Go to page of
Similar user manuals
-
Calculator
HP 12c - F2230A
211 pages 1.67 mb -
Calculator
HP 20b Business Consultant
95 pages -
Calculator
HP OfficeCalc 300
19 pages -
Calculator
HP HP-42S
33 pages 0.19 mb -
Calculator
HP HP-10B
72 pages 5.17 mb -
Calculator
HP scientific calculator
2 pages 0.29 mb -
Calculator
HP quick calc 1
36 pages 0.66 mb -
Calculator
HP 48G
116 pages 4.46 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of HP 50g, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of HP 50g one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of HP 50g. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of HP 50g should contain:
- informations concerning technical data of HP 50g
- name of the manufacturer and a year of construction of the HP 50g item
- rules of operation, control and maintenance of the HP 50g item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of HP 50g alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of HP 50g, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the HP service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of HP 50g.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the HP 50g item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
HP g gr aphing calc ulator user ’s guide H Ed i ti on 1 HP part number F2 2 2 9AA-9 0006[...]
-
Page 2
Notice REG ISTER Y OUR PRODU CT A T: ww w .regis ter .hp.com TH IS MANUAL AND ANY E XAMPLE S CONT AINE D HEREIN ARE PR O VID E D “ AS IS” AND ARE SUB JECT T O CHANGE WITHOUT NOT ICE . HEWLET T -P ACKARD COMP ANY MAKE S NO W ARR ANTY OF ANY KIND WI TH REG ARD T O TH IS MANU AL , INCL UD ING, BUT NOT LIMITED T O, THE IMPLI ED W ARR ANTIE S OF MER[...]
-
Page 3
Pref ace Y ou ha ve in y our hands a compact s ymboli c and numer ical computer that w ill fac ilitate calc ulati on and mathematical anal ysis o f pr oblems in a var iety of disc iplines, f r om elementary mathematic s to adv anced engineer ing and sc ience subjec ts. Although r ef err e d to as a calc ulator , because of its compact fo rmat r ese[...]
-
Page 4
F or s ymboli c oper ati ons the calc ulator inc ludes a po werf ul Co mputer A lgebrai c S y ste m (CAS) that lets y ou select diff er ent modes o f oper ation , e .g ., complex number s vs . r eal numbers , or e x act (s y mbolic) v s . appr o x imate (numer ical) mode . T he displa y can be adju sted to pr ov ide te xtbook - type e xp r essi ons[...]
-
Page 5
Pa g e TO C - 1 T abl e o f contents Chapter 1 - Getting started ,1-1 Basic Operations ,1-1 Batteries ,1-1 Turning the calculator on an d off ,1-2 Adjusting the display contrast ,1-2 Contents of the calculator’s display ,1-2 Menus ,1-3 SOFT menus vs. CHOOSE boxes ,1-4 Selecting SOFT menus or CHOOSE boxes ,1-5 The TOOL menu ,1-7 Setting time and d[...]
-
Page 6
Pa g e TO C - 2 Chapter 2 - Introducing the calculator ,2-1 Calculator objects ,2-1 Editing expressions on the screen ,2-3 Creating arithmetic exp ressions ,2-3 Editing arithmetic expressions ,2-6 Creating algebraic expressions ,2-7 Editing algebraic expressions ,2-8 Using the Equation Writer (EQW ) to create expressions ,2-10 Creating arithmetic e[...]
-
Page 7
Pa g e TO C - 3 Other flags of interest ,2-66 CHOOSE boxes vs. Soft MENU ,2-67 Selected CHOOSE boxes ,2-69 Chapter 3 - Calculation with real numbers ,3-1 Checking calculato rs settings ,3-1 Checking calculator mode ,3-2 Real number calculations ,3-2 Changing sign of a number, var iable, or expression ,3-3 The inverse function ,3-3 Addition, subtrac[...]
-
Page 8
Pa g e TO C - 4 Physical constants in the calc ulator ,3-29 Special physical functions ,3-32 Function ZFACTOR ,3-32 Function F0 λ ,3-33 Function SIDENS ,3-33 Function TDELTA ,3-33 Function TINC ,3-34 Defining and using functions ,3-34 Functions defined by more than one expression ,3-36 The IFTE function ,3-36 Combined IFTE functions ,3-37 Chapter [...]
