Alesis AI-1 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Alesis AI-1, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Alesis AI-1 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Alesis AI-1. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Alesis AI-1 should contain:
- informations concerning technical data of Alesis AI-1
- name of the manufacturer and a year of construction of the Alesis AI-1 item
- rules of operation, control and maintenance of the Alesis AI-1 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Alesis AI-1 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Alesis AI-1, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Alesis service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Alesis AI-1.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Alesis AI-1 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    A L ES I S AI-1 Reference M a nu a l[...]

  • Page 2

    1 TABLE OF CONTENTS CHAPTER 1 : INTRODUCTION 1.0 ABOUT THE AI-1 ...................................................................... 1 1.1 IMPORTANT NOTES ABOUT THIS MANUAL .................. 3 1.2 OVERVIEW OF MAIN FUNCTIONS ..................................... 3 1.2A Digital Interface ............................................................[...]

  • Page 3

    2 3.2D BRC Synchronization ................................................... 26 3.2E Output ADAT Tracks to AI-1 ....................................... 26 3.2F Bouncing Tracks While Outputting To AI-1 ............... 28 3.3 CONFIGURATIONS ................................................................. 29 3.3A ADAT to AES/EBU (48kHz) ...........[...]

  • Page 4

    1 CHAPTER 1: INTRODUCTION 1.0 ABOUT THE AI-1 Congratulations! You’ve just purchased a powerful tool that will enhance your ADAT system with incredible digital audio routing flexibility. The AI-1 Digital Interface and Sample Rate Converter provides you a way of routing any two ADAT tracks to another digital recording system, or the other way aroun[...]

  • Page 5

    2 track(s) and the sampling rate…and you’re up and running! With the BRC Master Remote Control, it’s even easier since all AI-1 controls are available from the BRC’s Digital I/O edit menu. • Optic digital interface. ADAT’s Proprietary Multichannel Optic Digital Interface carries up to eight tracks simultaneously via optic cable, allowin[...]

  • Page 6

    3 digital recording terms that may be helpful as you read this manual. 1.1 IMPORTANT NOTES ABOUT THIS MANUAL This manual has been designed as a reference to assist the recording professional in learning the basic operation of the AI-1. All functions are explained in a clear manner, using step-by-step instructions and illustrations for setting up an[...]

  • Page 7

    4 leaving the digital domain. The AI-1 can be used to transfer digital audio back and forth between DAT machines, CD player/ recorders and digital audio workstations. Whenever you transfer digital audio through the AI-1, the result is a perfect, exact duplicate of the original with no degradation or change in audio quality. 1.2B Digital Audio Synch[...]

  • Page 8

    5 When you play back the audio once it is on ADAT, it will adjust back to its normal speed and of course sound sharp…roughly 147 cents sharp. If you want to hear the audio on ADAT at the original pitch and speed, bring the ADAT’s pitch setting down to -147. Doing so will temporarily show “44.1” in the ADAT’s LED display, indicating that y[...]

  • Page 9

    6 device is connected, and the AI-1 is receiving its clock information. If the selected Source button’s LED flashes, it means that either no device is connected to the selected input, or the clock information is not being provided by the source to the AI-1, or the clock information being provided by the source is neither 48kHz or 44.1kHz (see sec[...]

  • Page 10

    7 all eight channels of the ADAT digital bus are transferred. When using the BRC Master Remote Control, any two channels can be selected, in which case the ADAT CHANNEL button(s) corresponding to each selected channel will be lit. Example: if the BRC is used to select channels 2 and 5 as the ADAT channels, two of the AI-1’s ADAT CHANNEL buttons ([...]

  • Page 11

    8 indicated by the fact that both the 48kHz and 44.1kHz LEDs will be turned off.[...]

  • Page 12

    9 CHAPTER 2: HOOKUP 2.0 POWER The AI-1 works with any AC voltage from 90 to 250 volts, 50 to 60 Hz. This eliminates the need for transformers or voltage switches. The AI-1 comes with a line cord for the destination to which the AI- 1 is shipped. The AI-1’s IEC-spec AC cord (do not substitute any other AC cord) is designed to feed an outlet that i[...]

