Go to page of
Similar user manuals
-
Calculator
HP (Hewlett-Packard) NW280AAABA
616 pages 7.15 mb -
Calculator
HP (Hewlett-Packard) NW280-1001
67 pages 2.22 mb -
Calculator
HP (Hewlett-Packard) HP-10B
72 pages 4.93 mb -
Calculator
HP (Hewlett-Packard) 39gs
314 pages 9.4 mb -
Calculator
HP (Hewlett-Packard) 10BII
145 pages 4.99 mb -
Calculator
HP (Hewlett-Packard) 9s
3 pages 0.52 mb -
Calculator
HP (Hewlett-Packard) HP OmniBook
69 pages 0.75 mb -
Calculator
HP (Hewlett-Packard) HP 6S
21 pages 0.24 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of HP (Hewlett-Packard) 32SII, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word βinstructioβ, which means organizing. Therefore, in an instruction of HP (Hewlett-Packard) 32SII one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of HP (Hewlett-Packard) 32SII. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of HP (Hewlett-Packard) 32SII should contain:
- informations concerning technical data of HP (Hewlett-Packard) 32SII
- name of the manufacturer and a year of construction of the HP (Hewlett-Packard) 32SII item
- rules of operation, control and maintenance of the HP (Hewlett-Packard) 32SII item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of HP (Hewlett-Packard) 32SII alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of HP (Hewlett-Packard) 32SII, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the HP (Hewlett-Packard) service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of HP (Hewlett-Packard) 32SII.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the HP (Hewlett-Packard) 32SII item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII RPN Scientif ic Calculator Ownerβs Manual HP Part No . 00032β90068 Printed in Singapore Edition 5[...]
-
Page 2
Fi l e na me 3 2 si i - M a n u a l - E- 0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Noti ce This man ual and any exam ples contained h erein ar e provide d β as is β and are subject to change without notice. Hewle tt -Pac kar d Compa ny makes no w arranty of an y kind with reg ard to this man ual, includin[...]
-
Page 3
Contents 1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Contents Pa r t 1 . Basic Op er ation 1. Get ti ng Sta r t e d Impo rtant Pr eliminar ies .................................... ............... 1β1 T urning t he C alcula tor On and O ff .......... .................... 1β[...]
-
Page 4
2 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Number o f Dec i mal P lac e s ............................ ........... 1β15 SHO W i n g F u ll 12βDigit Pr e c i s i o n ......................... 1β16 F r acti ons ............................ ...............[...]
-
Page 5
Contents 3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. S t o r i n g D a t a i n t o V a r i a b l e s Sto r ing and R ecalling Nu mber s................ ........................ 3β1 V ie w ing a V ar iable w itho ut R ecalling It ............................. 3β2 R ev ie[...]
-
Page 6
4 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F actor i al ...................................................... .......... 4β11 Gamma ...................... .......................... ................ 4β11 Pr oba bility Men u .......... ...................[...]
-
Page 7
Contents 5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar enthe ses in E quati on s ............................ ................ 6β7 Displa y ing and Selec ting E qu ati ons .......... ........................ 6β7 E diting and Clear ing E qua ti ons ......................[...]
-
Page 8
6 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F or Mor e Inf or matio n .... ................................ .................. 8β9 9 . Operations w i t h Comb Numbers Th e C om ple x S tac k .......... ................................ .............. 9β1 Co[...]
-
Page 9
Contents 7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Summati on St atisti cs ............................ .................. 11β11 Th e S tatis tic s R egis ter s in Calc ulator Me mory ............ 11β12 A cces s to the Sta tisti cs R egist er s .......... ...............[...]
-
Page 10
8 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Memory ................ .......................... ............. 12β20 V ie w ing Pr ogr am Memory ............................ ......... 12β20 Memory U sag e .......... ................................[...]
-
Page 11
Contents 9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The Indir ect A ddr es s , (i) ...................... ................... 13β21 Pr ogr am Co ntr ol w ith (i) ...................... ................... 13β2 2 E quati ons w ith (i) .......... ...........................[...]
-
Page 12
10 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar t 3 . Appendix es and Regerence A. Suppor t, Bat teri es, and Ser vice Calc ulator Su pport .......... ................................ ............... Aβ1 Ans w er s to C ommon Que s tio ns .................[...]
-
Page 13
Contents 11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Neu tral O pe r ations .... ............................................... Bβ5 Th e S tatu s of the L A S T X R egist er ................ ...................... Bβ6 C. Mo r e ab ou t Sol v ing Ho w S OL VE F inds a R o[...]
-
Page 14
[...]
-
Page 15
F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 1 Basic Operat ion[...]
-
Page 16
[...]
-
Page 17
Getting St a rt e d 1β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 G e tting Star t ed Impor tant Pr eli minari es T ur ni ng t h e Cal c ul at or O n and O f f To turn the calculator on, press ξ . ON is printed below the key. To turn the calculator off, press { ξ . Tha[...]
-
Page 18
1β2 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m names are printed in orange and blue above each key. Press the appropriat e shift key ( z or { ) befo re pressin g the key for th e desired function. For exam ple, to turn th e calculator off, pre s s and rele[...]
-
Page 19
Getting St a rt e d 1β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing Key Description a Backspace. ξ K ey boardβe ntry mode: Er ases the c har acter immedi ately to th e lef t of "_" (the d igitβentr y c ursor) or bac ks out of t he curr ent men[...]
-
Page 20
1β4 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing (continued) Key Description zξb The CLEAR menu ({ ΒΊ } { #ξξ } { ξξξ } { Ξ£ } Contains options for clearing x ( the number in the Xβregister), all Data , all variables, all o f [...]
-
Page 21
Getting St a rt e d 1β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Menu ch oi ces . 2 . K ey s matched to menu cho ices. 3 . Men u k ey s . HP 32II Menus Menu Name Menu Description Chapter Numeric Functions PARTS ξξ ξξ ξξ Numb erβaltering functi ons: integer [...]
-
Page 22
1β6 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32II Menus (continued) Menu Name Menu Descript ion Chapter Other func t i o n s MEM QQQ)Q #ξξ ξξξ Memory st atus (bytes of memory available); catalog of variables; catalog of programs (prog ram la[...]
-
Page 23
Getting St a rt e d 1β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t h e functions built into th e calcul ator nor search t hrough the names printed on its keyboard. Exitin g Men us When ever you e xecu te a menu f unc ti on, t he me nu aut omati cal ly disappears, as in the [...]
-
Page 24
1β8 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator Annunciator Meaning Chapter Upper Row: The z ξ and z ξ keys are active for stepping through a list. 1, 6 TS When in Fractionβdisplay m ode (press z ξ ), only one of the " S &q[...]
-
Page 25
Getting St a rt e d 1β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator (conti nued) Annunciator Meaning Chapter Lower Row: ξ The topβrow keys on the calculator are redefined according to the menu labels displayed above men u pointers. 1 ξΏ , ξ There ar[...]
-
Page 26
1β10 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ma k in g N u m b e r s N e ga tiv e The _ key change s the sign of a number. ξ T o k ey in a negati ve n umber , t y pe the number , then pr es s _ . ξ T o change the sign o f a number that was e nt e re[...]
-
Page 27
Getting St a rt e d 1β11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Display: 6.6262 ξ)ξξ ξξ _ 2. Pr ess ` . No ti ce that the c urs or mov es behind the ξ : ` ξ)ξξ ξξ ξ _ ξ 3 . K ey in the e xpone nt . (The lar ges t possible e xponent is Β± 4 9 9[...]
-
Page 28
1β12 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m < ξξ)ξξξξξ Digit entry is term inated. Pressing ξ terminat es digit entry. To sepa rate two numbers, key i n t he first number, press ξ to terminate di git, entry, an d then ke y i n t he[...]
-
Page 29
Getting St a rt e d 1β13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Ke y i n t h e n u m b e r . ( Y ou don't need to pr ess ξ .) 2. Pr es s the fun cti on k e y . (F or a shifted f unc ti on , pre ss the ap pr opr iate z or { s h i f t key fi r s t. ) For example, [...]
-
Page 30
1β14 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For example: To calculate: Press: Display: 123 + 3 12 ξ 3 ξ ξξ)ξξξξξ 12 β 3 12 ξ 3 ξ ξ)ξξξξξ 12 Γ 3 12 ξ 3 y ξξ)ξξξ 12 3 12 ξ 3 0 ξ8ξξ ξ)ξξξξ?[...]
-
Page 31
Getting St a rt e d 1β15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m N um ber of Dec i m al Places All numbers are stored with 12βdigit precision, bu t you can select th e num ber of decimal p laces to be displayed by pressing z ξ (the display m enu). During som e complica[...]
-
Page 32
1β16 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Engineering Format ({ ξξ }) ENG form at displays a numb er in a man ner similar to scientific notation, except that the ex pone nt is a multiple of three (th e re can be up to th ree digits befor e the &q[...]
-
Page 33
Getting St a rt e d 1β17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: z ξ { ξ% } 4 ξ Displays f ou r d e ci ma l p lac es . 45 ξ 1.3 y ξξ)ξξξ ξξ Four decimal places d i s p l a y e d . z ξ { ξ } 2 ξ)ξξξξξ Scien [...]
-
Page 34
1β18 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t e r m i n a t e digit entry . The n umber or r esul t is form atted according to the c u rr en t displa y f orm at . The a b/c symb ol u nder t he ξ key is a rem i nder th at the ξ key is used twi ce fo[...]
-
Page 35
Getting St a rt e d 1β19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Di spl ay i ng F r ac ti on s Press zξξ to switch between Fractionβdis play mode and the c u r r e n t decimal display mode. Keys: Displa y: Description: 12 ξ 3 ξ 8 ξξ ξ+ξξ Displays charac[...]
-
Page 36
1β20 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Calc ulat or M emor y The HP 32SII has 384 byt es of memo ry in whic h you can store any combin ation of data (variables, eq uat ions, or program line s). The m emory r equirements of sp ecific activities are[...]
-
Page 37
Getting St a rt e d 1β21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξ@ { & } { ξ }, wh ich saf eguar ds against the uninte nti on al cle ar ing o f memor y . 2. Pr ess { & } ( yes ).[...]
-
Page 38
[...]
-
Page 39
The Automatic Memory Stack 2β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2 Th e Au t omat i c Me mor y St ac k This chapter explai ns how calculations take place in the automatic memory stack. You do not need to read and un de rstand this m aterial to use the calc ulato r , [...]
-
Page 40
2β2 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T 0.0000 βOlde stβ number Z 0.0000 Y 0.0000 X 0.0000 Dis played The most "recent " number is in the X βregister: this is th e number y ou see in the display. In programm ing, the[...]
-
Page 41
The Automatic Memory Stack 2β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R ev i ewi ng t h e st ac k R ΒΆ (Roll Dow n) The 9 (roll down) key lets you review the enti re contents of the sta ck by "rolling" the contents do wnward, one register at a time. You ca n s e[...]
-
Page 42
2β4 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exc hangi ng t h e Xβ and Y βRegi ster s in t h e S tac k Another key that manipu lates the s tack contents i s Z ( x e xchange y ). This key swa ps the contents of the X β an d Y βregis[...]
-
Page 43
The Automatic Memory Stack 2β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 + 4 β 9 T 1 1 1 1 Z 2 1 2 1 Y 3 2 7 2 X 4 ξ 7 ξξ 9 ξ β2 1 2 3 1. T he st ac k "dr ops" its conten ts. T he Tβ (top) r egister r eplicate s its conte nts . 2. T he stac k "[...]
-
Page 44
2β6 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 + 6 1 lost 2 lost T 1 2 3 3 3 Z 2 3 4 4 3 Y 3 4 5 5 4 X 4 ξξ 5 ξ 5 ξξ 6 ξ 11 1 2 3 4 1. Li f t s t h e s ta c k. 2. L ifts the stac k and r eplicate s the Xβr egiste r . 3. Does [...]
-
Page 45
The Automatic Memory Stack 2β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: G iven bacterial culture with a constant growth rate of 50% , how large would population of 100 be at the end 3 days ? Replicates Tβregister T 1.5 1.5 1.5 1.5 1.5 Z 1.5 1.5 1.5 1. 5 1.5 Y 1.5[...]
