Go to page of
Similar user manuals
-
Power Supply
Fluke Ti45
136 pages 0.79 mb -
Power Supply
Fluke 1744
73 pages 1.01 mb -
Power Supply
Fluke 960PS-210
16 pages 0.11 mb -
Power Supply
Fluke 1743
73 pages 1.01 mb -
Power Supply
Fluke Ti50
136 pages 0.79 mb -
Power Supply
Fluke 2620A
197 pages 0.88 mb -
Power Supply
Fluke 43B
53 pages 0.84 mb -
Power Supply
Fluke FLK-TI-SBC3
2 pages 0.29 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of Fluke 2635A, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Fluke 2635A one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of Fluke 2635A. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of Fluke 2635A should contain:
- informations concerning technical data of Fluke 2635A
- name of the manufacturer and a year of construction of the Fluke 2635A item
- rules of operation, control and maintenance of the Fluke 2635A item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Fluke 2635A alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Fluke 2635A, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Fluke service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Fluke 2635A.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the Fluke 2635A item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
® Note This manual applies to SN 6560XXX and higher. HYDRA 2620A Data Acquisition Unit 2625A Data Logger 2635A Data Bucket Service Manual PN 202231 February 1997 © 1997 Fluke Corporation, Al l rights reserved. Printed i n U.S.A. All product names are trademarks of their respective companies.[...]
-
Page 2
LIMI TED W ARRANTY & LI MITATI O N OF LIABI LI TY Each Fluke product is warr ant ed t o be free fr om def ects in mater ial and workmanship under normal use and ser vice. The warranty per iod is one year and begins on t he dat e of shipment. Par ts, product r epair s and services are warr ant ed for 90 days. This warranty ext ends only t o the [...]
-
Page 3
Caution This is an IEC Saf et y Cl ass 1 product. Before usi ng, t he ground wire i n t he l ine cord or the rear panel bi ndi ng post must be connected for safet y. Interference Information This equipment generates and uses radio frequency ener gy and if not installed and used in strict accordance with the manufacturer’s instr uctions, may cause[...]
-
Page 4
[...]
-
Page 5
Safety Summary Safety Terms in this Manual This instrument has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronical Measuring, Control and Laboratory Equipment. This Service Manual contains information, warnings, and cautions that must be followed to ensure safe operation and to maintain the instrum[...]
-
Page 6
Use the Proper Fuse To avoid fire hazard, use only a fuse identical in type, voltage rating, and current rating as specified on the rear panel fuse rating label. Grounding the Standar d The instrument utilized controlled overvoltage techniques that require the instrument to be grounded whenever normal mode or common mode ac voltage or transient vol[...]
-
Page 7
i Table of Contents Chapter Titl e Page 1 Introduction and Specifications........................................................ 1-1 1-1. Introduction ......................................................................................... 1-3 1-2. Options and Accessories ..................................................................... 1-3 1[...]
-
Page 8
HYDRA Service M anual ii 2-32. Digital Kernel ............................................................................. 2-10 2-43. Digital I/O ................................................................................... 2-14 2-44. Digital Input Threshold .............................................................. 2-15 2-45. Digital In[...]
-
Page 9
Contents (c ontinued) iii 2A-22. Main PCA ........................................................................................ 2A-7 2A-23. Power Supply Circuit Description ............................................... 2A-8 2A-31. Digital Kernel .............................................................................. 2A-10 2A-42. Digital[...]
-
Page 10
HYDRA Service M anual iv 3-22. Install Miscellaneous Chassis Components .................................... 3-13 3-23. Install the A/D Converter PCA ....................................................... 3-13 3-24. Install the Main PCA ...................................................................... 3-14 3-25. Install the IEEE-488 Opt ion ([...]
-
Page 11
Contents (c ontinued) v 5-7. Power Fail Detection ....................................................................... 5-8 5-8. 5-Volt Switching Supply.................................................................. 5-8 5-9. Inverter ............................................................................................ 5-9 5-10. Analog T[...]
-
Page 12
HYDRA Service M anual vi 5A-30. Failure to Illuminate the Battery Led .......................................... 5A-31 5A-31. Failure to Write to Memory Card ................................................ 5A-32 5A-32. Write/Read Memory Card Test (Destructive) ............................. 5A-32 6 List of Replaceable P arts .......................[...]
-
Page 13
vii List of Tables Table Titl e Page 1-1. Hydra Features ......................................................................................................... 1-6 1-2. Accessories ............................................................................................................ 1-7 1-3. 2620A/2625A Specifications .....................[...]
-
Page 14
HYDRA Service M anual viii 5-3. Power Supply Troubleshooting Guide................................................................... 5-13 5-4. DC Volts HI Troubleshooting ............................................................................... 5-17 5-5. AC Volts HI Troubleshooting ............................................................[...]
-
Page 15
ix List of Figures Figure Titl e Page 2-1. Interconnect Diagram ............................................................................................ 2-4 2-2. Overall Functional Block Diagram........................................................................ 2-5 2-3. Analog Simplified Schematic Diagram ..................................[...]
-
Page 16
HYDRA Service M anual x 5-6. Integrator Output ................................................................................................... 5-17 5-7. Microprocessor Timing ......................................................................................... 5-20 5-8. Test Points, Display PCA (A2) .........................................[...]
-
Page 17
1-1 Chapter 1 Introduction and Specifications Title Page 1-1. Introduction .......................................................................................... 1-3 1-2. Options and Accessories ...................................................................... 1-3 1-3. Operating I nstructions ...............................................[...]
-
Page 18
HYDRA Service M anual 1-2[...]
-
Page 19
Introduction and Specifications Introduction 1 1-3 1-1. Introduction Hydra measures analog inputs of dc and ac volts, thermocouple and RTD temperatures, resistance, and frequency. It features 21 measurement input channels. In addition, it contains eight digital input/output lines, one totalizing input, one external scan trigger input, and four alar[...]
-
Page 20
HYDRA Service M anual 1-4 1-4. Organization of the Service Manual This manual focuses on performance tests, calibration procedures, and component-level repair of each of the instruments. To that end, manual sections are often interdependent; effective troubleshooting may require not only reference to the troubleshooting procedures in Section 5, but[...]
-
Page 21
Introduction and Specifications Conventions 1 1-5 Chapter 7. IEEE-488 Opti on (2620A only) This chapter describes the IEEE-488 option. Included are specifications, theory of operation, maintenance, and a list of replaceable parts. Schematic diagrams for this option are included at the end of the overall Service Manual (Chapter 8). Chapter 8. Schema[...]
-
Page 22
HYDRA Service M anual 1-6 Table 1-1. Hydra Features • Channel Scanning Can be continuous s canning, sc anning at an interval time, single s cans, or triggered (internal or ex ternal) scans . • Channel Monitoring Make m easurements on a single channel and view these meas urements on the dis play. • Channel Scanning and Monitoring View measurem[...]
-
Page 23
Introduction and Specifications Specifications 1 1-7 Table 1-2. Accessories Model Description 80i-410 80i-1010 Clamp-On DC/AC C urrent Probes 80J-10 Current Shunt 2620A-05K Field-installable IEEE-488 Option k it (Hydra Data Acquisition Unit only .) 2620A-100 Extra I/O Connec tor Set: Includes Univ ersal Input Module, Digital I/O and Alarm Output Co[...]
-
Page 24
HYDRA Service M anual 1-8 Table 1-3. 2620A/2625A Specifications The instrument s pecifications presented here are applicable within the c onditions listed in the Environmental portion of this s pecification. The specific ations state total ins trument acc uracy follow ing calibration, including: • A/D errors • Linearization conform ity • Init[...]
-
Page 25
Introduction and Specifications Specifications 1 1-9 Table 1-3. 2620A/2625A Specifications (cont) Thermocouple Inputs Thermocouple Accuracy ( ±° C)* 18 ° C to 28 ° C0 ° C to 60 ° C Type Temperature ( ° C) 90 Days Slow 1 Year Slow 1 Year Fast 1 Year Slow 1 Year Fast J -100.00 0.00 760.00 0.49 0.38 0.49 0.53 0.40 0.54 1.00 0.77 0.97 0.73 0.53 [...]
-
Page 26
HYDRA Service M anual 1-10 Table 1-3. 2620A/2625A Specifications (cont) Thermocouple Inputs (cont) Input Impedance 100 M Ω minim um in parallel with 150 pF max imum Common Mode and Normal Mode Rejection See Specifications , DC Voltage Inputs Crosstalk Rejection Refer to "Cross talk Rejection" at the end of this table. Open Thermocouple [...]
-
Page 27
Introduction and Specifications Specifications 1 1-11 Table 1-3. 2620A/2625A Specifications (cont) AC Voltage Inputs (True RMS AC Voltage, AC-Coupled Inputs) Range Resolution Minimum Input for Slow Fast Rated Accuracy 300 mV 10 µ V 100 µ V 20 mV 3V 100 µ V 1 mV 200 mV 30V 1 mV 10 mV 2V 300V 10 mV 100 mV 20V 1 Year Accuracy ± (% ± V) Frequency [...]
-
Page 28
HYDRA Service M anual 1-12 Table 1-3. 2620A/2625A Specifications (cont) AC Voltage Inputs (True RMS AC Voltage, AC-Coupled Inputs) (cont) Maximum Frequency Input at Upper Frequency 20 Hz - 50 Hz 50 Hz - 100 Hz 100 Hz - 10 kH z 10 kHz - 20 k Hz 20 kHz - 50 k Hz 50 kHz - 100 k Hz 300V rms 300V rms 200V rms 100V rms 40V rms 20V rms Input Impedance 1 M[...]
-
Page 29
Introduction and Specifications Specifications 1 1-13 Table 1-3. 2620A/2625A Specifications (cont) Ohms Input Range Resolution Typical Full Maximum Current Maximum Open Slow Fast Scale Voltage Through Unknown Circuit Voltage 300 Ω 10 m Ω 0.1 Ω 0.22V 1 mA 3.2V 3 k Ω 0.1 Ω 1 Ω 0.25V 110 µ A1 . 5 V 30 k Ω 1 Ω 10 Ω 0.29V 13 µ A1 . 5[...]
-
Page 30
HYDRA Service M anual 1-14 Table 1-3. 2620A/2625A Specifications (cont) Frequency Inputs (cont) Sensitivity Frequency Level (sine Wave) 15 Hz - 100 kH z 100 kHz - 300 k Hz 300 kHz - 1 M Hz Above 1 MHz 100 mV rms 150 mV rms 2V rms NotSpecified Maximum AC Input 300V rms or 424V peak on channels 0, 1, and 11 150V rms or 212V peak on channels 2 to 10 a[...]
-
Page 31
Introduction and Specifications Specifications 1 1-15 Table 1-3. 2620A/2625A Specifications (cont) Maximum Autoranging Time (Seconds per Channel) Function Range Change Slow Fast VDC 300 mV to 150V 0.25 0.19 150V to 300 mV 0.25 0.18 VAC 300 mV to 150V 1.40 1.10 150V to 300 mV 1.40 1.10 Ohms 300 Ω to 10.0 M Ω 1.70 0.75 10.0 M Ω to 300 Ω 1.70 [...]
-
Page 32
HYDRA Service M anual 1-16 Table 1-3. 2620A/2625A Specifications (cont) Digital and Alarm Outputs Output Logic Lev els Logical "zero": Logical "one": 0.8V max for an Iout of -1.0 mA (1 LSTTL load) 3.8V min for an Iout of 0.05 mA (1 LSTTL load) For non-TTL loads: Logical "zero": 1.8V max for an Iout of -20 mA 3.25V max [...]
-
Page 33
Introduction and Specifications Specifications 1 1-17 Table 1-3. 2620A/2625A Specifications (cont) Memory Life 10 years m inimum over O perating Temperature range Stores: real-time clock , set-up configuration, and meas urement data Common M ode Voltage 300V dc or ac rm s maxim um from any analog input(c hannel) to earth provided that channel to c [...]
-
Page 34
HYDRA Service M anual 1-18 Table 1-3. 2620A/2625A Specifications (cont) 2620A Options IEEE-488 (Option -05K) Capability codes :SH1, AH1, T5, L4, SR1, RL1, PP0, DC 1, DT1, E1, TE0, LE0 and C0 Complies with IEEE-488.1 s tandard Crosstalk Rejection AC signals c an have effects on other channels(c rosstalk ). These effects are discuss ed here by measur[...]
-
Page 35
Introduction and Specifications Specifications 1 1-19 Table 1-3. 2620A/2625A Specifications (cont) AC Signal Crosstalk into an Ohms Channel AC Frequency = 50, 60 H z, ± 0.1% OHMS Error Ratio = Ohmss erro r VAC rms crosst alk () () Range R atio (worst case) Ratio (typical) 300.00 Ω 3.3 x 10 -5 Ohms VAC rms [...]
-
Page 36
HYDRA Service M anual 1-20 Table 1-4. 2635A Specifications The instrument s pecifications presented here are applicable within the c onditions listed in the Environmental portion of this s pecification. The specific ations state total ins trument acc uracy follow ing calibration, including: • A/D errors • Linearization conform ity • Initial c[...]
-
Page 37
Introduction and Specifications Specifications 1 1-21 Table 1-4. 2635A Specifications (cont) Input Impedance 100 M Ω minimum in parallel with 150 pF maxim um for all ranges 3V and below 10 M Ω in parallel with 100 pF maxim um for the 30V and 300V ranges. Normal Mode Rejection 53 dB minimum at 60 H z ± 0.1%, slow rate 47 dB minimum at 50 H z ±[...]
-
Page 38
HYDRA Service M anual 1-22 Table 1-4. 2635A Specifications (cont) Thermocouple Inputs Temperature Measurements - Accuracy (Thermocouples) (IPTS-68) Thermocouple Accuracy ( ±° C)* 18 ° C to 28 ° C0 ° C to 60 ° C Type Temperature ( ° C) 90 Days Slow 1 Year Slow 1 Year Fast 1 Year Slow 1 Year Fast J -100 to -30 -30 to 150 150 to 760 0.44 0.40 0[...]
-
Page 39
Introduction and Specifications Specifications 1 1-23 Table 1-4. 2635A Specifications (cont) Thermocouple Inputs Temperature Measurements - Accuracy (Thermocouples) (ITS-90) Thermocouple Accuracy ( ±° C)* 18 ° C to 28 ° C0 ° C to 60 ° C Type Temperature ( ° C) 90 Days Slow 1 Year Slow 1 Year Fast 1 Year Slow 1 Year Fast J -100 to -30 -30 to [...]
-
Page 40
HYDRA Service M anual 1-24 Table 1-4. 2635A Specifications (cont) Thermocouple Inputs (cont) Input Impedance 100 M Ω minim um in parallel with 150 pF max imum Common Mode and Normal Mode Rejection See Specifications , DC Voltage Inputs Crosstalk Rejection Refer to "Cross talk Rejection" at the end of Table 1-3. Open Thermocouple Detect [...]