-
Page 9
Pa g e TO C - 5 FACTOR ,5 -5 LNCOLLECT ,5-5 LIN ,5-5 PARTFRAC ,5-5 SOLVE ,5-5 SUBST ,5-5 TEXPAND ,5-5 Other forms of substitution in algebraic expressions ,5-6 Operations with transcendental functions ,5-7 Expansion and factoring using log-exp functions ,5-7 Expansion and factoring using trigonometric functions ,5-8 Functions in the ARITHMETIC menu[...]
-
Page 10
Pa g e TO C - 6 The PROOT function ,5-21 The PTAYL function ,5-21 The QUOT and REMAINDER functions ,5-21 The EPSX0 function and the CAS variable EPS ,5-22 The PEVAL function ,5-22 The TCHEBYCHEFF function ,5-22 Fractions ,5-23 The SIMP2 function ,5-23 The PROPFRAC function ,5-23 The PARTFRAC func tion ,5-23 The FCOEF function ,5-24 The FROOTS funct[...]
-
Page 11
Pa g e TO C - 7 Variable EQ ,6-26 The SOLVR sub-menu ,6-26 The DIFFE sub-menu ,6-29 The POLY sub-menu ,6-29 The SYS su b-menu ,6-30 The TVM sub-menu ,6-30 Chapter 7 - Solving multiple equations ,7-1 Rational equation systems ,7-1 Example 1 – Projectile motion ,7-1 Example 2 – Stresses in a thick wall cylinder ,7-2 Example 3 - System of polynomi[...]
-
Page 12
Pa g e TO C - 8 List size ,8-10 Extracting and inserting elements in a list ,8-10 Element position in the list ,8-11 HEAD and TAIL functions ,8-11 The SEQ function ,8-11 The MAP function ,8-12 Defining functions that use lists ,8-13 Applications of lists ,8-15 Harmonic mean of a list ,8-15 Geometric mean of a list ,8-16 Weighted average ,8-17 Stati[...]
-
Page 13
Pa g e TO C - 9 Changing coordi nate system ,9-12 Application of vector operations ,9-15 Resultant of forces ,9-15 Angle between vectors ,9-15 Moment of a force ,9-16 Equation of a plane in space ,9-17 Row vectors, column vector s, and lists ,9-18 Function OBJ ,9-19 Function LIST ,9-20 Function DROP ,9-20 Transforming a row vector into a co[...]
-
Page 14
Pa g e TO C - 1 0 Function VANDERMONDE ,10-13 Function HILBERT ,10-14 A program to build a matrix out of a nu mber of lists ,10-14 Lists represent columns of the matrix ,10-15 Lists represent rows of the matrix ,10-17 Manipulating matrices by columns ,10-17 Function COL ,10-18 Function COL ,10-19 Function COL+ ,10-19 Function COL- ,10-20 Fu[...]
-
Page 15
Pa g e TO C - 1 1 Function TRAN ,11-15 Additional matrix operations (The matri x OPER menu) ,11-15 Function AXL ,11-16 Function AXM ,11-16 Function LCXM ,11-16 Solution of linear systems ,11-17 Using the numerical solver for linear systems ,11-18 Least-square solution (function LSQ) ,11-24 Solution with the inverse matrix ,11-27 Solution by “divi[...]
-
Page 16
Pa g e TO C - 1 2 Function QXA ,11-53 Function SYLVESTER ,11-54 Function GAUSS ,11-54 Linear Applications ,11-54 Function IMAGE ,11-55 Function ISOM ,11- 55 Function KER ,11-56 Function MKISOM ,11-56 Chapter 12 - Graphics ,12-1 Graphs optio ns in the calculator ,12-1 Plotting an expression of the form y = f(x) ,12-2 Some useful PLOT operations for [...]