-
Page 46
2β8 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ or a cancel that displa y and sho w s the Xβr egiste r . ξ When v ie w ing an equati on , a dis pla y s the c urso r at the end the equati on to allo w f or editing . ξ During equation[...]
-
Page 47
The Automatic Memory Stack 2β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m See app endi x B f or a c ompr ehe nsi ve li st of the fun ctions that save x in t h e LAST X register. Corr ec ti ng M ist akes wit h L AS T X Wrong On eβNumber Function If you execute th e wr on g o[...]
-
Page 48
2β10 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Suppose you m ade a mistake w hile calculatin g 16 Γ 19 = 304. There are three kinds of mistakes you coul d ha ve ma d e: Wring Calculation: Mistake: Correctio n: 16 ξ 19 ξ Wrong function [...]
-
Page 49
The Automatic Memory Stack 2β11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t t t Z z z t 96.704 Y 96.704 96.704 z ξ X 96.704 52.3947 52.3947 ξ 149.0987 LAST X l 52.3947 l ξ 52.3947 T t t Z z t Y 149.0987 z z ξ X 52.3947 p 2.8457 LAST X 52.3947 52.3947 Keys: Displa y[...]
-
Page 50
2β12 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Rigel Centaurus: 4.3 yr Γ (9.5 Γ 10 15 m/yr). To Sirius: 8.7 yr Γ (9 .5 Γ 10 15 m/yr). Keys: Displa y: Description: 4.3 ξ ξ)ξξξξξ Lightβyears to Rigel Centaurus. 9.5 ` 15[...]
-
Page 51
The Automatic Memory Stack 2β13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You don't need to press ξ t o s a ve this interm ediate re sult before proceeding; since it is a calculated result, it is saved automatically. Keys: Displa y: Des cription: 7 y ξξξ)ξξ?[...]
-
Page 52
2β14 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Work thro ugh the pro blem the same way with the HP 32SII, e xcept that you don't have to w rite down intermediat e answ ersβthe calculator rem embers them for you. Keys: Displa y: Descr[...]
-
Page 53
The Automatic Memory Stack 2β15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m O r d er o f Cal c ul at ion We recom men d solving ch ain calculations by w orking from the i nn erm os t parentheses outward. Howe ve r, you can also choose to work p r ob l e m s i n a leftβtoβr[...]
-
Page 54
2β16 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 ξ 3 ξ _ ξ At this point th e stack is full with numbers for this calculation. y ξ ξ)ξξξξξ Intermediate result. ξ ξξ)ξξξξξ Intermediate result. 2 ξ ξξ)[...]
-
Page 55
The Automatic Memory Stack 2β17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 ξ 5.2 ξ 8.33 y z ξ 7.46 ξ 0.32 y p 3.15 ξ 2.75 ξ 4.3 y 1.71 ξ 2.01 y ξ p <ξ[...]
-
Page 56
[...]
-
Page 57
S t o r i n g D a t a into Variables 3β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 Stori ng Dat a in to V a r ia b l e s T he HP 32 II ha s 384 byt es of user m emory : memory that you can u se to store numbers, equations, and pr ogram lines . Numbers are stored in locatio[...]
-
Page 58
3β2 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Storing Number s. Store Avogadro's number (approximately 6.0225 Γ 10 23 ) in A . Keys: Displa y: Description: 6.0225 ` 23 ξ)ξξ ξ ξξξ ξ _ Avo gadro's nu[...]
-
Page 59
S t o r i n g D a t a into Variables 3β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To cancel the VIEW display, press a or ξ once. R e v i e w i n g Va r i a b l e s i n t h e VA R C a t a l o g The z X ( memory ) function provides information about memory: QQQ)Q #ξξ ?[...]
-
Page 60
3β4 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Store zero in it: Press 0 H variable . To clear select ed variabl es: 1. Press z X { #ξξ } and use z ξ or z ξ to dis play the v ar iable. 2. Pr ess z b . 3. Pre ss ξ to cance[...]
-
Page 61
S t o r i n g D a t a into Variables 3β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A 15 A 12 Results: 15β3 thatis, A β x T t T t Z z Z z Y y Y y X 3 H ξ ξ X 3 Reca ll Arit hmetic Recall arithm etic uses a K ξ , K y , or K p to do arithmetic in the Xβregister usin[...]
-
Page 62
3β6 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Suppose the variables D , E , an d F contai n the values 1, 2, and 3. Use st orage arithmetic to add 1 to ea ch of those variables. Keys: Displa y: Description: 1 H D 2 H E 3 [...]
-
Page 63
S t o r i n g D a t a into Variables 3β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 12 H A ξξ )ξξξξξ Stores 12 in variable A. 3 ξ _ Display x . { Y A ξξ )ξξξξξ Exchange contents of the Xβregister and variable[...]
-
Page 64
[...]
-
Page 65
RealβNumber Functions 4β1 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 Realβ Num ber Funct ions This chapter co vers most of the c alculator's fun ctions that perform computation s on real num bers, includin g some nume ri c fu nc ti ons u se d i n programs (such a[...]
-
Page 66
4β2 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculat e: Press: Natural logarithm (base e ) - Comm on log arithm (base 10 ) z + Natural e xpone ntial * Common exponential (antilogarithm) z ( Po w e r F u n c t i o n s To calculate the s quare of[...]
-
Page 67
RealβNumber Functions 4β3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 . 1 37893 . β .37893 ξ 1.4 _ z . ξ )ξξξξ ξ T r igonom etr y Enter i ng Ο Press { M to place the first 12 digits of Ο into the Xβregister. (The num ber displayed de pends on the displ[...]
-
Page 68
4β4 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tri gonom etr ic F unc t ions Wit h x in the display: To Calculate: Press: Sine of x . N Cosine of x . Q Tangent of x . T Arc sine of x . z L Arc cosine of x . z O Arc tangent of x . z R Note Calc ulatio[...]
-
Page 69
RealβNumber Functions 4β5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Programming Note: Equations using inverse trigonom etri c functions to determine an angle ΞΈ , often look something like this: ΞΈ = arctan ( y / x ). If x = 0, then y / x is un defined , resultin g in th[...]
-
Page 70
4β6 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculate Press: x % of y y ξ x { P Percentage change fro m y to x . ( y β 0) y ξ x { S Example: Find the sales tax at 6% and th e total cos t of a $15.76 it em. Use FIX 2 display format so th e[...]
-
Page 71
RealβNumber Functions 4β7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Conv er sion F unc t ions There are f our types of conversions: coordinate (polar /rec tangular), angular (degrees/radians), ti me (decimal/minutes βseconds), and unit (cm /in, Β°C/ Β°F, l/gal, Kg/l b)[...]
-
Page 72
4β8 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x y r X Y ry , x y, x , r ΞΈ ΞΈ ΞΈ , Example: Polar to Rectangu lar Conversion. In the follow ing right trian gles, find sides x and y in the triangle on the le ft, and hypotenuse r and angle ΞΈ in the t[...]
-
Page 73
RealβNumber Functions 4β9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Conversion w ith Vectors. Engineer P.C. Bard has de termined that in the RC circ uit sho wn, t he tota l impeda nce is 77.8 ohms and vol tage lag s current by 36.5 ΒΊ. What a .re the values of r[...]
-
Page 74
4β10 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To convert between decim al fr actions an d minutesβsecon ds: 1. K e y in the tim e o r an gle (in dec im al form or mi nutes βse con ds form) tha t yo u wa n t t o c o nve r t. 2. Pr ess { t or z s[...]
-
Page 75
RealβNumber Functions 4β11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Uni t c on v e r si on s The HP 32SII has e ight unitβconvers ion function s on th e keybord: ξ kg, ξ lb, ξ ΒΊC, ξ ΒΊF, ξ cm, ξ in, ξ l, ξ gal. To Convert: To: Press: Displayed Results[...]
-
Page 76
4β12 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr obabil i t y M enu Press { [PROB] to see the PROB (probabil ity) m enu shown, in the following table. It has function s to calculate combination s and permutations , to generate seeds for random numb[...]
-
Page 77
RealβNumber Functions 4β13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Combinations of People. A compa ny emp loyi ng 14 wo men and 10 men is for ming a sixβp erso n sa fet y commi ttee. How ma ny dif fere nt comb inat ions of pe ople a re p ossi ble ? Keys: Dis[...]
-
Page 78
4β14 RealβNumber Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pa r t s o f N u m b e r s The functions in the PARTS menu ( { [PAR TS] ) shown in the follow ing table and the z I func tion alter the number in the Xβregi ster in simple ways. These functions are pr[...]
-
Page 79
Fractions 5β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 Fracti ons "Fractions" in ch apter 1 in troduces the basics abou t entering, displaying, and calculating with fractions: ξ T o ente r a f r actio n , pre s s ξ tw ic e βafter the integer part, and betw[...]
-
Page 80
5β2 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: z ξ ξ Turns on Fractionβdisplay mode. 1.5 ξ ξ ξ+ξ ξ Enters 1.5; shown as a fraction . 1 ξ 3 ξ 4 ξ ξ ξ+ξξ Enters 1 3 / 4 . z ξ ξ)ξξξξ[...]
-
Page 81
Fractions 5β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ The denomi nator i s no gr eater than 40 9 5 . ξ The f r action is r educed as f ar as po ssible . Examples: Thes e are exampl es of e ntered value s and the resulting displays. For comparison , the internal 12β[...]
-
Page 82
5β4 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This diagram show s how th e displayed fr action relates to nearby value s β S means the exact nume rator is "a little abov e" the displayed numerator, an d T means the exa ct numer ato r is "a [...]
-
Page 83
Fractions 5β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 14 * ... ξξ ξξξ+ξξξ ξξ Calculates e 14 . { ξ ξξ ξξ ξξξ)ξ ξξξξξ Shows all decimal digits. H A ... ξξ ξξξ+ξξξ ξξ Stores [...]
-
Page 84
5β6 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m the de fa ult if y ou u se 40 9 5 or gr eater .) This als o tur ns on F r acti onβdis pla y mode . The /c function uses the absolute v alue of the intege r part of th e num ber in the Xβregister. It doesn&ap[...]
-
Page 85
Fractions 5β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You can chan ge flags 8 and 9 to set the fraction form at using the steps listed here. (Because f lags are especiall y usefu l in program, their use us covere d in detail in chapter 13.) 1. Pr ess { x to get the f lag m[...]
-
Page 86
5β8 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table sh ows ho w different num bers are displayed in the three fraction form ats for a / c value of 16 . Number En tered and Fractio n Display ed Fraction Format ξΌ 2 2.5 2 2 / 3 2.9999 2 16 / 25[...]
-
Page 87
Fractions 5β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and 9. The accurac y indicator turns o ff if the fract ion m a tches the decimal representation exactly . Oth erwise, th e accuracy indicator stay s on, (See "Accuracy Indicators" ear lier in this chapte r.) I[...]
-
Page 88
5β10 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When you're evaluating an equation an d you'r e prom pted for variable values, you may enter fractions β v alues are displayed using the current display format. See chapter 6 for information about w[...]
-
Page 89
Entering and Evalua ting Equations 6β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 6 Enteri ng and Ev aluat i ng Equations How Y ou Can Use Equati ons You can use equati ons on th e HP 32SII in several way: ξ F or s pec if y ing an equation to e valuate (this c hapter ) . ?[...]
-
Page 90
6β2 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K ΒΎξ Begins a new equation, turnin g on the " ΒΎ " equationβentry cursor. K turns on the A..Z annunciator so you can enter a variable name. V { c #/ΒΎ ξ K V types # and m[...]
-
Page 91
Entering and Evalua ting Equations 6β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: Prompts for D first; value is the current value of D . 2 ξ 1 ξ 2 ξ@ ξ ξ+ξ ξ Enters 2 1 / 2 inches as a fraction. f ξ@ value ξ Stores D , prom pts fo[...]
-
Page 92
6β4 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Key Operation { G Ente rs and leav es Equation m ode. ξ Evaluates the displayed equati on. If the equation is an assignment , evaluates the rightβha nd side and stores the result in t[...]
-
Page 93
Entering and Evalua ting Equations 6β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter an equatio n: 1. Mak e sur e the cal c ulato r is in it s nor mal ope r at ing mode , usuall y w ith a number in the display . F or e x ampl e , y ou can't be v ie w ing the catal [...]
