Go to page of
Similar user manuals
-
Network Card
Fujitsu MB15F88UL
6 pages 0.32 mb -
Network Card
Fujitsu FPT-20P-M06
6 pages 0.32 mb -
Network Card
Fujitsu PG-FCS102
98 pages 2.64 mb -
Network Card
Fujitsu MB15F83UL
6 pages 0.32 mb -
Network Card
Fujitsu Single Drive FTM7924FB
1 pages 0.09 mb -
Network Card
Fujitsu BX620
98 pages 2.64 mb -
Network Card
Fujitsu MB91360
43 pages 1.56 mb -
Network Card
Fujitsu FMW43VA01
1 pages 0.02 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of Fujitsu C120-E276-11ENZ0(A), along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Fujitsu C120-E276-11ENZ0(A) one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of Fujitsu C120-E276-11ENZ0(A). A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of Fujitsu C120-E276-11ENZ0(A) should contain:
- informations concerning technical data of Fujitsu C120-E276-11ENZ0(A)
- name of the manufacturer and a year of construction of the Fujitsu C120-E276-11ENZ0(A) item
- rules of operation, control and maintenance of the Fujitsu C120-E276-11ENZ0(A) item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Fujitsu C120-E276-11ENZ0(A) alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Fujitsu C120-E276-11ENZ0(A), and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Fujitsu service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Fujitsu C120-E276-11ENZ0(A).
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the Fujitsu C120-E276-11ENZ0(A) item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
C120-E276-11ENZ0(A) October 2011 Solaris FUJITSU PCI Gigabit Ethernet 4.1 Update2 / 5.0 for Oracle Solaris User's Guide SPARC Enterprise[...]
-
Page 2
Preface Purpose This manual describes how to install the Gigabit Ethernet card into your SPARC Enterprise system, and configure the environmental settings for the interface. Target Reader This manual is intended for system administrators responsible for installing the Gigabit Ethernet card. To understand the concepts and procedures presented in thi[...]
-
Page 3
Note - This symbol indicates that important information is given. Information - This symbol indicates that useful information is given. Handling of This Manual This manual contains important information regarding the use and handling of this product. Read this manual thoroughly. Pay special attention to the section "Important Warnings". U[...]
-
Page 4
Edition Date Details Support switches was added Changed the Version 2.1 to 2.2 05 2005-11-11 Quad Gigabit Ethernet card(PW008QG1) was supported Changed the Version 2.2 to 2.3 06 2006-2-06 RoHS compliant 1port Gigabit Ethernet Card(PW0G8GE1, PW0G8GE2) was supported Changed the Version 2.3 to 2.4 07 2007-1-20 PCI Express Gigabit Ethernet Card(SE0X7GD[...]
-
Page 5
Contents Chapter 1 Product Outline ........................................................................................................................................................1 1.1 Key Features ................................................................................................................................................[...]
-
Page 6
D.3 Notes ................................................................................................................................................................................................. 69 Appendix E Using FUJITSU PCI GigabitEthernet in Oracle VM Server for SPARC .............................................................. 73 E.[...]
-
Page 7
Chapter 1 Product Outline This chapter describes the following topics. - 1.1 Key Features - 1.2 Gigabit Ethernet Card Specifications 1.1 Key Features The Gigabit Ethernet cards covered in this manual are adapters designed for Solaris servers that are connected to a Gigabit Ethernet network. These cards provide the physical services and data link se[...]
-
Page 8
The GLDv3 compliant driver works with the following features. - The LinkAggregation (based on IEEE 802.3) by the dladm(1M) command. - Solaris Containers (Exclusive-IP Non-Global Zones) - Oracle VM Server for SPARC The GLDv3 compliant driver does not work with the following features. - SNA/FNA - The Multipath Function of PRIMECLUSTER GLS. The follow[...]
-
Page 9
Item Hardware Specification Power Requirements Maximum: 9.1W (SE0X7GD1X), 9.2W (SE0X7GD2X), 15.0W (SE0X7GQ1X), 12.8W (SE0X7GQ2X) Connections 1000Base-SX (SE0X7GD2X): Multi-mode Fibre LC-SC: 62.5/125 micron and 50/125 micron (Card side is LC. Used when connecting to a device with an SC connector.), LC- LC: 62.5/125 micron and 50/125 micron 10/100/10[...]
-
Page 10
Figure 1.1 1000Base-SX * 2ports (SE0X7GD2X) Figure 1.2 10/100/1000Base-T * 2ports (SE0X7GD1X) - 4 -[...]
-
Page 11
Figure 1.3 10/100/1000Base-T * 4ports (SE0X7GQ1X) Figure 1.4 10/100/1000Base-T * 4ports (SE0X7GQ2X) - 5 -[...]
