Go to page of
Similar user manuals
-
Calculator
HP (Hewlett-Packard) 300s
27 pages 10.91 mb -
Calculator
HP (Hewlett-Packard) 300
2 pages 1.06 mb -
Calculator
HP (Hewlett-Packard) 20B
75 pages 1.12 mb -
Calculator
HP (Hewlett-Packard) 30B
114 pages 2.32 mb -
Calculator
HP (Hewlett-Packard) 10BII
2 pages 0.22 mb -
Calculator
HP (Hewlett-Packard) 17bII
310 pages 3.35 mb -
Calculator
HP (Hewlett-Packard) 50g
887 pages 9.55 mb -
Calculator
HP (Hewlett-Packard) HP 33s
387 pages 2.63 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of HP (Hewlett-Packard) 32SII, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of HP (Hewlett-Packard) 32SII one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of HP (Hewlett-Packard) 32SII. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of HP (Hewlett-Packard) 32SII should contain:
- informations concerning technical data of HP (Hewlett-Packard) 32SII
- name of the manufacturer and a year of construction of the HP (Hewlett-Packard) 32SII item
- rules of operation, control and maintenance of the HP (Hewlett-Packard) 32SII item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of HP (Hewlett-Packard) 32SII alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of HP (Hewlett-Packard) 32SII, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the HP (Hewlett-Packard) service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of HP (Hewlett-Packard) 32SII.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the HP (Hewlett-Packard) 32SII item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII RPN Scientif ic Calculator Owner’s Manual HP Part No . 00032–90068 Printed in Singapore Edition 5[...]
-
Page 2
Fi l e na me 3 2 si i - M a n u a l - E- 0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Noti ce This man ual and any exam ples contained h erein ar e provide d “ as is ” and are subject to change without notice. Hewle tt -Pac kar d Compa ny makes no w arranty of an y kind with reg ard to this man ual, includin[...]
-
Page 3
Contents 1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Contents Pa r t 1 . Basic Op er ation 1. Get ti ng Sta r t e d Impo rtant Pr eliminar ies .................................... ............... 1–1 T urning t he C alcula tor On and O ff .......... .................... 1–[...]
-
Page 4
2 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Number o f Dec i mal P lac e s ............................ ........... 1–15 SHO W i n g F u ll 12–Digit Pr e c i s i o n ......................... 1–16 F r acti ons ............................ ...............[...]
-
Page 5
Contents 3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. S t o r i n g D a t a i n t o V a r i a b l e s Sto r ing and R ecalling Nu mber s................ ........................ 3–1 V ie w ing a V ar iable w itho ut R ecalling It ............................. 3–2 R ev ie[...]
-
Page 6
4 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F actor i al ...................................................... .......... 4–11 Gamma ...................... .......................... ................ 4–11 Pr oba bility Men u .......... ...................[...]
-
Page 7
Contents 5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar enthe ses in E quati on s ............................ ................ 6–7 Displa y ing and Selec ting E qu ati ons .......... ........................ 6–7 E diting and Clear ing E qua ti ons ......................[...]
-
Page 8
6 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F or Mor e Inf or matio n .... ................................ .................. 8–9 9 . Operations w i t h Comb Numbers Th e C om ple x S tac k .......... ................................ .............. 9–1 Co[...]
-
Page 9
Contents 7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Summati on St atisti cs ............................ .................. 11–11 Th e S tatis tic s R egis ter s in Calc ulator Me mory ............ 11–12 A cces s to the Sta tisti cs R egist er s .......... ...............[...]
-
Page 10
8 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Memory ................ .......................... ............. 12–20 V ie w ing Pr ogr am Memory ............................ ......... 12–20 Memory U sag e .......... ................................[...]
-
Page 11
Contents 9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The Indir ect A ddr es s , (i) ...................... ................... 13–21 Pr ogr am Co ntr ol w ith (i) ...................... ................... 13–2 2 E quati ons w ith (i) .......... ...........................[...]
-
Page 12
10 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar t 3 . Appendix es and Regerence A. Suppor t, Bat teri es, and Ser vice Calc ulator Su pport .......... ................................ ............... A–1 Ans w er s to C ommon Que s tio ns .................[...]
-
Page 13
Contents 11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Neu tral O pe r ations .... ............................................... B–5 Th e S tatu s of the L A S T X R egist er ................ ...................... B–6 C. Mo r e ab ou t Sol v ing Ho w S OL VE F inds a R o[...]
-
Page 14
[...]
-
Page 15
F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 1 Basic Operat ion[...]
-
Page 16
[...]
-
Page 17
Getting St a rt e d 1–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 G e tting Star t ed Impor tant Pr eli minari es T ur ni ng t h e Cal c ul at or O n and O f f To turn the calculator on, press . ON is printed below the key. To turn the calculator off, press { . Tha[...]
-
Page 18
1–2 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m names are printed in orange and blue above each key. Press the appropriat e shift key ( z or { ) befo re pressin g the key for th e desired function. For exam ple, to turn th e calculator off, pre s s and rele[...]
-
Page 19
Getting St a rt e d 1–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing Key Description a Backspace. K ey board–e ntry mode: Er ases the c har acter immedi ately to th e lef t of "_" (the d igit–entr y c ursor) or bac ks out of t he curr ent men[...]
-
Page 20
1–4 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing (continued) Key Description zb The CLEAR menu ({ º } { # } { } { Σ } Contains options for clearing x ( the number in the X–register), all Data , all variables, all o f [...]
-
Page 21
Getting St a rt e d 1–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Menu ch oi ces . 2 . K ey s matched to menu cho ices. 3 . Men u k ey s . HP 32II Menus Menu Name Menu Description Chapter Numeric Functions PARTS Numb er–altering functi ons: integer [...]
-
Page 22
1–6 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32II Menus (continued) Menu Name Menu Descript ion Chapter Other func t i o n s MEM QQQ)Q # Memory st atus (bytes of memory available); catalog of variables; catalog of programs (prog ram la[...]
-
Page 23
Getting St a rt e d 1–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t h e functions built into th e calcul ator nor search t hrough the names printed on its keyboard. Exitin g Men us When ever you e xecu te a menu f unc ti on, t he me nu aut omati cal ly disappears, as in the [...]
-
Page 24
1–8 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator Annunciator Meaning Chapter Upper Row: The z and z keys are active for stepping through a list. 1, 6 TS When in Fraction–display m ode (press z ), only one of the " S &q[...]
-
Page 25
Getting St a rt e d 1–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator (conti nued) Annunciator Meaning Chapter Lower Row: The top–row keys on the calculator are redefined according to the menu labels displayed above men u pointers. 1 , There ar[...]
-
Page 26
1–10 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ma k in g N u m b e r s N e ga tiv e The _ key change s the sign of a number. T o k ey in a negati ve n umber , t y pe the number , then pr es s _ . T o change the sign o f a number that was e nt e re[...]
-
Page 27
Getting St a rt e d 1–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Display: 6.6262 ) _ 2. Pr ess ` . No ti ce that the c urs or mov es behind the : ` ) _ 3 . K ey in the e xpone nt . (The lar ges t possible e xponent is ± 4 9 9[...]
-
Page 28
1–12 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m < ) Digit entry is term inated. Pressing terminat es digit entry. To sepa rate two numbers, key i n t he first number, press to terminate di git, entry, an d then ke y i n t he[...]
-
Page 29
Getting St a rt e d 1–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Ke y i n t h e n u m b e r . ( Y ou don't need to pr ess .) 2. Pr es s the fun cti on k e y . (F or a shifted f unc ti on , pre ss the ap pr opr iate z or { s h i f t key fi r s t. ) For example, [...]
-
Page 30
1–14 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For example: To calculate: Press: Display: 123 + 3 12 3 ) 12 – 3 12 3 ) 12 × 3 12 3 y ) 12 3 12 3 0 8)?[...]
-
Page 31
Getting St a rt e d 1–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m N um ber of Dec i m al Places All numbers are stored with 12–digit precision, bu t you can select th e num ber of decimal p laces to be displayed by pressing z (the display m enu). During som e complica[...]
-
Page 32
1–16 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Engineering Format ({ }) ENG form at displays a numb er in a man ner similar to scientific notation, except that the ex pone nt is a multiple of three (th e re can be up to th ree digits befor e the &q[...]
-
Page 33
Getting St a rt e d 1–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: z { % } 4 Displays f ou r d e ci ma l p lac es . 45 1.3 y ) Four decimal places d i s p l a y e d . z { } 2 ) Scien [...]
-
Page 34
1–18 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t e r m i n a t e digit entry . The n umber or r esul t is form atted according to the c u rr en t displa y f orm at . The a b/c symb ol u nder t he key is a rem i nder th at the key is used twi ce fo[...]
-
Page 35
Getting St a rt e d 1–19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Di spl ay i ng F r ac ti on s Press z to switch between Fraction–dis play mode and the c u r r e n t decimal display mode. Keys: Displa y: Description: 12 3 8 + Displays charac[...]
-
Page 36
1–20 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Calc ulat or M emor y The HP 32SII has 384 byt es of memo ry in whic h you can store any combin ation of data (variables, eq uat ions, or program line s). The m emory r equirements of sp ecific activities are[...]
-
Page 37
Getting St a rt e d 1–21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m @ { & } { }, wh ich saf eguar ds against the uninte nti on al cle ar ing o f memor y . 2. Pr ess { & } ( yes ).[...]
-
Page 38
[...]
-
Page 39
The Automatic Memory Stack 2–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2 Th e Au t omat i c Me mor y St ac k This chapter explai ns how calculations take place in the automatic memory stack. You do not need to read and un de rstand this m aterial to use the calc ulato r , [...]
-
Page 40
2–2 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T 0.0000 “Olde st” number Z 0.0000 Y 0.0000 X 0.0000 Dis played The most "recent " number is in the X –register: this is th e number y ou see in the display. In programm ing, the[...]
-
Page 41
The Automatic Memory Stack 2–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R ev i ewi ng t h e st ac k R ¶ (Roll Dow n) The 9 (roll down) key lets you review the enti re contents of the sta ck by "rolling" the contents do wnward, one register at a time. You ca n s e[...]
-
Page 42
2–4 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exc hangi ng t h e X– and Y –Regi ster s in t h e S tac k Another key that manipu lates the s tack contents i s Z ( x e xchange y ). This key swa ps the contents of the X – an d Y –regis[...]
-
Page 43
The Automatic Memory Stack 2–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 + 4 – 9 T 1 1 1 1 Z 2 1 2 1 Y 3 2 7 2 X 4 7 9 –2 1 2 3 1. T he st ac k "dr ops" its conten ts. T he T– (top) r egister r eplicate s its conte nts . 2. T he stac k "[...]