-
Page 94
6β6 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter a num ber in an equation , you can use th e st andar d numb erβentry keys, in cludin g ξ , _ , and ` . Press _ only after you type one or more dig its. Don't use _ for s[...]
-
Page 95
Entering and Evalua ting Equations 6β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar ent h eses i n Equations You can include parenth eses in equati ons to control t he order in which operations are performe d. Press { and { ] to inse rt pa renth eses. (For more in format[...]
-
Page 96
6β8 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To display equatio ns: 1. Pr ess { G . This acti v ates E quation mode and turns on the EQN annunc iator . T he display sh o ws an en try fr om the equati on list: ξ ξξξ ξξ ! [...]
-
Page 97
Entering and Evalua ting Equations 6β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m right. < /ξ ΒΊξΒΊξξ 1!.ξξ Shows one character to the left. ξ ξ Leaves Equation mode. Editin g a nd C l eari ng Equation s You can edit or clear an equation that you're ty [...]
-
Page 98
6β10 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To clear a saved equat ion: 1. Dis pla y the desir ed eq uati on . (See "Dis pla y ing and S electing E quati ons" abo v e.) 2. Press z b . T he displa y sho w s the pr e v iou[...]
-
Page 99
Entering and Evalua ting Equations 6β11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ Exp re ssions. Th e e qu a ti on d o es not contain an "=". F or e x ample , x 3 + 1 is an e xp r ession. Wh en yo u're calculatin g with an e quation, you might use any ty p[...]
-
Page 100
6β12 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table shoves the tw o ways to evaluate equations. Type of Equation Result for ξ Result for W Equality: g (x) = f(x) Example: x 2 + y 2 = r 2 g (x) β f(x) x 2 + y 2 β [...]
-
Page 101
Entering and Evalua ting Equations 6β13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ If th e equa tion is an assignment , onl y the r ight βhand si de is ev aluated . The r esul t is returned to the Xβr egister and stored in the left βhand v ar iable , then the v ar i[...]
-
Page 102
6β14 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Us i ng XE Q f o r E v a l ua t i on If an equatio n is displayed in th e equation list , you can press W to evalu ate the e quation . The en tire eq uation is evaluated, re gardless of [...]
-
Page 103
Entering and Evalua ting Equations 6β15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ T o l ea v e t he number unc hanged , just p r ess f . ξ T o c h ange t he n umber , t y pe the n ew nu mber an d pre ss f .This ne w n umber w r ites o v er t he old v alue i n the Xβr[...]
-
Page 104
6β16 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Order Opera tion Example 1 Fun ctions an d Parentheses ξξ1%-ξ2 , 1%-ξ2ξ 2 Una ry Minus ( _ ) .ξξ 3 Power ( 0 ) %:ξξ 4 Multiply and Divide %ΒΊ& , ξΒͺξξ 5 Add a[...]
-
Page 105
Entering and Evalua ting Equations 6β17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Eq uatio n Fu nc tion The following table lists the functions that are valid in equat ions. A ppe ndix F , "Operation Index," also g ives this inform ation. LN LOG EXP AL OG SQ SQRT I[...]
-
Page 106
6β18 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0ξξξ1.% .ξ 2ξ 0ξξξ1% 1.&22ξ Six of the equation functi on s have names that d iffer from their equ ivalent RPN operations: RPN Operation Equation function x 2 SQ e x[...]
-
Page 107
Entering and Evalua ting Equations 6β19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sin g le lett er name No impl ie d multipl i c ati on Di v isi on is done be f or e addit i on Pa r e n t h eses use d to g ro u p items P=A+B+Hx(1 SI N(T)+1 SIN(F )) Γ· Γ· Th e next equat ion [...]
-
Page 108
6β20 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ/ξ)ξ ξΒΊξΒΊξ:ξ ΒΊξξ 1 Ο Βͺξ2Βͺ ξξ1 Ο Βͺξ2ξ Notice how the operators and functi ons combi ne to g ive the de sired equation. You can enter the e quation into [...]
-
Page 109
Entering and Evalua ting Equations 6β21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The checksum an d length allow you to verify th at equations yo u type are correct. The checksum and length of the equation you ty pe in an example should match the values sh own in this manual[...]
-
Page 110
[...]
-
Page 111
Solving Equations 7β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 So lving Eq ua tions In chapter 6 you sa w how you can use ξ to find the value of th e leftβhan d v ariab le in an assignment βtype equation. W ell, yo u can use S OLVE to find the value of any variable [...]
-
Page 112
7β2 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f or a v alue fo r e v ery other v ar iable in the eq uatio n . 3. F or each pr ompt , enter the desir ed v alue; ξ If the displa ye d c lue is the one y ou w ant , pr es s f . ξ If y ou w a nt a dif[...]
-
Page 113
Solving Equations 7β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m or current equation ξ K D { c K V y K T ξ ξ/#ΒΊ!-ΒΎ ξ Starts the equation. .5 y K G y K T 0 2 !-ξ)ξΒΊξΒΊ!: ξ _ ξ ξ ξ/#ΒΊ!-ξ)ξΒΊξΒΊ!ξ Terminates the equation and displays the left en[...]
-
Page 114
7β4 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ξξ#ξξξξ !/ξξ)ξξξξξ Retain s 9.8 in G ; prom pts for T . Example: Solv ing the Id eal Gas Law Eq uation. The Ideal Gas Law descri bes the re lationsh ip betw een pressure , vol[...]
-
Page 115
Solving Equations 7β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 24 ξ 273.1 ξ !@ξ ξξ)ξξξξξ Calculates T (Kelvins). f ξξ#Oξξξ ξ/ξ)ξξξξξ Stores 297.1 in T ; sol ves for P in atmospheres. A 5βliter flask contains n itrogen g as. The p[...]
-
Page 116
7β6 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When SOLVE eval uates a n equatio n, it does i t the sa me way W does β any "=" in the equation is treate d as a " β " For example , the Id eal Gas Law equation is evaluated as P [...]
-
Page 117
Solving Equations 7β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ro o t. ξ I f the Xβ a nd Yβr e gister v alues are close together , and t he Zβregister v alue is c lose to z er o, the estimate fr om the Xβ r eg ister may be an appr o x imation to a r oot . Inte r r[...]
-
Page 118
7β8 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m to ent er gu esses before solv i ng for T be ca us e in the f irst part of that e x ample y ou stor ed a v al ue f or T and sol ved f or D. The v alue that w as left in T w as a good (r ealisti c) one , [...]
-
Page 119
Solving Equations 7β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If H is the h eight, then th e le ngth of the box is (80 β 2 H ) and th e widt h is (4 0 β 2 H ). The volum e V is: V = ( 80 β 2 H ) Γ (40 β 2 H ) Γ H which you can simplify and enter as V = ( 40 β H[...]
-
Page 120
7β10 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m { G #/1ξξ.ξ2ΒΊξ ξξ Displays current equation. { ξ H #@ value ξ Solves for H ; prom pts for V . 7500 f ξ/ξξ)ξξξξξ Stores 7500 in V ; solv es for H . Now check th e quality [...]
-
Page 121
Solving Equations 7β11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 75 0 0 _ (4 0 _ ) ( 2 0 _ ) 4 HH H 20, 000 _ 10, 000 50 H _ 10 For M ore I n form at ion This chapt er gives you ins tructions f or solving for un knowns or roo ts over a wide ran ge of appl ication s. Appen di[...]
-
Page 122
[...]
-
Page 123
Integrating Equations 8β1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 8 Integ rating Equ ation s Many pro blems in m athematics, scie nce, an d engineering require calculating the definite in tegral of a function β If the function is denoted by f(x) an d the interval of int[...]
-
Page 124
8β2 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ) works only with real num bers. Int egr ati ng Equa ti ons ( β« FN ) To Integrat ing Equations: To integrate an equation: 1. If the equati on that d ef ines the integr and's f u nc tio n isn't s[...]
-
Page 125
Integrating Equations 8β3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To integrate the same equation w ith different information: If you use the same limits of int egration, pr ess 9 9 move them into the Xβ and Yβregisters. Then star t at step 3 in the above list. If you [...]
-
Page 126
8β4 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ ξ Leaves Equation mode. Now integrate this function with respect to t fro m zero to Ο ; x = 2. Keys: Displa y: Description: z ξ { ξξ } ξ Selects Radians mode. 0 ξ { M ξ)ξξξξξ En[...]
-
Page 127
Integrating Equations 8β5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Sine Integral. Certain problems in comm unications theo ry (for exam ple, pulse transmission through idealized networks) require calculating an in tegral (sometim es called the sine integral) of th[...]
-
Page 128
8β6 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 ξ 2 ξ _ ξ Enters lim its of integration (low er first). { G ξξ1%2Βͺ%ξ Displays the current equation. { ) X ξξ!ξξξξ!ξξξξ β« /ξ)ξξξξξ Calculates the result for S[...]
-
Page 129
Integrating Equations 8β7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte r pretin g A cc uracy After calculating the integral, the calculator places the e stimated uncertaint y of that in tegr al's result in th e Yβreg ister. Press Z to view the va lue of th e uncert[...]
-
Page 130
8β8 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m integration calculation decr ea ses by a factor of ten for each additional digit, specified in the display format. Example: Ch ang ing th e Accu racy. For the integral of Si(2) just calculated, spec ify tha[...]
-
Page 131
Integrating Equations 8β9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For M ore I n form at ion This ch apter gives yo u instruction s for us ing integration in th e HP 32SI I ove r a wide rang e of applic ations. A ppendix D c ontain s mo re de tailed info rmation about how [...]
-
Page 132
[...]
-
Page 133
Operations with Comb Numbers 9β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 Oper at i o ns wi t h C omb Numbe rs The HP 32SII can use comple x numbers in the form x + iy . It has oper ations for complex arithmetic (+, β, Γ , Γ· ), complex trigon ometry ( sin, cos, tan), [...]
-
Page 134
9β2 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t iy 1 Z z Z 1 x 1 Y y iy 2 X x Z 2 x 2 Real Stack Complex Stack Since the im aginary and real p arts of a compl ex numb er a re ent ered and stored separately, you can easily work with or a[...]
-
Page 135
Operations with Comb Numbers 9β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Compl e x O per at ions Use the com plex operations as you do real operati ons, but p recede the operator with z F . To do an operation wit h on e complex num ber: 1. Enter the com plex n umber z , co[...]
-
Page 136
9β4 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To do an arithmetic o peratio n with two co mplex num bers: 1. Enter the first com plex n u mber , z 1 (c ompo sed of x 1 + i y 1 ), b y k e y in g i n y 1 ξ x 1 ξ . (F or 2 1 z z , k ey i[...]
-
Page 137
Operations with Comb Numbers 9β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z 1 Γ [1 Γ· (z 2 + z 3 )] Keys: Displa y: Description: 1 ξ 2 _ ξξ 3 _ ξ 4 zξ F ξ ξ ξ ξ )ξξξξξ Add z 2 + z 3 ; displays real part. z F 3 ξ)ξ ξξξξ 1 Γ· (z 2 +z 3 )[...]
-
Page 138
9β6 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 ξ 1 ξ 0 ξ 2 _ zξ F 0 ξ ξ ξ)ξξξξξ Intermediate result of (1 + i ) β2 z F * ξ)ξξξξξ Real part of final results. Z .ξ)ξξξξξ Final result is 0.8[...]
-
Page 139
Operations with Comb Numbers 9β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Add th e follow ing th ree load s. You w ill first ne ed to co nvert th e polar coordinates to rectangular coordinates. y 1 8 5 l b 62 o 1 0 0 l b 26 1 o 1 70 l b 1 4 3 o L 1 L 2 L 3 x Keys: Displa y:[...]
-
Page 140
[...]
-
Page 141
Base Conversions and Arithmetic 10β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 10 Base Conversions a nd A r ithm etic The BASE me nu ( z w ) lets you change the number base used f or entering n umb ers and othe r operat ions (including program ming). C hanging bases also con[...]
-
Page 142
10β2 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m w { ξ% } of the decimal num ber to base 16 and displays this value. z w { ξξ } ξξξξ Base 8. z w { ξξ } ξξξξξξξξ Base 2. z w { ξξξ } ξξ ξ)ξξ[...]