  • Page 13

    10 optic digital input; Note: If the other end of a fiber optic cable is disconnected and a signal is being sent through the cable, you will be able to see a red light at the output. This is an LED and not a laser light, so you don’t have to worry about damage to your eyes. 2. Connect one end of a fiber optic cable to the AI-1’s “ADAT” opti[...]

  • Page 14

    11 In the meantime, you may be tempted to reconnect the AI-1 to a different ADAT when you want to route digital audio to tracks on another machine. However, to avoid a lot of cable swapping, we recommend swapping tapes instead. For example, let’s say you have two ADATs, the AI-1 is connected to and from ADAT #1. When you wish to record from an S/[...]

  • Page 15

    12 OUT, and the other end to the third ADAT slave’s DIGITAL IN. Its DIGITAL OUT then connects to the fourth ADAT slave’s DIGITAL IN, and so on; 5. Connect one end of a fiber optic cable to the DIGITAL OUT of the last ADAT in the chain, and connect the other end of the cable to the AI-1’s “ADAT” optic DIGITAL IN; 6. Finally, connect one en[...]

  • Page 16

    13 BRC. This is required so that the BRC can synchronize to an AES/EBU or S/PDIF source. Both these connections can be made while power is on or off, and the ADATs do not need to be turned on in any particular order (see figure 3). To connect the AI-1 to a BRC and a multiple ADAT system: 1. Connect one end of a shielded dual male, 9-pin D connector[...]

  • Page 17

    14 Figure 3 Note: In a multiple ADAT system, if power is turned off on one of the ADATs in the middle of the chain, all ADATs following it will no longer sync to the BRC, as the sync information will not pass through a unit that is turned off.[...]

  • Page 18

    15 2.2 AES/EBU AND S/PDIF 2.2A Connecting an AES/EBU Device Digital routing to and from an AES/EBU device requires XLR type cables. These connections can be made while power is on or off, and the components do not need to be turned on in any particular order. To connect an AES/EBU device: 1. Connect one end of an XLR cable into the AES/EBU XLR outp[...]

  • Page 19

    16 4. Connect the other end of the fiber optic cable to the S/PDIF optic input, OR, connect the other end of the RCA cable to the RCA input of the AI-1. Note: Both the optic and RCA outputs are active when the AI-1’s Destination is set to S/PDIF. This means you can route digital audio to two S/PDIF devices simultaneously. When the AI-1’s Source[...]

  • Page 20

    17 CHAPTER 3: TRANSFERRING DIGITAL AUDIO 3.0 AI-1 TO ADAT Recording from an AES/EBU or S/PDIF source through the AI-1 onto ADAT involves a few very simple steps. First, put the ADAT(s) into Digital In mode by pressing the DIGITAL IN button (the button will be lit). Next, the digital source must be selected. Then, choose the tracks you wish to recor[...]

  • Page 21

    18 RCA input for a sample clock reference. If no sample clock is found (because no device is connected, or the connected device is turned off), the AI-1 will then use the fiber optic input. 3.0B Selecting Record Tracks Once the Source has been determined, the next step is to choose which ADAT tracks are to be used to record the information. This is[...]

  • Page 22

    19 tape on another ADAT, and you avoid having to reconnect your system. 3.0C Destination To route the AI-1 to ADAT, set the AI-1’s Destination to ADAT by pressing the DESTINATION ADAT button. The button’s LED will be lit indicating it has been selected. 3.0D Converting Sample Rate If the source you are recording from is already using a 48kHz cl[...]

  • Page 23

    20 between 48kHz and 44.1kHz. 3.1A Source To route the ADAT to the AI-1, set the AI-1’s Source to ADAT by pressing the SOURCE ADAT button. The button’s LED will be lit indicating it has been selected. Note: When the AI-1’s Source is set to ADAT, the AI-1 links the ADAT optic input to the ADAT optic output, so that digital audio is routed from[...]

  • Page 24

    21 When the Source is set to ADAT, the AI-1’s Destination Rate will automatically be set to 48kHz, since this is the sample rate of ADAT. If you wish to output the digital audio from the AI-1 at 44.1kHz, press the 44.1kHz DESTINATION RATE button (its LED will be lit). This can be used to route digital audio from ADAT to a DAT recorder or CD recor[...]

