Go to page of
Similar user manuals
-
Fan
Greenheck Fan SQ/BSQ
48 pages 5.18 mb -
Fan
Greenheck Fan 474051
12 pages 1.19 mb -
Fan
Greenheck Fan Model SWB Series 300
8 pages 1.18 mb -
Fan
Greenheck Fan MSCF-BI
20 pages 1.75 mb -
Fan
Greenheck Fan Model SWB Series 100
8 pages 1.18 mb -
Fan
Greenheck Fan 464696
16 pages 1.08 mb -
Fan
Greenheck Fan 240XP-CUb
24 pages 1.16 mb -
Fan
Greenheck Fan 470656
72 pages 3.42 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of Greenheck Fan 240XP-CUb, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Greenheck Fan 240XP-CUb one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of Greenheck Fan 240XP-CUb. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of Greenheck Fan 240XP-CUb should contain:
- informations concerning technical data of Greenheck Fan 240XP-CUb
- name of the manufacturer and a year of construction of the Greenheck Fan 240XP-CUb item
- rules of operation, control and maintenance of the Greenheck Fan 240XP-CUb item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Greenheck Fan 240XP-CUb alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Greenheck Fan 240XP-CUb, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Greenheck Fan service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Greenheck Fan 240XP-CUb.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the Greenheck Fan 240XP-CUb item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
Fan Selection Application-Based Selection Performance Theory[...]
-
Page 2
This book is designed to help you select the fan that will best fit the application for which it is intended. With the large number of differ ent fan types and sizes available it's necessary to know which fan model does the best job in certain applications and then be able to select the most economical fan size for the job. With that in mind, [...]
-
Page 3
T ABLE OF CONTENTS SECTION 1 INTRODUCTION TO F AN SELECTION T erms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Model Designation . . . . . . . . . . . . . . . . . . . . . .4 Reading Performance Charts . . . . . . . . . . . . . .5 Matching a Specification . . . . . . . . . . . . . . . . .7 Cross Refer ence Chart . . . . . . . . [...]
-
Page 4
This is the first and most basic of this manual’s three sections, all of which are designed to enable you to select the right fan for the job. Look at this first section as a “user’s manual” for Greenheck literature. It will answer the following questions (and more): What is a SONE? How are model numbers and performance tables used to selec[...]
-
Page 5
Reading Performance Charts Assume that a job requires a belt drive roof exhauster to move 1000 cfm against 0.25 in. Ps. Refer to the performance model at the bottom of this page. Start at the top of the chart with the 0.25 in. Ps column. (All numbers in this column correspond to .25 in. Ps.) Now follow the column downward until a value is found tha[...]
-
Page 6
Model Common Accessories Roof Curb G & GB Backdraft Damper Roof Curb CUBE Grease Trap SB Wall Mount Housing or Wall Mount Collar Model Common Accessories Speed Control SP & CSP Discharge Vents Backdraft Damper SQ & BSQ Vibration Isolators One advantage of choosing the GB-101-4-R2 over the GB-101-4-R1 is that it is capable of running at [...]
-
Page 7
Model RSF and BCF Selection The RSF and BCF selection charts are different from all other selection charts. For these models, the cfm values are at the left side of the chart in a single column and the rpms are in the performance boxes. It is just the opposite for other models. The reason for this is that the RSF and BCF models are forward curved, [...]
-
Page 8
Cross Refer ence Chart (Models in italics refer to older models) Direct Drive 120 W 1 0 D Direct Drive rpm x 100 Model ACW Wheel Size Belt Drive 150 V 6 B Belt Drive 3/4 hp Model VCR Wheel Size = 15 in. Direct Drive PW 135 A 8 860 rpm 1/20 hp Wheel Size =13.5 in. Model PW Belt Drive PNN 163 G 1/2 hp Wheel Size = 16.3 in. Model PNN Cook- Acme - Lett[...]
-
Page 9
F AN SELECTION BASED ON F AN APPLICA TION Direct Drive vs Belt Drive Direct drive fans are economical for low volume (2000 cfm or less) and low static pressure (0.50 in. or less). They require little maintenance and most direct drive motors can be used with a speed control to adjust the cfm. Belt drive fans are better suited for air volumes above 2[...]
-
Page 10
Recommended Exhaust Fans Commer cial Kitchen V entilation Model CUBE Model USGF Model CWB Model SWB Belt Drive Belt Drive Belt Drive Belt Drive Upblast Roof Exhaust Upblast Roof Exhaust Sidewall Exhaust Utility Blower 300-30,000 cfm 300-7,000 cfm 300-12,000 cfm 500-30,000 cfm Up to 5.0 in. wg Up to 3 in. wg Up to 2.75 in. wg Up to 5.0 in. wg The ab[...]