-
Page 143
Base Conversions and Arithmetic 10β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Arithmetic in base s 2, 8, and 16 is in 2's compl ement form and us es integers only: ξ I f a number has a fr act ional par t , on l y the in teger part is use d fo r an ar ithmetic calc ul[...]
-
Page 144
10β4 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m annunciator on. z w { ξξ } 1001100 ξξξξξξξ _ ξ Changes to base 2; BIN annunciator on. This terminates digit entry, so n o ξ is needed betw een the numbers. ξ ξξ[...]
-
Page 145
Base Conversions and Arithmetic 10β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 546 z w { ξ% } ξ ξ ξ ξ Enters a positive, decimal number; then con verts it to hexadecimal. _ ξξξξξξξξξξ 2's complem ent (sign changed). z w { ξξ } ξξξξ[...]
-
Page 146
10β6 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If a number entered in dec imal base is outside the range given abo ve, then it produces t he message !ξξ ξξξ in the oth er bas e modes. Any operation using !ξξ ξξξ cau[...]
-
Page 147
Base Conversions and Arithmetic 10β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ( ))) ). Press { ξ to view t he digits obscur ed by the ξ/ β¦ or ξ@ β¦label. Keys: Displa y: Description: z w { ξξ } 123456712345 ξ ξξξξξξξ ξξξ _ ξ Enters a large[...]
-
Page 148
[...]
-
Page 149
Statistical Operations 11β1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 11 Sta tistical O pe ra tions The statis tics m enus in the HP 32SI I provid e functi ons to st atistically analyze a set of oneβ or twoβvariable data: ξ Mean , sam ple and po pulati on s tandar d de[...]
-
Page 150
11β2 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E n te rin g On e β V a ria b l e D a ta 1. Pr ess z b { Ξ£ } to c lear e x isting statis tical data . 2. Ke y i n e a c h x βvalue an d pr ess 6 . 3. The displa y sho ws n , the n umber of s t[...]
-
Page 151
Statistical Operations 11β3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C orrec ting Errors in D a ta E n tr y If you ma ke a mist ake wh en entering stat istic al data, delete the inco rrect data and add the correct data. Even if only one valu e of an x , y βpair is incorre[...]
-
Page 152
11β4 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 ξ 20 z 4 ξ)ξξξξξ Deletes the first data pair. 5 ξ 20 6 ξ )ξξξξξ Reenters the first data pair. There is still a. total of two data pairs in the statistics registers. S t[...]
-
Page 153
Statistical Operations 11β5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y βv alues as w eigh ts or fr equenc ies. T he we ights can be integers or nonβinte gers. Example: Mean (One Variable). Production supervisor May K itt wants to determ ine the av erage time that a cert[...]
-
Page 154
11β6 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1000 ξξ 4. 1 6 ξ)ξξξξξ Four data pairs accumulated. { / { Β· ΒΊ } ξ)ξξξξ ξ Calculates the mean price weighted for the quantity purchased. Sampl e S t andar d Dev i at io[...]
-
Page 155
Statistical Operations 11β7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P opul at ion S t andar d De v iat i on Population standard deviation is a m eas ure of how dispersed the data values are about the mean . Pop ulation standar d deviat ion assumes the data constitutes the [...]
-
Page 156
11β8 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m L.R. (Linear Regression) Menu Menu Label Description { ΒΊ Λ } Estimates (predicts) x for a given hypothetical value of y , based on the line calc ulated to fit th e data. { ΒΈ Λ } Estimates (pred[...]
-
Page 157
Statistical Operations 11β9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m data. 4.63 ξ 0 6 5.78 ξ 20 6 6.61 ξ 40 6 7.21 ξ 60 6 ξ)ξξξξξ ξ )ξξξξξ ξ)ξξξξξ ξ)ξξξξξ Enters data; displays n . 7.78 ξ 80 6 ξ)ξξξξξ Five[...]
-
Page 158
11β10 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x 0 2 0 4 0 6 0 8 0 8. 50 7. 5 0 6.5 0 5.5 0 4. 50 r = 0 . 9 8 8 0 m = 0 . 0 3 8 7 b = 4 . 8 5 6 0 (7 0 , y ) y X What i f 70 kg of nitrogen fertili zer were a pplied to th e rice field ? Pr edict[...]
-
Page 159
Statistical Operations 11β11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Normalizing Close, Large Numbers The calculator might be unab le to correctly calculate the standard deviation and linear regression for a variable wh ose data v alues differ by a relatively small amount.[...]
-
Page 160
11β12 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ P r ess { ΒΊ ξ }, { ΒΈ ξ }, and { ΒΊΒΈ } to r ecall t he sums of the square s and the su m of the pr odu cts o f the x and y β v alues that ar e of in ter es t w hen perf ormin g other s[...]
-
Page 161
Statistical Operations 11β13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If not en ough calculator m emory is av ai lable to hold the st atistics registers when you first press 6 (or 4 ), the calculator displays ξξξξξ& ξ"ξξ . You will ri ved to clear v[...]
-
Page 162
Statistics Programs F i l e name 3 2si i- Man ual -E-04 2 4P age: 14/16 2 Pr inted D ate : 20 0 3/4 /2 4 Si z e : 17 .7 x 2 5 .2 cm Part 2 Programm i ng[...]
-
Page 163
Simple Programming 12β1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 12 Si mpl e P ro gr ammi n g Part 1 of this man ual introduce d you to functions an d operations that you can use ma nual ly , that is, by pressing a key fo r ea ch individual oper a tion. And you saw [...]
-
Page 164
12β2 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This very si mple program assumes that th e value for the radius is in t he Xβ registe r (the di splay) w hen t he progr am st arts to run . It computes the area an d leaves it in the Xβreg ister. [...]
-
Page 165
Simple Programming 12β3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Boundar i es (LBL and RT N ) If you want more than one progr am stored in program memory, then a program need s a label to mark its be ginning (suc h as ξξξ ξξξ ξ ) and a return[...]
-
Page 166
12β4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m U sing RP N an d Eq ua tion s in Pro gra ms You can calculate in programs the sam e ways you calculate on the. keyboard: ξ Us in g R PN op er at ions (which wor k wi th the stack , as explained in ch[...]
-
Page 167
Simple Programming 12β5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For output, you can display a variable with the VIEW instruc tion, you can display a me ssage derive d from an e quation, or you can leave un marked values on the stack. These are cov e red later in th[...]
-
Page 168
12β6 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5. End t he pr ogr am w i th a re t u r n instr ucti on , w hi ch s ets th e pr ogr am po inter bac k to ξξξ ξ !ξξ after the pr ogr am r uns . Pr ess { ξ . 6. Pr ess ξ (or z d ) to can [...]
-
Page 169
Simple Programming 12β7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F unc t i on N am es i n Pr ogr ams Then name of function that is used in a program line is not necessarily the same as the function's n ame on its ke y, i n its m enu, or in an e qua tion. Th e n[...]
-
Page 170
12β8 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A di fferen t chec ksum means th e progra m was not entered exactly as given here. Example: Enter ing a Progr am with a n Equat ion. The following program calculates the ar ea of a circle using an equa[...]
-
Page 171
Simple Programming 12β9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exec ut ing a Pr ogr am (XE Q ) Press W label to execute the program labeled with th at letter. If there is only one prog ram in m emor y, you ca n also execute it by pressing z U ξ ξ f ( run / sto[...]
-
Page 172
12β10 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m only pr ogr am , y ou can pre ss z U ξ ξ to mo ve to its beginning .) 3. Pr ess and hold z ξ . T his di spla ys the c urr ent pr ogram line. W h en y ou release ξ , the line is e x ecuted . Th[...]
-
Page 173
Simple Programming 12β11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ent er ing and Di spl ay i ng Data The calculator's variables are use d to store data in put, intermediate results, and final results. (V ariabl es , as ex plained in chap te r 3, are identified [...]
-
Page 174
12β12 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m "R" is the variable's name, " ? " is the prom pt for information, and 0.0000 is the curren t value stored in the variable . Press f (run/stop) to resume the program . The valu[...]
-
Page 175
Simple Programming 12β13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T hu s the pr ogram sho uld no t assum e that the Xβ, Yβ, an d Zβr egis ter s' contents will be t he same b ef o r e a n d after the INP UT instr uctio n. If y ou coll ect , a ll th e data [...]
-
Page 176
12β14 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Usin g VI E W fo r Di spl ay i ng Data The programm ed VIEW in struction { ξ variable stops a runni ng program and displays and iden tifies the contents of the given variable, such as ξ/ξξ)ξ[...]
-
Page 177
Simple Programming 12β15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m press { G to start the equation. Press number and ma th keys t o get numbers and sym bols. Press K before each let ter. Press ξ to en d the equation. If flag 10 is set, equations ar e displayed inst[...]
-
Page 178
12β16 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Des cription: ξ ξξξ Ο ΒΊξ:ξ ΒΊξξ { ξ ξξ/ξξξξ ξξξ )ξξ Checksum and leng th of equation . H V ξξξ !ξ #ξ Store the volume in V . { G 2 y?[...]
-
Page 179
Simple Programming 12β17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now fin d the volume an d surface area βof a cylinder with a radius of 2 1 / 2 cm and a h eight of 8 cm . Keys: Displa y: Description: W C ξ@ value ξ Starts executing C ; prompts for R . (It dis[...]
-
Page 180
12β18 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sto p p i ng o r I n te rru p ti n g a Pr og ra m Pr ogra m ming a S t op or P ause (S TO P , PSE) ξ Pre ssing f ( ru n / stop ) dur i ng pr ogram e ntr y inserts a S T OP i nstru ctio n . T his w i[...]
-
Page 181
Simple Programming 12β19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Editin g Program You can modify a progr am in program memory by inser ting, delet ing, and editing program lines. If a program line contain s an eq uation, y ou can edit the equationβ if any other p[...]
-
Page 182
12β20 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m then en ter the de sir ed corr ecti ons . 4. Pre ss ξ to end the equati on . Pr o gr a m M e mor y View ing P rog ram Mem or y Pressing z d toggles the calc ulator into and out of pro gram en try ( [...]
-
Page 183
Simple Programming 12β21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m which use only 1 .5 b ytes. ξ Al l ot her inst ruction s use 1 .5 b ytes. ξ Equations use 1.5 b y tes , plus 1. 5 b ytes for each function , plus 9 . 5 or 1.5 b ytes f or eac h n umber . E ac h &q[...]
-
Page 184
12β2 2 Si mple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C l ear ing O n e or M o r e Pr ogr am s To clear a specific program fr om memory 1. Press z X { ξξξ } and di splay (using z ξ and z ξ ) the label of the pr ogr am . 2. Pr ess z b . 3. Pre[...]
-
Page 185
Simple Programming 12β2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m (hold) If your checksum does not match this nu mber, then you have not entered th is program correctly. You w ill see that all of the ap plicatio n program s pro vided in cha pters 1 5 through 17 inc[...]
-
Page 186
12β2 4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Se l ec ting a B a se M o d e in a P rog ram Insert a BIN, O CT, or HEX instruction into the beginnin g of the pro gram. Y ou should us ually i nclude a DEC ins tructi on at the end of the program so[...]
-
Page 187
Simple Programming 12β 2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ol y nomial Expr es sions and Hor n er' s M et hod Some expressions, such as polynom ials, use the sam e variable se veral times for their solution. For ex ample, the expression Ax 4 + Bx 3 +[...]
-
Page 188
12β2 6 Simpl e Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ ξ ξξξ ξξ!ξξξ ξξξ ξξ!ξξξ 5 ξξξ ξξ y ξξξ ΒΊξ 5 x . 2 ξξξ ξ ξ ξ ξξξ -ξ 5 x + 2. y ξξξ ΒΊξ (5 x + 2) x . y ξξξ ΒΊ[...]
-
Page 189
Simple Programming 12β2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξ ξξ!ξξξ ξξξ ξξξΒΊ ξξ ξξξ ξξξ- ξξ ξξξ ΒΊξ ξξξ ξξξ- ξξ ξξξ ΒΊξ ξξξ ξξξ- ξξ ξξξ ΒΊξ ξξξ ?[...]
-
Page 190
[...]