-
Page 41
Introduction and Specifications Specifications 1 1-25 Table 1-4. 2635A Specifications (cont) AC Voltage Inputs (True RMS AC Voltage, AC-Coupled Inputs) Range Resolution Minimum Input for Slow Fast Rated Accuracy 300 mV 10 µ V 100 µ V 20 mV 3V 100 µ V 1 mV 200 mV 30V 1 mV 10 mV 2V 150/300V 10 mV 100 mV 20V 1 Year Accuracy ± (% ± V) Frequency 18[...]
-
Page 42
HYDRA Service M anual 1-26 Table 1-4. 2635A Specifications (cont) AC Voltage Inputs (True RMS AC Voltage, AC-Coupled Inputs) (cont) Maximum Frequency Input at Upper Frequency 20 Hz - 50 Hz 50 Hz - 100 Hz 100 Hz - 10 kH z 10 kHz - 20 k Hz 20 kHz - 50 k Hz 50 kHz - 100 k Hz 300V rms 300V rms 200V rms 100V rms 40V rms 20V rms Input Impedance 1 M Ω i[...]
-
Page 43
Introduction and Specifications Specifications 1 1-27 Table 1-4. 2635A Specifications (cont) Ohms Input Range Resolution Typical Full Maximum Current Maximum Open Slow Fast Scale Voltage Through Unknown Circuit Voltage 300 Ω 10 m Ω 0.1 Ω 0.22V 1 mA 3.2V 3 k Ω 0.1 Ω 1 Ω 0.25V 110 µ A1 . 5 V 30 k Ω 1 Ω 10 Ω 0.29V 13 µ A1 . 5 V 300[...]
-
Page 44
HYDRA Service M anual 1-28 Table 1-4. 2635A Specifications (cont) Frequency Inputs (cont) Sensitivity Frequency Level (sine Wave) 15 Hz - 100 kH z 100 kHz - 300 k Hz 300 kHz - 1 M Hz Above 1 MHz 100 mV rms 150 mV rms 2V rms NotSpecified Maximum AC Input 300V rms or 424V peak on channels 0, 1, and 11 150V rms or 212V peak on channels 2 to 10 and 12 [...]
-
Page 45
Introduction and Specifications Specifications 1 1-29 Table 1-4. 2635A Specifications (cont) Maximum Autoranging Time (Seconds per Channel) Function Range Change Slow Fast VDC 300 mV to 150V 0.25 0.19 150V to 300 mV 0.25 0.18 VAC 300 mV to 150V 1.40 1.10 150V to 300 mV 1.40 1.10 Ohms 300 Ω to 10.0 M Ω 1.70 0.75 10.0 M Ω to 300 Ω 1.50 0.60 T[...]
-
Page 46
HYDRA Service M anual 1-30 Table 1-4. 2635A Specifications (cont) Digital and Alarm Outputs Output Logic Lev els Logical "zero": Logical "one": 0.8V max for an Iout of -1.0 mA (1 LSTTL load) 3.8V min for an Iout of 0.05 mA (1 LSTTL load) For non-TTL loads: Logical "zero": 1.8V max for an Iout of -20 mA 3.25V max for an[...]
-
Page 47
Introduction and Specifications Specifications 1 1-31 Table 1-4. 2635A Specifications (cont) Genera l Channel Capacity 21 Analog Inputs 4 Alarm Outputs 8 Digital I/O (Inputs/O utputs) Measurem ent Speed Slow rate: Fast rate: 4 readings/second nominal 17 readings/sec ond nominal 1.5 readings/sec ond nominal for ACV and high- Ω inputs For additiona[...]
-
Page 48
HYDRA Service M anual 1-32[...]
-
Page 49
2-1 Chapter 2 Theory of Operation (2620A/2625A) Title Page 2-1. Introduction .......................................................................................... 2-3 2-2. Functional Block Description............................................................... 2-3 2-3. Main PCA Circuitry .....................................................[...]
-
Page 50
HYDRA Service Manual 2-2 2-47. Totalizer Input ............................................................................. 2-16 2-48. External Trigger I nput Circuits.................................................... 2-16 2-49. A/D Converter PCA ......................................................................... 2-16 2-50. Analog Measurem[...]
-
Page 51
Theory of Operation (2620A/2625A) Introduction 2 2-3 2-1 . Introduct ion The theory of operation begins with a general overview of the instrument and progresses to a detailed description of the circuits of each pca. The instrument is first described in general terms with a Functional Block Description. Then, each block is detailed further (often to[...]
-
Page 52
HYDRA Service M anual 2-4 DIGITAL I/O AND TOTALIZE INPUT ALARM OUTPUTS SCAN TRIGGER INPUT RS-232 AC IN J3 J5 J6 J4 J2 J1 P10 J10 J1 P2 J2 P1 J1 P1 P1 TB2 TB1 A/D CONVERTER MAIN DISPLAY 2625A ONLY IEEE ANALOG INPUT CONNECTOR 2620A ONLY REAR PANEL MEMORY CHANNELS 11…20 CHANNELS 1…10 CHANNEL 0 S1F.EPS Figure 2-1. Interconnect Diagram[...]
-
Page 53
Theory of Operation (2620A/2625A) Functional Block Description 2 2-5 –5.4 Vdc (Vss) +5.3Vdc (Vdd) +5.1 Vdc (Vcc) –5 Vdc POWER SUPPLY DIGITAL KERNEL EEPROM CALIBRATION CONSTANTS RAM ROM IEEE-488 OPTION -05 (2620A ONLY) RS-232 µ P FRONT PANEL SWITCHES DISPLAY CONTROLLER VACUUM FLUORESCENT DISPLAY DISPLAY ASSEMBLY SERIAL COMMUNICATION ANALOG MEAS[...]
-
Page 54
HYDRA Service M anual 2-6 2-6. Serial Communication ( G uar d Cr ossing) This functional block provides a high isolation voltage communication path between the Digital Kernel of the Main PCA and the microcontroller on the A/D Converter PCA. This bidirectional communication circuit requires power supply voltages from the Power Supply block. 2-7. Dig[...]
-
Page 55
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-7 2-14. Channel Selection Circuitr y This circuitry consists of a set of relays and relay-control drivers. The relays form a tree that routes the input channels to the measurement circuitry. Two of the relays are also used to switch between 2-wire and 4-wire operation. 2-15. O pen T[...]
-
Page 56
HYDRA Service M anual 2-8 2-24. Power Supply Circuit Descr ipt ion The Hydra power supply consists of three major sections: • Raw DC Supply The raw dc supply converts line voltage (90V to 264V ac) to a dcoutput of 7.5V to 35V. • 5V Switcher Supply The 5V switching supply regulates the 7.5 to 35V dc input to a nominal 5.1V ±0.25V dc (VCC). • [...]
-
Page 57
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-9 Dual inductor A1T2 regulates the current that flows from the raw supply to the load as the switching transistor in A1U9 is turned on and off. Complementary switch A1CR10 conducts when the switching transistor is off. The pulse-width modulator comparator in A1U9 compares the output[...]
-
Page 58
HYDRA Service M anual 2-10 amplifier. A1VR2 is the reference for the positive supply. A 1R14 provides the current to bias the reference zener. A1C4 is the output filter, and A 1C9 provides frequency compensation of the regulator circuit. Transistor A1Q1 and resistor A1R13 make up the current-limit circuit. When the voltage across A1R13 increases en[...]
-
Page 59
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-11 The Microprocessor communicates to the Microcontroller on the A/D Converter PCA (via the Serial Communication circuit) using an asynchronous communication protocol at 4800 baud. Communication to the Microcontroller (A3U9) originates at A1U4-11. Communication from the A/D’ s Mic[...]
-
Page 60
HYDRA Service M anual 2-12 phototransistor base discharges through A1R16. With this arrangement, the rise and fall times of the phototransistor collector signal are nearly symmetrical. The transmission of data from the Microcontroller (A3U9) to the Microprocessor (A1U4) is accomplished via the circuit made up of A3 Q1, A3R7, A 1U5, A1R7, and A1R3. [...]
-
Page 61
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-13 2-39. EEPRO M The EEPROM contains 64 registers, each of which is 16 bits long. These registers are used to provide nonvolatile storage of some of the instrument configuration information and all of the calibration information. When the Microprocessor is communicating to the EEPRO[...]
-
Page 62
HYDRA Service M anual 2-14 Data Terminal Ready (DTR) is a modem control signal controlled by the Microprocessor. When the instrument is powered up, the Microprocessor port pin (A1U4-32) goes high, which results in the RS-232 driver output (A1U25-7) going to - 5.0V dc. When the instrument has initialized the SCI and is ready to receive and transmit,[...]
-
Page 63
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-15 2-44. Digital Input Thr eshold 2-1. The Digital Input Threshold circuit sets the input threshold level for the Digital Input Buffers and the Totalizer Input. A software programmable voltage divider (A1U17, A1R35, A1R36, A1R37) and a unity gain buffer amplifier (A1AR1) are the mai[...]
-
Page 64
HYDRA Service M anual 2-16 2-47. Totalizer Input The Totalizer Input circuit consists of Input Protection, a Digital Input Buffer circuit, and a Totalizer Debouncer circuit. The Digital Input Buffer for the totalizer is protected from electrostatic discharge (ESD) damage by A1R49 and A1C43. Refer to the detailed description of the Digital Input Buf[...]
-
Page 65
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-17 The Analog Measurement Processor (A3U 8) is a 68-pin CMOS device that, under control of the A/D Microcontroller (A3U9), performs the following functions: • I nput signal routing • I nput signal conditioning • Range switching • Passive filtering of dc voltag e and resistan[...]
-
Page 66
HYDRA Service M anual 2-18 Ω K16 V LO/RRS LO R32 10 11 13 14 15 16 19 21 10K 1M 100K 10M 1K 300 Ω 300V 3 K Ω 300 K Ω 3 M Ω , 10 M Ω 30V 30 K Ω 30 VDC 300 VDC 23 S2 3 VDC/300 MVDC/TC/ Ω Z4 DIVIDER SWITCHING TO OHMS SOURCE & RRS HI S3 LOW S16 S42 S19 S18 RRS LOW DC HI RRS HI RRS LOW A/D U8 ANALOG MEASUREMENT PROCESSOR * TO REFEREN[...]
-
Page 67
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-19 Table 2-4. Analog Measurement Processor Pin Descriptions Pin Name Description 1 2 3 4 5 VDD ACBO AIN AGND2 ACR4 +5.4V supply AC buffer output (not used) Analog ground AC buffer range 4 (300V) 6 7 8 9 10 ACR3 ACR2 ACR1 VSSA REFJ AC buffer range 3 (30V) AC buffer range 2 (3V) AC bu[...]
-
Page 68
HYDRA Service M anual 2-20 Table 2-4. Analog Measurement Processor Pin Descriptions (cont) Pin Name Description 46 47 48 49 50 SUM B.1 B.32 B1 B3.2 Integrator summing node Buffer output, 100 mV range Buffer output, 300 mV range Buffer output, 1000 mV range Buffer output, 3V range 51 52 53 54 55 VREF+ VREF- RAO RA+ RA- A/D voltage reference plus A/D[...]
-
Page 69
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-21 Table 2-5. Function Relay States Relay Position Function A3K17 A3K16 A3K15 DC mV, 3V,Therm ocouples Reset Set Set DC 30V, 300V Set Set Set ACV Set Set Reset Ohms, RTDs Reset Rese t Set Frequency Set Set Reset 2-54. DC Volts and Therm ocouples For the 3V and lower ranges (includin[...]
-
Page 70
HYDRA Service M anual 2-22 PASSIVE FILTER A/D HIGH LOW A3R34 A3Z4 10.01k A3K16 S9 S3 S10 A3Z4 10M A3R10 A3R11 A3K17 S2 INPUT HI INPUT LO s4f.eps Figure 2-4. DC Volts 300V Range Simplified Schematic When an input is switched in for a measurement, the ohms source in Analog Processor A3U8 is set to the correct voltage for the range selected and is con[...]
-
Page 71
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-23 OHMS VOLTAGE SOURCE A/D INTEGRATE REFERENCE LOW HIGH A3R34 A3Z4 REFERENCE RESISTOR R REF + – VR REF A3K16 A3RT1 & A3R10 A3K17 UNKNOWN RESISTOR PASSIVE FILTER A/D INTEGRATE UNKNOWN HIGH LOW I X A3R11 R X VR X VR X VR REF = I X •R X I X •R REF R REF R X = + - LO HI A3R42 [...]
-
Page 72
HYDRA Service M anual 2-24 Since virtually no current flows through the sense path, no error voltages are developed that would add to the voltage across the unknown resistance; this 4-wire measurement technique eliminates user lead-wire and instrument relay contact and circuit board trace resistance errors. 2-56. AC Volts AC-coupled ac voltage inpu[...]
-
Page 73
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-25 Table 2-6. AC Volts Input Signal Dividers Range Drive Signal A3Z3 Divider Resistor(s) Overall Gain 300 mV ACR1 111.1 k Ω 2.5 3V AC R2 12.25 k Ω || 111.1 k Ω 0.25 30V ACR3 1.013 k Ω || 111.1 k Ω 0.025 150/300V ACR4 none 0.0025 The output of the buffer is ac-coupled by A3[...]
-
Page 74
HYDRA Service M anual 2-26 2-59. A/D Converter Figure 2-7 shows the dual slope a/d converter used in the instrument. The unknown input voltage is buffered and used to charge (integrate) a capacitor for an exact period of time. This integrator capacitor is then discharged by the buffered output of a stable and accurate reference voltage of opposite [...]
-
Page 75
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-27 The current through the selected integrator input resistor charges integrator capacitor A3C13, with the current dependent on the buffer output voltage. After the integrate phase, the buffer is connected to the opposite polarity reference voltage, and the integrator integrates bac[...]
-
Page 76
HYDRA Service M anual 2-28 The coils for the relays are driven by the outputs of Darlington drivers A3U4, A3U5, A3U10, A 3U11, and A3U12. The relays are sw itched when a 6-millisecond pulse is applied to the appropriate reset or set coil by the NPN D arlington drivers in these ICs. When the port pin of Microcontroller A3U9 connected to the input of[...]
-
Page 77
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-29 2-64. Di splay PCA Display Assembly operation is classified into six functional circuit blocks: the Main PCA Connector, the Front Panel Switches, the Display, the Beeper Drive Circuit, the Watchdog Timer/Reset Circuit, and the Display Controller. These blocks are described in the[...]