-
Page 17
Pa g e TO C - 1 3 Fast 3D plots ,12-34 Wireframe plots ,12-36 Ps-Contour plots , 12-38 Y-Slice plots ,12-39 Gridmap plots ,12-40 Pr-Surface plots ,12- 41 The VPAR variable ,12-42 Interactive drawing ,12-43 DOT+ and DOT- ,12-44 MARK ,12-44 LINE ,12-44 TLINE ,12-45 BOX ,12-45 CIRCL ,12-45 LABEL ,12-45 DEL ,12- 46 ERASE ,12-46 MENU ,12-46 SUB ,12-46 R[...]
-
Page 18
Pa g e TO C - 1 4 The SYMBOLIC menu and graphs ,12-49 The SYMB/GRAPH menu ,12-50 Function DRAW3DMATRIX ,12-52 Chapter 13 - Calculus Applications ,13-1 The CALC (Calculus) menu ,13-1 Limits and derivatives ,13-1 Function lim ,13-2 Derivative s ,13-3 Functions DERIV and DERVX ,13-3 The DERIV&INTEG menu ,13-4 Calculating derivatives with ∂ ,13-4[...]
-
Page 19
Pa g e TO C - 1 5 Integration with units ,13-21 Infinite series ,13-22 Taylor and Maclaurin’s se ries ,13-23 Taylor polynomial and reminder ,13-23 Functions TAYLR, TAYLR0, and SERIES ,13-24 Chapter 14 - Multi-variate Calculus Applications ,14-1 Multi-variate functions ,14-1 Partial derivatives ,14-1 Higher-order derivatives ,14- 3 The chain rule [...]
-
Page 20
Pa g e TO C - 1 6 Checking solutions in the calc ulator ,16-2 Slope field visualizati on of solutions ,16-3 The CALC/DIFF menu ,16-3 Solution to linear and non-linear equations ,16-4 Function LDEC ,16-4 Function DESOLVE ,16-7 The variable ODETYPE ,16-8 Laplace Transforms ,16-10 Definitions ,16-1 0 Laplace transform and inverses in the calculator ,1[...]
-
Page 21
Pa g e TO C - 1 7 Numerical solution of first-order ODE ,16-57 Graphical solution of first-order ODE ,16-59 Numerical solution of second-order ODE ,16-61 Graphical solution for a second-order ODE ,16-63 Numerical solution for stiff first-order ODE ,16-65 Numerical solution to ODEs with the SOLVE/DIFF menu ,16-67 Function RK F ,16-67 Function RRK ,1[...]
-
Page 22
Pa g e TO C - 1 8 Chapter 18 - Statistical Applications ,18-1 Pre-programmed statistical features ,18-1 Entering data ,18-1 Calculating single-variable statistics ,18-2 Obtaining frequency distributions ,18-5 Fitting data to a function y = f(x) ,18-10 Obtaining additional summary statistics ,18-13 Calculation of percentiles ,18-14 The STAT soft men[...]
-
Page 23
Pa g e TO C - 1 9 Paired sample tests ,18-41 Inferences concerning one proportion ,18- 41 Testing the difference betw een two proportions ,18-42 Hypothesis testing using pre-programmed features ,18-43 Inferences concerning one variance ,18-47 Inferences concerning two variances ,18-48 Additional notes on linear regression ,18-50 The method of least[...]
-
Page 24
Pa g e TO C - 2 0 Custom menus (MENU and TMENU functions) ,20-2 Menu specification and CST variable ,20-4 Customizing the keybo ard ,20-5 The PRG/MODES/KEYS sub-menu ,20-5 Recall current user-defined key list ,20- 6 Assign an object to a user-defined key ,20-6 Operating user-defined keys ,20-7 Un-assigning a user-defined key ,20-7 Assigning multipl[...]
-
Page 25
Pa g e TO C - 2 1 “De-tagging” a tagged quantity ,21-33 Examples of tagged output ,21-34 Using a message box ,21-37 Relational and logical operators ,21-43 Relational operators ,21-43 Logical operators ,21-45 Program branching ,21-46 Branching with IF ,21-47 The IF…THEN…END construct ,21-47 The CASE construct ,21-51 Program loops ,21-53 The[...]