-
Page 191
Programming Techniques 13β1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 Programm i ng Techni ques Chapter 12 covered the basics of progra mm ing. This cha pter expl ores m ore sophisticated but useful tech niques: ξ Using su br outines t o simplify pr og r ams b y[...]
-
Page 192
13β2 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A routine typically starts wi th a label (LBL) and en ds with an instruction that alters or s tops program executi on, such as RTN, GTO, or ST OP, or perhaps another label. Call i ng Subr outi n es[...]
-
Page 193
Programming Techniques 13β3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξ ξξξ ξ Starts here. ξξξ ξξξ"! % ξξξ %ξξ ξ ξ 1 Calls subroutine Q. ξξξ !ξ ξ ξΏ 2 Return here. ξξξ #ξξ$ ξ ξξξ ξ!ξ ξ [...]
-
Page 194
13β4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Nested Subroutine. The following subroutine, labeled S, calculates the value of the expression 2 2 2 2 d c b a + + + as part of a larger calculation in a large r program. The subroutine [...]
-
Page 195
Programming Techniques 13β5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Bran c hin g (G T O) As we have seen with subroutines, it is often desira ble to tran sfer execut ion to a part of the program other than the nex t line. This is called branching. Uncon ditional br[...]
-
Page 196
13β6 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξ ξξξ Can start here. . . . ξξ ξ!ξ ' ξ 1 Branches to Z. ξξξ ξξξ ξ Can start here. . . . ξξξ ξ!ξ ' ξ 1 Branches to Z. ξξξ ξξξ ξ[...]
-
Page 197
Programming Techniques 13β7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Condit ional I nst r uc t ions Another w ay to alter the sequen ce of program ex ecution is by a con dition al test , a true/ false test that co mpare s tw o n umber s and skips the n ext program i[...]
-
Page 198
13β8 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tests o f Compari s on ( x ? y, x ? 0) There are 12 com parisons av ailab le f or programmi ng. Pr essing z l or { n displays a. menu for one of the two categories of tests: ξ x ? y fo r tests co[...]
-
Page 199
Programming Techniques 13β9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m !ξξ ΒΊ < ΒΈ@ Tests to see if the corre ction is significant. !ξξ ξ!ξ ! Goes back to start of loop if correction is significant. C ontinues if correction is n ot significant. !ξξ [...]
-
Page 200
13β10 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m tested . F l ags 5 and 6 all o w yo u to c ontr ol ov erflo w conditions that o cc ur durin g a pr ogram . Setting flag 5 s tops a pr ogra m at the line j ust after the line that cau sed the o v e[...]
-
Page 201
Programming Techniques 13β11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4. If the n e xt pr ogr am line is a P SE ins tru ctio n, e x ec utio n co ntinue s afte r a 1βsecond pa us e . T he s tat us of flag 10 is co ntr olled o nl y b y e x ec utio n o f the SF and C[...]
-
Page 202
13β12 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Using Flags Pressing { x displays the F LAGS menu: { ξ } { ξξ } { ξ @ } After sele cting the fun ction yo u w ant , you will be prompted for the flag num ber (0 β11). F or ex am ple, pre[...]
-
Page 203
Programming Techniques 13β13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ Line L0 3 s ets f l ag 0 so th at line W 0 7 t ak es the na tur al log of th e Xβin put f or a L ogarithm icβm odel c ur v e. ξ Line E04 sets flag 1 so that li ne W1 1 tak es the natural[...]
-
Page 204
13β14 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Controlling th e Fraction Display. The following program lets yo u exercise the calc ulator's fractionβdisplay capability. The program prom pts for and uses your inputs for a fract[...]
-
Page 205
Programming Techniques 13β15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description: ξξξξ ξ ξ ξξξξ !ξξ ξξξξ ξ ξ Sets f lag 8. ξξξξ ξξξ!ξξ ξξξξξ Displays message, then sh ows the fraction. ?[...]
-
Page 206
13β16 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: c ξ ξ+ξ ξ format (denominator is factor of 16), then shows the fraction . f ξξ%ξξ ξξξξξξ c ξ ξ+ξξξ Message indicates the fraction [...]
-
Page 207
Programming Techniques 13β17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program lines: Description: ξξξ ξξξ ξ ξξξ ξξξ"! ξ ξξξ ξξξ"! ξ Checksum and leng th: 6157 004.5 ξξ ξξξ ξξ ξξξ ξ It is easie[...]
-
Page 208
13β18 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m . . . ξξ%! variable A DSE in struction is like a FO RβNEX T loop with a n egative incre ment. After pressing a shifte d key for IS G or D SE ( z k or { m ), you will be prompted f or a vari [...]
-
Page 209
Programming Techniques 13β19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 ξ $ξξ ξξξ $ . . . $ξξ ξ ξ ξ ξ 2 1 ξΏ $ξξ ξ!ξ $ $ξξ %ξξ % ξΏ 2 If current value > final value, continue loop. . . . If current value β€ final value, [...]
-
Page 210
13β20 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Indir ec tl y A ddr es sing V ar iabl es and L abels Indirect ad dre ssing is a tech nique used in advanced programming to specify a variable or label w ithout specif ying before hand exactl y whi[...]
-
Page 211
Programming Techniques 13β21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T h e I ndir ec t A ddr es s, (i ) Many fun ctions that use A through Z (as variables or labels) can use ξ to refer to A th rough Z (v ariables or labe ls) or statis tics r egisters in directly [...]
-
Page 212
13β2 2 Progra mming Techni ques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m STO ( i ) RCL ( i ) STO +, β, Γ , Γ· , ( i ) RCL +, β, Γ , Γ· , ( i ) XEQ ( i ) GTO ( i ) X<> ( i ) INPUT ( i ) VIEW ( i ) DSE ( i ) ISG (i) SOLVE(i) β« FN d(i) FN= (i) Pr ogra m C[...]
-
Page 213
Programming Techniques 13β2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and line Y 08 c alls a differe nt subroutine to compute x Λ after i h as been increased by 6: &ξξ ξ &ξξ !ξ- L &ξξ %ξξ 1 L 2 If i hold: Then XEQ(i) ca lls: To: 1 L[...]
-
Page 214
13β2 4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξ !ξ L Stores loopβcontrol number in i . The n ext rout ine is L, a loo p to collect al l 12 know n valu es for a 3x3 coefficient matrix (variables A β I ) and th e three co nstants[...]
-
Page 215
Programming Techniques 13β2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξ ξξ ξξ Disables equation pro mpting. ξξξ ξ)ξξ ξ Sets counter for 1 to 26 . ξξξ !ξ L Stores counter. ξξξ ξ Initializes sum . Checksum and leng th: EA5[...]
-
Page 216
[...]
-
Page 217
Solving and Integrating Programs 14β1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 14 So lving a nd Integ rating Programs Sol v i ng a Pr ogra m In chapter 7 you saw how you can enter an equati on β it's added to the equation list β and then solve it fo r any variable[...]
-
Page 218
14β2 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. Inc lude an INP UT instr uc tio n f or each var iable , inc luding the unkno wn . INP UT ins tr uc tions ena ble y ou t o so l v e fo r an y v ar i able in a mu ltiβv ar ia ble functi on . [...]
-
Page 219
Solving and Integrating Programs 14β3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R = The universal gas co nstant (0.0821 literβatm/moleβK or 8.314 J/moleβK). T = Temperature (kelvins; K = Β°C + 273.1). To begin, put the calculator in Pr ogram mode; i f necessary, posit[...]
-
Page 220
14β4 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m unknown variable. { ξ P #@ value ξ Selec ts P ; prompts for V . 2 f ξ@ value ξ Stores 2 in V; prompts for N. .005 f ξ@ value ξ Stores .005 in N ; prom pts for R . .0821 f !@ value ?[...]
-
Page 221
Solving and Integrating Programs 14β5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now calculate the chang e in pressure of the carbon dioxide if its tempe rature drops by 10 Β°C from th e previous ex ample. Keys: Displa y: Description: H L ξ)ξξξξξ Stores previo us[...]
-
Page 222
14β6 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m before displaying it). If you do want this result di splayed, add a VIEW variable instruction after th e SOLVE instruction. If no solution is foun d for the unknown variable, then the next progr[...]
-
Page 223
Solving and Integrating Programs 14β7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte grat ing a P rogram In chap ter 8 you saw how you can enter an equation (or expres sion) β i t's added to the list of e quations β an d th en integrate it wi th respect to any vari[...]
-
Page 224
14β8 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m is ignor e d b y t he calculator , so y ou need to w rite onl y one pr ogram that cont ains a sep ara te I NP UT inst ruction for ever y v ar iable (including the v ari able o f integr atio n). [...]
-
Page 225
Solving and Integrating Programs 14β9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z ξ { ξξ } ξ Selects Radians mode. { V S ξ Selects label S as the integrand. 0 ξ 2 ξ _ ξ Enters lower and upper lim its of integration . { ) X ξξ!ξξξξ!ξξξξ ?[...]
-
Page 226
14β10 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The 2 ) ) (( 2 Γ· Γ· β S M D e function is calcul ated by the routine l abeled F. Other routines prompt for th e kno wn values an d do th e other calcul ation s to find Q(D) , the uppe rβta[...]
-
Page 227
Mathematics Programs 15β1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 15 Ma t hem atics Progra ms Ve c t o r O p e r a t i o n s This program performs the basic vector operations of addition, subtraction , cros s product , and dot (o r sca lar ) product. T he program u[...]
-
Page 228
15β2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This program uses the following equation s. C oordinate conversion: X = R sin( P ) cos( T ) R = 2 2 2 Z Y X + + Y = R sin( P ) sin ( T ) T = arctan ( Y / X ) Z = R co s( P ) P = arctan 2 2 Y X Z + Ve[...]
-
Page 229
Mathematics Programs 15β3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξξξ ξξ Defin es the beginning of th e rectang ular input/display routine. ξξξ ξξξ"! %ξ Displays or accepts input of X . ξξξ ξ[...]
-
Page 230
15β4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξξ ΒΊ65ΒΈξ ξξξ !ξ &ξ Saves Y = R sin( P ) sin( T ). ξξξ ξ!ξ ξξ Loops back for another display of polar form. Checksum [...]
-
Page 231
Mathematics Programs 15β5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξξ !ξ %ξ Saves X + U in X . ξξξ ξξξ #ξ ξξξ ξξξ- &ξ ξξξ !ξ &ξ Saves V + Y in Y. ξξξ ξξξ[...]
-
Page 232
15β6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξξ ξξξΒΊ #ξ ξξξ .ξ ξξξ !ξ 'ξ Stores ( XV β YU), which is the Z component. ξξξ ξ ΒΆ ξ ξξξ !ξ &[...]
-
Page 233
Mathematics Programs 15β7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξ ξ ξ ΒΆ ξ ξξ ξ Βͺξ Divides previous result by the magnitude. ξξ ξ ξξξ ξ Calc ulates angle. ξξ ξ !ξ ξξ ξξ ξ #[...]
-
Page 234
15β8 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. Ke y i n R an d pr ess f , k e y in T and pr es s f , the n k e y in P and press f C ontin ue at step 5 . 4. Ke y i n X and pr es s f , k e y in Y and p r ess f , and k e y in Z an d pr es s f . 5[...]
-
Page 235
Mathematics Programs 15β9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m rectangular to polar conver sion capabil ity to find the total di st a n ce a n d the direction to the transmitter. N ( y ) S W E (x) An te n na Tra n s m i t t e r 7. 3 15 .7 Keys: Displa y: Des cri[...]
-
Page 236
15β10 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 2: What is the moment at the or igin of the lever sho wn below ? Wha t i s t h e componen t of force along the lev er ? Wh at is th e ang le betw een the result ant of the force vectors and [...]
-
Page 237
Mathematics Programs 15β11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 74 f ξ@ξ ξ)ξξξξξ Sets P equal to 74. W A ξ@ξ ξ)ξξξξξ Adds the vectors and displays the resultant R . f !@ξξ)ξξξξ ξ Displays T of resultant v ector. f ξ@?[...]
-
Page 238
15β12 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m W D ξ/ξ ξ)ξξξξ ξ Calculates dot product. f ξ/ξξ)ξξξξξ Calculates angle between resultant force vector and lever. f ξ@ξ)ξξξξξ G ets back to input routin e.[...]