-
Page 78
HYDRA Service M anual 2-30 approximately 20 k Ω . Checking resistances between any two signals (SWR1 through SWR6) verifies proper termination by resistor network A2Z1. 2-67. Display The custom vacuum-fluorescent display (A2DS1) comprises a filament, 11 grids (numbered 0 through 10 from right to left on the display), and up to 14 anodes under eac[...]
-
Page 79
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-31 4.75-second watchdog timeout period. Each time a low-to-high transition of DISTX is detected on A2U5-2, capacitor A 2C2 is discharged to restart the timeout period. If there are no low-to-high transitions on DISTX during the 4.75-second period, A2U 5-13 transitions from high to l[...]
-
Page 80
HYDRA Service M anual 2-32 Table 2-8. Display Initialization Modes A2TP4 A2TP5 Power-Up Display Initialization 1 1 All Segments OF F 1 0 All Segments ON (default) 0 1 Display Tes t Pattern #1 0 0 Display Tes t Pattern #2 The Display Controller provides 11 grid control outputs and 15 anode control outputs (only 14 anode control outputs are used). Ea[...]
-
Page 81
Theory of Operation (2620A/2625A) Detailed Circuit Description 2 2-33 1.14 ms 0V 5V ANODE(14..0) -30V GRID(X) -30V GRID(X-1) GRID/ANODE TIMING 5V -30V 60 µ s 19 µ s 98 µ s 56 µ s 116 µ s 0V 5V 0V s10f.eps Figure 2-10. Grid-Anode Timing Relationships 2-71. M emory PCA ( 2625A Only) The Memory PCA is a serially-accessed, byte-wide, nonvolatile 2[...]
-
Page 82
HYDRA Service M anual 2-34 the WE* signa l is low, NAND gat e output A6U2-3 goes high to lat ch the data bus i nto the lower part of the page register (A6U1).When register select PAGEH goes high and the WE* signa l is low, NAND gat e output A6U2-8 goes high to lat ch the lower t hree bit s of the data bus into the high part of the page register (A6[...]
-
Page 83
2A-1 Chapter 2A Theory of Operation (2635A) Title Page 2A-1. I ntroduction .......................................................................................... 2A-3 2A- 2. Functional Block Description............................................................... 2A- 3 2A-3. Main PCA Circuitry .................................................[...]
-
Page 84
HYDRA Service M anual 2A-2 2A-46. Totalizer Input ............................................................................. 2A-19 2A-47. External Trigger I nput Circuits.................................................... 2A-20 2A-48. A/D Converter PCA ......................................................................... 2A-20 2A- 49. Analo[...]
-
Page 85
Theory of Operation (2635A) Introduction 2A 2A-3 2A-1. Introduction The theory of operation begins with a general overview of the instrument and progresses to a detailed description of the circuits of each pca. The instrument is first described in general terms with a Functional Block Description. Then, each block is detailed further (often to the [...]
-
Page 86
HYDRA Service M anual 2A-4 DIGITAL I/O AND TOTALIZE INPUT ALARM OUTPUTS SCAN TRIGGER INPUT RS-232 AC IN J3 J5 J6 J4 J2 P4 P10 J10 J1 P2 J2 P1 J1 TB2 TB1 A/D CONVERTER MAIN DISPLAY P2 MEMORY CRAD INTERFACE ANALOG INPUT CONNECTOR CHANNELS 11…20 CHANNELS 1…10 CHANNEL 0 S11F.EPS FIGURE 2A-1. Inter connectDiagram (2635A)[...]
-
Page 87
Theory of Operation (2635A) Functional Block Description 2A 2A-5 –5.4 Vdc (V SS ) +5.3Vdc (V DD ) +5.1 Vdc (V CC ) –5 Vdc (V EE ) POWER SUPPLY FPGA ADDRESS DECODING RESET CIRCUITS µ P FRONT PANEL SWITCHES DISPLAY CONTROLLER VACUUM FLUORESCENT DISPLAY DISPLAY ASSEMBLY ANALOG MEASUREMENT PROCESSOR (A/D CONVERTER) INPUT SIGNAL CONDITIONING INPUT [...]
-
Page 88
HYDRA Service M anual 2A-6 2A-6. Seri al Comm unication (Guard C rossing) This functional block provides a high isolation voltage communication path between the Digital Kernel of the Main PCA and the microcontroller on the A/D Converter PCA. This bidirectional communication circuit requires power supply voltages from the Power Supply block. 2A-7. D[...]
-
Page 89
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-7 2A-14. Channel Selection C ircuitr y This circuitry consists of a set of relays and relay-control drivers. The relays form a tree that routes the input channels to the measurement circuitry. Two of the relays are also used to switch between 2-wire and 4-wire operation. 2A-15. Open The[...]
-
Page 90
HYDRA Service M anual 2A-8 2A-23. Power Supply Ci rcuit Descr iption The Hydra power supply consists of three major sections: • Raw DC Supply The raw dc supply converts line voltage (90V to 264V ac) to a dcoutput of 7.5V to 35V. • 5V Switcher Supply The 5V switching supply regulates the 7.5 to 35V dc input to a nominal 5.0V ±0.25V dc (VCC). ?[...]
-
Page 91
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-9 The output voltage of the switcher supply is controlled by varying the duty cycle (ON time) of the switching transistor in the controller/switch device A1 U9. A1U9 contains the supply reference, oscillator, switch transistor, pulse-width modulator comparator, switch drive circuit, cur[...]
-
Page 92
HYDRA Service M anual 2A-10 2A-29. Inverter Inguard Supply The inverter i nguard supply provides three out puts: +5.3V dc (VDD) and -5.4V dc (VSS) for the inguar d analog and digital circuitry, and +5.6V dc ( VDDR) for the rela ys. Diodes A1CR5 and A1CR6, and capacitor A1C12 are for the +9.5 volt source, and diodes A1CR7 and capacitor A1C13 are for[...]
-
Page 93
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-11 The Display Reset signal (DR ST*) is driven low by A1U2-6 w hen POR* is low , or it may be driven low by the Microprocessor (A1U1-56) if the instrument firmw are needs to reset only the display hardware. For example, the firmware resets the display hardware after the FPGA is loaded a[...]
-
Page 94
HYDRA Service M anual 2A-12 The Microprocessor communicates to the Display Controller using a synchronous, three- wire communication interface controlled by hardware in the Microprocessor. Information is communicated to the Display Controller to display user interface menus and measurement data. Details of this communication are described in the Di[...]
-
Page 95
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-13 2A-34. Address Decoding The four chip-select outputs on the Microprocessor are individual software programmed elements that allow the Microprocessor to select the base address, the size, and the number of wait states for the memory accessed by each output. The FLASH* signal (A1U 1-12[...]
-
Page 96
HYDRA Service M anual 2A-14 2A-35. Flash EPROM The Flash EPROM is an electrically erasable and programmable memory that provides storage of instructions for the Microprocessor and measurement calibration data. A switching power supply composed of A1U15, A1T3, A1CR21, and A1C66 through A1C69 generates a nominal +12 volt programming power supply (VPP[...]
-
Page 97
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-15 The SRAM* address decode output (A1U1-127) for the 128 kilobytes of N VRAM goes low for any memory access to A1U 20 or A1U24. This signal must go through two NAND gates in A1U26 to t he NVRAM chip select i nputs (A1U20-22 and A1U24-22). This ensures that when the instrument is powere[...]
-
Page 98
HYDRA Service M anual 2A-16 2A-38. Displ ay/Keyboard Interface The Microprocessor sends information to the Display Processor via a three-wire synchronous communication interface. The detailed description of the DISTX, DISRX , and DSCLK signals may be found in the detailed description of the D isplay PCA. Note that the DISRX signal is pulled down by[...]
-
Page 99
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-17 Clock Dividers The 12.288-MHz system clock (A1U25-30) is divided down by the Clock Dividers to create the 3.072-MHz Option Clock (OCLK; A1U25-22) and 1.024-MHz Display Clock (DCLK; A1U25-19). The Display Clock is not a square wave; it is low for 2/3 of a cycle and high for the other [...]
-
Page 100
HYDRA Service M anual 2A-18 description of the External Trigger operation may be found in the "External Trigger Input Circuits" section. 2A-40. RS-232 Interface The RS-232 interface is composed of connector A1J4, RS-232 Driver/Receiver A1U 13, and the serial communication hardware in Microprocessor A1U 1. The serial communication transmit[...]
-
Page 101
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-19 2A-42. Digital I/O The following paragraphs describe the Digital Input Threshold, Digital Input Buffers, Digital and Alarm Output Drivers, Totalizer Input, and External Trigger Input circuits. 2A-43. Digital Input Thr eshold The Digital Input Threshold circuit sets the input threshol[...]
-
Page 102
HYDRA Service M anual 2A-20 The Totalizer Debounce circuit in the FPGA (A 1U25) allows the Microprocessor to select totalizing of either the input signal or the debounced input signal. The buffered Totalizer Input signal (TOTI*) goes into the FPGA at A1U25-12. Inside the FPGA, the totalizer signal is routed to the Totalizer Output (TOTO, A1U25-8) w[...]
-
Page 103
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-21 • Passive filtering of dc voltag e and resistance m easurements • Activ e filtering of ac v oltage m easurem ents • A/D conv ersion • Support for direct volts, true rms ac volts, temperature, resistance,and frequency measurements[...]
-
Page 104
HYDRA Service M anual 2A-22 Ω K16 V LO/RRS LO R32 10 11 13 14 15 16 19 21 10K 1M 100K 10M 1K 300 Ω 300V 3 K Ω 300 K Ω 3 M Ω , 10 M Ω 30V 30 K Ω 30 VDC 300 VDC 23 S2 3 VDC/300 MVDC/TC/ Ω Z4 DIVIDER SWITCHING TO OHMS SOURCE & RRS HI S3 LOW S16 S42 S19 S18 RRS LOW DC HI RRS HI RRS LOW A/D U8 ANALOG MEASUREMENT PROCESSOR * TO REFERE[...]
-
Page 105
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-23 Table 2A-4. Analog Measurement Processor Pin Descriptions (2635A) Pin Name Description 1 2 3 4 5 VDD ACBO AIN AGND2 ACR4 +5.4V supply AC buffer output (not used) Analog ground AC buffer range 4 (300V) 6 7 8 9 10 ACR3 ACR2 ACR1 VSSA REFJ AC buffer range 3 (30V) AC buffer range 2 (3V) [...]
-
Page 106
HYDRA Service M anual 2A-24 Table 2A-4. Analog Measurement Processor Pin Descriptions (2635A) (cont) Pin Name Description 51 52 53 54 55 VREF+ VREF- RAO RA+ RA- A/D voltage reference plus A/D voltage reference m inus A/D reference amplifier output A/D reference amplifier noninv erting input A/D reference amplifier inv erting input 56 57 58 59 60 AF[...]
-
Page 107
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-25 • The open thermocouple detect circuitry is protected against voltagetransient damage by A3Q14 and A3Q15. • When measuring ac volts, the ac buffer is protected by dual-diodeclamp A3CR 1 and resistor network A3Z3. • Switching induced transients are also clamped by dual-diodeA3CR[...]
-
Page 108
HYDRA Service M anual 2A-26 For the 300V range (Figure 2A-4), the HI signal is again scaled by A 3Z4. The input is applied to pin 1 of A3Z4, and a 1000:1 divider is formed by the 10-M Ω and 10.01-k Ω resistors when switches S3 and S9 are closed in A3Z4. The attenuated HI input is then sent through internal switch S10 to the passive filter and t[...]
-
Page 109
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-27 OHMS VOLTAGE SOURCE A/D INTEGRATE REFERENCE LOW HIGH A3R34 A3Z4 REFERENCE RESISTOR R REF + – VR REF A3K16 A3RT1 & A3R10 A3K17 UNKNOWN RESISTOR PASSIVE FILTER A/D INTEGRATE UNKNOWN HIGH LOW I X A3R11 R X VR X VR X VR REF = I X •R X I X •R REF R REF R X = + - LO HI A3R42 s15f[...]
-
Page 110
HYDRA Service M anual 2A-28 A3U8 switch S2, and the LO SENSE path of A3R35 and An alog Processor switch S19. Passive filtering is provided by A3C34, A3 C27, and portions or all of the DC Filter block. The voltage across the reference resistor for the 300 Ω and RTD, 3-k Ω , and 30-k Ω ranges (the 1-k Ω , 10.01-k Ω , and 100.5-k Ω resista[...]
-
Page 111
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-29 A3K15 INPUT LO A3R43 A3U7 + _ A3Z3 1.111M A3Z3 115.7 A3Z3 FEEDBACK RESISTOR A3Z3 2.776k RMS COVERTER A3C15 & A3C16 A3R11 A3U6 INPUT HI A3R44 A3C31 s16f.eps Figure 2A-6. AC Buffer Simplified Schematic (2635A) JFETs A3Q3 through A3Q9 select one of the four gain (or att enuation) ra[...]
-
Page 112
HYDRA Service M anual 2A-30 The output of the buffer is ac-coupled by A3C15 and A3C16 to the true-rms ac-to-dc converter A3U6. Discharge JFET A3Q13 is switched on to remove any excess charge from the coupling capacitors A3C15 and A3 C16 between channel measurements. A3C 17 provides an averaging function for the converter, and resistor network A3Z1 [...]
-
Page 113
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-31 BUFFER A3Z2 INTEGRATOR INTEGRATE REFERENCE INTEGRATE INPUT –REFERENCE (+ INPUT) REFERENCE + REFERENCE (– INPUT) S77 A3C13 + _ _ + + _ A/D COMPARATOR + _ COUNTER INPUT HI INPUT LO s17f.eps Figure 2A-7. A/D Converter Simplified Schematic (2635A) In both the slow and fast measuremen[...]
-
Page 114
HYDRA Service M anual 2A-32 2A-59. Inguard Micr ocontroller C ircuitr y The Microcontroller, A3U9, w ith its internal program memory and RAM and associated circuitry, controls measurement functions on the A/D Converter PCA and communicates with the Main (outguard) processor. The Microcontroller communicates directly with the A3U 8 Analog Measuremen[...]
-
Page 115
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-33 2A-62. Input Connector PCA The Input Connector assembly, which plugs into the A/D Converter PCA from the rear of the instrument, provides 20 pairs of channel terminals for connecting measurement sensors. This assembly also provides the reference junction temperature sensor circuitry [...]
-
Page 116
HYDRA Service M anual 2A-34 2A-65. Front Panel Swi tches The FPGA scans the 19 Front Panel Switches (A 2S1 through A2S18, and A2S21) using only six interface signals (plus the ground connection already available from the power supply). These six signals (SWR1 through SWR6) are connected to bidirectional I/O pins on the FPGA. Each successive column [...]
-
Page 117
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-35 The second four-bit counter is controlled by an open-drain output on the Display Controller (A2U1-17) and pull-down resistor A2R1. When the beeper (A2LS1) is off, A2U1-17 is pulled to ground by A2R1. This signal is then inverted by A2U6, with A2U6-6 driving the CLR input high to hold[...]