-
Page 26
Pa g e TO C - 2 2 Examples of program-generated plots ,22-17 Drawing commands for use in programming ,22-19 PICT ,22-20 PDIM ,22-20 LINE ,22-20 TLINE ,22-20 BOX ,22-21 ARC ,22-21 PIX?, PIXON, and PIXOFF ,22-21 PVIEW ,22-22 PX C ,22-22 C PX ,22-22 Programming examples using drawing functions ,22-22 Pixel coordinates ,22-25 Animating graphics[...]
-
Page 27
Pa g e TO C - 23 Chapter 24 - Calculator objects and flags ,24-1 Description of calculator objects ,24-1 Function TYPE ,24-2 Function VTYPE ,24-2 Calculator flags ,24-3 System flags ,24-3 Functions for setting and changing flags ,24-3 User flags ,24-4 Chapter 25 - Date and Time Functions ,25-1 The TIME menu ,25-1 Setting an alarm ,25-1 Browsing ala[...]
-
Page 28
Pa g e TO C - 24 Storing objects on an SD ca rd ,26-9 Recalling an object from an SD card ,26-10 Evaluating an object on an SD card ,26-10 Purging an object from the SD card ,26-11 Purging all objects on the SD card (by reformatting) ,26-11 Specifying a directory on an SD card ,26- 11 Using libraries ,26-12 Installing and attaching a library ,26-12[...]
-
Page 29
Pa g e TO C - 2 5 Appendix F - The Applications (APPS) menu ,F-1 Appendix G - Useful shortcuts ,G-1 Appendix H - The CAS help facility ,H-1 Appendix I - Command catalog list ,I-1 Appendix J - MATHS menu ,J-1 Appendix K - MAIN menu ,K-1 Appendix L - Line editor commands ,L-1 Appendix M - Table of Built-In Equations ,M-1 Appendix N - Index ,N-1 Limit[...]
-
Page 30
Pa g e 1 - 1 Chapter 1 G e t ting started T his chapte r pr ov ides basi c inf ormatio n about the oper ation of y our calculator . It is desi gned to familiar i z e y ou w ith the basic oper ations and se ttings b e fo r e y ou perfor m a calc ulation . Basic Operations T he follo w ing secti ons ar e designed t o get y ou acquainted w ith the har[...]
-
Page 31
Pa g e 1 - 2 b . Insert a ne w CR203 2 lithium batter y . Make sur e its positi v e (+) side is f aci ng up . c. R eplace the plate and p u sh it to the ori ginal place. After installi ng the bat ter i es, pr ess [ON] to turn the po wer on . Wa rn i n g : When the lo w battery icon is displa y ed, y ou need to r eplace the batteri es as soon as pos[...]
-
Page 32
Pa g e 1 - 3 At the top o f the display y ou will ha v e two lines o f infor mation that de sc ribe the settings o f the calculator . The f irst line sho ws the c har acte rs: R D XYZ HE X R= 'X' F or details on the meaning of the se s y mbols see C hapter 2 . T he second line sho ws the c harac ter s: { HOME } indicating that the HOME di[...]
-
Page 33
Pa g e 1 - 4 E ach gr oup of 6 entr i es is called a Menu page . The c ur r ent menu , know n as the T OOL menu (s ee belo w) , has e ight en tri es ar ranged in tw o pages. T he next page , containing the ne xt two entr ies o f the menu is av ailable b y pr essing the L (NeXT menu) k e y . This k ey is the thir d ke y fr om the left in the thir d [...]
-
Page 34
Pa g e 1 - 5 T his CHOOSE bo x is labeled B ASE MENU and pr o v ide s a list of n umber ed fu nct ion s, from 1 . H EX x to 6. B R. T his displa y wi ll constitute the f irs t page of this CHOOSE bo x menu sho w ing si x menu f uncti ons. Y ou can nav igat e thr ough the menu b y using the up and do w n arr o w k e y s, —˜ , located in the u[...]
-
Page 35
Pa g e 1 - 6 If y ou no w pr es s ‚ã , instead of the CHOO SE bo x that y ou sa w earli er , the displa y w ill no w show six s oft menu la bels as the f irst page of the S T A CK menu: T o na vi gate thr ough the func tions of this me nu , pr ess the L k ey to mov e to the ne xt page , or „« (ass oc iated w ith the L k e y ) t o m o v e t o [...]