-
Page 44
2–6 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 + 6 1 lost 2 lost T 1 2 3 3 3 Z 2 3 4 4 3 Y 3 4 5 5 4 X 4 5 5 6 11 1 2 3 4 1. Li f t s t h e s ta c k. 2. L ifts the stac k and r eplicate s the X–r egiste r . 3. Does [...]
-
Page 45
The Automatic Memory Stack 2–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: G iven bacterial culture with a constant growth rate of 50% , how large would population of 100 be at the end 3 days ? Replicates T–register T 1.5 1.5 1.5 1.5 1.5 Z 1.5 1.5 1.5 1. 5 1.5 Y 1.5[...]
-
Page 46
2–8 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m or a cancel that displa y and sho w s the X–r egiste r . When v ie w ing an equati on , a dis pla y s the c urso r at the end the equati on to allo w f or editing . During equation[...]
-
Page 47
The Automatic Memory Stack 2–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m See app endi x B f or a c ompr ehe nsi ve li st of the fun ctions that save x in t h e LAST X register. Corr ec ti ng M ist akes wit h L AS T X Wrong On e–Number Function If you execute th e wr on g o[...]
-
Page 48
2–10 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Suppose you m ade a mistake w hile calculatin g 16 × 19 = 304. There are three kinds of mistakes you coul d ha ve ma d e: Wring Calculation: Mistake: Correctio n: 16 19 Wrong function [...]
-
Page 49
The Automatic Memory Stack 2–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t t t Z z z t 96.704 Y 96.704 96.704 z X 96.704 52.3947 52.3947 149.0987 LAST X l 52.3947 l 52.3947 T t t Z z t Y 149.0987 z z X 52.3947 p 2.8457 LAST X 52.3947 52.3947 Keys: Displa y[...]
-
Page 50
2–12 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Rigel Centaurus: 4.3 yr × (9.5 × 10 15 m/yr). To Sirius: 8.7 yr × (9 .5 × 10 15 m/yr). Keys: Displa y: Description: 4.3 ) Light–years to Rigel Centaurus. 9.5 ` 15[...]
-
Page 51
The Automatic Memory Stack 2–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You don't need to press t o s a ve this interm ediate re sult before proceeding; since it is a calculated result, it is saved automatically. Keys: Displa y: Des cription: 7 y )?[...]
-
Page 52
2–14 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Work thro ugh the pro blem the same way with the HP 32SII, e xcept that you don't have to w rite down intermediat e answ ers—the calculator rem embers them for you. Keys: Displa y: Descr[...]
-
Page 53
The Automatic Memory Stack 2–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m O r d er o f Cal c ul at ion We recom men d solving ch ain calculations by w orking from the i nn erm os t parentheses outward. Howe ve r, you can also choose to work p r ob l e m s i n a left–to–r[...]
-
Page 54
2–16 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 3 _ At this point th e stack is full with numbers for this calculation. y ) Intermediate result. ) Intermediate result. 2 )[...]
-
Page 55
The Automatic Memory Stack 2–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 5.2 8.33 y z 7.46 0.32 y p 3.15 2.75 4.3 y 1.71 2.01 y p <[...]
-
Page 56
[...]
-
Page 57
S t o r i n g D a t a into Variables 3–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 Stori ng Dat a in to V a r ia b l e s T he HP 32 II ha s 384 byt es of user m emory : memory that you can u se to store numbers, equations, and pr ogram lines . Numbers are stored in locatio[...]
-
Page 58
3–2 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Storing Number s. Store Avogadro's number (approximately 6.0225 × 10 23 ) in A . Keys: Displa y: Description: 6.0225 ` 23 ) _ Avo gadro's nu[...]
-
Page 59
S t o r i n g D a t a into Variables 3–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To cancel the VIEW display, press a or once. R e v i e w i n g Va r i a b l e s i n t h e VA R C a t a l o g The z X ( memory ) function provides information about memory: QQQ)Q # ?[...]
-
Page 60
3–4 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Store zero in it: Press 0 H variable . To clear select ed variabl es: 1. Press z X { # } and use z or z to dis play the v ar iable. 2. Pr ess z b . 3. Pre ss to cance[...]
-
Page 61
S t o r i n g D a t a into Variables 3–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A 15 A 12 Results: 15–3 thatis, A – x T t T t Z z Z z Y y Y y X 3 H X 3 Reca ll Arit hmetic Recall arithm etic uses a K , K y , or K p to do arithmetic in the X–register usin[...]
-
Page 62
3–6 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Suppose the variables D , E , an d F contai n the values 1, 2, and 3. Use st orage arithmetic to add 1 to ea ch of those variables. Keys: Displa y: Description: 1 H D 2 H E 3 [...]
-
Page 63
S t o r i n g D a t a into Variables 3–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 12 H A ) Stores 12 in variable A. 3 _ Display x . { Y A ) Exchange contents of the X–register and variable[...]
-
Page 64
[...]
-
Page 65
Real–Number Functions 4–1 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 Real– Num ber Funct ions This chapter co vers most of the c alculator's fun ctions that perform computation s on real num bers, includin g some nume ri c fu nc ti ons u se d i n programs (such a[...]
-
Page 66
4–2 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculat e: Press: Natural logarithm (base e ) - Comm on log arithm (base 10 ) z + Natural e xpone ntial * Common exponential (antilogarithm) z ( Po w e r F u n c t i o n s To calculate the s quare of[...]
-
Page 67
Real–Number Functions 4–3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 . 1 37893 . − .37893 1.4 _ z . ) T r igonom etr y Enter i ng π Press { M to place the first 12 digits of π into the X–register. (The num ber displayed de pends on the displ[...]
-
Page 68
4–4 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tri gonom etr ic F unc t ions Wit h x in the display: To Calculate: Press: Sine of x . N Cosine of x . Q Tangent of x . T Arc sine of x . z L Arc cosine of x . z O Arc tangent of x . z R Note Calc ulatio[...]
-
Page 69
Real–Number Functions 4–5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Programming Note: Equations using inverse trigonom etri c functions to determine an angle θ , often look something like this: θ = arctan ( y / x ). If x = 0, then y / x is un defined , resultin g in th[...]
-
Page 70
4–6 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculate Press: x % of y y x { P Percentage change fro m y to x . ( y ≠ 0) y x { S Example: Find the sales tax at 6% and th e total cos t of a $15.76 it em. Use FIX 2 display format so th e[...]
-
Page 71
Real–Number Functions 4–7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Conv er sion F unc t ions There are f our types of conversions: coordinate (polar /rec tangular), angular (degrees/radians), ti me (decimal/minutes –seconds), and unit (cm /in, °C/ °F, l/gal, Kg/l b)[...]
-
Page 72
4–8 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x y r X Y ry , x y, x , r θ θ θ , Example: Polar to Rectangu lar Conversion. In the follow ing right trian gles, find sides x and y in the triangle on the le ft, and hypotenuse r and angle θ in the t[...]
-
Page 73
Real–Number Functions 4–9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Conversion w ith Vectors. Engineer P.C. Bard has de termined that in the RC circ uit sho wn, t he tota l impeda nce is 77.8 ohms and vol tage lag s current by 36.5 º. What a .re the values of r[...]
-
Page 74
4–10 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To convert between decim al fr actions an d minutes–secon ds: 1. K e y in the tim e o r an gle (in dec im al form or mi nutes –se con ds form) tha t yo u wa n t t o c o nve r t. 2. Pr ess { t or z s[...]
-
Page 75
Real–Number Functions 4–11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Uni t c on v e r si on s The HP 32SII has e ight unit–convers ion function s on th e keybord: kg, lb, ºC, ºF, cm, in, l, gal. To Convert: To: Press: Displayed Results[...]
-
Page 76
4–12 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr obabil i t y M enu Press { [PROB] to see the PROB (probabil ity) m enu shown, in the following table. It has function s to calculate combination s and permutations , to generate seeds for random numb[...]
-
Page 77
Real–Number Functions 4–13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Combinations of People. A compa ny emp loyi ng 14 wo men and 10 men is for ming a six–p erso n sa fet y commi ttee. How ma ny dif fere nt comb inat ions of pe ople a re p ossi ble ? Keys: Dis[...]
-
Page 78
4–14 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pa r t s o f N u m b e r s The functions in the PARTS menu ( { [PAR TS] ) shown in the follow ing table and the z I func tion alter the number in the X–regi ster in simple ways. These functions are pr[...]
-
Page 79
Fractions 5–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 Fracti ons "Fractions" in ch apter 1 in troduces the basics abou t entering, displaying, and calculating with fractions: T o ente r a f r actio n , pre s s tw ic e —after the integer part, and betw[...]
-
Page 80
5–2 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: z Turns on Fraction–display mode. 1.5 + Enters 1.5; shown as a fraction . 1 3 4 + Enters 1 3 / 4 . z )[...]
-
Page 81
Fractions 5–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The denomi nator i s no gr eater than 40 9 5 . The f r action is r educed as f ar as po ssible . Examples: Thes e are exampl es of e ntered value s and the resulting displays. For comparison , the internal 12–[...]
-
Page 82
5–4 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This diagram show s how th e displayed fr action relates to nearby value s — S means the exact nume rator is "a little abov e" the displayed numerator, an d T means the exa ct numer ato r is "a [...]
-
Page 83
Fractions 5–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 14 * ... + Calculates e 14 . { ) Shows all decimal digits. H A ... + Stores [...]
-
Page 84
5–6 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m the de fa ult if y ou u se 40 9 5 or gr eater .) This als o tur ns on F r acti on–dis pla y mode . The /c function uses the absolute v alue of the intege r part of th e num ber in the X–register. It doesn&ap[...]
-
Page 85
Fractions 5–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You can chan ge flags 8 and 9 to set the fraction form at using the steps listed here. (Because f lags are especiall y usefu l in program, their use us covere d in detail in chapter 13.) 1. Pr ess { x to get the f lag m[...]
-
Page 86
5–8 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table sh ows ho w different num bers are displayed in the three fraction form ats for a / c value of 16 . Number En tered and Fractio n Display ed Fraction Format 2 2.5 2 2 / 3 2.9999 2 16 / 25[...]
-
Page 87
Fractions 5–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and 9. The accurac y indicator turns o ff if the fract ion m a tches the decimal representation exactly . Oth erwise, th e accuracy indicator stay s on, (See "Accuracy Indicators" ear lier in this chapte r.) I[...]
-
Page 88
5–10 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When you're evaluating an equation an d you'r e prom pted for variable values, you may enter fractions — v alues are displayed using the current display format. See chapter 6 for information about w[...]