-
Page 118
HYDRA Service M anual 2A-36 Once reset, the Display Controller performs a series of self-tests, initializing display memory and holding the DISRX signal high. After DISRX goes low, the Display Controller is ready for communication. On the first command byte from the Microprocessor, the Display Controller responds with a self-test results response. [...]
-
Page 119
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-37 1.37 ms 1.37 ms 1.37 ms 1.37 ms 16.56 ms 0V GRID(10) 0V GRID(9) 0V GRID(1) 0V GRID(0) … … 140 µ s GRID TIMING s19f.eps Figure 2A-9. Grid Control Signal Timing (2635A) 1.37 ms 0V 5V ANODE(14..0) -30V GRID(X) -30V GRID(X-1) GRID/ANODE TIMING 5V -30V 72 µ s 22.5 µ s 117 µ s 67.5[...]
-
Page 120
HYDRA Service M anual 2A-38 2A-71. Main PCA Connector The Memory Card Interface PCA interfaces to the Main PCA through a 40-pin, right angle connector (A6P2). This connector routes eight bits of the Microprocessor data bus, the lower four bits of the address bus, memory control, interrupt and address decode signals from the Main PCA to the Memory C[...]
-
Page 121
Theory of Operation (2635A) Detailed Circuit Description 2A 2A-39 The Memory Card Controller provides a register based interface for the Microprocessor to use to access data stored on industry standard PCMCIA memory cards. A 26 bit counter controls the address bus (CA<0> through CA<25>) to the PCMCIA Memory Card Connector (A6P1). An eig[...]
-
Page 122
HYDRA Service M anual 2A-40 ground pins are mated first followed by the reset of the input / output signals with the card detection signals mating last. This sequence is reversed on memory card removal. The PCMCIA Memory C ard Connector has a metal shell that is connected to chassis ground to help ensure that the instrument meets EMI/EMC and ESD pe[...]
-
Page 123
Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by: 1. Knowing that there is a problem. 2. Leaning the guidelines for handling them. 3. Using the procedures, packaging, and bench techniques that are recommended. The f[...]
-
Page 124
5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT. 6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE. 7. AVOID PLASTIC,VINYL AND STYROFOAM IN WORK AREA. 8. WHEN REMOVING PLUG-IN ASSEMBLIES HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR[...]
-
Page 125
3-1 Chapter 3 General Maintenance Title Page 3-1. Introduction .......................................................................................... 3-3 3-2. Warranty Repairs and Shipping ........................................................... 3-3 3-3. General Maintenance.....................................................................[...]
-
Page 126
HYDRA Service M anual 3-2 3-30. Install the Handle and Mounting Brackets....................................... 3-15 3-31. Install the I nstrum ent Case ............................................................... 3-15[...]
-
Page 127
General Maintenance Introduction 3 3-3 3-1. Introduction This section provides handling, cleaning, fuse replacement, disassembly, and assembly instructions. 3-2. Warranty Repairs and Shipping If your instrument is under warranty, see the warranty information at the front of this manual for instructions on returning the unit. The list of authorized [...]
-
Page 128
HYDRA Service M anual 3-4 Most electronic components manufactured today can be degraded or destroyed by ESD. While protection networks are used in CMOS devices, they merely reduce, not eliminate component susceptibility to ESD. ESD may not cause an immediate failure in a component; a delayed failure or wounding effect is caused when the semiconduct[...]
-
Page 129
General Maintenance Line Fuse Replacement 3 3-5 3-9. Line Fuse Replacement The line fuse (125 mA, 250V, slow blow, Fluke Part Number 822254) is located on the rear panel. The fuse is in series with the power supply. For replacement, unplug the line cord and remove the fuse holder (with fuse) as shown in Figure 3-1. The instrument is shipped with a [...]
-
Page 130
HYDRA Service M anual 3-6 3-11. Remove the Instrument Case Use the following procedure to remove the instrument case. 1. Make sure the instrument is powered off and disconnected from the power source (ac or dc). 2. Remove the screw from the bottom of the case, and remove the two screw s from the rear bezel as shown in Figure 3-2. While holding the [...]
-
Page 131
General Maintenance Disassembly Procedures 3 3-7 CHASSIS REAR BEZEL CASE A. B. MOUNTING SCREW (2) GROUNDING SCREW s22f.eps Figure 3-2. Removing the Case[...]
-
Page 132
HYDRA Service M anual 3-8 V 300V MAX COM Ω A. B. C. s23f.eps Figure 3-3. Removing the Handle and Handle Mounting Brackets Note The Display PCA provides a space for a center securing screw. If the two tabs are intact, this screw is not necessary. If a tab is broken, a screw can be used as an additional securing device. The elastomeric Keypad Assem[...]
-
Page 133
General Maintenance Disassembly Procedures 3 3-9 Y U N Q P J O Z A D B C V W G K L M E T X H I s24f.eps Figure 3-4. 2620A and 2625A Assembly Details[...]
-
Page 134
HYDRA Service M anual 3-10 Q Y U P J O A D B C V W G K L M E T X H I s25f.eps Figure 3-5. 2635A Assembly Details[...]
-
Page 135
General Maintenance Disassembly Procedures 3 3-11 3-15. Remove the IEEE-488 Option (2620A Only) Section 7 of this manual provides a detailed removal procedure for t he IEEE-488 option. The following removal instructions provide the essentials of this procedure. Parts referenced by letter (e.g., A) are shown in Figure 3-4. If necessary, refer to the[...]
-
Page 136
HYDRA Service M anual 3-12 3-18. Remove the Main PCA With the IEEE-488 option (2620A) and the Mem ory PCA (2625A) or Memory Card I/F PCA (2635A) removed, the Main PCA (H) can be removed. Parts referenced by letter (e.g., A) are shown in Figure 3-4 (2620A or 2625A) or Figure 3-5 (2635A). Use the following procedure: 1. If it is still attached, remov[...]
-
Page 137
General Maintenance Assembly Procedures 3 3-13 3-20. Disconnect Miscellaneous Chassis Components Use the following procedure to disconnect the remaining hardware from the chassis. Parts referenced by letter (e.g., A) are shown in Figure 3-4 (2620A or 2625A) or Figure 3-5 (2635A). 1. Use needle nose pliers to remove the internal connections at the l[...]
-
Page 138
HYDRA Service M anual 3-14 3-24. Install the Main PCA 1. Fit the Main PCA (H) so that the chassis guides pass through notches on both sides of the pca. Then slide the pca back until it is snug against the Rear Panel. 2. Replace the RS-232 connector screws (T) on the rear of the chassis. Use a 3/16-inch nut driver to tighten the connector hardware. [...]
-
Page 139
General Maintenance Assembly Procedures 3 3-15 3-27. Install the Memory Card I/F PCA (2635A Only) 1. Place the Memory Card I/F PCA (Q ) into position so that the three mounting holes line up with the chassis supports located at the front-center of the chassis. 2. Install the three 6-32, 1/4-inch panhead Phillips screws in the mounting holes of the [...]
-
Page 140
HYDRA Service M anual 3-16[...]
-
Page 141
4-1 Chapter 4 Performance Testing and Calibration Title Page 4-1. Introduction .......................................................................................... 4-3 4-2. Required Equipment ............................................................................. 4-3 4-3. Performance Tests ...............................................[...]
-
Page 142
HYDRA Service M anual 4-2 4-30. Updating 2635A Data Bucket Em bedded I nstrument Firm ware.......... 4-27 4-31. Using the PC Com patible Firmware Loader Software .................... 4- 28 4-32. Setup Procedure for Firmware Download ................................... 4-29 4-33. Default Instrum ent Firm ware Download Procedure.................... 4[...]
-
Page 143
Performance Testing and Calibration Introduction 4 4-3 4-1. Introduction This section of the Service Manual provides performance tests that can be used at any time to verify that Hydra (2620A, 2625A, or 2635A ) operation is within published specifications. A complete calibration procedure is also included. The performance test and, if necessary, th[...]
-
Page 144
HYDRA Service M anual 4-4 4-3. Performance Tests When received, the instrument is calibrated and in operating condition. The following performance verification procedures are provided for acceptance testing upon initial receipt or to verify correct operation at any time. All tests may be performed in sequence to verify overall operation, or the tes[...]
-
Page 145
Performance Testing and Calibration Performance Tests 4 4-5 Table 4-2. Performance Tests (Voltage, Resistance, and Frequency) FUNCTION RANGE INPUT FREQUENCY DISPLAY ACCURACY (1 Year, 18-28 ° C) LEVEL MIN MAX DC Volts 90 mV * 90 mV * 300 mV 300 mV 300 mV 900 mV* ** 3V 3V 30V 150V 300V short (0) 90 mV short (0V) 150 mV 290 mV 900 mV 2.9V -2.9V 29V 1[...]
-
Page 146
HYDRA Service M anual 4-6 Table 4-2. Performance Tests (Voltage, Resistance, and Frequency) (cont) FUNCTION RANGE INPUT FREQUENCY DISPLAY ACCURACY (1 Year, 18-28 ° C) LEVEL MIN MAX 300 Ω 3 k Ω 3 k Ω 30 k Ω 300 k Ω 3 M Ω 10 M Ω short 100 Ω short 1 k Ω 10 k Ω 100 k Ω 1 M Ω 10 0.00 99.92 0.0000 0.9992 9.992 99.92 0.9992 9.[...]
-
Page 147
Performance Testing and Calibration Performance Tests 4 4-7 1. Ensure that communication parameters (i.e., transmission mode, baud rate, parity, and echo mode) on Hydra and the host are properly configured to send and receive serial data. Refer to Section 4 of the Hydra Users Manual. 2. Power up Hydra, and wait 1/2 hour for its temperature to stabi[...]
-
Page 148
HYDRA Service M anual 4-8 4. Switch the instrument ON . 5. Select the 4-terminal OHMS function, AUTO range, for channel 1 on Hydra. 6. Set the 5700A to output the resistance values listed in Table 4-2 (Use decades of 1.9). 7. On Hydra press MO N and ensure the display reads between the minimum and maximum values (inclusive) shown in Table 4-2. 8. T[...]
-
Page 149
Performance Testing and Calibration Performance Tests 4 4-9 12 11 13 14 15 16 17 18 19 20 2 1 3456789 1 0 SOURCE (4-WIRE) SENSE (4-WIRE) H L H LH LH LH LH LH LH LH LH L H L H LH LH LH LH LH LH LH LH L 2-WIRE (2T) CONNECTION RESISTANCE OR RTD SOURCE USE H AND L TERMINALS FOR ANY CHANNEL. • CHANNEL 0 ON FRONT PANEL • CHANNELS 1 THROUGH 20 ON REAR[...]
-
Page 150
HYDRA Service M anual 4-10 Note If other than a K type thermocouple is used, be sure that the instrument is set up for the type of thermocouple used. 3. Reconnect power and switch the instrument ON. 4. Insert the thermocouple and a mercury thermometer (.02 degrees Celsius resolution) in a room temperature bath. Allow 20 minutes for thermal stabiliz[...]
-
Page 151
Performance Testing and Calibration Performance Tests 4 4-11 4-9. Open Thermocouple Response Test Use the following procedure to test the open thermocouple response: 1. Switch OFF power to the instrument and disconnect all high voltage inputs. 2. Remove the Input Module from the rear of the instrument. Open the Input Module and connect test leads t[...]
-
Page 152
HYDRA Service M anual 4-12 7. The RTD Temperature Accuracy test is complete. However, if you desire to perform this test on Input Module channels (2 through 10), repeat steps 1 through 5 substituting in the appropriate channel number. Note The only type of temperature measurement that can be made on channel 0 is 2-terminal RTD. Channels 11 through [...]
-
Page 153
Performance Testing and Calibration Performance Tests 4 4-13 6. The RTD Temperature Accuracy test is complete. However, if you desire to perform this test on any other channel (0 or 2 through 20), repeat steps 1 through 5, substituting the appropriate channel number. Note The only type of temperature measurement that can be made on channel 0 is 2-t[...]
-
Page 154
HYDRA Service M anual 4-14 Send the following commands to Hydra in sequence, and measure that the correct Digital Output line measures greater than +3.8V dc (H IGH state.) DO_LEVEL 0,1 <CR> Verify that output 0 measures a HIGH state. DO_LEVEL 1,1 <CR> Verify that output 1 measures a HIGH state. Repeat the command for all eight outputs. [...]
-
Page 155
Performance Testing and Calibration Performance Tests 4 4-15 computer). The host must send commands to Hydra to control the digital line for this test. 1. Ensure that communication parameters (i.e., transmission mode, baud rate, parity, and echo mode) on Hydra and the host are properly configured to send and receive serial data. Refer to Section 4 [...]
-
Page 156
HYDRA Service M anual 4-16 3. Verify that Hydra is still in the total measuring mode. If not, press the TO TAL button. Reset the totalizer count shown on the display by pressing the SHIFT and TOTAL(ZERO) butt ons. The Hydra display should now show a value of 0. 4. Connect the output of the signal generator to the ∑ and J terminals. 5. Program the[...]
-
Page 157
Performance Testing and Calibration Performance Tests 4 4-17 12 11 13 14 15 16 17 18 19 20 2 1 3456789 1 0 SOURCE (4-WIRE) SENSE (4-WIRE) H L H LH LH LH LH LH LH LH LH L H LH LH LH LH LH LH LH LH L INPUT MODULE (USE STACKED BANANA JACKS) +–01 2 3 T R 0 1 2 3 4 5 6 7 Σ 9-16 V DC PWR ! +30V ALARM OUTPUTS DIGITAL I/O ALARM OUTPUT CONNECTOR V 300V M[...]
-
Page 158
HYDRA Service M anual 4-18 4-19. External Trigger Input Test The External Trigger Input Test verifies that the rear panel trigger input of Hydra is functioning properly. 1. Switch OFF power to the instrument and disconnect all high voltage inputs. 2. Remove the eight-terminal Alarm Output connector from the rear of Hydra and all external connection[...]
-
Page 159
Performance Testing and Calibration Calibration 4 4-19 Activate calibration mode by pressing and holding the CAL Enable button (front panel) for approximately 4 seconds. Release the button after Hydra beeps and the CAL annunciator lights. Note The CAL Enable button is located on the right side of the display and is recessed beneath a calibration se[...]
-
Page 160
HYDRA Service M anual 4-20 To provide accuracy at full range, calibration is not recommended below one-third of full range (10000 counts). Table 4-8. Calibration Mode Computer Interface Commands Command Description Cal x Start calibration of a new function. x Function to c alibrate 1V D C 2 VAC 3 ohms 4 Frequency CAL_CLR Res et all calibration cons[...]