-
Page 36
Pa g e 1 - 7 The T OOL m enu T he soft menu k e y s for the men u c ur r ent ly displ ay ed , kno w n as t he T OOL men u , ar e assoc iat ed with oper ations r elated to manipulation o f var iables (s ee pages for more in forma tion o n variabl es) : @EDIT A EDIT the conten ts of a var ia ble (see Chapter 2 and Appendi x L for mor e infor mation o[...]
-
Page 37
Pa g e 1 - 8 9 k e y the T IME c hoose bo x is acti vated . T his operati on can also be r epr esented as ‚Ó . Th e TIM E ch oo se box i s sh o wn in th e figu re b el ow: As indicated abov e, the TIME men u pr o vi des f our differ ent options , number ed 1 thr ough 4. Of inter es t to us as this poin t is option 3 . Se t time , date .. . U sin[...]
-
Page 38
Pa g e 1 - 9 Let ’s change the minute f ield to 2 5, by pr ess ing: 25 !!@@OK#@ . T he seco nds f ield is no w highli ghted . Suppose that y ou w ant to c hange the seconds fi eld to 4 5, u se: 45 !!@@OK #@ T he time for mat f ield is no w highlighted . T o c h a n g e t h i s f i e l d f r o m i t s c u r r e n t set ting y ou ca n either pr ess[...]
-
Page 39
Pa g e 1 - 1 0 Setting th e date After s etting the time for mat option , the SET T IME AND D A TE input for m w ill look as f ollo w s: T o set the date , f irst set the date f ormat . The de fault f or mat is M/D/Y (month/ day/y ear). T o modif y this f or mat , pre ss the do w n arr o w ke y . T his w ill hi ghlight the date f or mat as sho wn b[...]
-
Page 40
P age 1-11 Intr oduc ing the calc ulator ’s k e yboar d The f igur e below sh ow s a di agram of the calculator ’s k ey boar d w ith the number ing of its ro ws and columns. T h e f i g u r e s h o w s 1 0 r o w s o f k e y s c o m b i n e d w i t h 3 , 5 , o r 6 c o l u m n s . R o w 1 has 6 ke ys , r ow s 2 and 3 hav e 3 ke y s each , and ro [...]
-
Page 41
P age 1-12 shift ke y , k e y (9 ,1 ) , and the ALPHA k e y , ke y ( 7 ,1) , can be combined w ith some of the other k e y s to acti vat e the alternati ve func tions sho w n in the k e yboar d . F or e x ample , the P key , key(4,4 ) , has the follo wing si x func tions as soc iated wi th i t: P Main functi on , to acti vate the S Y MBoli c menu ?[...]
-
Page 42
Pa g e 1 - 1 3 Pr ess the !!@ @OK#@ soft men u k e y to r etur n to nor mal displa y . Example s of s electing diffe r ent calc ulator modes ar e show n next . Oper at ing Mode T he calculator o ffer s two oper a ting mode s: the Algebr aic mode , and the Re v ers e P olish Notati on ( RPN ) mode . The de fa ult mode is the A lgebr aic mode (as ind[...]
-
Page 43
Pa g e 1 - 1 4 T o enter this e xpre ssion in the calc ulator w e w ill f irs t use the equation w r iter , ‚O . P lease identify the f ollo w ing k e y s in the k e yboar d , besi des the nume ri c k e y pad ke y s: !@.#*+-/R Q¸Ü‚Oš™˜—` T he equation w rite r is a displa y mode in whi ch y ou can build mathematical e xpre ssi ons using[...]
-
Page 44
Pa g e 1 - 1 5 Change the oper ating mode to RPN by f irst pr es sing the H butt on . Sele ct th e RPN oper ating mode b y either u sing the ke y , or pr essing the @ CHOOS soft m e n u k e y . P r e s s t h e !!@ @OK#@ soft men u k ey t o complete the oper ation . The displa y , for the RPN mode looks as f ollo w s: Notice that the displa y sho [...]