-
Page 89
Entering and Evalua ting Equations 6–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 6 Enteri ng and Ev aluat i ng Equations How Y ou Can Use Equati ons You can use equati ons on th e HP 32SII in several way: F or s pec if y ing an equation to e valuate (this c hapter ) . ?[...]
-
Page 90
6–2 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K ¾ Begins a new equation, turnin g on the " ¾ " equation–entry cursor. K turns on the A..Z annunciator so you can enter a variable name. V { c #/¾ K V types # and m[...]
-
Page 91
Entering and Evalua ting Equations 6–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: Prompts for D first; value is the current value of D . 2 1 2 @ + Enters 2 1 / 2 inches as a fraction. f @ value Stores D , prom pts fo[...]
-
Page 92
6–4 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Key Operation { G Ente rs and leav es Equation m ode. Evaluates the displayed equati on. If the equation is an assignment , evaluates the right–ha nd side and stores the result in t[...]
-
Page 93
Entering and Evalua ting Equations 6–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter an equatio n: 1. Mak e sur e the cal c ulato r is in it s nor mal ope r at ing mode , usuall y w ith a number in the display . F or e x ampl e , y ou can't be v ie w ing the catal [...]
-
Page 94
6–6 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter a num ber in an equation , you can use th e st andar d numb er–entry keys, in cludin g , _ , and ` . Press _ only after you type one or more dig its. Don't use _ for s[...]
-
Page 95
Entering and Evalua ting Equations 6–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar ent h eses i n Equations You can include parenth eses in equati ons to control t he order in which operations are performe d. Press { and { ] to inse rt pa renth eses. (For more in format[...]
-
Page 96
6–8 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To display equatio ns: 1. Pr ess { G . This acti v ates E quation mode and turns on the EQN annunc iator . T he display sh o ws an en try fr om the equati on list: ! [...]
-
Page 97
Entering and Evalua ting Equations 6–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m right. < /ºº 1!. Shows one character to the left. Leaves Equation mode. Editin g a nd C l eari ng Equation s You can edit or clear an equation that you're ty [...]
-
Page 98
6–10 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To clear a saved equat ion: 1. Dis pla y the desir ed eq uati on . (See "Dis pla y ing and S electing E quati ons" abo v e.) 2. Press z b . T he displa y sho w s the pr e v iou[...]
-
Page 99
Entering and Evalua ting Equations 6–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exp re ssions. Th e e qu a ti on d o es not contain an "=". F or e x ample , x 3 + 1 is an e xp r ession. Wh en yo u're calculatin g with an e quation, you might use any ty p[...]
-
Page 100
6–12 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table shoves the tw o ways to evaluate equations. Type of Equation Result for Result for W Equality: g (x) = f(x) Example: x 2 + y 2 = r 2 g (x) – f(x) x 2 + y 2 – [...]
-
Page 101
Entering and Evalua ting Equations 6–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If th e equa tion is an assignment , onl y the r ight –hand si de is ev aluated . The r esul t is returned to the X–r egister and stored in the left –hand v ar iable , then the v ar i[...]
-
Page 102
6–14 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Us i ng XE Q f o r E v a l ua t i on If an equatio n is displayed in th e equation list , you can press W to evalu ate the e quation . The en tire eq uation is evaluated, re gardless of [...]
-
Page 103
Entering and Evalua ting Equations 6–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T o l ea v e t he number unc hanged , just p r ess f . T o c h ange t he n umber , t y pe the n ew nu mber an d pre ss f .This ne w n umber w r ites o v er t he old v alue i n the X–r[...]
-
Page 104
6–16 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Order Opera tion Example 1 Fun ctions an d Parentheses 1%-2 , 1%-2 2 Una ry Minus ( _ ) . 3 Power ( 0 ) %: 4 Multiply and Divide %º& , ª 5 Add a[...]
-
Page 105
Entering and Evalua ting Equations 6–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Eq uatio n Fu nc tion The following table lists the functions that are valid in equat ions. A ppe ndix F , "Operation Index," also g ives this inform ation. LN LOG EXP AL OG SQ SQRT I[...]
-
Page 106
6–18 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 01.% .2 01% 1.&22 Six of the equation functi on s have names that d iffer from their equ ivalent RPN operations: RPN Operation Equation function x 2 SQ e x[...]
-
Page 107
Entering and Evalua ting Equations 6–19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sin g le lett er name No impl ie d multipl i c ati on Di v isi on is done be f or e addit i on Pa r e n t h eses use d to g ro u p items P=A+B+Hx(1 SI N(T)+1 SIN(F )) ÷ ÷ Th e next equat ion [...]
-
Page 108
6–20 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m /)ºº:º 1 π ª2ª 1 π ª2 Notice how the operators and functi ons combi ne to g ive the de sired equation. You can enter the e quation into [...]
-
Page 109
Entering and Evalua ting Equations 6–21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The checksum an d length allow you to verify th at equations yo u type are correct. The checksum and length of the equation you ty pe in an example should match the values sh own in this manual[...]
-
Page 110
[...]
-
Page 111
Solving Equations 7–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 So lving Eq ua tions In chapter 6 you sa w how you can use to find the value of th e left–han d v ariab le in an assignment –type equation. W ell, yo u can use S OLVE to find the value of any variable [...]
-
Page 112
7–2 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f or a v alue fo r e v ery other v ar iable in the eq uatio n . 3. F or each pr ompt , enter the desir ed v alue; If the displa ye d c lue is the one y ou w ant , pr es s f . If y ou w a nt a dif[...]
-
Page 113
Solving Equations 7–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m or current equation K D { c K V y K T /#º!-¾ Starts the equation. .5 y K G y K T 0 2 !-)ºº!: _ /#º!-)ºº! Terminates the equation and displays the left en[...]
-
Page 114
7–4 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f # !/) Retain s 9.8 in G ; prom pts for T . Example: Solv ing the Id eal Gas Law Eq uation. The Ideal Gas Law descri bes the re lationsh ip betw een pressure , vol[...]
-
Page 115
Solving Equations 7–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 24 273.1 !@) Calculates T (Kelvins). f #O /) Stores 297.1 in T ; sol ves for P in atmospheres. A 5–liter flask contains n itrogen g as. The p[...]
-
Page 116
7–6 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When SOLVE eval uates a n equatio n, it does i t the sa me way W does — any "=" in the equation is treate d as a " – " For example , the Id eal Gas Law equation is evaluated as P [...]
-
Page 117
Solving Equations 7–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ro o t. I f the X– a nd Y–r e gister v alues are close together , and t he Z–register v alue is c lose to z er o, the estimate fr om the X– r eg ister may be an appr o x imation to a r oot . Inte r r[...]
-
Page 118
7–8 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m to ent er gu esses before solv i ng for T be ca us e in the f irst part of that e x ample y ou stor ed a v al ue f or T and sol ved f or D. The v alue that w as left in T w as a good (r ealisti c) one , [...]
-
Page 119
Solving Equations 7–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If H is the h eight, then th e le ngth of the box is (80 – 2 H ) and th e widt h is (4 0 – 2 H ). The volum e V is: V = ( 80 – 2 H ) × (40 – 2 H ) × H which you can simplify and enter as V = ( 40 – H[...]
-
Page 120
7–10 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m { G #/1.2º Displays current equation. { H #@ value Solves for H ; prom pts for V . 7500 f /) Stores 7500 in V ; solv es for H . Now check th e quality [...]
-
Page 121
Solving Equations 7–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 75 0 0 _ (4 0 _ ) ( 2 0 _ ) 4 HH H 20, 000 _ 10, 000 50 H _ 10 For M ore I n form at ion This chapt er gives you ins tructions f or solving for un knowns or roo ts over a wide ran ge of appl ication s. Appen di[...]
-
Page 122
[...]
-
Page 123
Integrating Equations 8–1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 8 Integ rating Equ ation s Many pro blems in m athematics, scie nce, an d engineering require calculating the definite in tegral of a function – If the function is denoted by f(x) an d the interval of int[...]
-
Page 124
8–2 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ) works only with real num bers. Int egr ati ng Equa ti ons ( ∫ FN ) To Integrat ing Equations: To integrate an equation: 1. If the equati on that d ef ines the integr and's f u nc tio n isn't s[...]
-
Page 125
Integrating Equations 8–3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To integrate the same equation w ith different information: If you use the same limits of int egration, pr ess 9 9 move them into the X– and Y–registers. Then star t at step 3 in the above list. If you [...]
-
Page 126
8–4 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Leaves Equation mode. Now integrate this function with respect to t fro m zero to π ; x = 2. Keys: Displa y: Description: z { } Selects Radians mode. 0 { M ) En[...]
-
Page 127
Integrating Equations 8–5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Sine Integral. Certain problems in comm unications theo ry (for exam ple, pulse transmission through idealized networks) require calculating an in tegral (sometim es called the sine integral) of th[...]
-
Page 128
8–6 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 2 _ Enters lim its of integration (low er first). { G 1%2ª% Displays the current equation. { ) X !! ∫ /) Calculates the result for S[...]
-
Page 129
Integrating Equations 8–7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte r pretin g A cc uracy After calculating the integral, the calculator places the e stimated uncertaint y of that in tegr al's result in th e Y–reg ister. Press Z to view the va lue of th e uncert[...]
-
Page 130
8–8 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m integration calculation decr ea ses by a factor of ten for each additional digit, specified in the display format. Example: Ch ang ing th e Accu racy. For the integral of Si(2) just calculated, spec ify tha[...]
-
Page 131
Integrating Equations 8–9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For M ore I n form at ion This ch apter gives yo u instruction s for us ing integration in th e HP 32SI I ove r a wide rang e of applic ations. A ppendix D c ontain s mo re de tailed info rmation about how [...]
-
Page 132
[...]
-
Page 133
Operations with Comb Numbers 9–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 Oper at i o ns wi t h C omb Numbe rs The HP 32SII can use comple x numbers in the form x + iy . It has oper ations for complex arithmetic (+, –, × , ÷ ), complex trigon ometry ( sin, cos, tan), [...]
-
Page 134
9–2 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t iy 1 Z z Z 1 x 1 Y y iy 2 X x Z 2 x 2 Real Stack Complex Stack Since the im aginary and real p arts of a compl ex numb er a re ent ered and stored separately, you can easily work with or a[...]
-
Page 135
Operations with Comb Numbers 9–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Compl e x O per at ions Use the com plex operations as you do real operati ons, but p recede the operator with z F . To do an operation wit h on e complex num ber: 1. Enter the com plex n umber z , co[...]
-
Page 136
9–4 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To do an arithmetic o peratio n with two co mplex num bers: 1. Enter the first com plex n u mber , z 1 (c ompo sed of x 1 + i y 1 ), b y k e y in g i n y 1 x 1 . (F or 2 1 z z , k ey i[...]