-
Page 239
Mathematics Programs 15β13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξξ ξξξ ξξ Starting point for input of co efficients. ξξξ ξ)ξξξ ξ Loopβcontrol value: loops from I to 12, one at a time. [...]
-
Page 240
15β14 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξξξ ξξ ξξξ ξξξΒΊ ξξ ξξ ξ .ξ ξξ ξ !ξ 'ξ Calculates H' Γ determinant = BG β AH. ξξ ξ ξξξ ξξ ?[...]
-
Page 241
Mathematics Programs 15β15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξξξ ξξ ξξξ ξξξΒΊ ξξ ξξξ ξξξ ξξ ξξξ ξξξΒΊ ξξ ξξξ .ξ ξξξ !ξ ξξ Calculates G' , ?[...]
-
Page 242
15β16 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ %ξξ ξξ ξξξ ξξ Sets index value to point to last element in second row. ξξξ %ξξ ξξ ξξξ ξξ Sets index value to point to l[...]
-
Page 243
Mathematics Programs 15β17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description Checksum a nd length: 4E79 012.0 ξξξ ξξξ ξξ This routine calculates the determinant. ξξξ ξξξ ξξ ξξξ ξξξΒΊ ξξ ξξξ ξ?[...]
-
Page 244
15β18 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 348 bytes: 212 for pr ogram, 136 fo r variable s. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss ξ wh en d on e. 2. Pr ess W A to inpu t coef[...]
-
Page 245
Mathematics Programs 15β19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: For the system below , compute th e invers e and the system solution . Review the inverted m atrix. Invert the matrix ag ain and review the result to mak e sure that the original matrix is [...]
-
Page 246
15β20 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ξ@.ξ)ξξξξ ξ Displays next value. f ξ@ξ)ξξξξξ Displays next value. f ξ@ξ)ξξ ξξξ Displays next value. W I ξ)ξξξξ ξ Inverts inverse to produce origi[...]
-
Page 247
Mathematics Programs 15β21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m b 0 = a 0 (4 a 2 β a 3 2 ) β a 1 2 . Let y 0 be the largest re al root o f the above cubic. Then the fourthβord er polynomial is reduced to two quadratic polyn omials: x 2 + ( J + L ) Γ + ( K[...]
-
Page 248
15β2 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξ!ξ1L2ξ Starts root finding routine. Checksum and leng th: CE86 010.5 ξξξ ξξξ ξξ Evaluates polynomials usin g Horner's m ethod, and s[...]
-
Page 249
Mathematics Programs 15β2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξ ξ ξξξ Βͺξ a 1 /2. ξξξ -+.ξ β a 1 /2. ξξξ ξξ!ξξξ ξξξ ξξ!ξξξ Saves β a 1 /2. ξξξ !ξ ξξ Stores[...]
-
Page 250
15β2 4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ %ξξ ξξ Solv es rem ainin g secon dβorde r polyn omial and store s roots. ξξξ #ξξ$ %ξ Displays real root of cubic. ξξξ ξ!ξ ξξ[...]
-
Page 251
Mathematics Programs 15β25 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ -+.ξ b 2 = β a 2 . ξξξ !ξ ξξ Stores b 2 . ξξξ ξξξ ξξ a 3 . ξξξ ξξξΒΊ ξξ a 3 a 1 . ξξξ ξξ ξξξ ξ?[...]
-
Page 252
15β2 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ !ξΒͺ ξξ K = y 0 /2 ξξξ ξξ ξξξ ξξ % ξ ξξξ ξ+ΒΊξ Creates 1 0 β9 as a lower bo und for M 2 ξξξ ξξξ ξξ K ξ[...]
-
Page 253
Mathematics Programs 15β2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description polynomial. ξξξ ξξξ ξξ J . ξξξ ξξξ. ξξ J β L . ξξξ ξξξ ξξ K . ξξξ ξξξ. ξξ K β M . Checksum a nd length[...]
-
Page 254
15β28 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: Flag 0 i s used to rememb er if t he root is real or com plex (that is, to re mem ber the sign of d ). If d is negative, then flag 0 is set . Flag 0 is test ed later in the program to as[...]
-
Page 255
Mathematics Programs 15β2 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. K e y in the pr ogr am r outine s; pr ess ξ whe n d o n e. 3. Pre ss W P to s tart the poly nomi al r oot finder . 4. K e y in F , the or der of the pol yn omi al , and pr ess f 5. At eac h pr[...]
-
Page 256
15β30 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exampl e 1: Find the roots of x 5 β x 4 β 101 x 3 +101 x 2 + 100 x β 100 = 0. Keys: Displa y: Description: W P ξ@ value ξ Starts the polynomial root finder; prompts for order. 5 f ξ@ val[...]
-
Page 257
Mathematics Programs 15β31 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 22 ξ ξ@ value Stores β10/4 in B ; prompts for A. 4 p f %/ξ)ξξξ ξξ Stores 22/4 in A ; calculates the first root. f %/ξ)ξξξξξ Calculates the second root. f %/.ξ)ξξ?[...]
-
Page 258
15β3 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following formulas are us ed to co nvert a point P fr om the Cartesian coordi nate pair ( x, y ) i n the old sys tem to the pair ( u , v ) in the new, translate d, rotated system. u = ( x β m[...]
-
Page 259
Mathematics Programs 15β33 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y ' x x' [] m, n New coordinate s y stem Old coor di nate s y stem [0, 0] x P u y v ΞΈ Program Listing: Program Lines: Description ξξξ ξξξ ξξ This routine de fines the ne[...]
-
Page 260
15β34 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξξξ"! %ξ Prompts for and stores X , the old x βcoordinate. ξξξ ξξξ"! &ξ Prompts for and stores Y , the old y βcoordinate.[...]
-
Page 261
Mathematics Programs 15β3 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ !ξ %ξ Stores the x βcoordinate in variable X . ξξξ ΒΊ65ΒΈξ Swaps the positions of the coordinates. ξξξ !ξ &ξ Stores the y βcoordin[...]
-
Page 262
15β3 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 . Ke y i n U (the x βcoor dinate in the new s y stem) and pr ess f . 14 . Ke y i n V (the y βcoor dinate in the new s y stem) and pr ess f to see X . 15 . Pr es s f to see Y . 16 . F or a no[...]
-
Page 263
Mathematics Programs 15β3 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y' x P 3 ( 6 , 8 ) P 1 ( _ 9, 7 ) P 2 ( _ 5, _ 4) P' 4 (2 .7 , _ 3. 6 ) (, ) = ( 7 , _ 4) T = 27 MN o (M, N ) T Keys: Displa y: Description: z ξ { ξξ } ξ Sets Degrees mode since[...]
-
Page 264
15β38 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 _ f &@ value ξ Stores β9 in X . 7 f "/.ξ)ξ ξξ ξ ξ Stores 7 in Y and calculates U . f #/ξξ)ξξξξξ Calculates V . f %@.ξ)ξξξξξ Resume s the oldβtoβ[...]
-
Page 265
Statistics Programs 16β1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 16 Stat is ti c s Programs Cur v e Fi t ting This program can be used to f it one of four m ode ls of eq ua tions to your data. These models a re the st r aight lin e, th e log arithm i c curve, the e[...]
-
Page 266
16β2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y x y B _ Mx = Stra i g ht Li ne F i t S y x y Be Mx = Ex p onen tial C urve F it E y x y B M I n x =+ Lo g arithmic C urve Fit L y x y Bx M = Pow e r C u r v e Fi t P To fit log arithmic curves, va lues o f[...]
-
Page 267
Statistics Programs 16β3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ξξ ξξξ ξ This routine set, the status for the straightβline m odel. ξξ ξξ Enters index value fo r later storage in i (for indire ct ad[...]
-
Page 268
16β4 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description 'ξξ !ξ Lξ Sto res the index value in i for indirect addressin g. 'ξξ ξξ Sets the loop counter to ze ro for the first input. Checksum a nd length: 8C2F 006[...]
-
Page 269
Statistics Programs 16β5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξ @ ξξ If flag 1 is seta takes the natural antilog of b . ξξξ H % ξ ξξξ !ξ ξξ Stores b in B . ξξξ #ξξ$ ξξ Displays valu e, [...]
-
Page 270
16β6 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ !ξ. Lξ Restores index value to its orig inal value . ξξξ ξξξ &ξ ξξξ ξξξ. ξξ ξξξ ξξξΒͺ ξξ Calculates x Λ =( Y β B [...]
-
Page 271
Statistics Programs 16β7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξξξ ξξ This subroutine calculates x Λ for the exponential model. ξξξ !ξ. Lξ Restores index value to its orig inal value . ξξξ ξξξ [...]
-
Page 272
16β8 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Required: 270 bytes : 174 for p rogram, 96 fo r data (statistic. registers 48). Program instru ctions: 1. K e y in the pr ogr am r outine s; pre ss ξ wh en d on e. 2. Pr ess W and s elect the ty pe [...]
-
Page 273
Statistics Programs 16β9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m also used for scratch. M Regression coefficient (sl ope o f a straight line). R Correlation coefficient; al so used for scratch. X The x βvalue of a data pair wh en entering data; the hypothetical x[...]
-
Page 274
16β10 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@ξ)ξξξξξ Retrieves %@ prom pt. W U %@ξ)ξξξξξ Deletes the las t pair. Now proce ed with the correct data entry. 37.9 f &@ξξξ )ξξξξξ Enters correct x βvalue of [...]
-
Page 275
Statistics Programs 16β11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Logarithmic Exponential Power To start: W L W E W P R 0. 9965 0.9945 0. 9959 M β139.0088 51.1312 8.9730 B 65. 8446 0.0177 0. 6640 Y ( y Λ when X =37) 98.7508 98.5 870 98. 6845 X ( x Λ when Y =101[...]
-
Page 276
16β12 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m β« Γ· Γ· β β β = x x x x dx e x Q 2 ) ) (( 2 2 1 5 . 0 ) ( Ο Ο Ο This program uses the builtβ in integration feature of the HP 32SIl to integrate the equation of the n ormal fre quency cu rve. T[...]
-
Page 277
Statistics Programs 16β13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !ξξ ξξξ. ξξ !ξξ ξξξ %ξ !ξξ !ξ ξξ !ξξ ξ ΒΆ ξ !ξξ %ξξ ξξ Calculates the de rivative at X guess . !ξξ ξξξΒͺ ![...]
-
Page 278
16β14 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ ξ!ξξ Returns to the calling routine. Checksum and leng th: F79E 032 .0 ξξξ ξξξ ξξ This subroutine calculates th e integrand for the norm al functio[...]
-
Page 279
Statistics Programs 16β15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Yom do riot n e ed to key in the inv erse routine (in routines I and T) if you are not in terested in th e inverse capability. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss ξ w[...]
-
Page 280
16β16 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 1: Your good f riend inf orms you that your blind dat e has "3 Ο " intellige nce. You interpret this to me an that this pe rs on is m ore intellig ent th an th e local population except f[...]
-
Page 281
Statistics Programs 16β17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@ξ)ξξξξξ Resume s program. 2 f ξ/ξ)ξξ ξ ξξ Enters X βvalue of 2 and calculates Q ( X ). 10000 y ξ ξ ξ)ξξξξξ Multi plies by th e pop ulati on fo r the revise[...]
-
Page 282
16β18 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0.8 f %/ξξ )ξξ ξξ ξ Stores 0.8 (100 percent m inus 20 percent) in Q ( X ) and calculates X . G r ouped S t andar d Dev iati on The stan dard deviat ion of grouped data, S xy , is the stan dard de[...]
-
Page 283
Statistics Programs 16β19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ξξξ !ξ- 1 L 2 ξ Updates β i f in register 28. ξξξ ξξξΒΊ %ξ i i f x ξξξ ξ ξξ ξξξ !ξ Lξ Stores index for register 29 . ξξ?[...]
-
Page 284
16β20 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 143 bytes: 71 for progra ms, 72 for data. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss ξ wh en d on e. 2. Pr ess W S to start entering ne w data. 3[...]
-
Page 285
Statistics Programs 16β21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m i Index variable used to in directly address the c orre ct statistics register. Register 28 S u m m a t i o n Ξ£ f i . Regist er 29 S u m m a t i o n Ξ£ x i f i . Re gi st e r 3 1 Su mmat ion Ξ£ x i [...]