-
Page 45
Pa g e 1 - 1 6 3.` Ent er 3 in le v el 1 5.` Ent er 5 in le v el 1, 3 mov es to y 3.` Ent er 3 in le v el 1, 5 mov es to lev el 2 , 3 t o lev el 3 3.* P lace 3 and multipl y , 9 appears in le v el 1 Y 1/(3 × 3), la st value in le v . 1; 5 in lev el 2 ; 3 in lev el 3 - 5 - 1/(3 × 3) , occ up ies le v el 1 no w ; 3 in lev el 2 * 3 × (5 - 1/(3 × 3[...]
-
Page 46
Pa g e 1 - 1 7 Notice ho w the e xp r essi on is placed in stac k le ve l 1 after pre ssing ` . Pr essing the EV AL ke y at this point w i ll ev aluate the numer ical value o f that e xpr es sion Note: In RPN mode , pre ssing ENTER when ther e is n o command line w ill e xec ut e the D UP f uncti on whi ch cop ies the cont ents of stac k le vel 1 o[...]
-
Page 47
Pa g e 1 - 1 8 mor e about r e al s, see C hapter 2 . T o illustr ate this and other numbe r for mats try the f ollo w ing ex er c ises: Θ Standard f ormat : T his mode is the most us ed mode as it sho ws nu mbers in the mos t famili ar notation . Pr es s the !!@@ OK#@ soft menu k ey , with the Number f or mat set to St d , to re turn to the calc [...]
-
Page 48
Pa g e 1 - 1 9 Notice that the Number F or mat mode is set t o Fix f ollo wed b y a z er o ( 0 ). T his number indicat es the number of dec imals to be sho w n af t er the dec imal point in the calc ulator’s displa y . Pr ess the !!@@OK#@ soft menu ke y to r eturn to the calc ulator displa y . T he number no w is sho wn as: T his setting wi ll fo[...]
-
Page 49
Pa g e 1 - 2 0 Pres s the !!@@OK#@ soft menu k ey to complete the sel ec tion: Pr ess the !!@@OK#@ soft menu k e y r eturn to the calc ulator displa y . The number no w is s h ow n as: Notice ho w the number is r ounded, not tr uncated . Th us , the number 12 3 .4 5 6 7 8 9 012 3 4 5 6 , f or this s etting, is displa yed a s 12 3 .4 5 7 , and not a[...]
-
Page 50
Pa g e 1 - 2 1 same fa shion that w e c hanged the Fixe d number o f dec imals in the exa mp l e ab ove ) . Pr es s the !!@@OK#@ soft menu k ey r eturn to the calc ulator displa y . The number no w is s h ow n as: T his re sult , 1.2 3E2 , is the calculat or’s v ersio n of po w ers-o f- ten notatio n, i. e. , 1. 2 3 5 x 10 2 . In this, s o -calle[...]
-
Page 51
Pa g e 1 - 2 2 Pr es s the !!@@OK#@ soft menu k ey re turn to the calc ulator dis pla y . The n umber no w is s h ow n as: Becau se this number has thr ee fi gur es in the inte ger part, it is sho wn w ith fo ur signif icati v e fi gur es and a z ero po wer o f ten , while using the Engineer ing f ormat . F or e xample , the number 0.00 2 5 6, w il[...]
-
Page 52
Pa g e 1 - 23 Θ Pr es s the !!@@OK#@ soft menu k ey re turn to the calc ulator dis pla y . The n umber 12 3 .4 5 6 7 8 9012 , enter ed earlier , no w is sho wn as: Angle M easur e T r igonometr i c func tions , for e xample , r equir e arguments r epr ese nting plane angles . T he calculat or pr ov ides thr ee differ ent Angle Measur e modes fo r [...]
-
Page 53
Pa g e 1 - 24 k e y . If u sing the lat t er appr oach , use u p and dow n arr ow k ey s , — ˜ , to se lect the pr ef err ed mode , and pr ess the !!@@OK#@ soft menu k e y to complete the ope r ation . F or e xample , in the follo w ing scr een, the R adians mode is selec ted: Coor dinate S y stem The coo r di na te sy ste m sel ectio n a ffect [...]