-
Page 161
Performance Testing and Calibration Calibration 4 4-21 3. From the CAL directory on the PC, type CA L. Then press any key to start the program and access the SETUP menu. 4. On Hydra, press PO WER ON . After the initialization process has concluded, use the following procedure to set up communications: a. Press SHIFT and then LIST(COMM). b. With ’[...]
-
Page 162
HYDRA Service M anual 4-22 4-24. Using a Terminal This procedure can be used with either a terminal or a computer running a terminal emulation program. 4-25. Setup Procedure Using a Termi nal. Use the following procedure to set up Hydra and the PC: 1. Connect a pair of test leads to the high and low terminals of channel 1 on the Hydra Input Module.[...]
-
Page 163
Performance Testing and Calibration Calibration 4 4-23 Once the calibrat or output has been set to Hydr a, the CAL_STEP? query performs t he calibration step and returns the calibrated value of the input. The response to CAL_STEP? must be received before each new step can begin. With some steps, a noticeable delay may be encountered. Table 4-9. DC [...]
-
Page 164
HYDRA Service M anual 4-24 Note The 300 k Ω , 3 M Ω , and 10 M Ω ranges are sensitive to noise. Any movement of the input leads can cause noisy readings. Use shielded leads and verify these two calibration points at the conclusion of calibration. Table 4-10. AC Volts Calibration Command Response Action CAL 2 => Puts Hy dra in VAC Calibrati[...]
-
Page 165
Performance Testing and Calibration Calibration 4 4-25 12 11 13 14 15 16 17 18 19 20 2 1 3456789 1 0 SOURCE (4-WIRE) SENSE (4-WIRE) H L H LH LH LH LH LH LH LH LH L H L H LH LH LH LH LH LH LH LH L 4-WIRE (4T) CONNECTION DECADE RESISTANCE SOURCE HYDRA INPUT MODULE s30f.eps Figure 4-5. 4-Terminal Connections to Decade Resistance Source 3. Remove the m[...]
-
Page 166
HYDRA Service M anual 4-26 12 11 13 14 15 16 17 18 19 20 2 1 3456789 1 0 SOURCE (4-WIRE) SENSE (4-WIRE) H L H LH LH LH LH LH LH LH LH L H L H LH LH LH LH LH LH LH LH L HYDRA INPUT MODULE HI HI LO LO HI SENSE V AUX CURRENT GUARD GROUND WIDEBAND 5700A NC NC OUTPUT V A Ω Ω 5700A HYDRA SENSE SENSE SOURCE SOURCE EX GRD : OFF 2-WIRE COMP OFF EX SNS :[...]
-
Page 167
Performance Testing and Calibration Updating 2635A Data Bucket Embedded Instrument Firmware 4 4-27 Table 4-11. 4-Wire Ohms Calibration (Fixed Resistor) Command Response Action CAL 3 => Puts Hy dra in OHMS Calibration. CAL_REF? +290.00E+0 You source 290 Ω from the decade resistanc e source or fix ed resistor. CAL_STEP? Hydra com putes calibrati[...]
-
Page 168
HYDRA Service M anual 4-28 Table 4-12. 4-Wire Ohms Calibration (5700A) Command Action CAL 3 Puts Hydra in OH MS Calibration Note With the following CAL_REF commands, send the actual resistance value (e.g., xxx.xxxxx) displayed by the 5700A. Source 190 Ω from the 5700A. Then wait 4 s econds for the 5700A to settle. CAL_R EF xxx.xxxxx CAL_STEP? Hyd[...]
-
Page 169
Performance Testing and Calibration Updating 2635A Data Bucket Embedded Instrument Firmware 4 4-29 Firmware downloading may be accomplished by using either of the two methods that are described in the following paragraphs. • Default In strument Firm ware Download Procedure • Using LD2635 Firmware Loader Directly Table 4-13. Frequency Calibratio[...]
-
Page 170
HYDRA Service M anual 4-30 1. If it is important to retain the channel programming information in the instrument, store a copy of the instrument configuration setup on a memory card. Refer to section on "Using SETUP STORE" in section 3 of the 2635A Data Bucket Users Manual. 2. To load the i nstrume nt firmwa re, run ’ LOADC1.BAT’ if C[...]
-
Page 171
5-1 Chapter 5 Diagnostic Testing and Troubleshooting (2620A/2625A) Title Page 5-1. Introduction .......................................................................................... 5-3 5-2. Servicing Surface- Mount Assemblies .................................................. 5-3 5-3. Error Codes...............................................[...]
-
Page 172
HYDRA Service M anual 5-2 5-28. Failure to Detect Memory PCA ................................................... 5-29 5-29. Failure to Store Data .................................................................... 5-29[...]
-
Page 173
Diagnostic Testing and Troubleshooting (2620A/2625A) Introduction 5 5-3 5-1. Introduction Hydra provides error code information and semi-modular design to aid in troubleshooting. This section explains the error codes and describes procedures needed to isolate a problem to a specific functional area. Finally, troubleshooting hints for each functiona[...]
-
Page 174
HYDRA Service M anual 5-4 • A good connection with SMT requires only enough solder to make apositive metallic contact. Too much solder causes bridging, while toolittle solder can cause weak or open solder joints. With SMT, theanchoring effect of the through-holes is missing; solder provides theonly means of mechanical fastening. Therefore, the pc[...]
-
Page 175
Diagnostic Testing and Troubleshooting (2620A/2625A) Error Codes 5 5-5 Table 5-1. Error Codes Error Description 1 2 3 4 5 6 7 8 9 A b C ROM (A1U8 ) checksum e rror External RAM (A1U3) test failed Internal RAM (A1U4) test failed Display power-up tes t failure Display not res ponding Instrument c onfiguration corrupted EEPROM instrument c onfiguratio[...]
-
Page 176
HYDRA Service M anual 5-6 Table 5-1. Error Codes (cont) Error Description Error b A/D RAM test failure Complementary patterns are alternately written to and read from each location of the 256 by tes of RAM internal to the 6301Y Mic rocomputer (A3U9). Error C A/D self test failed The Analog Measurem ent Processor (A3U8) is programmed to do s elf tes[...]
-
Page 177
Diagnostic Testing and Troubleshooting (2620A/2625A) Power Supply Troubleshooting 5 5-7 A1U4 MICROPROCESSOR 9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 NMI STBY RES MP1 MP0 EXTAL XTAL Vss NC E P70 RD* P71 WR* P72 R/W* P73 LIR* P74 P30 D0 P31 D1 P20 P21 DSCLK P22 RX P23 TX P24 DISRX P25 DISTX P26 EESK P27 NC IRQ1* P50 IRQ2* P51 SWR1 P52 SWR2 P53 SWR3 [...]
-
Page 178
HYDRA Service M anual 5-8 5-5. Power Supply Tr oubl eshooti ng Warn ing To avoid electri c shock, disconnect all channel inputs fr om t he instrument before perf ormi ng anyt roubl eshoot i ng operations. 5-6. Raw DC Supply With the instrument connected to line power (120V ac, 60 Hz) and turned ON, check for approxima tely 14V dc betwee n A1TP1 (GN[...]
-
Page 179
Diagnostic Testing and Troubleshooting (2620A/2625A) Power Supply Troubleshooting 5 5-9 U9-7 and T2-2 5V/DIV 0V 20V 2 µ S/DIV Normal Load s33f.eps Figure 5-2. 5-Volt Switching Supply If no square wave is present at A1U 9-7, the oscillator can be checked by looking at the signal at A1U9-3. The oscilloscope should be ac-coupled for this measurement.[...]
-
Page 180
HYDRA Service M anual 5-10 For the inverter to operate, the 110-kHz oscillator must be operating properly. If the signal at A1U22-3 is missing, begin by checking the voltage at A1TP7. The voltage should be about 5.1V dc. Then, using an oscilloscope, check for a square wave signal at A1U23-9 and a square w ave signal at A1U23-8. If the FETs are gett[...]
-
Page 181
Diagnostic Testing and Troubleshooting (2620A/2625A) Power Supply Troubleshooting 5 5-11 TP9 AND TP10 2V/DIV 2 µ S/DIV 2V/DIV 2 µ S/DIV FET GATE SIGNAL FET DRAIN SIGNAL Q7, Q8, OR T1-1 OR -3 0 0 s34f.eps Figure 5-3. Inverter FET Drive Signals[...]
-
Page 182
HYDRA Service M anual 5-12 5-10. Analog Tr oubl eshooti ng Warn ing To avoid electri c shock, disconnect all channel inputs fr om t he instrument before perf ormi ng anyt roubl eshoot i ng operations. Refer to Figure 5-4 and Figure 5-5 for test point locations on the A/D Converter PCA. First, check for analog-related errors displayed at power up. A[...]
-
Page 183
Diagnostic Testing and Troubleshooting (2620A/2625A) Analog Troubleshooting 5 5-13 Table 5-3. Power Supply Troubleshooting Guide Symptom Fault Line fuse blows. - Shorted A1CR2 or A1CR3. - Shorted A1CR10. - Shorted A1C7. - Shorted A1C26. Supply voltage for A1U23 and A1U 22 is greater than 7V (7 to 30V). Input-to-output short of A1U19. This fault m a[...]
-
Page 184
HYDRA Service M anual 5-14 Table 5-3. Power Supply Troubleshooting Guide (cont) Symptom Fault A1U18 hot. Shorted A1C32 A1U18 osc illates. Open A1C32. A1U19 osc illates. Open A1C34. A1U19 very hot. - Shorted A1U22 (VCC to VSS). - Shorted A1U23 (VCC to VSS). A1U19 hot. Shorted A1C34. Check that the inguard Microcontroller A3U9 RESET* line is de-asser[...]
-
Page 185
Diagnostic Testing and Troubleshooting (2620A/2625A) Analog Troubleshooting 5 5-15 9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 VSSAC ACR1 ACR2 ACR3 ACR4 AGND2 AIN ACB0 VDD RMSI RMSG1 VSSRMS BIAS2 RMS0 ARTN RMSF REFJ LO GUARD RRS V4 V3 V1 GUARD V2F V2 GUARD V0 GUARD 0/VS GUARD AGND1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 DGND FC0 FC1 FC2 F[...]
-
Page 186
HYDRA Service M anual 5-16 AC Divider Network Analog Measurement Processor Intergrate Resistors, Reference Divider Zener Reference Divider Network (DC/OHMS) A3TP9 A3TP1 A3TP7 A3TP8 A3TP2 A3TP3 A3TP4 A3TP5 A3TP6 A3TP10 A/D Microcontroller AC Buffer RMS Converter RMS Converter Network A3TP12 A3TP11 A3TP13 A3U9 MICROCONTROLLER 9 8 7 6 5 4 3 2 1 68 67 [...]
-
Page 187
Diagnostic Testing and Troubleshooting (2620A/2625A) Analog Troubleshooting 5 5-17 A3TP13 TO A3TP9 0 1V/DIV 5 mS/DIV s37f.eps Figure 5-6. Integrator Output 5-11. DC Volts Troubleshooting Setup the instrument to measure a specific channel on the 300 mV or 3V range, and apply an input to that channel. Then trace the HI signal (referenced to the input[...]
-
Page 188
HYDRA Service M anual 5-18 Table 5-5. AC Volts HI Troubleshooting Checkpoint Signal Description Possible Fault A3R11 HI Input A3K1 through A3K14, A3U4, A3U5, A3U11, A3U12 A3L1, A3L2, A3L3 A3Z3 pin 1 Input A3R11, A3C31, A3K15 A3U6 pin 13 Amplified (X 2.5) input A3U7, A3Z3, A3Q3 through A3Q9, A3C15, A3C16, A3R24, A3A25, A3R26, A3R27, A3R28, A3C23, A3[...]
-
Page 189
Diagnostic Testing and Troubleshooting (2620A/2625A) Digital Kernel Troubleshooting 5 5-19 5-14. Digi tal Ker nel Troubleshooti ng At power-up, if the display does not light or lights up and fails to report errors or begin operation, use the following troubleshooting procedures. First check the state of SWR1 (A1U4-21). If this status line is less t[...]
-
Page 190
HYDRA Service M anual 5-20 Figure 5-7 shows the timing relationships of the 6303Y Microprocessor lines LIR* and WR* to the system clock (E) and the address lines A0..A15. The ROM and N VRAM Chip Enables correspond to the active (low) region shown for the address lines. If the instrument powers up without any errors, but does not recognize front-pan[...]
-
Page 191
Diagnostic Testing and Troubleshooting (2620A/2625A) Digital and Alarm Output Troubleshooting 5 5-21 5-15. Digi tal and Al arm Output Troubl eshooti ng Power up Hydra wh ile holding down the CANC L button to reset the instrument configuration. Since the structure of the eight Digital Outputs and four Alarm Outputs is very similar, the troubleshooti[...]
-
Page 192
HYDRA Service M anual 5-22 (S17) (S21) (S15) (S13) (S11) (S9) (S7) (S5) (S3) (S1) (S18) (S16) (S14) (S12) (S10) (S8) (S6) (S4) (S2) 2 1 A2TP2 A2TP2 A2TP3 A2TP6 A2TP4 A2TP1 A2TP5 A2TP3 A2TP6 A2TP4 A2TP1 A2TP5 U1 J1 LS1 TEST POINT LOCATIONS (DISPLAY PCA) + s39f.eps Figure 5-8. Test Points, Display PCA (A2)[...]
-
Page 193
Diagnostic Testing and Troubleshooting (2620A/2625A) Display Assembly Troubleshooting 5 5-23 5-18. Displ ay Assembl y Tr oubl eshooting The following discussion is helpful if it has been determined that the Display Assembly is faulty. Refer to Figure 5-8 for Display PCA test points. This initial determination may not be arrived at easily, since an [...]
-
Page 194
HYDRA Service M anual 5-24 REVIEW REM SCAN x1 k EXT SET FUNC mV TR 1 Ω s41f.eps Figure 5-10. Display Test Pattern #1 LAST MAX MIN AUTO MON M LIMIT HI LO OFF CAL PRN Mx+B ALARM ° C ° F RO AC DC Hz CH 2 F s42f.eps Figure 5-11. Display Test Pattern #2 When a Hydra display is initially powered up, all display segments should come on automatically. [...]
-
Page 195
Diagnostic Testing and Troubleshooting (2620A/2625A) Variations in the Display 5 5-25 5. Verify t hat the DISRX signal (A2U1-39) goes low aft er RESET (A2U1-1) goes low. If this sequence does not occur, communication to the Microprocessor is held off with the DISRX signal high. If DISRX stays high but is not shorted to VCC, A2U1 must be faulty. 6. [...]
-
Page 196
HYDRA Service M anual 5-26 5-20. Calibration Failures 5-21. Introduction Calibration of Hydra through the computer interface is described in Section 4 of this manual. Generally, a calibration failure is indicated by a Device Dependent Error and a "!>" prompt after a CAL_STEP? command if the RS-232 interface is being used. If the IEEE-4[...]