  • Page 25

    22 … or … Digital input: A ES/EBU … or … Digital input: S /PDIF 4. Use the UP/DOWN buttons to select the digital input that is to be the source for recording: “ADAT”, “AES/EBU” or “S/PDIF” (the corresponding Source LED on the AI-1 will be lit to indicate the current selection); 5. To exit Edit mode, press the EDIT button (the ED[...]

  • Page 26

    23 Digital input: A DAT 3. Press the DIGITAL I/O button again while the digital input display reads “ADAT”; The display will show the following: Select source with trk buttons All the record and input track LEDs will turn off, as they no longer reflect the record/monitor status. The TRACK INPUT LEDs are now used to reflect the current source tr[...]

  • Page 27

    24 onto any ADAT connected to the digital bus. 5. Press the EDIT button to exit Edit mode; 6. Press the DIGITAL I/O button to enable the digital bus (the DIGITAL I/O LED will go on to indicate it is enabled); 7. Use the TRACK SELECT buttons on the BRC to record-enable the destination tracks; 8. Initiate recording on the BRC. • The source tracks w[...]

  • Page 28

    25 on will record the selected Source input from the AI-1. Since only two inputs are available (left and right), these inputs will alternate assignment between all selected record tracks if more than two are selected. To record from the AI-1 onto ADAT using the BRC: 1. Make sure the DIGITAL I/O button is enabled (its LED will be lit); 2. Press the [...]

  • Page 29

    26 5. Press the DIGITAL I/O button twice; The display will show the following: AI-1 Destination A DAT 6. If the AI-1 Destination is set to either “AES/EBU” or “S/PDIF”, use the DOWN button to set the AI-1’s Destination to “ADAT”. 7. Press the DIGITAL I/O button again to access the AI-1’s clock rate; The display will show the followi[...]

  • Page 30

    27 with the incoming source. However, it is important to note that the BRC also requires a 48kHz clock in order to be synchronized to the incoming digital signal (see section 3.2D). Since the BRC has nothing to do with the ADAT’s optic digital bus, you will need to route clock information from the AI-1 to the BRC by connecting the AI-1’s 48kHz [...]

  • Page 31

    28 result in clicks in the audio. For more information on 48kHz clock, see sections 2.1C and 2.3. 3.2E Output ADAT Tracks to AI-1 If the BRC is in Edit mode (the EDIT button is lit), and the DIGITAL I/O button is pressed a third time when the Digital Input is set to "ADAT", (or if it is pressed a second time when set to "AES/EBU"[...]

  • Page 32

    29 lit. Pressing the same button again will disable that track and turn off the LED. You may now select a different track. • A maximum of two tracks may be selected at a time, and they must come from the same tape machine. • When a track is selected as a source, any tracks from other machines that were previously selected will become disabled. [...]

  • Page 33

    30 9. Use the UP/DOWN buttons to select the AI-1’s Destination Rate (48K or 44.1K). This determines the output sample rate of the AI- 1. 3.2F Bouncing Tracks While Outputting To AI-1 The digital output routed from ADAT to the AI-1 will always be active, whether DIGITAL I/O is turned on or off. However, if DIGITAL I/O is on and “ADAT” has been[...]

  • Page 34

    31 after it. However, it is important to note that even though the AI-1’s destination may be set to AES/EBU or S/PDIF, it is still sending all eight channels of the source ADAT back to the first ADAT in the chain. Therefore, it is possible to bounce tracks from the source ADAT onto the same track numbers on the first ADAT, while simultaneously ro[...]

  • Page 35

    32 Note: Even when the AI-1’s destination is set to AES/EBU, the digital bus being received from the last ADAT is routed through back to the first ADAT. Therefore, it is possible to bounce audio from the last ADAT back to the first ADAT, while simultaneously routing two tracks from the last ADAT to an AES/EBU device. 3.3B AES/EBU to ADAT (48kHz) [...]

  • Page 36

    33 In this configuration, the ADAT optic jacks and the AES/EBU XLR jacks are used. In the figure below, ADAT #1 is receiving from an AES/EBU device using a 44.1kHz sampling rate being converted to 48kHz. The proper control settings for this operation are as follows: Source = AES/EBU Destination = ADAT Destination Rate = 48kHz Figure 7 3.3D ADAT to [...]