-
Page 12
Chapter 2 Gigabit Ethernet Card Installation This chapter describes the tasks necessary to install this card in your system. Install the hardware with the following procedures. - 2.1 Installation of the Gigabit Ethernet Card - 2.2 Identifying the Gigabit Ethernet Card - 2.3 Cable Connection 2.1 Installation of the Gigabit Ethernet Card Insert the c[...]
-
Page 13
Figure 2.1 SE0X7GD2X (with Multimode Optical Fiber Cable) - 7 -[...]
-
Page 14
Figure 2.2 SE0X7GD1X (with Twisted Pair CAT5e Cable) - 8 -[...]
-
Page 15
Figure 2.3 SE0X7GQ1X (with Twisted Pair CAT5e Cable) - 9 -[...]
-
Page 16
Figure 2.4 SE0X7GQ2X (with Twisted Pair CAT5e Cable) - 10 -[...]
-
Page 17
Chapter 3 Setting Instructions This chapter describes the summary of environment settings required after installing this product. Install the driver and configure environment settings using the following procedures. - 3.1 Driver Software Installation - 3.2 Identification of Interface Name - 3.2 Identification of Interface Name - 3.3 Environment Set[...]
-
Page 18
3.3 Environment Setting This section explains how to edit the necessary files and use the commands(Solari 11 only) to configure the operating environment for each FUJITSU PCI GigabitEthernet interface. For TCP/IP (IPv4 or IPv6), edit the following files and execute the following command(Solaris 11 only). - Solaris 10 8/07 or later - /etc/hostname. [...]
-
Page 19
3. Edit the /etc/inet/netmasks file Describe the relationship between the network address and the netmask in the /etc/inet/netmasks file. Example of the /etc/inet/netmasks file: Describe the relationship between the network address (example: 192.168.150.0) and the netmask (example: 255.255.255.0). # Network Address netmask 192.168.150.0 255.255.255[...]
-
Page 20
3.3.2 Environment Setting of IPv6 Interfaces - Solaris 10 8/07 or later 1. Edit the /etc/hostname6. fjgi* file Assign an IPv6 address or hostname and prefix length to the fjgi interface by editing the /etc/hostname6.fjgi* file (where fjgi* represents the driver name and instance number). Example of the /etc/hostname6.fjgi* file: Define a unique hos[...]
-
Page 21
Information - The following example shows how to display an IP address and prefix length that assigned the fjgi interface. Example: When setting an IP address (example: 192.168.150.1) and prefix length (example: 24) to fjgi interface (example: fjgi0 (this vanity name is net2)). # ipadm show-addr net2/v4static ADDROBJ TYPE STATE ADDR net2/v6static s[...]
-
Page 22
FJSV,e2ta, instance # 6 (driver name: fjgi) FJSV,e2ta, instance # 7 (driver name: fjgi) FJSV,e4tb, instance # 8 (driver name: fjgi) FJSV,e4tb, instance # 9 (driver name: fjgi) FJSV,e4tb, instance # 10 (driver name: fjgi) FJSV,e4tb, instance # 11 (driver name: fjgi) The installed Gigabit Ethernet card types and instance numbers (shown in bold , abov[...]
-
Page 23
Logical bus address Instance number Driver name "/pci@1,700000/pci@0,1/FJSV,e4ta@6,1" 3 fjgi "/pci@3,700000/pci@0/FJSV,e2sa@4" 4 fjgi "/pci@3,700000/pci@0/FJSV,e2sa@4,1" 5 fjgi "/pci@2,600000/pci@0/FJSV,e2ta@4" 6 fjgi "/pci@2,600000/pci@0/FJSV,e2ta@4,1" 7 fjgi "/pci@4,600000/pci@0/FJSV,e4tb@4&q[...]
-
Page 24
Parameter Value Description LinkSpeed_A (*1) Auto (default) Any connection speed of 1000, 100, or 10 Mbps is set based on negotiation with the remote device. (This is effective only when AutoNegotiation_A=On.) 1000 Connect at 1000Mbps. 100 Connect at 100Mbps. 10 Connect at 10Mbps. DuplexCapabilities_A (*1) Both (default) Both Full-Duplex and Half-D[...]
-
Page 25
Parameter Value Description TransmitMaxBD 1 to 500 (*3) (default: 128) The number of buffer descriptor to wait for an interrupt for transmitting is specified. (*5) fjgi* (*6) <LinkSpeed_A> :<DuplexCapabilities_A> :<FlowControl_A> :<fjgi_mtu> :<AutoNegotiation_A> :<Role_A> :<ReceiveTicks> :<TransmitTicks&[...]
-
Page 26
The parameter values need to be set by character strings like AutoNegotiation_A="On", LinkSpeed_A="100" and DuplexCapabilities_A="Full". The following is added to the fjgi.conf file: AutoNegotiation_A="On" LinkSpeed_A="100" DuplexCapabilities_A="Full"; Example 3: The MTU parameter for all [...]