-
Page 197
Diagnostic Testing and Troubleshooting (2620A/2625A) Calibration Failur es 5 5-27 Note During calibration, the measurement rateis selected automatically as required by thecalibration step. Table 5-9 or Table 5-10 may be useful in isolating a calibration problem to specific components. Table 5-9 can be used with a Hydra having a main software versio[...]
-
Page 198
HYDRA Service M anual 5-28 5-23. Retrieving Calibration Constants If a calibration error is suspected, the stored constant can be retrieved and verified over the computer interface. Acceptable calibration constants for each function and range are listed in Table 5-9 (software version 5.4 and higher) or 5-10 (software versions lower than 5.4.) Retri[...]
-
Page 199
Diagnostic Testing and Troubleshooting (2620A/2625A) IEEE-488 Interface PCA (A5) Troubleshooting 5 5-29 The following com mand may be used to program the serial num ber into the EEPROM: SERIAL XXXXXXX (xxxxxxx denotes the 7- digit number. Leadi ng zeros The serial number of the instrument can be accessed by using the "SERIAL?" command. Th[...]
-
Page 200
HYDRA Service M anual 5-30 While the instrument is scanning, check that data is being stored correctly. Use an oscilloscope to monitor activity on the 7 outputs of the Byte Counter (A6U 3) and the 11 outputs of the Page Register (A6U 1 and A6U4). Since the repetition rate is fairly low, it may be necessary to use a storage oscilloscope to capture t[...]
-
Page 201
5A-1 Chapter 5A Diagnostic Testing and Troubleshooting (2635A) Title Page 5A-1. Introduction .......................................................................................... 5A-3 5A- 2. Servicing Surface-Mount A ssemblies .................................................. 5A-3 5A-3. Error Codes.............................................[...]
-
Page 202
HYDRA Service M anual 5A-2 5A-28. Failure to Detect Insertion of Mem ory Card ............................... 5A-31 5A-29. Failure to Power Card / Illum inate the Busy Led ........................ 5A-31 5A-30. Failure to Illum inate the Battery Led .......................................... 5A- 31 5A-31. Failure to Write to Memory Card ............[...]
-
Page 203
Diagnostic Testing and Troubleshooting (2635A) Introduction 5A 5A-3 5A-1. Introduction Hydra provides error code information and semi-modular design to aid in troubleshooting. This section explains the error codes and describes procedures needed to isolate a problem to a specific functional area. Finally, troubleshooting hints for each functional a[...]
-
Page 204
HYDRA Service M anual 5A-4 • Surface-mount assemblies require rework with w ire solder rather thanwith solder paste. A 0.025-inch diameter wire solder composed of 63%tin and 37% lead is recommended. A 60/40 solder is also acceptable. • A good connection with SMT requires only enough solder to make apositive metallic contact. Too much solder cau[...]
-
Page 205
Diagnostic Testing and Troubleshooting (2635A) Error Codes 5A 5A-5 Table 5A-1. Error Codes (2635A ) Error Description 1 2 3 4 5 6 7 8 9 A b C d Boot Firmware (A1U14 and A1U16) C he cksum Error Instrument Firm ware (A1U14 and A1U16) Che cksum Error NVRAM (A1U 20 and A1U24) Test Failed Displ a y Power - up Te st Fail ure Display N ot Responding Instr[...]
-
Page 206
HYDRA Service M anual 5A-6 Table 5A-1. Error Codes (2635A) (cont) Error Description Error 9 A/D Converter Not Responding This error is dis played if com munication c annot be established with the 6301Y M icrocom puter (A3U9). Error A A/D Conv erter ROM Test Failure (A3U9) All bytes of internal RO M for the 6301Y Micr ocomputer (A3U9) (including the[...]
-
Page 207
Diagnostic Testing and Troubleshooting (2635A) General Troubleshooting Pr ocedures 5A 5A-7 GND DTACK BCLR BG BGACK NC1 BR HALT RESET AVEC BERR IPL2 IPL1 IPL0 CLK0 V DD V DD EXTAL XTAL GND R/W AS LDS UDS GND IACK7 IACK6 IACK1 TIN1 TOUT1 TIN2 TOUT2 GND CD1 CTS3 D0 D1 D2 D3 GND D4 D5 D6 D7 V DD D8 D9 D10 D11 GND D12 D13 D14 D15 GND V DD A23 A22 A21 A2[...]
-
Page 208
HYDRA Service M anual 5A-8 Refer to the Schematic Diagrams in Section 8 during the following troubleshooting instructions. Also, these diagrams are useful in troubleshooting circuits not specifically covered here. 5A-5. Power Suppl y Tr oubleshooting Warn ing To avoid electri c shock, disconnect all channel inputs fr om t he instrument before perf [...]
-
Page 209
Diagnostic Testing and Troubleshooting (2635A) Power Supply Troubleshooting 5A 5A-9 5A-9. Inverter Use an oscilloscope to troubleshoot the inverter supply. The outputs of the inverter supply are -5V dc (VEE), -30V dc ( VLOAD), and 5.4V ac (FIL1 and FIL2) outguard, and +5.3V dc (VDD), -5.4V dc (VSS), and +5.6V dc ( VDDR) inguard. Refer to Figure 5A-[...]
-
Page 210
HYDRA Service M anual 5A-10 TP9 AND TP10 2V/DIV 2 µ S/DIV 2V/DIV 2 µ S/DIV FET GATE SIGNAL FET DRAIN SIGNAL Q7, Q8, OR T1-1 OR -3 0 0 s45f.eps Figure 5A-3. Inverter FET Drive Signals (2635A)[...]
-
Page 211
Diagnostic Testing and Troubleshooting (2635A) Analog Troubleshooting 5A 5A-11 Note When making voltage measurem ents in the invertercircuit, remember that there are two separategrounds. The outguard ground is the ’ GND’ testpoint (A1TP1), and the inguard ground is the’ COM’ test point (A1TP30). The inguard regulator circuits for VDD and VS[...]
-
Page 212
HYDRA Service M anual 5A-12 Table 5A-3. Power Supply Troubleshooting Guide (2635A) Symptom Fault Line fuse blows. - Shorted A1CR2 or A1CR3. - Shorted A1CR10. - Shorted A1C7. - Shorted A1C26. Supply voltage for A1U23 and A1U 22 is greater than 7V (7 to 30V). Input-to-output short of A1U19. This fault m ay have caused dam age to A1Q7 and A1Q8. VCC (5[...]
-
Page 213
Diagnostic Testing and Troubleshooting (2635A) Analog Troubleshooting 5A 5A-13 Table 5A-3. Power Supply Troubleshooting Guide (2635A) (cont) Symptom Fault A1U18 hot. Shorted A1C32 A1U18 osc illates. Open A1C32. A1U19 osc illates. Open A1C34. A1U19 very hot. - Shorted A1U22 (VCC to VSS). - Shorted A1U23 (VCC to VSS). A1U19 hot. Shorted A1C34. Check [...]
-
Page 214
HYDRA Service M anual 5A-14 AC Divider Network Analog Measurement Processor Intergrate Resistors, Reference Divider Zener Reference Divider Network (DC/OHMS) A3TP9 A3TP1 A3TP7 A3TP8 A3TP2 A3TP3 A3TP4 A3TP5 A3TP6 A3TP10 A/D Microcontroller AC Buffer RMS Converter RMS Converter Network A3TP12 A3TP11 A3TP13 A3U9 MICROCONTROLLER 9 8 7 6 5 4 3 2 1 68 67[...]
-
Page 215
Diagnostic Testing and Troubleshooting (2635A) Analog Troubleshooting 5A 5A-15 9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 VSSAC ACR1 ACR2 ACR3 ACR4 AGND2 AIN ACB0 VDD RMSI RMSG1 VSSRMS BIAS2 RMS0 ARTN RMSF REFJ LO GUARD RRS V4 V3 V1 GUARD V2F V2 GUARD V0 GUARD 0/VS GUARD AGND1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 DGND FC0 FC1 FC2 FC3 F[...]
-
Page 216
HYDRA Service M anual 5A-16 Lack of outguard-to-inguard communication activity may be due to improper operation of circuit elements other than A3U9. U sing a high input impedance oscilloscope or timer/counter, check for proper Analog Processor (A3U 8) crystal oscillator operation. A 3.84-MHz sine wave (260 ns period) should be present at A3 U8 pin [...]
-
Page 217
Diagnostic Testing and Troubleshooting (2635A) Analog Troubleshooting 5A 5A-17 Table 5A-4. DC Volts HI Troubleshooting (2635A) Checkpoint Signal Description Possible Fault A3R11 HI Input A3K1 through A3K14, A3U4, A3U5, A3U11, A3U12, A3L1, A3L2, A3L3 A3U8 pin 23 Input A3R11, A3K17, A3R42, A3C32 A3U8 pin 58 Input, DC filter output A3U8, A3Q2 5A-12. A[...]
-
Page 218
HYDRA Service M anual 5A-18 Table 5A-6. Ohms Open-C ircuit Voltage (2635A) Range Voltage 300 Ω 3 k Ω 30 k Ω 300 k Ω 3 M Ω 10 M Ω 3V 1.3V 1.3V 3V 3V 3V Table 5A-7. Ohms HI Troubleshooting (2635A) Checkpoint Signal Description Possible Fault A3U8 pin 14 Ohms Sourc e A3U8 A3R10 HI SRC Ohms Source A3R10, A3K16, A3RT1, A3Z4, A3Q10 Channel HI[...]
-
Page 219
Diagnostic Testing and Troubleshooting (2635A) Digital Kernel Troubleshooting 5A 5A-19 During instrument power-up, the RESET* and HALT* signals are held l ow for 140 to 280 milliseconds after the VCC pow er supply is greater than 4.65 volts dc. Before the Microprocessor can begin execution of the firmware stored in the Flash Memory, the reset circu[...]
-
Page 220
HYDRA Service M anual 5A-20 If the instrument powers up and displays ’ boot,’ it is likely that one of the memory test errors (Errors 1 through 3) was detected. To determine what the error status was, connect a terminal or computer to the RS-232 interface (19200 baud, 8 data bits, no parity). Assuming that the RS-232 interface is functional, se[...]
-
Page 221
Diagnostic Testing and Troubleshooting (2635A) Digital and Alarm Output Troubleshooting 5A 5A-21 Figure 5A-7 shows the timing relationships of the MC68302 Microprocessor address, data, and memory control signals used for memory read and write cycles. The chip selects from the Microprocessor (FLASH*, SRA M*, XMCAR D*, and I/O*) are decoded internall[...]
-
Page 222
HYDRA Service M anual 5A-22 S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 0 S 1 S 2 S 3 S 4 WWWW S 5 S 6 S 7 CLK A1 – A23 AS UDS LDS R/W DTACK D8 – D15 D0 – D7 READ WRITE SLOW READ READ AND WRITE CYCLE TIMING DIAGRAM S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 CLK A1 – A23 AS UDS LDS R/W DTACK[...]
-
Page 223
Diagnostic Testing and Troubleshooting (2635A) Totalizer Troubleshooting 5A 5A-23 If the Input Buffer does not function correctly, the problem is probably A1Z1, A1Z3, or the associated comparator (A1U3 or A1 U4). If the Input Buffer functions correctly, but Hydra is not able to read the state of the Digital Input correctly, the problem is most like[...]
-
Page 224
HYDRA Service M anual 5A-24 (S17) (S21) (S15) (S13) (S11) (S9) (S7) (S5) (S3) (S1) (S18) (S16) (S14) (S12) (S10) (S8) (S6) (S4) (S2) 2 1 A2TP2 A2TP2 A2TP3 A2TP6 A2TP4 A2TP1 A2TP5 A2TP3 A2TP6 A2TP4 A2TP1 A2TP5 U1 J1 LS1 TEST POINT LOCATIONS (DISPLAY PCA) + s50f.eps Figure 5A-8. Test Points, Display PCA (A2) (2635A)[...]
-
Page 225
Diagnostic Testing and Troubleshooting (2635A) Display Assembly Troubleshooting. 5A 5A-25 Table 5A-8. Display Initialization (2635A) A2TP4 DTEST* A2TP5 LTE* POWER-UP DISPLAY INITIALIZATION 1 1 0 0 1 0 1 0 All Segments OF F All Segments ON (default) Display Tes t Pattern #1 Display Tes t Pattern #2 BIT 7 BIT 7 HOLD OFF CLEAR TO RECEIVE 31.5 µ s DIS[...]
-
Page 226
HYDRA Service M anual 5A-26 2. Check the filament drive signals FIL1 and FIL2; these connect to the last two pins on each end of A2DS1. These signals should be 5.4V ac w ith FIL2 biased to be about 6.8V dc higher than t he VLOAD supply (nominall y a -23.2V dc level). FIL1 and FIL2 should be 180 degrees out of phase. If the dc bias of FIL2 is not at[...]
-
Page 227
Diagnostic Testing and Troubleshooting (2635A) Calibration Failur es 5A 5A-27 2. Wait a moment for the instrument to beep, then release SHIFT. The entire display will now stay on until you are ready to deactivate it. 3. At the end of the activation period, press any button on the front panel; the instrument resumes the mode in effect prior to the p[...]
-
Page 228
HYDRA Service M anual 5A-28 Basic dc measurements depend on the zener reference (A3VR 1), reference divider network (A3Z2), and integrate resistors (A3Z2). R esistance measurements and dc measurements above three volts additionally depend on the resistors in the dc divider network (A3Z4). AC measurements depend on the ac divider network (A3Z3), ac [...]
-
Page 229
Diagnostic Testing and Troubleshooting (2635A) Calibration Failur es 5A 5A-29 5A-23. Retrieving Calibration Constants If a calibration error is suspected, the stored constant can be retrieved and verified over the computer interface. Acceptable calibration constants for each function and range are listed in Table 5A-9. Retrieve the constant w ith t[...]
-
Page 230
HYDRA Service M anual 5A-30 The following command may be used to program the serial number into the FLASH Memory: SERIAL XXXXXXX ( xxxxxxx denotes the 7-digit number. Leading zeros must be entered. Note: once entered, the number cannot be changed.) The serial number of the instrument can be accessed by using the “SERIAL?” command. The response [...]
-
Page 231
Diagnostic Testing and Troubleshooting (2635A) Memory Card I/F PCA (A6) Tr oubleshooting. 5A 5A-31 5A-28. Failure to De te ct Insertion o f Memory Card When a Memory Card is inserted into the Memory Card Interface, the card detect signals (CD1 and CD2; A6U1-19 and A6U1-21) are driven low. Verify that the Memory Card Controller detects this and inte[...]