-
Page 286
16β2 2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: f ξ/ξ)ξξξξξ Displays the coun ter. f %@ξξ)ξξξξξ Prompts for the f our th x i . 15 f ξ@ξξ)ξξξξξ Prompts for th e fourth f i . 43 f ?[...]
-
Page 287
Miscellaneous Programs and Equations 17β1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 17 Miscella neous Pro gra m s and Equations Time V alu e of Money Given any four of the five values in the "TimeβV alueβofβMoney equation" (TVM), y ou can solve for th[...]
-
Page 288
17β2 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m problem can he viewed fr om tw o persp ectives. The len d er and th e borrower view the same probl em with reversed signs. Equation Entry: Key in this equation: ξΒΊξξξΒΊ1ξ.1ξ-?[...]
-
Page 289
Miscellaneous Programs and Equations 17β3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Rem ark s: The TVM equation requires that I m ust be non βzero to avoid a ξξ#ξξξ ξ& ξ error. I f you're solvi ng for I and aren't su re of its curre nt v[...]
-
Page 290
17β4 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Variables Used: N The n umber of co mpounding periods. I The periodic interest rate as a perc entage. (For example, if the annual interest rate is 15% and there are 12 paym ents per year, t[...]
-
Page 291
Miscellaneous Programs and Equations 17β5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 36 f ξ@ value ξ Stores 36 in N ; prompts for F . 0 f ξ@ value ξ Stores 0 in F ; prom pts for D . 7250 ξ 1500 ξ ξ@ξ8ξξξ)ξξξ Calculates B , the beginning loa[...]
-
Page 292
17β6 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Note th at the in terest rate, I , from part 2 is not z ero, so you w on't get a ξξ#ξξξ ξ& ξ error when you calculate the new I . Keys: Displa y: Description: { G RΒΊ[...]
-
Page 293
Miscellaneous Programs and Equations 17β7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m LB L Y VIE W Pri me LB L Z P + 2 x β LB L P x P 3 D β β LB L X FP [ / ] x PD β x = 0 ? yes no DD + 2 β Star t no yes D > P β ? No te: x i s the v a l u e i n t h e X - [...]
-
Page 294
17β8 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description &ξξ ξξξ &ξ This routine dis plays prime n umbe r P . &ξξ #ξξ$ ξξ Checksum a nd length: 5D0B 003.0 'ξ?[...]
-
Page 295
Miscellaneous Programs and Equations 17β9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description %ξξ ξ!ξ &ξ If all factors have been trie d, branches to the display routine. %ξξ ξ ξ Calculates the next possible factor, D + 2. %ξ?[...]
-
Page 296
17β10 Miscellaneous Prog rams and Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 789 W P ξ/ξξξ)ξξξξξ Calc ulates n ext pr ime n um ber aft e r 789. f ξ/ξξξ)ξξξξξ Calc ulates n ext prime n um ber aft e r 797.[...]
-
Page 297
Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 3 Appendixes and Refer enc e[...]
-
Page 298
[...]
-
Page 299
Supp ort, Batteries, and Service Aβ 1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A Su pp or t, Ba tterie s, and Servic e Calc ulat or Su ppor t You can obtain answ ers to questions about using yo ur calculat or from our Calculator Su pport Department. O u r expe rien [...]
-
Page 300
Aβ2 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A: Exponent of ten; that is, 2.51 Γ 10 β13 . Q: The calculator has displayed th e messag e ξξξξξ& ξ"ξξ . What should I do ? A: You must cle ar a porti on of memory bef[...]
-
Page 301
Supp ort, Batteries, and Service Aβ 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C hanging t h e B at ter i es Replace the batteries as s oon as poss ible when the low battery annunciator ( Β€ξ ) appears. If the battery annunciator is on, an d the display dims, you [...]
-
Page 302
Aβ4 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T esting Ca lc ulat or O peration Use the follow ing guidelines to determ ine if the calculat or is workin g properly. Test the calculator after ever y step to see if its operation has been re st[...]
-
Page 303
Supp ort, Batteries, and Service Aβ 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e Sel fβT est If the display can be turned on, but the calculator does not seem to be operating properly, do the follo w ing diagno stic selfβtest. 1. Hold do wn the ξ key , t h [...]
-
Page 304
Aβ6 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Limi te d OneβYear W arr anty What I s Co v er ed The calculator (except for the batteries, or d a m age ca used by the b atteries) is warranted by H ewlettβPackard again st defects in materi[...]
-
Page 305
Supp ort, Batteries, and Service Aβ 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Products are sold on the ba sis of specif icati ons applicable at the time of manufacture. HewlettβPa ckard shall hav e no o bligation to m odify or update products once sold. C on sume[...]
-
Page 306
Aβ8 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All shipp ing , re importation ar r a ngem ents, and c ustom s co sts ar e y our re sp o n s i b i l i t y . Ser v ice C har g e There is a standard repa ir charge fo r outβofβwarranty se rvi[...]
-
Page 307
Supp ort, Batteries, and Service Aβ 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Servi ce Agreem ent s In the U.S., a support agre em ent is available for re pair an d service. Refer to the form that was p ackaged with th e manual. For addi tional informatio n, contac[...]
-
Page 308
[...]
-
Page 309
User Memory an d the Stack Bβ1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m B User Mem ory and the St ack This appendix covers ξ The allocati on and r equir emen ts of u ser mem or y , ξ How to r es et the calc ulator w ithout affectin g memo ry , ξ Ho w to c lear[...]
-
Page 310
Bβ2 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Requirements Data or Operation Amount of Memory Used Variables 8 bytes per nonβ zero value. (No bytes for zero values.) Instructions in progra m lines 1.5 bytes . Numbers in prog ram lines Int[...]
-
Page 311
User Memory an d the Stack Bβ3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Displa y the pr ogr am line cont aining the eq uation . 2. Pr ess { ξ to se e the c hec ksum and length . F or e x ample , ξξ/ξξξξ ξξξ)ξ . To m anu ally d eallo cate the[...]
-
Page 312
Bβ4 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Pre ss and ho ld do wn the ξ key . 2. Pr ess and hold do w n < . 3. P r ess 6 . ( Y o u w i l l b e p r e s s i n g t h r e e k e y s s i m u l t a n e o u s l y ) . W h e n y o u r elease all [...]
-
Page 313
User Memory an d the Stack Bβ5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All functions except those in th e follow ing tw o lists will enable stack lift. Disabl ing O per ati ons The four oper ations EN TER, Ξ£ +, Ξ£ β, an d CLx disable stack lift. A number keyed i[...]
-
Page 314
Bβ6 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e S t atus o f t h e L A S T X R egister The following op erations save x in the LAST X register: +, β, Γ , Γ· SQRT, x 2 e x , 10x LN, LOG y x , X y I/x x Λ , y Λ SIN, COS, TAN ASIN, ACOS, ATAN[...]
-
Page 315
More about Solving Cβ1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C Mor e a bou t So l v i ng This appendix pr ovides information about the SOL VE oper ati on beyond t hat given in chapter 7. How S OL VE F inds a R oot SOLVE is an iterative opera tion; th at is, it re[...]
-
Page 316
Cβ2 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ If f(x) has one or more loca l mi nima or mini ma, each occurs si ngly betw een adjace nt r oots off f(x) (f igur e d, belo w) . f ( x ) x a f ( x ) b x f ( x ) x c f ( x ) x d Fun ctio n W hos e Roots C [...]
-
Page 317
More about Solving Cβ3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m I n te rp ret in g Res u lt s The SOLVE op erati on wil l produc e a solu tion under either of the. follow ing conditions: ξ If it finds an es timate for which f(x) equals zero. (See figure a, below.)[...]
-
Page 318
Cβ4 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G ξ Select Equation mode. 2 _ξyξ K X 0 3 ξξ 4 yξ K X 0ξ 2 ξ 6 yξKξ X ξ ξ 8 ξ ξ ξ ξ ξ ξ .ξ ΒΊ%:ξ-ξ%:ξ .ξ Enters the equation. { ξ ?[...]
-
Page 319
More about Solving Cβ5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G ξ Selects Equation mode. K X 0 2 ξ K X ξ 6 ξ ξ %:ξ -%.ξξ Enters the equation. { ξ ξξ/ξξξξ ξξξ )ξξ Checksum and leng th. ξ ξ Can[...]
-
Page 320
Cβ6 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m betw een tw o neighbor ing v alues o f x , i t re t u r ns t h e p o s s i b l e ro o t. Ho w e ver , the v alue fo r f(x) w ill be relati v ely large . If the pole occur s at a v alue o f x that is e x actl [...]
-
Page 321
More about Solving Cβ7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ ξ Cancel s Equation mode. Now, so lve to find the root: Keys: Displa y: Description: 0 H X 5 ξ _ ξ Your initial guesses for the root. { G ξξ1%2/ξ)ξξ Selects Equation mode; displays t[...]
-
Page 322
Cβ8 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K X pξ { K X 0 2 ξ 6 { ] ξ 1 ξ ξ ξ ξ ξ %Βͺ1%:ξ .ξ22.ξξ Enters the equation. { ξ ξξ/ξξξξ ξξξ)ξξ Checksum and leng th. ξ ξ Cancel s Equation mode. Now, so lv[...]
-
Page 323
More about Solving Cβ9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξ The s ear ch h alts becau se S OL VE is w or king on a ho r iz on tal as y mptoteβan ar ea w her e f(x) is essentiall y constant f or a w ide r ange of x (see f igure b , below ) . The ending v al[...]
-
Page 324
Cβ10 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Relat ive Minimum. Calculate the root of this parabolic equation: x 2 β 6 x + 13 = 0. It ha s a mini mum at x = 3. Enter the equation as an expression: Keys: Displa y: Descri ption: { G ξ Selec[...]
-
Page 325
More about Solving Cβ11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 1 10 = β X Enter the equation as an expression. Keys: Displa y: Description: { G ξ Selects Equation mode. 10 ξ 3 K X { ] ξ ξ ξξ.ξξ#1%2ξ Enters the equation. { ξξξ ξξ/ξ[...]
-
Page 326
Cβ12 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m It's appa rent from in specti ng the equation that if x is a negative number, the smallest that f(x) can be is 10. f(x) approaches 10 as x becom e s a negative number of large magnitude. Example: A Math [...]
-
Page 327
More about Solving Cβ13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: 0 H X 10 _ .ξξ _ ξ { G ξξ!1%Βͺ1%-ξ)ξξ Selects Equati on mode; displays the left end of the equation. { ξ X ξξ!1ξξξ2ξ Math error. ξ ξ ξ C[...]
-
Page 328
Cβ14 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Solve for X using initial guesses of 10 β8 an d β10 β8 . Keys: Displa y: Description: ` 8 _ H X 1 _ ` 8 _ .ξξ.ξ _ ξ Enters guesses. { V J .ξ)ξξξξξ.ξξ Selects program "J"[...]
-
Page 329
More about Solving Cβ15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m function nev er chan ges sign SOLVE returns the message ξξ ξξξ! ξξξ . However, the final estim ate of x (press @ to se e it) is the best po ssible 12βdigit approxima tion of the root [...]
-
Page 330
[...]
-
Page 331
More about Integration Dβ1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m D Mor e abo ut I nt e gr at i on This appendix provides information ab out integration beyond that given in chapter 8. How t h e Int egr al I s E v al uate d The algorithm used by the integratio n o[...]
-
Page 332
Dβ2 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m As ex plained in ch apter 8 , the un certainty of the final a pproxim ation is a number derived from the disp lay format , which specifies th e uncertainty for the function. At the end of each it eration, [...]
-
Page 333
More about Integration Dβ3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m showing (over a portion of the interv al of integration) three functions whose graphs in clude the man y sample po ints in com mon. f ( x ) x With this n umber of sam ple pints, the algorithm will c[...]
-
Page 334
Dβ4 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m β« β β 0 dx xe x Since you' re ev aluatin g this inte gral n umeri cally, you might think that y ou should represent the upper limit of integrat ion as 10 499 , which is virtual ly the largest cu[...]
-
Page 335
More about Integration Dβ5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x The graph is a spike very close to t he origin. Bec ause no sample point happened to discover the spike, the algorithm assumed that f(x) was identically equal to zero througho ut th e in t[...]