  • Page 37

    34 3.3E AES/EBU to ADAT (44.1kHz) In this configuration, the ADAT optic jacks and the AES/EBU XLR jacks are used. In the figure below, ADAT #1 is receiving from an AES/EBU device using a 44.1kHz sampling rate without conversion. The proper control settings for this operation are as follows: Source = AES/EBU Destination = ADAT Destination Rate = 44.[...]

  • Page 38

    35 Source = ADAT Destination = S/PDIF Destination Rate = 48kHz Figure 10 Note: Even when the AI-1’s destination is set to S/PDIF, the digital bus being received from the last ADAT is routed through back to the first ADAT. Therefore, it is possible to bounce audio from the last ADAT back to the first ADAT, while simultaneously routing two tracks f[...]

  • Page 39

    36 3.3H S/PDIF to ADAT (44.1kHz to 48kHz) In this configuration, the ADAT optic jacks and the S/PDIF jacks are used. In the figure below, ADAT #1 is receiving from an S/PDIF device using a 44.1kHz sampling rate being converted to 48kHz. The proper control settings for this operation are as follows: Source = S/PDIF Destination = ADAT Destination Rat[...]

  • Page 40

    37 for this operation are as follows: Source = ADAT Destination = S/PDIF Destination Rate = 44.1kHz Figure 13 3.3J S/PDIF to ADAT (44.1kHz) In this configuration, the ADAT optic jacks and the S/PDIF jacks are used. In the figure below, ADAT #1 is receiving from an S/PDIF device using a 44.1kHz sampling rate without conversion. The proper control se[...]

  • Page 41

    38 3.3K ADAT to ADAT In this configuration, the AI-1 becomes a transparent link in a daisy- chain. In the figure below, ADAT #2 is transmitting all 8 tracks to ADAT #1, in addition to all 8 tracks of ADAT #1 being routed to ADAT #2. The sample rate is fixed at 48kHz, and cannot be changed to 44.1kHz. The proper control settings for this operation a[...]

  • Page 42

    39 from another digital source: 1. Press and hold the SET LOCATE button; 2. Press the DIGITAL IN button; The ADAT’s display will momentarily read “int” indicating it will use its own internal clock at all times, even when the DIGITAL IN button is enabled. When you wish to record from the AI-1 again (from an AES/EBU or S/PDIF source), you must[...]

  • Page 43

    40 In this configuration, either the S/PDIF fiber optic jacks or RCA jacks (or both) are used to connect two S/PDIF devices through the AI-1. In the figure below, S/PDIF device #1 is connected to the RCA jacks of the AI-1, while S/PDIF device #2 is connected to the fiber optic jacks. This scenario would only occur when you wished to use the AI-1 to[...]

  • Page 44

    41 CHAPTER 4: APPENDICES 4.0 APPENDIX 1: SPECIFICATIONS Number of Digital Audio Channels: ADAT: 8 AES/EBU, S/PDIF: 2 Sample Clock Input range: 48 kHz nominal. User variable from 50.8 to 40.4kHz (+1, -3 semitones). Digital Inputs/Outputs: Connectors: Four EIAJ fiber optic jacks (2 inputs, 2 outputs); two RCA connectors (1 input, 1 output); two XLR c[...]

  • Page 45

    42 Dimensions (H x W x D): 1-3/4" x 19" x 6-1/4" Weight: 4.5 lbs (2 kg) Shipping Weight: 7 lbs (3.1 kg) Accessories Included: IEC style AC power cord Owner’s Manual Optional Accessories: RMB Remote Meter Bridge BRC Master Remote Control[...]

  • Page 46

    43 4.1 APPENDIX 2: MAINTENANCE/SERVICE INFORMATION 4.1A Cleaning Disconnect the AC cord, then use a damp cloth to clean the AI-1’s metal and plastic surfaces. 4.1B Maintenance Here are some tips for preventive maintenance: • Periodically check the AC cord for signs of fraying or damage. • Unplug the AI-1 when not in use for extended periods o[...]