-
Page 232
HYDRA Service M anual 5A-32 5A-31. Failure to Write to Memory Card The installed memory card controls the state of the write protect (WP) signal that is an input to the Memory Card Controller (A6U1-22). This signal must be near 0 volts dc when the memory card is powered up and any operation requiring w rite access to the memory card is done. Verify[...]
-
Page 233
Diagnostic Testing and Troubleshooting (2635A) Memory Card I/F PCA (A6) Tr oubleshooting. 5A 5A-33 • With ’ CtS’ (Clear to Send) displayed, use the UP or DOWN arrow key to select ’ OFF’ . Then press ENTER. • With ’ ECHO’ displayed, use the UP or DOWN arrow key to select ’ ON’ . Then press ENTER. Communications setup for Hydra is[...]
-
Page 234
HYDRA Service M anual 5A-34[...]
-
Page 235
6-1 Chapter 6 List of Replaceable Parts Title Page 6-1. Introduction .......................................................................................... 6-3 6-2. How to Obtain Parts ............................................................................. 6- 3 6-3. Manual Status Inform ation ..............................................[...]
-
Page 236
HYDRA Service M anual 6-2[...]
-
Page 237
List of Replaceable Parts Introduction 6 6-3 6-1. Introduction This section contains an illustrated list of replaceable parts for the 2620A, 2625A, and 2635A. Parts are listed by assembly; alphabetized by reference designator. Each assembly is accompanied by an illustration showing the location of each part and its reference designator. The parts l[...]
-
Page 238
HYDRA Service M anual 6-4 6-4. Newer Instruments Changes and improvements made to the instrument are identified by incrementing the revision letter marked on the affected pca. These changes are documented on a manual supplement which, when applicable, is included with the manual. 6-5. Service Centers To locate an authorized service center, call Flu[...]
-
Page 239
List of Replaceable Parts Service Centers 6 6-5 Table 6-1. 2620A/2625A Final Assembly Reference Designator Description Fluke Stock No Tot Qty Notes A1 MAIN PCA 814186 1 A2 DISPLAY P CA 814914 1 A3 A/D CONVERTER PCA 814202 1 A4 ANALOG INPUT PCA 814210 1 A5 I EEE-488 INTERFACE PCA 872593 1 1 A6 MEMO RY P CA 886135 1 F1,2 W FUSE,5X 20MM,0. 125A,250V,S[...]
-
Page 240
HYDRA Service M anual 6-6 Table 6-1. 2620A/2625A Final Assembly (cont) Reference Designator Description Fluke Stock No Tot Qty Notes MP80 HYDRA S TARTER SO FTWA RE 890645 1 MP99 T/C CABLE,ASSY 871512 1 MP101 LABEL,VINYL,1.500,. 312 844712 4 T1 TRANS FORMER,P OWER,100-240V 931105 1 TM1 HY DRA M A NUAL SET (E NGLI SH) 886015 1 4 TM2 HYDRA (STARTERS P[...]
-
Page 241
List of Replaceable Parts Service Centers 6 6-7 A3 H52 MP5 MP10 MP16 A5 (Option -05) see Table 6-6 for replacement parts. 1 MP48 MP20 MP7 MP22 MP6 F1, F2 MP35 H54 2620A/2625A T&B (1 of 3) MP1 H51 MP13 MP23 MP47 MP17 A1 H53 H70 H50 A2 MP12 MP11 MP59 MP15 MP14 MP4 A5 (Option for 2625A) A6 (2620A Only) W2 H52 W4 MP 56 MP18 s55f.eps Figure 6-1. 262[...]
-
Page 242
HYDRA Service M anual 6-8 H52 (Ref) A1 (Ref) W2 (Ref) Bottom View 2620A/2625A T&B (2 of 3) s56f.eps Figure 6-1. 2620A/2625A Final Assembly (cont)[...]
-
Page 243
List of Replaceable Parts Service Centers 6 6-9 2620A/2625A T&B (3 of 3) H52 (Ref) W1 T1 (Ref) A3 Top View s57f.eps Figure 6-1. 2620A/2625A Final Assembly (cont)[...]
-
Page 244
HYDRA Service M anual 6-10 A4 MP3 A4 H65 MP2 MP66 MP67 2620A-100 s58f.eps Figure 6-1. 2620A/2625A Final Assembly (cont)[...]
-
Page 245
List of Replaceable Parts Service Centers 6 6-11 Table 6-2. 2635A Final Assembly Reference Designator Description Fluke Stock No Tot Qty Notes A1 MAIN P CA 925669 1 A2 DISP LA Y PCA 814194 1 A3 A/C CONVE RTER PCA 814202 1 A4 ANALOG INPUT PCA 814210 1 A6 MEMO RY CA RD I/F P CA 931977 1 F1,2 W FUSE,5X 20MM,0. 125A,250V,S LOW 822254 2 4 H50 S CREW,FH,[...]
-
Page 246
HYDRA Service M anual 6-12 Table 6-2. 2635A Final Assembly (cont) Reference Designator Description Fluke Stock No Tot Qty Notes MP111 LABEL,PAPER,ITS-90 928101 1 MP112 * CA RD,MEMO RY,SRAM ,256KB, BATTERY 927512 1 1 MP998 COVER,I EEE 885983 1 T1 TRANS FORMER,P OWER,100-240V 931105 1 TM1 HY DRA DA TA BUCKE T M A NUAL SET (E NGLISH) 932160 1 2 TM2 HY[...]
-
Page 247
List of Replaceable Parts Service Centers 6 6-13 2635A T&B (1 of 3) H52 H52 H53 MP7 MP22 MP47 H54 MP13 MP23 H51 MP1 MP18 MP998 MP48 MP5 H52 MP101 MP10 MP16 H50 A2 MP12 MP11 MP59 ? ? MP15 MP14 W2 H70 T1 A3 MP35 MP101 F1, F2 MP6 A6 W3 A1 MP17 s59f.eps Figure 6-2. 2635A Final Assembly[...]
-
Page 248
HYDRA Service M anual 6-14 2635A T&B (2 of 3) Bottom View W3 (Cable Assembly) A1 H52 (Ref) A6 MP102 Part of W2 s60f.eps Figure 6-2. 2635A Final Assembly (cont)[...]
-
Page 249
List of Replaceable Parts Service Centers 6 6-15 2635A T&B (3 of 3) Top View W1 H52 T1 (Ref) A3 s61f.eps Figure 6-2. 2635A Final Assembly (cont)[...]
-
Page 250
HYDRA Service M anual 6-16 A4 MP3 A4 H65 MP2 MP66 MP67 2620A-100 s62f.eps Figure 6-2. 2635A Final Assembly (cont)[...]
-
Page 251
List of Replaceable Parts Service Centers 6 6-17 Table 6-3. 2620A/2625A A1 Main PCA Reference Designator Description Fluke Stock No Tot Qty Notes AR1 * I C, OP AMP , DUAL,LOW POWE R, SOIC 867932 1 AR2,AR3 * IC,OP AM P ,QUAD,LOW P O WE R, SOIC 742569 2 C1,C3,C8, C11,C19,C21- C25,C27-29, C33,C36-38, C40-42 CAP,CE R,0.1UF,+-10% ,25V,X 7R,1206 747287 7[...]
-
Page 252
HYDRA Service M anual 6-18 Table 6-3. 2620A/2625A A1 Main PCA (Cont) Reference Designator Description Fluke Stock No Tot Qty Notes Q9 * TRA NSISTOR, SI,NPN, 30V,200MW, SOT-23 820902 1 R1,R2,R11, R12,R22 * * RES,CE RM,47K, +-5%,.125W, 200PPM 746685 746685 5 R3,R4,R14, R20,R21,R25, R42,R47,R64 * * * RES,CE RM,10K, +-5%,.125W, 200PPM 746610 746610 746[...]
-
Page 253
List of Replaceable Parts Service Centers 6 6-19 Table 6-3. 2620A/2625A A1 Main PCA (Cont) Reference Designator Description Fluke Stock No Tot Qty Notes U10 * IC,CMOS , TRI PLE 3 INPUT NOR GA TE , SOIC 867981 1 U11 * IC,CM O S ,3-8 LINE DCDR W E NABLE, SOIC 783019 1 U12,U28 * IC, CMOS ,QUAD INPUT NAND GA TE,SOI C 830703 2 U13 * IC,CM O S ,OCTL LINE[...]
-
Page 254
HYDRA Service M anual 6-20 2620A-1601 s63f.eps Figure 6-3. 2620A/2625A A1 Main PCA[...]
-
Page 255
List of Replaceable Parts Service Centers 6 6-21 Table 6-4. 2635A A1 Main PCA Reference Designator Description Fluke Stock No Tot Qty Notes BT1 B ATTERY,LI THIUM, 3.0V,0.560A H 821439 1 C1,C18 CA P ,AL,220UF, +-20%,35V, SOLV PROOF 929708 2 C2 CA P,CER, 0.033UF,+-10%, 200V,X7R, 1206 602547 1 C3,C8 CAP,CER, 27PF,+-10%, 50V,C0G,1206 800508 2 C4,C5,C32[...]
-
Page 256
HYDRA Service M anual 6-22 Table 6-4. 2635A A1 Main PCA (cont) Reference Designator Description Fluke Stock No Tot Qty Notes MP101 PCB ASSY, MAIN SM 932017 1 P4 HEADER, 2 ROW, .050CTR,40 PI N 838573 1 P10 CABLE ASSY,FL AT,10 CO NDUCT,6.0” 714022 1 Q1-3,Q10 * TRANSI STOR,SI ,PNP,40V ,300MW,S OT-23 742684 4 Q4-6 * TRANSI STOR,SI ,NPN,60V, 350MW,SOT[...]
-
Page 257
List of Replaceable Parts Service Centers 6 6-23 Table 6-4. 2635A A1 Main PCA (cont) Reference Designator Description Fluke Stock No Tot Qty Notes R66,R67,R69, R80,R82,R85, R87-91,R93- R97 R99-106, R108-118 * * * * * RES,CE RM,47,+-5% ,.0625W,200P PM 927707 927707 927707 927707 927707 35 RT1 THERMI STOR,DIS C,0.46,25 C 875240 1 RV1 VARIS TOR,41.5V,[...]
-
Page 258
HYDRA Service M anual 6-24 2635A-1601 s64f.eps Figure 6-4. 2635A A1 Main PCA[...]
-
Page 259
List of Replaceable Parts Service Centers 6 6-25 Table 6-5. A2 Display PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1,C3-6 CAP,CE R,0.1UF,+-10% ,25V,X 7R,1206 747287 5 C2 CA P,TA, 4.7UF,+-20%, 16V,3528 745976 1 CR3 * DIODE ,SI, BV=75V, IO=250MA,S OT-23 830489 1 DS1 TUBE, DI SPLA Y , VAC FLUOR,7 S EG,10 CHA R 783522 1 J1 HEA DE[...]
-
Page 260
HYDRA Service M anual 6-26 2620A-4002 CKT 1 CKT 2 s65f.eps Figure 6-5. A2 Display PCA[...]
-
Page 261
List of Replaceable Parts Service Centers 6 6-27 Table 6-6. A3 A/D Converter PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1-3,C18,C21, C22,C25,C29, C33 CAP,CE R,0.1UF,+-10% ,25V,X 7R,1206 747287 747287 747287 9 C4,C5 CAP,CER, 15PF,+-10%, 50V,C0G,1206 837393 2 C6,C7,C10 CAP ,POLYP R,0.1UF,+-10% ,160V 446781 3 C8,C9,C19 CAP, TA,[...]
-
Page 262
HYDRA Service M anual 6-28 Table 6-6. A3 A/D Converter PCA (cont) Reference Designator Description Fluke Stock No Tot Qty Notes R13,R43 RES,CF,270, +-5%,0.25W 810424 2 R14,R24-28 * RE S,CERM, 47K,+-5%, .125W,200PP M 746685 6 R15 * RES,CE RM,61.9K ,+-1%,. 125W,100PPM 821330 1 R16,R17,R20 * RE S,CERM ,200K,+-5% ,.125W,200P PM 746743 3 R18 * RES,CE RM[...]
-
Page 263
List of Replaceable Parts Service Centers 6 6-29 2620A-1603 K3, K5-K14 Relay Polarity Install with marked end as shown. Aromat or Nais Omron s66f.eps Figure 6-6. A3 A/D Converter PCA[...]
-
Page 264
HYDRA Service M anual 6-30 Table 6-7. A4 Analog Input PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1 CA P,CER, 1000PF,+-5%, 50V,C0G,1206 867408 1 H55 RI VET,S -TUB,OVA L,AL,. 087,.375 106473 2 L1 CORE,BA LUN,FERRITE ,.136,. 079,.093 106184 1 M1,M2 HE A DE R, 1 ROW,.156CTR,15 P I N 414458 2 MP4 A NA LOG I NPUT CONNECTOR,P WB 87[...]
-
Page 265
List of Replaceable Parts Service Centers 6 6-31 2620A-1604 s67f.eps Figure 6-7. A4 Analog Input PCA[...]
-
Page 266
HYDRA Service M anual 6-32 Table 6-8. A5 (Option -05) IEEE-488 Interface PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1-3 CAP,CE R,0.1UF,+-10% ,25V,X7R, 1206 747287 3 J1 HEA DE R, 2 ROW, . 100CTR, RT ANG,26 PIN 512590 1 J2 HEA DE R,2 ROW,.100CTR, 24 P IN 831834 1 R1 * RES,CE RM,5.1K ,+-5%,. 125W,200PPM 746560 1 TP1 TE RM, UNIN[...]
-
Page 267
List of Replaceable Parts Service Centers 6 6-33 2620A-1605 s68f.eps Figure 6-8. A5 IEEE-488 Interface PCA (Option -05)[...]
-
Page 268
HYDRA Service M anual 6-34 Table 6-9. 2625A A6 Memory PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1-8 CAP,CE R,0.1UF,+-10% ,25V,X7R, 1206 747287 8 J1 HEA DE R, 2 ROW, . 100CTR, RT ANG,26 PIN 512590 1 TP1,TP2 TE RM, UNINSUL,WI RE FORM,TE ST POI NT 781237 2 U1 * IC,CM OS,OCTAL D TRA NS PARNT LATCH, S OIC 876235 1 U2 * IC,CM OS,[...]
-
Page 269
List of Replaceable Parts Service Centers 6 6-35 2625A-1606 s69f.eps Figure 6-9. 2625A A6 Memory PCA[...]
-
Page 270
HYDRA Service M anual 6-36 Table 6-10. 2635A A6 Memory Card I/F PCA Reference Designator Description Fluke Stock No Tot Qty Notes C1-4,C6-8 CAP, CER,0.1UF, +-10%,25V, X7R,1206 747287 7 C5 CA P,TA, 47UF,+-20%,10V ,7343 867580 1 C9 CA P,TA, 1UF,+-20%,35V ,3528 866970 1 DS1 LED,RED,RI G HT A NGLE , 3.0 MCD 927389 1 DS2 LED,YE LLOW, RI GHT ANGLE,3 M CD[...]