-
Page 336
Dβ6 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m fluctuat ions can be better ch aracteri zed by its sam ples whe n the se variat ions are spread out over m ost of the interv al of integr ation than if they are confined to only a sm all fraction of the in[...]
-
Page 337
More about Integration Dβ7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x Ca lculat ed i nte gra l of th is function will b e accu rate. f ( x ) a b x Ca lculat ed i nte gra l of th is function ma y be acc ur ate . a b In many cases you will be familiar eno ugh [...]
-
Page 338
Dβ8 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and you suspect that it m a y cause problems, yo u can quickly plot a few points by evaluating the fun ction using the equation or program you wrote for that purpose. If, fo r any reason, after obtaining a[...]
-
Page 339
More about Integration Dβ9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Z ξ)ξξ ξξ.ξξ Uncertainty of approximation . This i s the c orrec t answer, but it to ok a very long time. T o unders tand why, compare the graph of the fun ction betwe en x = 0 and x = [...]
-
Page 340
Dβ10 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m calcul ation of the integr al of any f uncti on w ill be prolonged if the interval of integration includes mostly regions where the function is not interesting. Fortunately, if you must calculate such an [...]
-
Page 341
Messages Eβ1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E Me ssages The calculator responds t o certain cond itions or keystrok es by dis playing a message. The Β£ symbol comes on to c all your attention to th e messag e. For signifi cant con ditions , the mes sage re[...]
-
Page 342
Eβ2 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξ!ξξξξ!ξξξξ The calculator is calculati ng the in tegral of an equation or program. This might take a wh ile . ξξ!ξξξ"ξ!ξξξ A running SOLVE or β« FN operation was interrupted[...]
-
Page 343
Messages Eβ3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ξξξξ%ξ !ξξ!ξ Attempted to refer to a no ne xistent program label (or line number) w ith U , U ξ , W , o r { ξξ }. Note that the error ξξξξ%ξ !ξξ! can m ean ξ yo u e xpli c it[...]
-
Page 344
Eβ4 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m while a S OLVE operation wa s runnin g. ξξ#ξξξξ The calculator is solving an equation or program for its root. This might take a while. ξξ! 1ξξξ2ξ Attempted to calculate the s quare root of a neg[...]
-
Page 345
Operation Index Fβ1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F Operat i on I ndex This sec tion is a quick re ference for a ll functions a nd operations and their formulas, where appropriate. The listing is in a lphabetical order by th e function's name. Th is [...]
-
Page 346
Fβ2 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ to next e quation in equation list; moves p rogra m point er to ne xt l ine (during program entry); ex ecutes the current program line (n ot during program entry). 6β3 12β9 [...]
-
Page 347
Operation Index Fβ3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ Ο y { 2 { Ο ΒΈ } Returns population standard deviation of y βvalues: n y y i Γ· β β 2 ) ( 11β7 1 ΞΈ , r ξ y , x { rξ Polar to rectangular coordinates . Conv[...]
-
Page 348
Fβ4 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ Returns sin β1 x . ASINH z 7 z Lξ Hyperbolic arc sine . Returns sinh β1 x . 4β5 1 ATAN z R Arc tangent . Returns tan β1 x . 4β4 1 ATANH z 7 z R Hyperbolic arc tang e[...]
-
Page 349
Operation Index Fβ5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ z b { ξξξ } Clears the displayed equation (calculator in P rogram mode). 12β6 CL Ξ£ z b { Β΄ } Clears statistics registers. 11β12 CLVARS z b { #ξξ } Clears [...]
-
Page 350
Fβ6 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ CMPLXSIN z F N Complex s ine . Returns sin ( z y + i z y ). 9β3 CMPLXTAN z F T Comp lex tangent . Returns tan ( z x + i z y ). 9β3 CMPLXy x z F 0 Comple x power . Returns ) [...]
-
Page 351
Operation Index Fβ7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ digits following the first digit ( n = 0 through 11). ξ Separates two num bers key ed in sequentially; com p letes equation entry; evaluates the display ed equation (an[...]
-
Page 352
Fβ8 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ GRAD z ξ { ξξ } Sets Grads angular mode. 4β3 GTO label z U label Sets the program pointer to the beginning of program label in program mem ory. 13β5 13β16 z U ξ la[...]
-
Page 353
Operation Index Fβ9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ input in the variabl e. (Used only in programs.) INV 3 Reciprocal of argument. 6β17 2 IP { [PARTS] { ξξ } Integer part of x . 4β14 1 ISG variable z k variable Inc[...]
-
Page 354
Fβ10 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ z ξ Displays menu to set Angular modes and the radix ( β’ or , ). 1β14 4β3 n z 5 { Q } Returns the number of sets of data points. 11β11 1 OCT z w { ξξ } Selects Oc[...]
-
Page 355
Operation Index Fβ11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ Selects the period as the radix mark (decimal point). RANDOM { [PROB] { ξ } Executes the RANDOM fu nction. Returns a random number in the range 0 through 1. 4β11 1 R[...]
-
Page 356
Fβ12 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ SCI n z ξ { ξ } n Selects Scie ntific display with n decimal places. ( n = 0 through 11.) 1β15 { [SCRL] Scroll . En ables an d disable s scrollin g of equations in Equati[...]
-
Page 357
Operation Index Fβ13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ Stores variable Γ· x into variable. STOP f Run /stop. Begins progra m execut ion at the current prog ram lin e; stops a runnin g program and displays the Xβregister. 1[...]
-
Page 358
Fβ14 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ returns the x β estimate based on th e regression line: x Λ = ( y β b) Γ· m. x! z 1 Factorial (or gam ma). Returns ( x )( x β 1) ... (2)(1), or Ξ ( x + 1). 4β11 1 X R[...]
-
Page 359
Operation Index Fβ15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page ξΌ menu. x β 0 ? z n { β } If x β 0, executes next program line; if x =0, skips the next prog ram line. 13β8 x β€ 0 ? z n { β€ } If x β€ 0, executes next program[...]
-
Page 360
[...]
-
Page 361
Indexβ1 F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm Ind ex Spec ial c har ac t ers Β£ , 1- 21 @ . Se e bac kspace k ey Β€ annunc iator , 1-1, A - 2 ξ ξ an nunc iato rs bina ry numbers, 10 - 7 equati ons, 6 -8 , 12 - 7 , 12 -16 _. See equ ation - entr y cursor ΒΎ . Se e digit-[...]
-
Page 362
Indexβ2 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm A..Z annunci ator , 1- 2 , 3- 2 , 6 -5 B bac kspace k e y canc eling VI EW , 3- 4 clear ing messages , 1- 3, E-1 clearing X-register , 2 - 2 , 2 -8 deleting pr ogram lines , 12 - 20 equati on e ntry , 1-3, 6 -9 leav i ng menus ,[...]
-
Page 363
Indexβ3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cas h fl ow s, 17 -1 catalog s lea v ing , 1-3 pr ogram , 1- 21, 12 - 2 2 usi ng, 1- 21 v ar iable , 1- 21, 3- 4 c hain calc ulatio ns , 2 -13 ch ange -per centage fu ncti on , 4 -6 c hanging sign of n umb ers , 1-11, 1-14, 9-3 [...]
-
Page 364
Indexβ4 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm denominator s con tr olling , 5-6 , 13-9 , 13-13 r ange of , 1- 19 , 5-1, 5- 3 sett ing max im urn, 5-5 digit- entry c urs or bac kspac ing, 1-3, 6 -9 , 12 - 7 in eq uati ons , 6 -6 in pr ogram s, 12 - 7 meaning, 1-12 di sconti [...]
-
Page 365
Indexβ5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm deleting in pr ogra ms, 12 - 7 , 12 - 20 displa y ing , 6 -8 displa y ing in pr ogr ams, 12 -15, 12 -18 , 13-10 editing , 1- 3, 6 -9 , 6 -10 editing the pr ogr ams , 12 - 7 , 12 - 20 e n t e r i n g , 6- 5 , 6- 9 ent er ing in p[...]
-
Page 366
Indexβ6 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm equati on pr ompting , 13-10 fr acti on dis pla y , 5-6 , 13-9 mean ings , 13-8 oper a ti ons, 13-11 o ve r flo w , 13-9 sett ing, 13-11 testing , 13- 8 , 13-11 unassi gned , 13-9 FL A G S menu , 13-11 flo w diagram s, 13- 2 β«[...]
-
Page 367
Indexβ7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm nu mbe rs HEX ann unc iator , 10 -1 hex numb ers. See nu mbers a rith metic, 10 - 3 con v erting to , 10 -1 r ange of , 10 -6 typ ing , 10 -1 Horner's met hod , 12 - 2 6 hum idity limits f or calc ulator , A- 2 h yperbolic [...]
-
Page 368
Indexβ8 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm lend er (f inance), 17 -1 l e n g t h c o nve rs io n s , 4 - 1 2 let ter ke ys , 1- 2 limits o f integr ation , 8- 2 , 14 - 7 linear r egr essi on (es timati on), 11-8 , 16 -1 linear -r egre ssio n me nu , 11-8 l o g a ri t h m[...]
-
Page 369
Indexβ9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm mini mum of function , C- 9 modes . See angular mode , base mode , E quation m ode , F r acti on-displa y mode , Pr ogram-en try mode MOD E S m enu angular mode , 4 - 4 sett ing r adi x , 1-1. 6 mone y (finance) , 17 -1 N negati[...]
-
Page 370
Indexβ10 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm i n e q u a t i o n s , 6- 6 , 6- 7 , 6-1 6 memor y usage, 12 - 2 2 PA R T S m e n u , 4 - 1 5 paus e . See P SE pa y ment (f inan ce) , 17 -1 per c entage functi ons, 4 -6 per i ods (in n umber s) , 1-16 , A-1 perm utations, 4[...]
-
Page 371
Indexβ11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing, 1 2 -5 equati on e v aluatio n , 13-10 equati on pr ompting , 13-10 equati ons in , 12 - 4 , 12 -6 er r ors in , 12 -19 e x ecuting , 12 - 10 flags , 13-8 , 13-11 f or integr atio n , 14 - 7 fo r S OL VE , 14 -1, C-[...]
-
Page 372
Indexβ12 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm r eal par t (c omple x numbers), 9-1, 9- 2 r ecall ar ithme tic , 3-6 , B-8 r ectangular - to -polar coor dinate con v ersion , 4 - 8 , 9-6 , 15-1 r egr es sion (linear ) , 11-8 , 16 -1 r epair serv ice , A- 7 r esetting the ca[...]
-
Page 373
Indexβ13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm v ar ia ble di gits , 3-3, 3- 4 , 10 -8 , 12 - 15 sign con v entio ns (f inance) , 17 -1 sign (of numbers) , 1- 11, 1-14, 9-3, 10 -5 sim ultaneou s equati ons, 15-13 sine (trig) , 4 - 4, 9-3, A- 2 single -ste p e xec uti on , 1[...]
-
Page 374
Indexβ14 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing , 11-1 initia li zing , 11- 2 memor y usage, 12 - 2 2 , B- 2 one - var iabl e , 11- 2 pr ecisi on, 11-11 su ms of variabl es, 1 1- 12 two - v ar iable, 11- 2 st atis ti cs calc ulating , 11- 4 c urv e f itti n g , 1 [...]
-
Page 375
Indexβ15 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cl e a ri n g wh i l e vi ewi n g, 1 2- 1 5 defau lt, B- 5 excha n g i n g wi t h X , 3 - 8 indir ect addr es sing , 13-19 , 13- 20 in eq uati ons , 6 -5, 7 -1 in pr ogr ams , 12 -12 , 14 -1, 14 - 7 memor y usage:, 12 - 2 2 , B[...]
-
Page 376
F ile n am e 3 2s ii-Ma nu al-E -0 4 2 4P a ge : 16 /3 7 6 Pr inted D ate : 200 3/ 4/ 2 4 Siz e : 17 .7 x 2 5 .2 cm Batteri es are deliv ered with this prod uct, when empty do not th row them aw ay b ut correct as small chemical waste. Bij dit pro dukt zijn batt erijen. W an neer deze leeg zijn, moet u ze niet weggo oien maar inlev eren aIs K CA.[...]