-
Page 27
The parameter value needs to be set by a character string like fjgi0=":::8000::::::". The following is added to the fjgi.conf file: fjgi0=":::8000::::::"; Example 6: The MTU parameter for fjgi1 is set to 8000. The parameter value needs to be set by a character string like fjgi1="Auto:Both:Auto:8000:On:Auto::::". The fo[...]
-
Page 28
Parameter Value Description Rem Only flow control from the remote device is allowed. Flow control from the local device is not allowed. LocSend Only flow control from the local device is allowed. Flow control from the remote device is not allowed. None Flow control is disabled. fjgi_mtu 1500 (default) to 9000 (*3) MTU (byte) is specified. AutoNegot[...]
-
Page 29
- From the above example, instance number and driver name for each interface can be determined. Device node of device tree Instance number Driver name /pci@1,700000/pci@0/FJSV,e4ta@4 0 fjgi /pci@1,700000/pci@0/FJSV,e4ta@4,1 1 fjgi /pci@1,700000/pci@0,1/FJSV,e4ta@6 2 fjgi /pci@1,700000/pci@0,1/FJSV,e4ta@6,1 3 fjgi /pci@2,600000/pci@0/FJSV,e2sa@4 4 f[...]
-
Page 30
SE0X7GD1X name fjgi parent /pci@3,700000/pci@0 unit-address instance 6 is 4 instance 7 is 4,1 SE0X7GQ2X name fjgi parent /pci@4,600000/pci@0 /pci@4,600000/pci@0,1 unit-address instance 8 is 4 instance 9 is 4,1 instance 10 is 6 instance 11 is 6,1 - The location of the fjgi.conf file depends on the model of the host system as described below: 1. SPAR[...]
-
Page 31
Example 4: The parameters for all instances are set to "Auto-Negotiation is disabled", "Connect at 100Mbps" and "Half-Duplex operation is enabled". The parameter value needs to be set by a character string like AutoNegotiation_A="Off", LinkSpeed_A="100", DuplexCapabilities_A="Half". The fo[...]
-
Page 32
- When "Method 1: Setting method of new style" and "Method 2: Setting method of old style" are specified at the same time, the driver gives priority to the "Method 1: Setting method of new style". And when "How to set a parameter to all instances" and "How to set a parameter to each instance" are sp[...]
-
Page 33
fjgi0=":::8000::::::"; 2. Reboot the system. - Setting method of old style 1. Add the fjgi_mtu parameter to the fjgi.conf file. The parameter value needs to be set by numerical value like fjgi_mtu=8000. Example of file description (The MTU parameter for fjgi0 is set to 8000): name="fjgi" parent="/pci@1,700000/pci@0" un[...]
-
Page 34
3.5.3 Using the ndd(1M) command By using the ndd(1M) command, the interface communication mode can be changed dynamically. Usually it is not necessary to change the interface communication mode using the ndd(1M) command, but when you experience the following, please change the interface communication mode using the ndd(1M) command. This method is n[...]
-
Page 35
# ndd -set /dev/fjgi0 adv_1000fdx_cap 0 # ndd -set /dev/fjgi0 adv_1000hdx_cap 0 # ndd -set /dev/fjgi0 adv_autoneg_cap 0 # ndd -set /dev/fjgi0 adv_autoneg_cap 1 (Note) The last two commands above change the Auto-Negotiation setting, then change the setting back. This causes the Link Status to change, and is required to make the settings effective. -[...]
-
Page 36
Parameter Status Meaning adv_10fdx_cap Read and write 10Mbps/FullDuplex Setting 0: Disabled 1: Enabled (default) adv_10hdx_cap Read and write 10Mbps/HalfDuplex Setting 0: Disabled 1: Enabled (default) adv_100fdx_cap Read and write 100Mbps/FullDuplex Setting 0: Disabled 1: Enabled (default) adv_100hdx_cap Read and write 100Mbps/HalfDuplex Setting 0:[...]
-
Page 37
Parameter Status Meaning lp_pauseTX Read only Set link-partner to transmit pause frame by Auto-Negotiation. 0: Disabled 1: Enabled lp_pauseRX Read only Set link-partner to receive pause frame by Auto-Negotiation. 0: Disabled 1: Enabled lp_autoneg_cap Read only Set link-partner to Auto-Negotiate. 0: Disabled 1: Enabled role_cap Read only The current[...]
-
Page 38
- The values of lp_10fdx_cap, lp_10hdx_cap, lp_100fdx_cap, lp_100hdx_cap, lp_1000fdx_cap, lp_1000hdx_cap, lp_pauseTX, lp_pauseRX, and lp_autoneg_cap parameters are valid only when Auto-Negotiation is successfully established. These parameter values are invalid when Auto-Negotiation is disabled or when Auto-Negotiation fails. - The parameter values [...]
