510-16, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Agilent Technologies PN 8510-16 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Agilent Technologies PN 8510-16. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Agilent Technologies PN 8510-16 should contain:
- informations concerning technical data of Agilent Technologies PN 8510-16
- name of the manufacturer and a year of construction of the Agilent Technologies PN 8510-16 item
- rules of operation, control and maintenance of the Agilent Technologies PN 8510-16 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Agilent Technologies PN 8510-16 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Agilent Technologies PN 8510-16, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Agilent Technologies service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Agilent Technologies PN 8510-16.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Agilent Technologies PN 8510-16 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Agilent PN 8510-16 Controlling T est Port Output Power Flatness Product Note UNCORRECTED POWER CORRECTED POWER OUTPUT POWER Agilent 8510C Network Analyzer[...]

  • Page 2

    2 Introduction Designers and manufacturers of active devices oft en need to control the pow er lev el at the t est port 1 of t heir pow er -sensitive devices, but f ind dif- ficulty in o vercoming inser tion losses. The insertion losses occur as a result of connecting components in the measurement pat h between the source and the DUT . The A gilent[...]

  • Page 3

    3 System Configuration The basic 8510C measurement system conf igura- tion needed for test por t f latness correction is sho wn in Figure 1. A sing le channel pow er meter such as the A gilent 437B, E4418A, or E4418B is required, along with a compatible sensor , for per- forming t he po wer f latness calibration. Po wer meters with t he 437B comman[...]

  • Page 4

    4 Flatness-Correction Operation The basic setup procedure t o obtain f lat t est port output po wer is illustrated in Table 1. To simplify the execution of t he procedure, t he front panel hardk eys are enclosed in [brackets]. The sof tkeys are enclosed in {braces}. Table 2 pro vides t he pro- cedure for setting up the pow er meter . The net- w ork[...]

  • Page 5

    5 T able 1. Flatness-correction calibration procedure 8510C Keystrokes Description Set up the power meter (see T able 2) For proper operation, the E4418B must be set up before initiating the flatness-correction routine. See T able 2 for specific instructions. V erify the power meter's address on the 8510 system [LOCAL] When shipped from the fa[...]

  • Page 6

    6 T able 2. Agilent E4418B power meter setup E4418B Keystrokes Description Preset and zero the power meter [PRESET/LOCAL] Return the power meter to a known state. {CONFIRM} [ZERO/CAL] {ZERO} Set up the 437B emulation on the power meter [SYSTEM/INPUTS] The 437B command set must be activated in order to perform the power flatness calibration. Power m[...]

  • Page 7

    7 The follo wing er ror messages may occur while attempting t o enable the f latness cor rection and/or reducing the test por t pow er level: • If f latness cor rection is enabled before reducing the test por t pow er level, IF Overload or Source 1 W arning—RF Unleveled ma y be display ed on the analyzer as the source becomes unlev eled. U nlev[...]

  • Page 8

    8 V erifying a flatness-correction calibration T o verify t he f latness-correction calibration, t he po wer sensor should be reconnected t o the t est port t o measure the t est por t po wer at individual frequencies. Since the measurement system is calibrated in 50W , inaccuracies will occur when a device is not well mat ched. Since the f latness[...]

  • Page 9

    9 Using test port 1 calibrations on test port 2 In most cases, port 1 will be t he input por t of t he DUT . When por t 2 must be used as the input por t to t he device, t he user may choose to use a por t 1 f latness-cor rection calibration on por t 2 since the port 1 and por t 2 signal pat hs are symmetrical. 1 Figure 3 illustrates t he use of po[...]

  • Page 10

    10 Practical Application Examples Absolute output power measurements with flatness correction One benefit of t he f latness-correction capability is the ability t o measure the absolute output pow er of active devices. Since the input pow er level to t he DUT is kept constant, t he magnitude of fset feature of the A gilent 8510 can be used to displ[...]

  • Page 11

    11 Amplifier measurement example Step-by-step instr uctions for setting up and apply- ing f latness cor rections for t he measurement of an amplifier are sho wn in Table 7 . Gain, absolute output po wer , and gain compression measurements procedures are cov ered. For more information on measuring amplifiers, refer to A gilent product not e 8510-18,[...]

  • Page 12

    Agilent T echnologies’ T est and Measurement Support, Services, and Assistance Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. W e strive to ensure that you get the test and measurement capabilities you paid for and obt ain the suppor t you need. Our ext ensive suppor t resources and services [...]