-
Page 271
List of Replaceable Parts Service Centers 6 6-37 2635A-1606 s70f.eps Figure 6-10. 2635A A6 Memory Card I/F PCA[...]
-
Page 272
HYDRA Service M anual 6-38[...]
-
Page 273
7-1 Chapter 7 IEEE-488 Option -05 Title Page 7-1. Introduction .......................................................................................... 7-3 7-2. Theory of Operation ............................................................................. 7- 3 7-3. Functional Block Description ..................................................[...]
-
Page 274
HYDRA Service M anual 7-2[...]
-
Page 275
IEEE-488 Opt ion -05 Introduction 7 7-3 7-1. Introduction The IEEE-488 Interface turns the Data Acquisition Un it 2620A into a fully programmable instrument for use with the IEEE Standard 488.1 (1987) interface bus (IEEE-488 bus). With the IEEE-488 Interface, the instrument can become part of an automated instrumentation system. The IEEE-488 Interf[...]
-
Page 276
HYDRA Service M anual 7-4 7-5. Main PCA Connector The IEEE-488 PCA interfaces to the Main PCA through a 26-pin, right-angle connector (A5J1). This connector routes the 8-bit data bus, the lower three bits of the address bus, memory control, system clock, and address decode signals from the Main PCA to the IEEE-488 PCA. The IRQ2* interrupt request s[...]
-
Page 277
IEEE-488 Opt ion -05 General Maintenance 7 7-5 7-7. IEEE-488 Transceivers/Connector The IEEE-488 Transceivers (A5U2 and A5U3) are octal transceivers that are specifically designed to exhibit t he proper electrical dri ve characteristics to m eet the IEEE-488 standard. These transceivers are configured to match the control signals available on the I[...]
-
Page 278
HYDRA Service M anual 7-6 CHASSIS REAR BEZEL CASE IEEE-488 PCA 6-32, 1 / 4 INCH PANHEAD SCREW REMOVE PLASTIC PLUG FROM CASE RETAINING SCREWS 24-LINE RIBBON CABLE ASSEMBLY MOUNTING SCREW (2) GROUNDING SCREW s53f.eps Figure 7-1. Installation[...]
-
Page 279
IEEE-488 Opt ion -05 Performance Testing 7 7-7 7-10. Installing the IEEE-488 Option 1. Place the IEEE-488 PCA into position so that the edge of the pca fits in the chassis guide. Then line up connecting pins with the matching connector on the Main PCA, and slide the pca into position. 2. Install the single 6-32, 1/4-inch panhead Phillips head screw[...]
-
Page 280
HYDRA Service M anual 7-8 7-12. Troubl eshooti ng 7-13. Power-Up Problems The following discussion identifies probable fault areas if the installation of an IEEE- 488 Option causes power-up failure for the instrument. The problem is probably a short on A5J1; the Microprocessor on the Main Assembly is prevented from accessing RO M and RAM correctly.[...]
-
Page 281
IEEE-488 Opt ion -05 List of Replaceable Parts 7 7-9 7-18. Failure to Receive Multi ple Character C ommands Monitor the IRQ2* interrupt signal from A5U 1-10 during attempts to communicate with the instrument. Each byte received with the ATN signal (A5U1-31) high should cause the interrupt signal to go low. Verify that the signal arrives at A5J1 pro[...]
-
Page 282
HYDRA Service M anual 7-10[...]
-
Page 283
8-1 Chapter 8 Schematic Diagrams Figure Titl e Page 8-1. A1 Main PCA (2620A/2625A) .............................................................................. 8-3 8-2. A1 Main PCA (2635A) .......................................................................................... 8-8 8-3. A2 Display PCA ............................................[...]
-
Page 284
HYDRA Service M anual 8-2[...]
-
Page 285
Schematic Diagrams 8 8-3 Figure 8-1. A1 Main PCA (2620A/2625A) 2620A-1601 s88f.eps[...]
-
Page 286
Schematic Diagrams 8 8-4 Figure 8-1. A1 Main PCA (2620A/2625A) (cont) s71f.eps 2620A-1001 (1 of 4) DES REF POWER SUPPLY PIN NUMBERS NOTES: 1. ALL RESISTORS ARE 1/4W 5%. UNLESS OTHERWISE SPECIFIED ALL CAPACITOR VALUES ARE IN MICROFARADS. TP VR U T Z Y W U31 T2 TP32 VR4 Z3 Y1 W1 TP21-29 U30 S1 S R RT RV Q P L C J CR RT1 R64 Q9 P10 L2 J6 CR19 C59 RV1 [...]
-
Page 287
Schematic Diagrams 8 8-5 Figure 8-1. A1 Main PCA (2620A/2625A) (cont) TP3 TP4 TP6 MMBT3904 Q6 MMBT3904 Q5 C10 180PF BAS16 CR4 VR1 1N5232 TP14 CR5 MBR140 470 C12 R12 47K R11 47K Q1 MMBT3906 R6 3.32K R13 20 LM317 U6 I N OUT ADJ R10 4.7K R4 10K R14 10K R9 4.7K MMBT3906 Q3 MMBT3904 Q4 VR2 1N5233 Q2 MMBT3906 C9 180PF R5 1.00K 10 C6 J3 1.0 C5 TP30 1.0 C4[...]
-
Page 288
Schematic Diagrams 8 8-6 Figure 8-1. A1 Main PCA (2620A/2625A) (cont) 2620A-1001 (3 of 4) s73f.eps[...]
-
Page 289
Schematic Diagrams 8 8-7 Figure 8-1. A1 Main PCA (2620A/2625A) (cont) 22K Z2 C49 180PF AR2 LM324D AR2 LM324D AR2 LM324D TP18 Z1 55K 350K AR1 LM358DT D1 D0 D2 D3 D4 D5 D6 D7 Q7 Q7 CP CE DS PL 74HCT165DT U29 ULN2004 U27 Z3 47K ULN2004 U27 Z3 47K C50 180PF Z3 47K Z3 47K C51 180PF Z3 47K 22K Z2 TP20 22K Z2 22K Z2 22K Z2 22K Z2 22K Z2 R51 47 R52 47 R53 [...]
-
Page 290
Schematic Diagrams 8 8-8 2635A-1601 REF DES A1U1 -- -- -- -- -- -- A1U2 -- A1U3 A1U4 A1U5 A1U7 A1U8 A1U9 A1U10 A1U11 A1U12 -- A1U13 A1U14 A1U15 A1U16 A1U20 A1U22 A1U23 A1U24 A1U25 -- -- -- -- A1U26 A1Z2 3, 13, 23, 29, 34, 44, 50, 57, 67, 73, 84, 102, 107, 116, 126 2, 5, 7, 9, 12 11 11 4 -- 4 -- 3 10 1, 2, 12, 21 9 16 7, 8, 9 16 16 7, 11, 12 7, 11, [...]
-
Page 291
Schematic Diagrams 8 8-9 180PF C10 R15 33 MMBT3904 Q5 R14 10K 180PF C9 R13 20 R11 47K R9 4.7K R5 1.00K R6 3.32K HCU04 HCU04 D HC74 CL Q Q PR TP1 TP30 CR6 MBR140 CR2 1N5397 CR5 MBR140 10 C6 CR3 1N5397 10000 C7 .033 C2 2620A-6501 J3 EG N L 1/8A SB 180PF C59 J2 P10 RT1 RXE065 C39 .047 R48 10K 1.0 C34 4.02K R46 1.30K R44 11.0K R19 R20 59.0K VCC TP2 TP6[...]
-
Page 292
Schematic Diagrams 8 8-10 2635A-1001 (2 of 5) Figure 8-2. A1 Main PCA (2635A) (cont) s76f.eps[...]
-
Page 293
Schematic Diagrams 8 8-11 2635A-1001 (3 of 5) Figure 8-2. A1 Main PCA (2635A) (cont) s77f.eps[...]
-
Page 294
Schematic Diagrams 8 8-12 PAD54 PAD55 PAD56 PAD58 PAD61 PAD62 PAD63 PAD64 PAD65 PAD66 PAD67 PAD68 PAD69 PAD70 PAD71 PAD72 PAD73 PAD74 PAD75 PAD76 PAD77 PAD78 PAD79 PAD5 PAD6 PAD15 PAD16 PAD25 PAD26 PAD27 PAD31 PAD35 PAD36 PAD37 PAD42 PAD43 PAD44 PAD45 PAD46 PAD47 PAD48 PAD49 PAD50 PAD52 PAD53 A0-WS-IO A1-CS2-IO A2-IO A3-IO A4-IO A5-IO A6-IO A7-IO A[...]
-
Page 295
Schematic Diagrams 8 8-13 TP18 .1 C33 .1 C38 .1 C61 180PF C55 180PF C56 180PF C57 180PF C58 180PF C52 1000PF C53 180PF C49 180PF C48 180PF C47 180PF C46 180PF C45 180PF C44 180PF C51 180PF C50 180PF C43 180PF C54 .1 C29 VCC VCC VCC VCC VCC U3 LM324D U3 LM324D U3 LM324D U3 LM324D U4 LM324D U4 LM324D U4 LM324D U4 LM324D U8 LM358D U8 LM358D 22K Z2 22K[...]
-
Page 296
Schematic Diagrams 8 8-14 2620A-4002 CKT 1 CKT 2 Figure 8-3. A2 Displa y PCA s90f.eps[...]
-
Page 297
Schematic Diagrams 8 8-15 2620A-1002 REF DES A2U1 A2U4 A2U5 A2U6 A2Z1 21 16 10, 16 14 16 42 2, 8 8 7, 9, 10 -- 4 -- -- -- -- 5 -- -- -- -- POWER SUPPLY PIN NUMBERS VCC (5.1V dc) VEE (5.0V dc) VLOAD (-28.5 to -30.0V dc) GND Figure 8-3. A2 Displa y PCA (cont) s80c.eps[...]
-
Page 298
Schematic Diagrams 8 8-16 2620A-1603 K3, K5-K14 Relay Polarity Install with marked end as shown. Aromat or Nais Omron Figure 8-4. A3 A/D Converter PCA s91c.eps[...]
-
Page 299
Schematic Diagrams 8 8-17 2620A-1003 (1 of 3) REF DES A3U1 A3U2 A3U3 -- A3U4 A3U5 A3U6 A3U7 A3U8 A3U9 A3U10 A3U11 A3U12 A3U13 A3U14 A3Z1 A3Z2 A3Z3 3 1, 16 1, 10, 11, 12, 13, 14 -- -- -- -- 1 5, 6, 9, 36 -- -- -- 8 8 -- 1 -- 10, 11, 12 6, 9 2, 7 -- -- -- 1, 3, 4 3 4, 25, 27, 38 2, 45 -- -- -- 4 -- 4 -- 8 -- -- -- -- 9 9 -- -- -- -- 9 9 9 -- -- -- --[...]
-
Page 300
Schematic Diagrams 8 8-18 2620A-1003 (2 of 3) Figure 8-4. A3 A/D Converter PCA (cont) s82c.eps[...]
-
Page 301
Schematic Diagrams 8 8-19 2620A-1003 (3 of 3) Figure 8-4. A3 A/D Converter PCA (cont) s83c.eps[...]
-
Page 302
Schematic Diagrams 8 8-20 2620A-1604 Figure 8-5. A4 Analog Input PCA s92f.eps[...]
-
Page 303
Schematic Diagrams 8 8-21 M1 M2 P2 P1 RV1 910V RV2 910V RV4 910V RV3 910V TB2 TB1 10K R2 R1 5.49K Q1 STS1018 1000PF C1 VR1 LM385-2.5 CW 50K R3 UNLESS OTHERWISE SPECIFIED. NOTES: 1. ALL CAPACITOR VALUES ARE IN MICROFARADS. A10 C10 A12 A14 B15 C18 A18 B21 A16 A22 B23 C24 B25 B27 C28 C30 C32 B31 A4 C4 A8 C8 C12 B13 C14 C16 B17 B19 A20 C20 C22 A24 C26 [...]
-
Page 304
Schematic Diagrams 8 8-22 2620A-1605 Figure 8-6. A5 IEEE-488 Interface PCA (2620A Only) s93f.eps[...]
-
Page 305
Schematic Diagrams 8 8-23 2620A-1005 REF DES VCC (5.1V dc) 3, 44 20 20 14 A5U1 A5U2 A5U3 A5U4 22 10,11 10 1,2,4,5,7,9,10 GND POWER SUPPLY PIN NUMBERS Figure 8-6. A5 IEEE-488 Interface PCA (2620A Only) (cont) s85c.eps[...]
-
Page 306
Schematic Diagrams 8 8-24 2625A-1606 Figure 8-7. A6 Memory PCA (2625A) s94f .eps[...]
-
Page 307
Schematic Diagrams 8 8-25 2625A-1006 REF DES VCC (5.1V dc) 20 14 14 5 14 32 32 16 A6U1 A6U2 A6U3 A6U4 A6U5 A6U6 A6U7 A6U8 1, 10 7, 12, 13 7 3, 12 7 16 16 5, 8 GND POWER SUPPLY PIN NUMBERS Figure 8-7. A6 Memory PCA (2625A) (cont) s86c.eps[...]
-
Page 308
Schematic Diagrams 8 8-26 2635A-1606 REF DES VCC (5.0V dc) 1, 11, 12, 13, 14, 15, 17,18 19, 20, 21, 31, 41, 51, 61, 71, 81, 91, 101, 105, 111, 7 2, 4, 6, 7, 8, 10 A6U1 -- -- A6U2 A6U3 16, 27, 46, 60, 76, 106, 107, 113, 116, 120 -- 14 20 GND POWER SUPPLY PIN NUMBERS Lasted Used Not Used C9 DS2 P2 Q1 R15 TP1 U3 Z3 C DS P Q R TP U Z -- -- -- -- R14 --[...]
-
Page 309
Schematic Diagrams 8 8-27 P2 VCC .1 C2 .1 C3 .1 C4 VCC .1 C1 SI9405DY Q1 G D S 10K R1 VCC 47 C5 .1 C6 .1 C7 .1 C8 1.0 C9 Z2 100 Z2 Z2 Z2 Z2 100 Z2 Z2 Z2 360 R6 47K R7 47K R2 VCC 10K R3 10K R4 47K R5 R10 360 R11 360 R12 47K DS1 HLMP-1302-101 R13 1.5K DS2 HLMP-1402-101 R15 33 TP1 P1 VPP1 VPP2 VCC VCC RESET RFU1 RFU2 RFU3 RFU4 GND GND GND GND EARTH EA[...]
-
Page 310
Schematic Diagrams 8 8-28[...]