-
Page 39
Propertiy Status Meaning adv_autoneg_cap Read and write Auto-Negotiation Setting 0: Auto-Negotiation Off (Forced mode) 1: Auto-Negotiation On (default) mtu (*1) Read and write MTU (byte) Setting 1500 to 9000 (default: 1500) flowctrl Read and write Flow_Control Setting no: None (flow_control disabled) tx: Local Send (Can transmit pause frame only) r[...]
-
Page 40
Propertiy Status Meaning _cardtype (*2) Read only 0: SX (SE0X7GD2X) 1: T (SE0X7GD1X/SE0X7GQ1X/SE0X7GQ2X) _Role_A (*2) Read and write Role setting when operating at 1000Mbps. (used with SE0X7GD1X/ SE0X7GQ1X/SE0X7GQ2X only) 0: Slave 1: Master 2: Auto (default) _ReceiveTicks (*2) Read and write Time to wait for an interrupt for receiving is specified [...]
-
Page 41
3.5.5 FCode Settings FCode settings must be changed when the remote device does not support Auto-Negotiation and the communication by FCode is needed (example: Network Installation). FCode changes are not required for Network Installation if the remote device supports Auto-Negotiation. Use the following procedure and examples to change FCode settin[...]
-
Page 42
- Execute the following command to set Half Duplex communication, 10Mbps. ok transfer-speed=10 ok half-duplex - Execute the following command to display the current settings. ok .properties The following example shows the current settings of a SE0X7GD1X card installed in a SPARC Enterprise M9000. {6} ok cd /pci@4,600000/pci@0/FJSV,e2ta@4 {6} ok .pr[...]
-
Page 43
- How to Return to Default FCode Settings (Auto-Negotiation Mode): - To return to default FCode settings, execute the following command from the ok prompt, or power cycle the system. ok reset-all 3.6 Network Installation See the document " Install Server Build Guide I/O Device Driver (SPARC Enterprise) " for the installation procedure. 3.[...]
-
Page 44
The FUJITSU PCI GigabitEthernet 4.1 or later drivers support: Supported VIDs 1 - 4094 Max number of VLAN interfaces 1024 3.7.2 Setting Up the VLAN Interface The VLAN interface is set up using the following procedures. - By setting the interface number to 1000 or greater, it is possible to distinguish VLAN interfaces from physical interfaces. The th[...]
-
Page 45
- To create a VLAN Interface of VID=231 for fjgi3 (this vanity name is net5), the following is used. Refer to "3.3 Environment Setting", and perform the procedure described. Use net231005 as the driver name. dladm create-vlan -l ether-link -v vid Example: # dladm create-vlan -l net5 -v 231 - VLAN interfaces are displayed by the following [...]
-
Page 46
Chapter 4 LinkAggregation Feature This chapter outlines the LinkAggregation feature, and explains the settings required to use this feature. - 4.1 About LinkAggregation Feature - 4.2 Configuration of the LinkAggregation Feature - 4.3 Notes 4.1 About LinkAggregation Feature This section explains the LinkAggregation feature. - LinkAggregation Feature[...]
-
Page 47
- LAN switch that supports the LinkAggregation (or equivalent) feature - Data Distribution Mode " Table 4.2 Data Distribution Mode " shows data distribution modes that FUJITSU Gigabit Ethernet 4.1 or later supports. Table 4.2 Data Distribution Mode L2 distribution The driver decides on the destination NIC based on the MAC (L2) header of s[...]
-
Page 48
This mode is used for re-configuring the LinkAggregation Group of the partner device automatically when the configuration of the LinkAggregation Group of the local device is changed. Also, the driver does not need to transmit the LACP for cases when the local device functions as a router, or the partner device does not implement LACP. off mode (def[...]
-
Page 49
Note - For more information about the dladm(1M) command, please refer to the "System Administration Guide: IP Services" and the "man pages section 1M: System Administration Commands" of Oracle Documentation. 4.2.1.1 Create a LinkAggregation (dladm create-aggr) This section explains the dladm create-aggr command for activating Li[...]
-
Page 50
1. Create the LinkAggregation Group - Solaris 10 8/07 or later The following example shows how to create the LinkAggregation Group with the fjgi0, fjgi1 and fjgi2 interfaces and "key=1": # /usr/sbin/dladm create-aggr -d fjgi0 -d fjgi1 -d fjgi2 1 - Solaris 11 The following example shows how to create the LinkAggregation Group with the fjgi[...]