-
Page 137
Operations with Comb Numbers 9–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z 1 × [1 ÷ (z 2 + z 3 )] Keys: Displa y: Description: 1 2 _ 3 _ 4 z F ) Add z 2 + z 3 ; displays real part. z F 3 ) 1 ÷ (z 2 +z 3 )[...]
-
Page 138
9–6 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 1 0 2 _ z F 0 ) Intermediate result of (1 + i ) –2 z F * ) Real part of final results. Z .) Final result is 0.8[...]
-
Page 139
Operations with Comb Numbers 9–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Add th e follow ing th ree load s. You w ill first ne ed to co nvert th e polar coordinates to rectangular coordinates. y 1 8 5 l b 62 o 1 0 0 l b 26 1 o 1 70 l b 1 4 3 o L 1 L 2 L 3 x Keys: Displa y:[...]
-
Page 140
[...]
-
Page 141
Base Conversions and Arithmetic 10–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 10 Base Conversions a nd A r ithm etic The BASE me nu ( z w ) lets you change the number base used f or entering n umb ers and othe r operat ions (including program ming). C hanging bases also con[...]
-
Page 142
10–2 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m w { % } of the decimal num ber to base 16 and displays this value. z w { } Base 8. z w { } Base 2. z w { } )[...]
-
Page 143
Base Conversions and Arithmetic 10–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Arithmetic in base s 2, 8, and 16 is in 2's compl ement form and us es integers only: I f a number has a fr act ional par t , on l y the in teger part is use d fo r an ar ithmetic calc ul[...]
-
Page 144
10–4 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m annunciator on. z w { } 1001100 _ Changes to base 2; BIN annunciator on. This terminates digit entry, so n o is needed betw een the numbers. [...]
-
Page 145
Base Conversions and Arithmetic 10–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 546 z w { % } Enters a positive, decimal number; then con verts it to hexadecimal. _ 2's complem ent (sign changed). z w { } [...]
-
Page 146
10–6 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If a number entered in dec imal base is outside the range given abo ve, then it produces t he message ! in the oth er bas e modes. Any operation using ! cau[...]
-
Page 147
Base Conversions and Arithmetic 10–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ( ))) ). Press { to view t he digits obscur ed by the / … or @ …label. Keys: Displa y: Description: z w { } 123456712345 _ Enters a large[...]
-
Page 148
[...]
-
Page 149
Statistical Operations 11–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 11 Sta tistical O pe ra tions The statis tics m enus in the HP 32SI I provid e functi ons to st atistically analyze a set of one– or two–variable data: Mean , sam ple and po pulati on s tandar d de[...]
-
Page 150
11–2 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E n te rin g On e – V a ria b l e D a ta 1. Pr ess z b { Σ } to c lear e x isting statis tical data . 2. Ke y i n e a c h x –value an d pr ess 6 . 3. The displa y sho ws n , the n umber of s t[...]
-
Page 151
Statistical Operations 11–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C orrec ting Errors in D a ta E n tr y If you ma ke a mist ake wh en entering stat istic al data, delete the inco rrect data and add the correct data. Even if only one valu e of an x , y –pair is incorre[...]
-
Page 152
11–4 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 20 z 4 ) Deletes the first data pair. 5 20 6 ) Reenters the first data pair. There is still a. total of two data pairs in the statistics registers. S t[...]
-
Page 153
Statistical Operations 11–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y –v alues as w eigh ts or fr equenc ies. T he we ights can be integers or non–inte gers. Example: Mean (One Variable). Production supervisor May K itt wants to determ ine the av erage time that a cert[...]
-
Page 154
11–6 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1000 4. 1 6 ) Four data pairs accumulated. { / { · º } ) Calculates the mean price weighted for the quantity purchased. Sampl e S t andar d Dev i at io[...]
-
Page 155
Statistical Operations 11–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P opul at ion S t andar d De v iat i on Population standard deviation is a m eas ure of how dispersed the data values are about the mean . Pop ulation standar d deviat ion assumes the data constitutes the [...]
-
Page 156
11–8 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m L.R. (Linear Regression) Menu Menu Label Description { º ˆ } Estimates (predicts) x for a given hypothetical value of y , based on the line calc ulated to fit th e data. { ¸ ˆ } Estimates (pred[...]
-
Page 157
Statistical Operations 11–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m data. 4.63 0 6 5.78 20 6 6.61 40 6 7.21 60 6 ) ) ) ) Enters data; displays n . 7.78 80 6 ) Five[...]
-
Page 158
11–10 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x 0 2 0 4 0 6 0 8 0 8. 50 7. 5 0 6.5 0 5.5 0 4. 50 r = 0 . 9 8 8 0 m = 0 . 0 3 8 7 b = 4 . 8 5 6 0 (7 0 , y ) y X What i f 70 kg of nitrogen fertili zer were a pplied to th e rice field ? Pr edict[...]
-
Page 159
Statistical Operations 11–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Normalizing Close, Large Numbers The calculator might be unab le to correctly calculate the standard deviation and linear regression for a variable wh ose data v alues differ by a relatively small amount.[...]
-
Page 160
11–12 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P r ess { º }, { ¸ }, and { º¸ } to r ecall t he sums of the square s and the su m of the pr odu cts o f the x and y — v alues that ar e of in ter es t w hen perf ormin g other s[...]
-
Page 161
Statistical Operations 11–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If not en ough calculator m emory is av ai lable to hold the st atistics registers when you first press 6 (or 4 ), the calculator displays & " . You will ri ved to clear v[...]
-
Page 162
Statistics Programs F i l e name 3 2si i- Man ual -E-04 2 4P age: 14/16 2 Pr inted D ate : 20 0 3/4 /2 4 Si z e : 17 .7 x 2 5 .2 cm Part 2 Programm i ng[...]
-
Page 163
Simple Programming 12–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 12 Si mpl e P ro gr ammi n g Part 1 of this man ual introduce d you to functions an d operations that you can use ma nual ly , that is, by pressing a key fo r ea ch individual oper a tion. And you saw [...]
-
Page 164
12–2 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This very si mple program assumes that th e value for the radius is in t he X– registe r (the di splay) w hen t he progr am st arts to run . It computes the area an d leaves it in the X–reg ister. [...]
-
Page 165
Simple Programming 12–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Boundar i es (LBL and RT N ) If you want more than one progr am stored in program memory, then a program need s a label to mark its be ginning (suc h as ) and a return[...]
-
Page 166
12–4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m U sing RP N an d Eq ua tion s in Pro gra ms You can calculate in programs the sam e ways you calculate on the. keyboard: Us in g R PN op er at ions (which wor k wi th the stack , as explained in ch[...]
-
Page 167
Simple Programming 12–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For output, you can display a variable with the VIEW instruc tion, you can display a me ssage derive d from an e quation, or you can leave un marked values on the stack. These are cov e red later in th[...]
-
Page 168
12–6 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5. End t he pr ogr am w i th a re t u r n instr ucti on , w hi ch s ets th e pr ogr am po inter bac k to ! after the pr ogr am r uns . Pr ess { . 6. Pr ess (or z d ) to can [...]
-
Page 169
Simple Programming 12–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F unc t i on N am es i n Pr ogr ams Then name of function that is used in a program line is not necessarily the same as the function's n ame on its ke y, i n its m enu, or in an e qua tion. Th e n[...]
-
Page 170
12–8 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A di fferen t chec ksum means th e progra m was not entered exactly as given here. Example: Enter ing a Progr am with a n Equat ion. The following program calculates the ar ea of a circle using an equa[...]
-
Page 171
Simple Programming 12–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exec ut ing a Pr ogr am (XE Q ) Press W label to execute the program labeled with th at letter. If there is only one prog ram in m emor y, you ca n also execute it by pressing z U f ( run / sto[...]
-
Page 172
12–10 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m only pr ogr am , y ou can pre ss z U to mo ve to its beginning .) 3. Pr ess and hold z . T his di spla ys the c urr ent pr ogram line. W h en y ou release , the line is e x ecuted . Th[...]
-
Page 173
Simple Programming 12–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ent er ing and Di spl ay i ng Data The calculator's variables are use d to store data in put, intermediate results, and final results. (V ariabl es , as ex plained in chap te r 3, are identified [...]
-
Page 174
12–12 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m "R" is the variable's name, " ? " is the prom pt for information, and 0.0000 is the curren t value stored in the variable . Press f (run/stop) to resume the program . The valu[...]
-
Page 175
Simple Programming 12–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T hu s the pr ogram sho uld no t assum e that the X–, Y–, an d Z–r egis ter s' contents will be t he same b ef o r e a n d after the INP UT instr uctio n. If y ou coll ect , a ll th e data [...]
-
Page 176
12–14 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Usin g VI E W fo r Di spl ay i ng Data The programm ed VIEW in struction { variable stops a runni ng program and displays and iden tifies the contents of the given variable, such as /)[...]
-
Page 177
Simple Programming 12–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m press { G to start the equation. Press number and ma th keys t o get numbers and sym bols. Press K before each let ter. Press to en d the equation. If flag 10 is set, equations ar e displayed inst[...]
-
Page 178
12–16 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Des cription: π º:º { / ) Checksum and leng th of equation . H V ! # Store the volume in V . { G 2 y?[...]
-
Page 179
Simple Programming 12–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now fin d the volume an d surface area –of a cylinder with a radius of 2 1 / 2 cm and a h eight of 8 cm . Keys: Displa y: Description: W C @ value Starts executing C ; prompts for R . (It dis[...]
-
Page 180
12–18 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sto p p i ng o r I n te rru p ti n g a Pr og ra m Pr ogra m ming a S t op or P ause (S TO P , PSE) Pre ssing f ( ru n / stop ) dur i ng pr ogram e ntr y inserts a S T OP i nstru ctio n . T his w i[...]
-
Page 181
Simple Programming 12–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Editin g Program You can modify a progr am in program memory by inser ting, delet ing, and editing program lines. If a program line contain s an eq uation, y ou can edit the equation— if any other p[...]
-
Page 182
12–20 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m then en ter the de sir ed corr ecti ons . 4. Pre ss to end the equati on . Pr o gr a m M e mor y View ing P rog ram Mem or y Pressing z d toggles the calc ulator into and out of pro gram en try ( [...]
-
Page 183
Simple Programming 12–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m which use only 1 .5 b ytes. Al l ot her inst ruction s use 1 .5 b ytes. Equations use 1.5 b y tes , plus 1. 5 b ytes for each function , plus 9 . 5 or 1.5 b ytes f or eac h n umber . E ac h &q[...]