-
Page 11
Commer cial Kitchen V entilation Fan Sizing Exhaust When not specified by local codes, the following guidelines may be used to determine the minimum kitchen hood exhaust cfm. Some local codes require 100 cfm/ft. 2 of hood area for wall style hoods. Supply Recommended supply airflow is 90% of exhaust cfm. The remaining 10% of supply air will be draw[...]
-
Page 12
General Commer cial V entilation Models SQ and BSQ are versatile fans that can be used for exhaust or supply and can be mounted in any position. Two removable side panels provide access for service. Model G Direct Drive Roof Exhaust 90-3,200 cfm Up to 1.0 in. wg Model GB Belt Drive Roof Exhaust 80-44,700 cfm Up to 3.25 in. wg Model CW Direct Drive [...]
-
Page 13
T ypical Commer cial V entilation Installations 13[...]
-
Page 14
General Industrial V entilation Typical Applications Propeller fans are ideal for ventilating high air volumes at low static pressures (0.50 in. or less). Industrial applications often include factories and warehouses. A variety of fan models offer flexibility for roof or wall mount as well as exhaust or supply. However, because the motors are moun[...]
-
Page 15
High Static Pr essure V entilation Typical Applications Models SWB and BSQ are general, all-purpose fans that are capable of moving high air volumes against high static pressures (up to 5.0 in wg). High static pressures are generated by long or complex duct systems, especially when capture hoods are present. Both models can be used for either exhau[...]
-
Page 16
Area Min./Chg. Area Min./Chg. Area Min./Chg. Assembly Hall 3-1 0 Dance Hall 3-7 Machine Shop 3-6 Attic 2-4 Dining Room 4-8 Mill 3-8 Auditorium 3-10 Dry Cleaner 2-5 Office 2-8 Bakery 2-3 Engine Room 1-3 Packing House 2-5 Bar 2-4 Factory 2-7 Projection Room 1-2 Barn 12-18 Foundry 1-5 Recreation Room 2-8 Boiler Room 1-3 Garage 2-1 0 Residence 2-6 Bowl[...]
-
Page 17
Determining Static Pressur e (Ps) The pressures generated by fans in ductwork are very small. Yet, accurately estimating the static pressure is critical to proper fan selection. Fan static pressure is measured in inches of water gauge. One pound per square inch is equivalent to 27.7 in. of water gauge. Static pressures in fan systems are typically [...]
-
Page 18
GB-200-5 (512-770) GB-180-7 (764-1055) GB-180-5 (700-940) 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 Sone Bhp Sone Bhp Sone Bhp Sone Bhp Sone Bhp Sone Bhp Sone Bhp Sone Bhp Sone Bhp STATIC PRESSURE / CAPACITY Preliminary Selections At this point we know the model, cfm and Ps. With this information we can refer to the GB performance chart[...]
-
Page 19
Motor Horsepower The motor horsepower for direct drive fans is always sized by Greenheck and does not require further consideration. For belt drive models, the catalog identifies which horsepower is recommended. However, there are times when it is wise to bump the horsepower one size. For example, the hp recommended for the GB-180 at 810 rpm is 1/3[...]
-
Page 20
Installation To ensure proper fan performance as cataloged, caution must be exercised in fan placement and connection to the ventilation system. Obstructions, transitions, poorly designed elbows, improperly selected dampers, etc., can cause reduced performance, excessive noise, and increased mechanical stressing. For the fan to perform as published[...]
-
Page 21
F AN PERFORMANCE System Dynamics For a given flow rate (cfm), an air distribution system produces a resistance to airflow (Ps). This resistance is the sum of all static pressure losses as the air flows through the system. Resistance producing elements include ductwork, dampers, grills, coils, etc. A fan is simply the device that creates the pressur[...]
-
Page 22
Combining Fan and System Dynamics The previous two sections introduced fan curves and system resistance curves. This section will show how these relate to each other to provide an understanding of the way the fan-system operates as a complete entity. Remember that a fan curve is the series of points at which the fan can operate at a constant rpm. L[...]
-
Page 23
Adjusting Fan Performance There is a direct relationship between cfm and rpm within a system. Doubling the fan rpm will double the cfm delivered. Sample problem: The figure on page 21 showed a fan curve at 700 rpm which had an operating point of 1000 cfm at 0.25 in. Ps. What rpm is required to move 2000 cfm through the same system? Solution: Within[...]
-
Page 24
In a steady-state system, as the fan rpm changes, cfm, Ps and BHp (horsepower) also change. The equations below, known better as fan laws, show the relationship between these performance parameters. cfm New = rpm New x cfm Old rpm Old Ps New = ( rpm New ) 2 x Ps Old rpm Old Bhp New = ( rpm New ) 3 x Bhp Old rpm Old The first two equations have alre[...]