-
Page 51
1. Describe the hostname in the /etc/hostname.aggr1 file. Example (Hostname is giga-lacp.): # cat /etc/hostname.aggr1 giga-lacp 2. Define the relation between the IP address and the hostname in the /etc/inet/hosts file. Example (Hostname is giga-lacp and its IP address is 192.168.150.1): # cat /etc/inet/hosts 192.168.150.1 giga-lacp 3. Reboot the s[...]
-
Page 52
1. Define the relation between the IP address and the hostname in the /etc/inet/hosts file. Example (Hostname is giga-lacp and its IP address is 192.168.150.1): # cat /etc/hosts 192.168.150.1 giga-lacp 2. Setup the hostname and prefix length to aggr1 by ipadm(1M) command. Example (Hostname is giga-lacp and prefix length is 24): # ipadm create-ip ag[...]
-
Page 53
4.2.1.2 Delete a LinkAggregation (dladm delete-aggr) This section explains the dladm delete-aggr command for inactivating LinkAggregation. - Synopsis - Solaris 10 8/07 or later /usr/sbin/dladm delete-aggr key key : Specify the key number to identify the LinkAggregation Group Specify a number ranging from 1 to 999. - Solaris 11 /usr/sbin/dladm delet[...]
-
Page 54
2. Delete the LinkAggregation Group - Solaris 10 8/07 or later The following example shows how to delete the "key=1" LinkAggregation Group (*3): # /usr/sbin/dladm delete-aggr 1 *3: Before deleting the LinkAggregation Group, please inactivate the LinkAggregation Group and stop the LinkAggregation. - Solaris 11 The following example shows h[...]
-
Page 55
passive: passive mode off: off mode -T time : Specify the LACP timer short: every one second long: every 30 seconds aggr-link : The name of the representative interface. - Description Modifies a LinkAggregation Group. - Exit Code 0: normal end. >0: abnormal end. - Example Processes to modify the policy of a LinkAggregation Group are shown below.[...]
-
Page 56
4.2.1.4 Add Interfaces to a LinkAggregation (dladm add-aggr) This section explains the dladm add-aggr command for adding interfaces to a LinkAggregation. - Synopsis - Solaris 10 8/07 or later /usr/sbin/dladm add-aggr -d dev [-d dev ] ... key -d dev: Specify the name of the physical interface (including instance number) to belong to a LinkAggregatio[...]
-
Page 57
- Solaris 10 8/07 or later - The following example shows how to add the interface "fjgi3" to the "key=1" LinkAggregation Group: # /usr/sbin/dladm add-aggr -d fjgi3 1 - Solaris 11 - The following example shows how to add the interface "fjgi3"(this vanity name is net5) to the "agg-link=aggr1" LinkAggregation Gr[...]
-
Page 58
- Synopsis - Solaris 10 8/07 or later /usr/sbin/dladm remove-aggr -d dev [-d dev ] ... key -d dev : Specify the name of the physical interface (including instance number) to belong to a LinkAggregation Group You can specify devices belonging to the LinkAggregation Group until the number of them becomes one. key : Specify the key number to identify [...]
-
Page 59
- Solaris 10 8/07 or later - The following example shows how to remove the interface "fjgi2" from the "key=1" LinkAggregation Group: # /usr/sbin/dladm remove-aggr -d fjgi2 1 - Solaris 11 - The following example shows how to remove the interface "fjgi2"(this vanity name is net4) from the "aggr-link=aggr1" Link[...]
-
Page 60
- Synopsis - Solaris 10 8/07 or later /usr/sbin/dladm show-aggr [-s [-i interval ]] [-L] [ key ] -s: Specify to display the statistics. -i interval: Specify the interval in seconds to report the statistics (Differences from the preceding screen are displayed when statistics are displayed multiple times.) Displays an accumulated value only once if t[...]
-
Page 61
- The following example shows how to display the detailed LinkAggregation Information for the "key=1" LinkAggregation Group: # /usr/sbin/dladm show-aggr -L 1 key: 1 (0x0001) policy: L4 address: 0:0:77:9f:3c:d5 (auto) LACP mode: active LACP timer: short device activity timeout aggregatable sync coll dist defaulted expired fjgi1 active shor[...]
-
Page 62
aggr1 net3 124 16.03K 147 18.82K aggr1 net4 122 15.62K 148 18.94K *: net2, net3, and net4 are the vanity name of fjgi0, fjgi1, and fjgi2, respectively. Note - For more information about this command, please refer to the "man pages section 1M: System Administration Commands" of Oracle Documentation. 4.3 Notes This section explains notes fo[...]
-
Page 63
Chapter 5 Troubleshooting The following should be checked first to troubleshoot a problem. Is the driver software installed correctly? If the "pkginfo -x FJSVgid" command does not return output, the driver package is not installed. If this occurs, install the driver package using the driver CD-ROM attached to the Gigabit Ethernet card or [...]