-
Page 184
12–2 2 Si mple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C l ear ing O n e or M o r e Pr ogr am s To clear a specific program fr om memory 1. Press z X { } and di splay (using z and z ) the label of the pr ogr am . 2. Pr ess z b . 3. Pre[...]
-
Page 185
Simple Programming 12–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m (hold) If your checksum does not match this nu mber, then you have not entered th is program correctly. You w ill see that all of the ap plicatio n program s pro vided in cha pters 1 5 through 17 inc[...]
-
Page 186
12–2 4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Se l ec ting a B a se M o d e in a P rog ram Insert a BIN, O CT, or HEX instruction into the beginnin g of the pro gram. Y ou should us ually i nclude a DEC ins tructi on at the end of the program so[...]
-
Page 187
Simple Programming 12– 2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ol y nomial Expr es sions and Hor n er' s M et hod Some expressions, such as polynom ials, use the sam e variable se veral times for their solution. For ex ample, the expression Ax 4 + Bx 3 +[...]
-
Page 188
12–2 6 Simpl e Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! ! 5 y º 5 x . 2 - 5 x + 2. y º (5 x + 2) x . y º[...]
-
Page 189
Simple Programming 12–2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! º - º - º - º ?[...]
-
Page 190
[...]
-
Page 191
Programming Techniques 13–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 Programm i ng Techni ques Chapter 12 covered the basics of progra mm ing. This cha pter expl ores m ore sophisticated but useful tech niques: Using su br outines t o simplify pr og r ams b y[...]
-
Page 192
13–2 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A routine typically starts wi th a label (LBL) and en ds with an instruction that alters or s tops program executi on, such as RTN, GTO, or ST OP, or perhaps another label. Call i ng Subr outi n es[...]
-
Page 193
Programming Techniques 13–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Starts here. "! % % 1 Calls subroutine Q. ! 2 Return here. #$ ! [...]
-
Page 194
13–4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Nested Subroutine. The following subroutine, labeled S, calculates the value of the expression 2 2 2 2 d c b a + + + as part of a larger calculation in a large r program. The subroutine [...]
-
Page 195
Programming Techniques 13–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Bran c hin g (G T O) As we have seen with subroutines, it is often desira ble to tran sfer execut ion to a part of the program other than the nex t line. This is called branching. Uncon ditional br[...]
-
Page 196
13–6 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Can start here. . . . ! ' 1 Branches to Z. Can start here. . . . ! ' 1 Branches to Z. [...]
-
Page 197
Programming Techniques 13–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Condit ional I nst r uc t ions Another w ay to alter the sequen ce of program ex ecution is by a con dition al test , a true/ false test that co mpare s tw o n umber s and skips the n ext program i[...]
-
Page 198
13–8 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tests o f Compari s on ( x ? y, x ? 0) There are 12 com parisons av ailab le f or programmi ng. Pr essing z l or { n displays a. menu for one of the two categories of tests: x ? y fo r tests co[...]
-
Page 199
Programming Techniques 13–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! º < ¸@ Tests to see if the corre ction is significant. ! ! ! Goes back to start of loop if correction is significant. C ontinues if correction is n ot significant. ! [...]
-
Page 200
13–10 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m tested . F l ags 5 and 6 all o w yo u to c ontr ol ov erflo w conditions that o cc ur durin g a pr ogram . Setting flag 5 s tops a pr ogra m at the line j ust after the line that cau sed the o v e[...]
-
Page 201
Programming Techniques 13–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4. If the n e xt pr ogr am line is a P SE ins tru ctio n, e x ec utio n co ntinue s afte r a 1–second pa us e . T he s tat us of flag 10 is co ntr olled o nl y b y e x ec utio n o f the SF and C[...]
-
Page 202
13–12 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Using Flags Pressing { x displays the F LAGS menu: { } { } { @ } After sele cting the fun ction yo u w ant , you will be prompted for the flag num ber (0 –11). F or ex am ple, pre[...]
-
Page 203
Programming Techniques 13–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Line L0 3 s ets f l ag 0 so th at line W 0 7 t ak es the na tur al log of th e X–in put f or a L ogarithm ic–m odel c ur v e. Line E04 sets flag 1 so that li ne W1 1 tak es the natural[...]
-
Page 204
13–14 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Controlling th e Fraction Display. The following program lets yo u exercise the calc ulator's fraction–display capability. The program prom pts for and uses your inputs for a fract[...]
-
Page 205
Programming Techniques 13–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description: ! Sets f lag 8. ! Displays message, then sh ows the fraction. ?[...]
-
Page 206
13–16 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: c + format (denominator is factor of 16), then shows the fraction . f % c + Message indicates the fraction [...]
-
Page 207
Programming Techniques 13–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program lines: Description: "! "! Checksum and leng th: 6157 004.5 It is easie[...]
-
Page 208
13–18 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m . . . %! variable A DSE in struction is like a FO R–NEX T loop with a n egative incre ment. After pressing a shifte d key for IS G or D SE ( z k or { m ), you will be prompted f or a vari [...]
-
Page 209
Programming Techniques 13–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 $ $ . . . $ 2 1 $ ! $ $ % % 2 If current value > final value, continue loop. . . . If current value ≤ final value, [...]
-
Page 210
13–20 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Indir ec tl y A ddr es sing V ar iabl es and L abels Indirect ad dre ssing is a tech nique used in advanced programming to specify a variable or label w ithout specif ying before hand exactl y whi[...]
-
Page 211
Programming Techniques 13–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T h e I ndir ec t A ddr es s, (i ) Many fun ctions that use A through Z (as variables or labels) can use to refer to A th rough Z (v ariables or labe ls) or statis tics r egisters in directly [...]
-
Page 212
13–2 2 Progra mming Techni ques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m STO ( i ) RCL ( i ) STO +, –, × , ÷ , ( i ) RCL +, –, × , ÷ , ( i ) XEQ ( i ) GTO ( i ) X<> ( i ) INPUT ( i ) VIEW ( i ) DSE ( i ) ISG (i) SOLVE(i) ∫ FN d(i) FN= (i) Pr ogra m C[...]
-
Page 213
Programming Techniques 13–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and line Y 08 c alls a differe nt subroutine to compute x ˆ after i h as been increased by 6: & & !- L & % 1 L 2 If i hold: Then XEQ(i) ca lls: To: 1 L[...]
-
Page 214
13–2 4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! L Stores loop–control number in i . The n ext rout ine is L, a loo p to collect al l 12 know n valu es for a 3x3 coefficient matrix (variables A – I ) and th e three co nstants[...]
-
Page 215
Programming Techniques 13–2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Disables equation pro mpting. ) Sets counter for 1 to 26 . ! L Stores counter. Initializes sum . Checksum and leng th: EA5[...]
-
Page 216
[...]
-
Page 217
Solving and Integrating Programs 14–1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 14 So lving a nd Integ rating Programs Sol v i ng a Pr ogra m In chapter 7 you saw how you can enter an equati on — it's added to the equation list — and then solve it fo r any variable[...]
-
Page 218
14–2 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. Inc lude an INP UT instr uc tio n f or each var iable , inc luding the unkno wn . INP UT ins tr uc tions ena ble y ou t o so l v e fo r an y v ar i able in a mu lti–v ar ia ble functi on . [...]
-
Page 219
Solving and Integrating Programs 14–3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R = The universal gas co nstant (0.0821 liter–atm/mole–K or 8.314 J/mole–K). T = Temperature (kelvins; K = °C + 273.1). To begin, put the calculator in Pr ogram mode; i f necessary, posit[...]
-
Page 220
14–4 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m unknown variable. { P #@ value Selec ts P ; prompts for V . 2 f @ value Stores 2 in V; prompts for N. .005 f @ value Stores .005 in N ; prom pts for R . .0821 f !@ value ?[...]
-
Page 221
Solving and Integrating Programs 14–5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now calculate the chang e in pressure of the carbon dioxide if its tempe rature drops by 10 °C from th e previous ex ample. Keys: Displa y: Description: H L ) Stores previo us[...]
-
Page 222
14–6 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m before displaying it). If you do want this result di splayed, add a VIEW variable instruction after th e SOLVE instruction. If no solution is foun d for the unknown variable, then the next progr[...]
-
Page 223
Solving and Integrating Programs 14–7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte grat ing a P rogram In chap ter 8 you saw how you can enter an equation (or expres sion) — i t's added to the list of e quations — an d th en integrate it wi th respect to any vari[...]
-
Page 224
14–8 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m is ignor e d b y t he calculator , so y ou need to w rite onl y one pr ogram that cont ains a sep ara te I NP UT inst ruction for ever y v ar iable (including the v ari able o f integr atio n). [...]
-
Page 225
Solving and Integrating Programs 14–9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z { } Selects Radians mode. { V S Selects label S as the integrand. 0 2 _ Enters lower and upper lim its of integration . { ) X !! ?[...]
-
Page 226
14–10 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The 2 ) ) (( 2 ÷ ÷ − S M D e function is calcul ated by the routine l abeled F. Other routines prompt for th e kno wn values an d do th e other calcul ation s to find Q(D) , the uppe r–ta[...]
-
Page 227
Mathematics Programs 15–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 15 Ma t hem atics Progra ms Ve c t o r O p e r a t i o n s This program performs the basic vector operations of addition, subtraction , cros s product , and dot (o r sca lar ) product. T he program u[...]
-
Page 228
15–2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This program uses the following equation s. C oordinate conversion: X = R sin( P ) cos( T ) R = 2 2 2 Z Y X + + Y = R sin( P ) sin ( T ) T = arctan ( Y / X ) Z = R co s( P ) P = arctan 2 2 Y X Z + Ve[...]
-
Page 229
Mathematics Programs 15–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description Defin es the beginning of th e rectang ular input/display routine. "! % Displays or accepts input of X . [...]
-
Page 230
15–4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description º65¸ ! & Saves Y = R sin( P ) sin( T ). ! Loops back for another display of polar form. Checksum [...]
-
Page 231
Mathematics Programs 15–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ! % Saves X + U in X . # - & ! & Saves V + Y in Y. [...]
-
Page 232
15–6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description º # . ! ' Stores ( XV – YU), which is the Z component. ¶ ! &[...]
-
Page 233
Mathematics Programs 15–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ¶ ª Divides previous result by the magnitude. Calc ulates angle. ! #[...]
-
Page 234
15–8 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. Ke y i n R an d pr ess f , k e y in T and pr es s f , the n k e y in P and press f C ontin ue at step 5 . 4. Ke y i n X and pr es s f , k e y in Y and p r ess f , and k e y in Z an d pr es s f . 5[...]
-
Page 235
Mathematics Programs 15–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m rectangular to polar conver sion capabil ity to find the total di st a n ce a n d the direction to the transmitter. N ( y ) S W E (x) An te n na Tra n s m i t t e r 7. 3 15 .7 Keys: Displa y: Des cri[...]