-
Page 64
Appendix A Messages This chapter explains messages displayed by the FUJITSU PCI GigabitEthernet driver. A.1 Console Messages from the Driver Messages from the FUJITSU PCI GigabitEthernet driver are listed in the following table. Table A.1 Console Messages(NOTICE) from the FUJITSU PCI GigabitEthernet Driver No Message Cause Workaround 1 free send de[...]
-
Page 65
No Message Cause Workaround 15 DETACH failed ([detail]) Unloading of the driver failed. After disabling the driver, re-do the process (disconnect in Dynamic Reconfiguration, etc.) If this message is still displayed, report to your service provider. 16 failed to allocate([detail]) Allocating of the memory resource failed. Installed physical memory m[...]
-
Page 66
No Message Cause Workaround Master : Communicating as Master Slave : Communicating as Slave 3 Illegal value for [ParameterName] An error was found with a parameter defined in the fjgi.conf file. Check whether the value is set correctly in the file. 4 fail to ddi_dma_bind_handle The driver could not allocate DMA resources. Installed physical memory [...]
-
Page 67
Table A.4 Messages Reported by Machine Administration No Message Meaning Workaround 1 fjgi_device_check: fjgi_hw_deinit failed ! An error occurred during initialization of the adapter. The version number of the driver may not support this hardware. Please apply any applicable patches described in the Installation Guide. If the problem persists, the[...]
-
Page 68
Appendix B Gigabit Ethernet Card LED Diagnosis This appendix explains the LED diagnosis function of Gigabit Ethernet cards. B.1 Location and Meaning of the LEDs - Location of the LEDs (SE0X7GD2X) The following figure shows the location of the LEDs on SE0X7GD2X. Figure B.1 1000Base-SX * 2ports (SE0X7GD2X) - Meaning of the LEDs (SE0X7GD2X) The follow[...]
-
Page 69
Figure B.2 10/100/1000Base-T * 2ports (SE0X7GD1X) - Meaning of the LEDs (SE0X7GD1X) The following tables show the meaning of each LED. 1000M LED indicates the following operation status. 1000M LED Description ON (Green) The card is connected to a 1000Mbps network and is ready to communicate. OFF The card is not connected to a 1000Mbps network. 100M[...]
-
Page 70
Figure B.3 10/100/1000Base-T * 4ports (SE0X7GQ1X) Figure B.4 10/100/1000Base-T * 4ports (SE0X7GQ2X) - Meaning of the LEDs (SE0X7GQ1X/SE0X7GQ2X) The following tables show the meaning of each LED. LINK LED (White LED in Figure B.3/B.4) indicates the following operation status. LINK LED Description ON (Amber) The card is connected to a 1000Mbps networ[...]
-
Page 71
ACT LED Description ON (Green) The card is transmitting or receiving network data. OFF The card is not transmitting or receiving network data. - 65 -[...]
-
Page 72
Appendix C Using FUJITSU PCI GigabitEthernet in a Cluster Environment This Appendix outlines the supported functions and setup procedure for the FUJITSU PCI GigabitEthernet 4.1 or later or the FUJITSU PCI GigabitEthernet 5.0 or later interface when used in a cluster environment (PRIMECLUSTER). C.1 Cluster Environment Support The FUJITSU PCI Gigabit[...]
-
Page 73
Appendix D Using FUJITSU PCI GigabitEthernet in Solaris Containers This Appendix outlines the supported functions and setup procedure for the FUJITSU PCI GigabitEthernet 4.1 or later or the FUJITSU PCI GigabitEthernet 5.0 or later interface when used in Solaris Containers. D.1 Solaris Containers Support The FUJITSU PCI GigabitEthernet 4.1 or later [...]
-
Page 74
zonecfg:zonename> add net (Begin adding network.) zonecfg:zonename:net> set address= IP-address/prefixlen (Specify IP address and prefix length.) zonecfg:zonename:net> set physical= Interface (Specify network interface.) zonecfg:zonename:net> end (Finish adding network.) zonecfg:zonename> exit (End of command.) Example: Adding fjgi0 [...]
-
Page 75
(Note 1) In Solaris 11, the vanity name (net4) is specified as fjgi2. (Note 2) Reboot the Exclusive-IP Non-Global Zone to make this setting effective. If the Exclusive-IP Non-Global Zone has not booted, execute the following command. # zoneadm -z zonename boot If the Exclusive-IP Non-Global Zone has booted, execute the following command. # zoneadm [...]
-
Page 76
zonecfg:zone1:net> set physical=net1002 zonecfg:zone1:net> end zonecfg:zone1> exit (Note 1) zonecfg create -b command must be executed to create a Shared-IP Non-Global Zone. (Note 2) net2 is the vanity name of fjgi0. (Note 3) Reboot the Shared-IP Non-Global Zone to make this setting effective. If the Shared-IP Non-Global Zone has not boote[...]