-
Page 236
15–10 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 2: What is the moment at the or igin of the lever sho wn below ? Wha t i s t h e componen t of force along the lev er ? Wh at is th e ang le betw een the result ant of the force vectors and [...]
-
Page 237
Mathematics Programs 15–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 74 f @) Sets P equal to 74. W A @) Adds the vectors and displays the resultant R . f !@) Displays T of resultant v ector. f @?[...]
-
Page 238
15–12 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m W D /) Calculates dot product. f /) Calculates angle between resultant force vector and lever. f @) G ets back to input routin e.[...]
-
Page 239
Mathematics Programs 15–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description Starting point for input of co efficients. ) Loop–control value: loops from I to 12, one at a time. [...]
-
Page 240
15–14 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description º . ! ' Calculates H' × determinant = BG – AH. ?[...]
-
Page 241
Mathematics Programs 15–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description º º . ! Calculates G' , ?[...]
-
Page 242
15–16 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % Sets index value to point to last element in second row. % Sets index value to point to l[...]
-
Page 243
Mathematics Programs 15–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description Checksum a nd length: 4E79 012.0 This routine calculates the determinant. º ?[...]
-
Page 244
15–18 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 348 bytes: 212 for pr ogram, 136 fo r variable s. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W A to inpu t coef[...]
-
Page 245
Mathematics Programs 15–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: For the system below , compute th e invers e and the system solution . Review the inverted m atrix. Invert the matrix ag ain and review the result to mak e sure that the original matrix is [...]
-
Page 246
15–20 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f @.) Displays next value. f @) Displays next value. f @) Displays next value. W I ) Inverts inverse to produce origi[...]
-
Page 247
Mathematics Programs 15–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m b 0 = a 0 (4 a 2 – a 3 2 ) – a 1 2 . Let y 0 be the largest re al root o f the above cubic. Then the fourth–ord er polynomial is reduced to two quadratic polyn omials: x 2 + ( J + L ) × + ( K[...]
-
Page 248
15–2 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !1L2 Starts root finding routine. Checksum and leng th: CE86 010.5 Evaluates polynomials usin g Horner's m ethod, and s[...]
-
Page 249
Mathematics Programs 15–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ª a 1 /2. -+. – a 1 /2. ! ! Saves – a 1 /2. ! Stores[...]
-
Page 250
15–2 4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % Solv es rem ainin g secon d–orde r polyn omial and store s roots. #$ % Displays real root of cubic. ! [...]
-
Page 251
Mathematics Programs 15–25 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description -+. b 2 = – a 2 . ! Stores b 2 . a 3 . º a 3 a 1 . ?[...]
-
Page 252
15–2 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !ª K = y 0 /2 % +º Creates 1 0 –9 as a lower bo und for M 2 K [...]
-
Page 253
Mathematics Programs 15–2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description polynomial. J . . J – L . K . . K – M . Checksum a nd length[...]
-
Page 254
15–28 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: Flag 0 i s used to rememb er if t he root is real or com plex (that is, to re mem ber the sign of d ). If d is negative, then flag 0 is set . Flag 0 is test ed later in the program to as[...]
-
Page 255
Mathematics Programs 15–2 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. K e y in the pr ogr am r outine s; pr ess whe n d o n e. 3. Pre ss W P to s tart the poly nomi al r oot finder . 4. K e y in F , the or der of the pol yn omi al , and pr ess f 5. At eac h pr[...]
-
Page 256
15–30 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exampl e 1: Find the roots of x 5 – x 4 – 101 x 3 +101 x 2 + 100 x – 100 = 0. Keys: Displa y: Description: W P @ value Starts the polynomial root finder; prompts for order. 5 f @ val[...]
-
Page 257
Mathematics Programs 15–31 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 22 @ value Stores –10/4 in B ; prompts for A. 4 p f %/) Stores 22/4 in A ; calculates the first root. f %/) Calculates the second root. f %/.)?[...]
-
Page 258
15–3 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following formulas are us ed to co nvert a point P fr om the Cartesian coordi nate pair ( x, y ) i n the old sys tem to the pair ( u , v ) in the new, translate d, rotated system. u = ( x – m[...]
-
Page 259
Mathematics Programs 15–33 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y ' x x' [] m, n New coordinate s y stem Old coor di nate s y stem [0, 0] x P u y v θ Program Listing: Program Lines: Description This routine de fines the ne[...]
-
Page 260
15–34 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description "! % Prompts for and stores X , the old x –coordinate. "! & Prompts for and stores Y , the old y –coordinate.[...]
-
Page 261
Mathematics Programs 15–3 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! % Stores the x –coordinate in variable X . º65¸ Swaps the positions of the coordinates. ! & Stores the y –coordin[...]
-
Page 262
15–3 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 . Ke y i n U (the x –coor dinate in the new s y stem) and pr ess f . 14 . Ke y i n V (the y –coor dinate in the new s y stem) and pr ess f to see X . 15 . Pr es s f to see Y . 16 . F or a no[...]
-
Page 263
Mathematics Programs 15–3 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y' x P 3 ( 6 , 8 ) P 1 ( _ 9, 7 ) P 2 ( _ 5, _ 4) P' 4 (2 .7 , _ 3. 6 ) (, ) = ( 7 , _ 4) T = 27 MN o (M, N ) T Keys: Displa y: Description: z { } Sets Degrees mode since[...]
-
Page 264
15–38 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 _ f &@ value Stores –9 in X . 7 f "/.) Stores 7 in Y and calculates U . f #/) Calculates V . f %@.) Resume s the old–to–[...]
-
Page 265
Statistics Programs 16–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 16 Stat is ti c s Programs Cur v e Fi t ting This program can be used to f it one of four m ode ls of eq ua tions to your data. These models a re the st r aight lin e, th e log arithm i c curve, the e[...]
-
Page 266
16–2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y x y B _ Mx = Stra i g ht Li ne F i t S y x y Be Mx = Ex p onen tial C urve F it E y x y B M I n x =+ Lo g arithmic C urve Fit L y x y Bx M = Pow e r C u r v e Fi t P To fit log arithmic curves, va lues o f[...]
-
Page 267
Statistics Programs 16–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description This routine set, the status for the straight–line m odel. Enters index value fo r later storage in i (for indire ct ad[...]
-
Page 268
16–4 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ' ! L Sto res the index value in i for indirect addressin g. ' Sets the loop counter to ze ro for the first input. Checksum a nd length: 8C2F 006[...]
-
Page 269
Statistics Programs 16–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description @ If flag 1 is seta takes the natural antilog of b . H % ! Stores b in B . #$ Displays valu e, [...]
-
Page 270
16–6 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !. L Restores index value to its orig inal value . & . ª Calculates x ˆ =( Y – B [...]
-
Page 271
Statistics Programs 16–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description This subroutine calculates x ˆ for the exponential model. !. L Restores index value to its orig inal value . [...]
-
Page 272
16–8 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Required: 270 bytes : 174 for p rogram, 96 fo r data (statistic. registers 48). Program instru ctions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W and s elect the ty pe [...]
-
Page 273
Statistics Programs 16–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m also used for scratch. M Regression coefficient (sl ope o f a straight line). R Correlation coefficient; al so used for scratch. X The x –value of a data pair wh en entering data; the hypothetical x[...]
-
Page 274
16–10 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@) Retrieves %@ prom pt. W U %@) Deletes the las t pair. Now proce ed with the correct data entry. 37.9 f &@) Enters correct x –value of [...]
-
Page 275
Statistics Programs 16–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Logarithmic Exponential Power To start: W L W E W P R 0. 9965 0.9945 0. 9959 M –139.0088 51.1312 8.9730 B 65. 8446 0.0177 0. 6640 Y ( y ˆ when X =37) 98.7508 98.5 870 98. 6845 X ( x ˆ when Y =101[...]
-
Page 276
16–12 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ∫ ÷ ÷ − − − = x x x x dx e x Q 2 ) ) (( 2 2 1 5 . 0 ) ( σ π σ This program uses the built– in integration feature of the HP 32SIl to integrate the equation of the n ormal fre quency cu rve. T[...]
-
Page 277
Statistics Programs 16–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! . ! % ! ! ! ¶ ! % Calculates the de rivative at X guess . ! ª ![...]
-
Page 278
16–14 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! Returns to the calling routine. Checksum and leng th: F79E 032 .0 This subroutine calculates th e integrand for the norm al functio[...]
-
Page 279
Statistics Programs 16–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Yom do riot n e ed to key in the inv erse routine (in routines I and T) if you are not in terested in th e inverse capability. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss w[...]
-
Page 280
16–16 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 1: Your good f riend inf orms you that your blind dat e has "3 σ " intellige nce. You interpret this to me an that this pe rs on is m ore intellig ent th an th e local population except f[...]
-
Page 281
Statistics Programs 16–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@) Resume s program. 2 f /) Enters X –value of 2 and calculates Q ( X ). 10000 y ) Multi plies by th e pop ulati on fo r the revise[...]
-
Page 282
16–18 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0.8 f %/) Stores 0.8 (100 percent m inus 20 percent) in Q ( X ) and calculates X . G r ouped S t andar d Dev iati on The stan dard deviat ion of grouped data, S xy , is the stan dard de[...]
-
Page 283
Statistics Programs 16–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !- 1 L 2 Updates ∑ i f in register 28. º % i i f x ! L Stores index for register 29 . ?[...]
-
Page 284
16–20 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 143 bytes: 71 for progra ms, 72 for data. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W S to start entering ne w data. 3[...]
-
Page 285
Statistics Programs 16–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m i Index variable used to in directly address the c orre ct statistics register. Register 28 S u m m a t i o n Σ f i . Regist er 29 S u m m a t i o n Σ x i f i . Re gi st e r 3 1 Su mmat ion Σ x i [...]
-
Page 286
16–2 2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: f /) Displays the coun ter. f %@) Prompts for the f our th x i . 15 f @) Prompts for th e fourth f i . 43 f ?[...]
-
Page 287
Miscellaneous Programs and Equations 17–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 17 Miscella neous Pro gra m s and Equations Time V alu e of Money Given any four of the five values in the "Time–V alue–of–Money equation" (TVM), y ou can solve for th[...]
-
Page 288
17–2 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m problem can he viewed fr om tw o persp ectives. The len d er and th e borrower view the same probl em with reversed signs. Equation Entry: Key in this equation: ºº1.1-?[...]
-
Page 289
Miscellaneous Programs and Equations 17–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Rem ark s: The TVM equation requires that I m ust be non –zero to avoid a # & error. I f you're solvi ng for I and aren't su re of its curre nt v[...]