-
Page 77
- When a VLAN interface is used in Exclusive-IP Non-Global Zones, please add a VLAN interface of the fjgi interface to the Exclusive- IP Non-Global Zones in the Global Zone, and then make the VLAN interface active using the ifconfig(1M) command in the Exclusive- IP Non-Global Zones. Example: Adding fjgi1002 to an Exclusive-IP Non-Global Zone (zone2[...]
-
Page 78
1. Execute the following commands in the Global Zone. # /usr/sbin/dladm create-aggr -d fjgi0 -d fjgi1 -d fjgi2 2 # zonecfg -z zone2 zonecfg:zone2> set ip-type=exclusive zonecfg:zone2> add net zonecfg:zone2:net> set physical=aggr2 zonecfg:zone2:net> end zonecfg:zone2> exit (Note) Reboot the Exclusive-IP Non-Global Zone to make this se[...]
-
Page 79
Appendix E Using FUJITSU PCI GigabitEthernet in Oracle VM Server for SPARC This Appendix outlines the supported functions and setup procedure for the FUJITSU PCI GigabitEthernet 4.1 or later or the FUJITSU PCI GigabitEthernet 5.0 or later interface when used in Oracle VM Server for SPARC. E.1 Oracle VM Server for SPARC Support The FUJITSU PCI Gigab[...]
-
Page 80
- The following example shows how to add a virtual switch (vsw) device (ldm add-vsw) /opt/SUNWldm/bin/ldm add-vsw net-dev= device vswitch_name ldom ( device : network device vswitch_name : virtual switch device ldom : Logical Domain) Example: Adding primary-vsw0 of fjgi2 to the Control Domain (primary). # /opt/SUNWldm/bin/ldm add-vsw net-dev=fjgi2 [...]
-
Page 81
# /opt/SUNWldm/bin/ldm list-domain -l ldg1 NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME ldg1 active -n--- 5000 4 1G 0.5% 1h 17m SOFTSTATE Solaris running VCPU VID PID UTIL STRAND 0 4 0.5% 100% 1 5 0.2% 100% 2 6 0.4% 100% 3 7 0.7% 100% MEMORY RA PA SIZE 0x8000000 0x48000000 1G VARIABLES auto-boot?=true boot-device=vdisk1 keyboard-layout=Japanese DI[...]
-
Page 82
Appendix F Using FUJITSU PCI GigabitEthernet in Solaris 11 Network Virtualization This Appendix outlines the supported functions and setup procedure for the FUJITSU PCI GigabitEthernet 5.0 or later interface when used in Solaris 11 Network Virtualization. F.1 Solaris 11 Network Virtualization Support The FUJITSU PCI GigabitEthernet 5.0 or later dri[...]
-
Page 83
Example: Creating VNICs (vnic2_1 and vnic2_2) over fjgi0 (this vanity name is net2). # dladm create-vnic -l net2 vnic2_1 # dladm create-vnic -l net2 vnic2_2 - The following example shows how to display VNICs (dladm show-vnic) dladm show-vnic [ vnic-link ] ( vnic-link : link name of VNIC) Example: Displaying VNICs (vnic2_1 and vnic2_2). # dladm show[...]
-
Page 84
# flowadm show-flow FLOW LINK IPADDR PROTO LPORT RPORT DSFLD vnic2_1_flow vnic2_1 -- tcp -- -- -- vnic2_2_flow vnic2_2 -- udp -- -- -- - The following example shows how to display properties of flows over VNICs (flowadm show-flowprop) flowadm show-flowprop [-p prop [,...]] [ flow ] ( prop : property, flow : flow name) Example: Displaying properties[...]
-
Page 85
Appendix G PCI Slot Number and Device Name This appendix provides a cross-reference of PCI slot numbers and device names for the following SPARC Enterprise models. - - SPARC Enterprise M3000 - - SPARC Enterprise M4000/M5000 - - SPARC Enterprise M8000/M9000 - - SPARC Enterprise T1000 - - SPARC Enterprise T2000 - - SPARC Enterprise T5120 - - SPARC En[...]
-
Page 86
Board Number Slot Number Device Name PCI#1-PCIE6 /pci@0,600000/pci@0/pci@9/pci@0/pci@9/pci@0/pci@9/****@0 Basic PCI Slot PCI#2 /pci@1,700000/****@0 PCI#2 IOBoat(X) PCI#2-PCIX1 /pci@1,700000/pci@0/pci@1/pci@0/****@4 PCI#2-PCIX2 /pci@1,700000/pci@0/pci@1/pci@0,1/****@4 PCI#2-PCIX5 /pci@1,700000/pci@0/pci@8/pci@0/****@4 PCI#2-PCIX6 /pci@1,700000/pci@0[...]
-
Page 87
Board Number Slot Number Device Name PCI#4-PCIE4 /pci@3,700000/pci@0/pci@9/pci@0/pci@0/****@0 PCI#4-PCIE5 /pci@3,700000/pci@0/pci@9/pci@0/pci@1/****@0 PCI#4-PCIE6 /pci@3,700000/pci@0/pci@9/pci@0/pci@9/****@0 Logical System Board #1 Basic PCI Slot PCI#0 /pci@10,600000/pci@0/pci@8/pci@0,1/****@1 PCI#1 /pci@10,600000/pci@0/pci@9/****@0 PCI#1 IOBoat(X)[...]
-
Page 88
Board Number Slot Number Device Name PCI#3 IOBoat(Ex) PCI#3-PCIE1 /pci@12,600000/pci@0/pci@1/pci@0/pci@0/****@0 PCI#3-PCIE2 /pci@12,600000/pci@0/pci@1/pci@0/pci@1/****@0 PCI#3-PCIE3 /pci@12,600000/pci@0/pci@1/pci@0/pci@9/****@0 PCI#3-PCIE4 /pci@12,600000/pci@0/pci@9/pci@0/pci@0/****@0 PCI#3-PCIE5 /pci@12,600000/pci@0/pci@9/pci@0/pci@1/****@0 PCI#3-[...]
-
Page 89
Board Number Slot Number Device Name Basic PCI Slot PCI#2 /pci@2,600000/****@0 Basic PCI Slot PCI#3 /pci@3,700000/****@0 PCI#3 IOBoat(X) PCI#3-PCIX1 /pci@3,700000/pci@0/pci@1/pci@0/****@4 PCI#3-PCIX2 /pci@3,700000/pci@0/pci@1/pci@0,1/****@4 PCI#3-PCIX5 /pci@3,700000/pci@0/pci@8/pci@0/****@4 PCI#3-PCIX6 /pci@3,700000/pci@0/pci@8/pci@0,1/****@4 PCI#3[...]
-
Page 90
Board Number Slot Number Device Name PCI#7-PCIX4 /pci@7,700000/pci@0/pci@9/pci@0,1/****@4 PCI#7 IOBoat(Ex) PCI#7-PCIE1 /pci@7,700000/pci@0/pci@1/pci@0/pci@0/****@0 PCI#7-PCIE2 /pci@7,700000/pci@0/pci@1/pci@0/pci@1/****@0 PCI#7-PCIE3 /pci@7,700000/pci@0/pci@1/pci@0/pci@9/****@0 PCI#7-PCIE4 /pci@7,700000/pci@0/pci@9/pci@0/pci@0/****@0 PCI#7-PCIE5 /pc[...]
-
Page 91
Board Number Slot Number Device Name Basic PCI Slot PCI#5 /pci@15,700000/****@0 PCI#5 IOBoat(X) PCI#5-PCIX1 /pci@15,700000/pci@0/pci@1/pci@0/****@4 PCI#5-PCIX2 /pci@15,700000/pci@0/pci@1/pci@0,1/****@4 PCI#5-PCIX5 /pci@15,700000/pci@0/pci@8/pci@0/****@4 PCI#5-PCIX6 /pci@15,700000/pci@0/pci@8/pci@0,1/****@4 PCI#5-PCIX3 /pci@15,700000/pci@0/pci@9/pci[...]
-
Page 92
- SPARC Enterprise T5120 Slot Number Device Name PCI-E#1 /pci@0/pci@0/pci@8/pci@0/pci@1/xxxxxxx@0 PCI-E#0 /pci@0/pci@0/pci@8/pci@0/pci@9/xxxxxxx@0 PCI-E#2 /pci@0/pci@0/pci@9/xxxxxxx@0 - SPARC Enterprise T5220 Slot Number Device Name PCI-E#1 /pci@0/pci@0/pci@8/pci@0/pci@1/xxxxxxx@0 PCI-E#4 /pci@0/pci@0/pci@8/pci@0/pci@2/xxxxxxx@0 PCI-E#5 /pci@0/pci@[...]
-
Page 93
- SPARC Enterprise T5440 (2CPU) Slot Number Device Name PCI-E#3 /pci@400/pci@0/pci@8/pci@0/pci@9 PCI-E#4 /pci@400/pci@0/pci@8/pci@0/pci@c PCI-E#1 /pci@400/pci@0/pci@c PCI-E#0 /pci@400/pci@0/pci@d PCI-E#7 /pci@500/pci@0/pci@8/pci@0/pci@9 PCI-E#6 /pci@500/pci@0/pci@8/pci@0/pci@c PCI-E#5 /pci@500/pci@0/pci@9 PCI-E#4 /pci@500/pci@0/pci@d SPARC T3-1 Slo[...]