-
Page 290
17–4 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Variables Used: N The n umber of co mpounding periods. I The periodic interest rate as a perc entage. (For example, if the annual interest rate is 15% and there are 12 paym ents per year, t[...]
-
Page 291
Miscellaneous Programs and Equations 17–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 36 f @ value Stores 36 in N ; prompts for F . 0 f @ value Stores 0 in F ; prom pts for D . 7250 1500 @8) Calculates B , the beginning loa[...]
-
Page 292
17–6 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Note th at the in terest rate, I , from part 2 is not z ero, so you w on't get a # & error when you calculate the new I . Keys: Displa y: Description: { G Rº[...]
-
Page 293
Miscellaneous Programs and Equations 17–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m LB L Y VIE W Pri me LB L Z P + 2 x → LB L P x P 3 D → → LB L X FP [ / ] x PD → x = 0 ? yes no DD + 2 → Star t no yes D > P √ ? No te: x i s the v a l u e i n t h e X - [...]
-
Page 294
17–8 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description & & This routine dis plays prime n umbe r P . & #$ Checksum a nd length: 5D0B 003.0 '?[...]
-
Page 295
Miscellaneous Programs and Equations 17–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % ! & If all factors have been trie d, branches to the display routine. % Calculates the next possible factor, D + 2. %?[...]
-
Page 296
17–10 Miscellaneous Prog rams and Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 789 W P /) Calc ulates n ext pr ime n um ber aft e r 789. f /) Calc ulates n ext prime n um ber aft e r 797.[...]
-
Page 297
Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 3 Appendixes and Refer enc e[...]
-
Page 298
[...]
-
Page 299
Supp ort, Batteries, and Service A– 1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A Su pp or t, Ba tterie s, and Servic e Calc ulat or Su ppor t You can obtain answ ers to questions about using yo ur calculat or from our Calculator Su pport Department. O u r expe rien [...]
-
Page 300
A–2 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A: Exponent of ten; that is, 2.51 × 10 –13 . Q: The calculator has displayed th e messag e & " . What should I do ? A: You must cle ar a porti on of memory bef[...]
-
Page 301
Supp ort, Batteries, and Service A– 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C hanging t h e B at ter i es Replace the batteries as s oon as poss ible when the low battery annunciator ( ¤ ) appears. If the battery annunciator is on, an d the display dims, you [...]
-
Page 302
A–4 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T esting Ca lc ulat or O peration Use the follow ing guidelines to determ ine if the calculat or is workin g properly. Test the calculator after ever y step to see if its operation has been re st[...]
-
Page 303
Supp ort, Batteries, and Service A– 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e Sel f–T est If the display can be turned on, but the calculator does not seem to be operating properly, do the follo w ing diagno stic self–test. 1. Hold do wn the key , t h [...]
-
Page 304
A–6 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Limi te d One–Year W arr anty What I s Co v er ed The calculator (except for the batteries, or d a m age ca used by the b atteries) is warranted by H ewlett–Packard again st defects in materi[...]
-
Page 305
Supp ort, Batteries, and Service A– 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Products are sold on the ba sis of specif icati ons applicable at the time of manufacture. Hewlett–Pa ckard shall hav e no o bligation to m odify or update products once sold. C on sume[...]
-
Page 306
A–8 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All shipp ing , re importation ar r a ngem ents, and c ustom s co sts ar e y our re sp o n s i b i l i t y . Ser v ice C har g e There is a standard repa ir charge fo r out–of–warranty se rvi[...]
-
Page 307
Supp ort, Batteries, and Service A– 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Servi ce Agreem ent s In the U.S., a support agre em ent is available for re pair an d service. Refer to the form that was p ackaged with th e manual. For addi tional informatio n, contac[...]
-
Page 308
[...]
-
Page 309
User Memory an d the Stack B–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m B User Mem ory and the St ack This appendix covers The allocati on and r equir emen ts of u ser mem or y , How to r es et the calc ulator w ithout affectin g memo ry , Ho w to c lear[...]
-
Page 310
B–2 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Requirements Data or Operation Amount of Memory Used Variables 8 bytes per non– zero value. (No bytes for zero values.) Instructions in progra m lines 1.5 bytes . Numbers in prog ram lines Int[...]
-
Page 311
User Memory an d the Stack B–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Displa y the pr ogr am line cont aining the eq uation . 2. Pr ess { to se e the c hec ksum and length . F or e x ample , / ) . To m anu ally d eallo cate the[...]
-
Page 312
B–4 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Pre ss and ho ld do wn the key . 2. Pr ess and hold do w n < . 3. P r ess 6 . ( Y o u w i l l b e p r e s s i n g t h r e e k e y s s i m u l t a n e o u s l y ) . W h e n y o u r elease all [...]
-
Page 313
User Memory an d the Stack B–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All functions except those in th e follow ing tw o lists will enable stack lift. Disabl ing O per ati ons The four oper ations EN TER, Σ +, Σ –, an d CLx disable stack lift. A number keyed i[...]
-
Page 314
B–6 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e S t atus o f t h e L A S T X R egister The following op erations save x in the LAST X register: +, –, × , ÷ SQRT, x 2 e x , 10x LN, LOG y x , X y I/x x ˆ , y ˆ SIN, COS, TAN ASIN, ACOS, ATAN[...]
-
Page 315
More about Solving C–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C Mor e a bou t So l v i ng This appendix pr ovides information about the SOL VE oper ati on beyond t hat given in chapter 7. How S OL VE F inds a R oot SOLVE is an iterative opera tion; th at is, it re[...]
-
Page 316
C–2 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If f(x) has one or more loca l mi nima or mini ma, each occurs si ngly betw een adjace nt r oots off f(x) (f igur e d, belo w) . f ( x ) x a f ( x ) b x f ( x ) x c f ( x ) x d Fun ctio n W hos e Roots C [...]
-
Page 317
More about Solving C–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m I n te rp ret in g Res u lt s The SOLVE op erati on wil l produc e a solu tion under either of the. follow ing conditions: If it finds an es timate for which f(x) equals zero. (See figure a, below.)[...]
-
Page 318
C–4 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G Select Equation mode. 2 _y K X 0 3 4 y K X 0 2 6 yK X 8 .º%:-%:. Enters the equation. { ?[...]
-
Page 319
More about Solving C–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G Selects Equation mode. K X 0 2 K X 6 %:-%. Enters the equation. { / ) Checksum and leng th. Can[...]
-
Page 320
C–6 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m betw een tw o neighbor ing v alues o f x , i t re t u r ns t h e p o s s i b l e ro o t. Ho w e ver , the v alue fo r f(x) w ill be relati v ely large . If the pole occur s at a v alue o f x that is e x actl [...]
-
Page 321
More about Solving C–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Cancel s Equation mode. Now, so lve to find the root: Keys: Displa y: Description: 0 H X 5 _ Your initial guesses for the root. { G 1%2/) Selects Equation mode; displays t[...]
-
Page 322
C–8 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K X p { K X 0 2 6 { ] 1 %ª1%:.22. Enters the equation. { / ) Checksum and leng th. Cancel s Equation mode. Now, so lv[...]
-
Page 323
More about Solving C–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The s ear ch h alts becau se S OL VE is w or king on a ho r iz on tal as y mptote—an ar ea w her e f(x) is essentiall y constant f or a w ide r ange of x (see f igure b , below ) . The ending v al[...]
-
Page 324
C–10 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Relat ive Minimum. Calculate the root of this parabolic equation: x 2 – 6 x + 13 = 0. It ha s a mini mum at x = 3. Enter the equation as an expression: Keys: Displa y: Descri ption: { G Selec[...]
-
Page 325
More about Solving C–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 1 10 = − X Enter the equation as an expression. Keys: Displa y: Description: { G Selects Equation mode. 10 3 K X { ] .#1%2 Enters the equation. { /[...]
-
Page 326
C–12 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m It's appa rent from in specti ng the equation that if x is a negative number, the smallest that f(x) can be is 10. f(x) approaches 10 as x becom e s a negative number of large magnitude. Example: A Math [...]
-
Page 327
More about Solving C–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: 0 H X 10 _ . _ { G !1%ª1%-) Selects Equati on mode; displays the left end of the equation. { X !12 Math error. C[...]
-
Page 328
C–14 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Solve for X using initial guesses of 10 –8 an d –10 –8 . Keys: Displa y: Description: ` 8 _ H X 1 _ ` 8 _ .. _ Enters guesses. { V J .). Selects program "J"[...]
-
Page 329
More about Solving C–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m function nev er chan ges sign SOLVE returns the message ! . However, the final estim ate of x (press @ to se e it) is the best po ssible 12–digit approxima tion of the root [...]
-
Page 330
[...]
-
Page 331
More about Integration D–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m D Mor e abo ut I nt e gr at i on This appendix provides information ab out integration beyond that given in chapter 8. How t h e Int egr al I s E v al uate d The algorithm used by the integratio n o[...]
-
Page 332
D–2 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m As ex plained in ch apter 8 , the un certainty of the final a pproxim ation is a number derived from the disp lay format , which specifies th e uncertainty for the function. At the end of each it eration, [...]
-
Page 333
More about Integration D–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m showing (over a portion of the interv al of integration) three functions whose graphs in clude the man y sample po ints in com mon. f ( x ) x With this n umber of sam ple pints, the algorithm will c[...]
-
Page 334
D–4 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ∫ ∞ − 0 dx xe x Since you' re ev aluatin g this inte gral n umeri cally, you might think that y ou should represent the upper limit of integrat ion as 10 499 , which is virtual ly the largest cu[...]
-
Page 335
More about Integration D–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x The graph is a spike very close to t he origin. Bec ause no sample point happened to discover the spike, the algorithm assumed that f(x) was identically equal to zero througho ut th e in t[...]
-
Page 336
D–6 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m fluctuat ions can be better ch aracteri zed by its sam ples whe n the se variat ions are spread out over m ost of the interv al of integr ation than if they are confined to only a sm all fraction of the in[...]
-
Page 337
More about Integration D–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x Ca lculat ed i nte gra l of th is function will b e accu rate. f ( x ) a b x Ca lculat ed i nte gra l of th is function ma y be acc ur ate . a b In many cases you will be familiar eno ugh [...]
-
Page 338
D–8 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and you suspect that it m a y cause problems, yo u can quickly plot a few points by evaluating the fun ction using the equation or program you wrote for that purpose. If, fo r any reason, after obtaining a[...]
-
Page 339
More about Integration D–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Z ). Uncertainty of approximation . This i s the c orrec t answer, but it to ok a very long time. T o unders tand why, compare the graph of the fun ction betwe en x = 0 and x = [...]
-
Page 340
D–10 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m calcul ation of the integr al of any f uncti on w ill be prolonged if the interval of integration includes mostly regions where the function is not interesting. Fortunately, if you must calculate such an [...]
-
Page 341
Messages E–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E Me ssages The calculator responds t o certain cond itions or keystrok es by dis playing a message. The £ symbol comes on to c all your attention to th e messag e. For signifi cant con ditions , the mes sage re[...]
-
Page 342
E–2 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m !! The calculator is calculati ng the in tegral of an equation or program. This might take a wh ile . !"! A running SOLVE or ∫ FN operation was interrupted[...]
-
Page 343
Messages E–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m % !! Attempted to refer to a no ne xistent program label (or line number) w ith U , U , W , o r { }. Note that the error % !! can m ean yo u e xpli c it[...]
-
Page 344
E–4 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m while a S OLVE operation wa s runnin g. # The calculator is solving an equation or program for its root. This might take a while. ! 12 Attempted to calculate the s quare root of a neg[...]
-
Page 345
Operation Index F–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F Operat i on I ndex This sec tion is a quick re ference for a ll functions a nd operations and their formulas, where appropriate. The listing is in a lphabetical order by th e function's name. Th is [...]
-
Page 346
F–2 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page to next e quation in equation list; moves p rogra m point er to ne xt l ine (during program entry); ex ecutes the current program line (n ot during program entry). 6–3 12–9 [...]
-
Page 347
Operation Index F–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page σ y { 2 { σ ¸ } Returns population standard deviation of y –values: n y y i ÷ − ∑ 2 ) ( 11–7 1 θ , r y , x { r Polar to rectangular coordinates . Conv[...]
-
Page 348
F–4 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Returns sin –1 x . ASINH z 7 z L Hyperbolic arc sine . Returns sinh –1 x . 4–5 1 ATAN z R Arc tangent . Returns tan –1 x . 4–4 1 ATANH z 7 z R Hyperbolic arc tang e[...]
-
Page 349
Operation Index F–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page z b { } Clears the displayed equation (calculator in P rogram mode). 12–6 CL Σ z b { ´ } Clears statistics registers. 11–12 CLVARS z b { # } Clears [...]
-
Page 350
F–6 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page CMPLXSIN z F N Complex s ine . Returns sin ( z y + i z y ). 9–3 CMPLXTAN z F T Comp lex tangent . Returns tan ( z x + i z y ). 9–3 CMPLXy x z F 0 Comple x power . Returns ) [...]
-
Page 351
Operation Index F–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page digits following the first digit ( n = 0 through 11). Separates two num bers key ed in sequentially; com p letes equation entry; evaluates the display ed equation (an[...]
-
Page 352
F–8 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page GRAD z { } Sets Grads angular mode. 4–3 GTO label z U label Sets the program pointer to the beginning of program label in program mem ory. 13–5 13–16 z U la[...]
-
Page 353
Operation Index F–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page input in the variabl e. (Used only in programs.) INV 3 Reciprocal of argument. 6–17 2 IP { [PARTS] { } Integer part of x . 4–14 1 ISG variable z k variable Inc[...]
-
Page 354
F–10 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page z Displays menu to set Angular modes and the radix ( • or , ). 1–14 4–3 n z 5 { Q } Returns the number of sets of data points. 11–11 1 OCT z w { } Selects Oc[...]
-
Page 355
Operation Index F–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Selects the period as the radix mark (decimal point). RANDOM { [PROB] { } Executes the RANDOM fu nction. Returns a random number in the range 0 through 1. 4–11 1 R[...]
-
Page 356
F–12 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page SCI n z { } n Selects Scie ntific display with n decimal places. ( n = 0 through 11.) 1–15 { [SCRL] Scroll . En ables an d disable s scrollin g of equations in Equati[...]
-
Page 357
Operation Index F–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Stores variable ÷ x into variable. STOP f Run /stop. Begins progra m execut ion at the current prog ram lin e; stops a runnin g program and displays the X–register. 1[...]
-
Page 358
F–14 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page returns the x – estimate based on th e regression line: x ˆ = ( y – b) ÷ m. x! z 1 Factorial (or gam ma). Returns ( x )( x – 1) ... (2)(1), or Γ ( x + 1). 4–11 1 X R[...]
-
Page 359
Operation Index F–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page menu. x ≠ 0 ? z n { ≠ } If x ≠ 0, executes next program line; if x =0, skips the next prog ram line. 13–8 x ≤ 0 ? z n { ≤ } If x ≤ 0, executes next program[...]
-
Page 360
[...]
-
Page 361
Index–1 F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm Ind ex Spec ial c har ac t ers £ , 1- 21 @ . Se e bac kspace k ey ¤ annunc iator , 1-1, A - 2 an nunc iato rs bina ry numbers, 10 - 7 equati ons, 6 -8 , 12 - 7 , 12 -16 _. See equ ation - entr y cursor ¾ . Se e digit-[...]
-
Page 362
Index–2 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm A..Z annunci ator , 1- 2 , 3- 2 , 6 -5 B bac kspace k e y canc eling VI EW , 3- 4 clear ing messages , 1- 3, E-1 clearing X-register , 2 - 2 , 2 -8 deleting pr ogram lines , 12 - 20 equati on e ntry , 1-3, 6 -9 leav i ng menus ,[...]
-
Page 363
Index–3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cas h fl ow s, 17 -1 catalog s lea v ing , 1-3 pr ogram , 1- 21, 12 - 2 2 usi ng, 1- 21 v ar iable , 1- 21, 3- 4 c hain calc ulatio ns , 2 -13 ch ange -per centage fu ncti on , 4 -6 c hanging sign of n umb ers , 1-11, 1-14, 9-3 [...]
-
Page 364
Index–4 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm denominator s con tr olling , 5-6 , 13-9 , 13-13 r ange of , 1- 19 , 5-1, 5- 3 sett ing max im urn, 5-5 digit- entry c urs or bac kspac ing, 1-3, 6 -9 , 12 - 7 in eq uati ons , 6 -6 in pr ogram s, 12 - 7 meaning, 1-12 di sconti [...]
-
Page 365
Index–5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm deleting in pr ogra ms, 12 - 7 , 12 - 20 displa y ing , 6 -8 displa y ing in pr ogr ams, 12 -15, 12 -18 , 13-10 editing , 1- 3, 6 -9 , 6 -10 editing the pr ogr ams , 12 - 7 , 12 - 20 e n t e r i n g , 6- 5 , 6- 9 ent er ing in p[...]
-
Page 366
Index–6 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm equati on pr ompting , 13-10 fr acti on dis pla y , 5-6 , 13-9 mean ings , 13-8 oper a ti ons, 13-11 o ve r flo w , 13-9 sett ing, 13-11 testing , 13- 8 , 13-11 unassi gned , 13-9 FL A G S menu , 13-11 flo w diagram s, 13- 2 ∫[...]
-
Page 367
Index–7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm nu mbe rs HEX ann unc iator , 10 -1 hex numb ers. See nu mbers a rith metic, 10 - 3 con v erting to , 10 -1 r ange of , 10 -6 typ ing , 10 -1 Horner's met hod , 12 - 2 6 hum idity limits f or calc ulator , A- 2 h yperbolic [...]
-
Page 368
Index–8 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm lend er (f inance), 17 -1 l e n g t h c o nve rs io n s , 4 - 1 2 let ter ke ys , 1- 2 limits o f integr ation , 8- 2 , 14 - 7 linear r egr essi on (es timati on), 11-8 , 16 -1 linear -r egre ssio n me nu , 11-8 l o g a ri t h m[...]
-
Page 369
Index–9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm mini mum of function , C- 9 modes . See angular mode , base mode , E quation m ode , F r acti on-displa y mode , Pr ogram-en try mode MOD E S m enu angular mode , 4 - 4 sett ing r adi x , 1-1. 6 mone y (finance) , 17 -1 N negati[...]
-
Page 370
Index–10 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm i n e q u a t i o n s , 6- 6 , 6- 7 , 6-1 6 memor y usage, 12 - 2 2 PA R T S m e n u , 4 - 1 5 paus e . See P SE pa y ment (f inan ce) , 17 -1 per c entage functi ons, 4 -6 per i ods (in n umber s) , 1-16 , A-1 perm utations, 4[...]
-
Page 371
Index–11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing, 1 2 -5 equati on e v aluatio n , 13-10 equati on pr ompting , 13-10 equati ons in , 12 - 4 , 12 -6 er r ors in , 12 -19 e x ecuting , 12 - 10 flags , 13-8 , 13-11 f or integr atio n , 14 - 7 fo r S OL VE , 14 -1, C-[...]
-
Page 372
Index–12 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm r eal par t (c omple x numbers), 9-1, 9- 2 r ecall ar ithme tic , 3-6 , B-8 r ectangular - to -polar coor dinate con v ersion , 4 - 8 , 9-6 , 15-1 r egr es sion (linear ) , 11-8 , 16 -1 r epair serv ice , A- 7 r esetting the ca[...]
-
Page 373
Index–13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm v ar ia ble di gits , 3-3, 3- 4 , 10 -8 , 12 - 15 sign con v entio ns (f inance) , 17 -1 sign (of numbers) , 1- 11, 1-14, 9-3, 10 -5 sim ultaneou s equati ons, 15-13 sine (trig) , 4 - 4, 9-3, A- 2 single -ste p e xec uti on , 1[...]
-
Page 374
Index–14 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing , 11-1 initia li zing , 11- 2 memor y usage, 12 - 2 2 , B- 2 one - var iabl e , 11- 2 pr ecisi on, 11-11 su ms of variabl es, 1 1- 12 two - v ar iable, 11- 2 st atis ti cs calc ulating , 11- 4 c urv e f itti n g , 1 [...]
-
Page 375
Index–15 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cl e a ri n g wh i l e vi ewi n g, 1 2- 1 5 defau lt, B- 5 excha n g i n g wi t h X , 3 - 8 indir ect addr es sing , 13-19 , 13- 20 in eq uati ons , 6 -5, 7 -1 in pr ogr ams , 12 -12 , 14 -1, 14 - 7 memor y usage:, 12 - 2 2 , B[...]
-
Page 376
F ile n am e 3 2s ii-Ma nu al-E -0 4 2 4P a ge : 16 /3 7 6 Pr inted D ate : 200 3/ 4/ 2 4 Siz e : 17 .7 x 2 5 .2 cm Batteri es are deliv ered with this prod uct, when empty do not th row them aw ay b ut correct as small chemical waste. Bij dit pro dukt zijn batt erijen. W an neer deze leeg zijn, moet u ze niet weggo oien maar inlev eren aIs K CA.[...]