-
Page 54
Pa g e 1 - 25 fr om the positi v e z ax is to the r adial dis tance ρ . T he Rec tangular and Spher ical coor dinate sy stems ar e re lated by the fo llo wi ng quantities: T o c hange the coordinat e s ys tem in y our calculat or , follo w these s teps: Θ Pr es s the H button. Ne xt, u se the do wn ar ro w k ey , ˜ , three times. Select the Angl[...]
-
Page 55
Pa g e 1 - 26 _L ast S tac k : K eeps the conten ts of the last st ack en tr y f or us e with the f unct ions UNDO and ANS (see C hapter 2). Th e _Beep option can be us ef ul to adv ise the user a bout err ors . Y ou may w ant to des elect this option if u sing yo ur calc ulator in a cla ssr oom or libr ary . Th e _K ey Cli ck opti on can be usef u[...]
-
Page 56
Pa g e 1 - 27 Selec ting Displa y modes T he calculator dis play can be c ustomi z ed to y our pr ef er ence b y selecting dif f erent disp lay mod es . T o see the op tional di splay sett ings use the follow ing : Θ F i r st , pr es s the H button to acti v ate the CAL CULA T OR MODE S input f or m. W ithin the CAL CUL A T OR MODE S input fo rm ,[...]
-
Page 57
Pa g e 1 - 2 8 Pr essing the @ CHOOS so ft menu k e y w ill pr o vi de a list of a v ailable s y ste m fonts , as sho w n belo w: T he options a vaila ble ar e thr ee standar d Sys t e m Fo n t s (si z es 8, 7 , and 6 ) and a Br o wse .. opti on. T he latter w ill let y ou br o w se the calc ulator memory f or additional f onts that y ou may ha v e[...]
-
Page 58
Pa g e 1 - 2 9 displa y the DISPLA Y MODE S input f orm . Pr ess the do wn ar r ow k e y , ˜ , tw i ce , to get to the Stack line . This line show s two pr operties that can be modif ied . When thes e pr oper ti es ar e selec ted (chec k ed) the f ollo w ing eff ects ar e acti v ated: _Small Changes f ont si z e to small . T his max imi z ed the a[...]
-
Page 59
Pa g e 1 - 3 0 times , to ge t to the EQW (E quati on W rit er ) line . This line sho w s tw o pr oper ti es that can be modif ied . When thes e properti es ar e select ed (chec k ed) the fo llo w ing eff ects ar e acti vated: _Small Changes f ont si z e to small w hile using the equati on edito r _Small S tac k Disp Sho w s small font in the s tac[...]
-
Page 60
Pa g e 1 - 3 1 r ight arr ow k ey ( ™ ) to select the under line in fr ont of the opti ons _Clock or _Analog . T oggle the @ @CHK@@ soft men u k e y until the desir ed setting is ac hie v ed. If the _Cloc k option is se lected , the time of the da y and date w ill be sho wn in the upper ri ght corner of the display . If the _Analog opti on is[...]
-
Page 61
Pa g e 2- 1 Chapter 2 Intr oducing th e calculator In this c hapter we present a n umb er of basi c oper ations of the calculator inc luding the use of the E quation W r iter and the manipulation of data obj ects in the calc ulator . Stud y the ex amples in this chapt er to get a good gr asp of the capab ilities of the calc ulator f or futur e appl[...]
-
Page 62
Pa g e 2- 2 the CA S, it mi ght be a good i dea to s w itch dir ectl y into appr o x imate mode . R efe r to Appendi x C f or mor e details . Mi x ing integers and reals together or mi s takin g an integer for a r eal is a common occ urr ence . Th e calc ulator w ill det ect su ch mi x ing o f obj ects and ask y ou if y ou w ant to s w itch t o app[...]
-
Page 63
Pa g e 2- 3 Binary integ ers , obje cts of t ype 10 , are used i n some computer sc ienc e applicati ons. Graphics objec ts , ob jec ts of type 11, st or e graphi cs pr oduced by the calc ulator . T agg ed objects , obj ects of t y pe 12 , ar e us ed in the output of man y pr ograms t o identify r esults . F or ex ample, in the tagged objec t: Mean[...]
-
Page 64
Pa g e 2- 4 T he r esulting e xpr essi on is: 5.*(1.+1./7.5)/( √ 3.-2.^3). Press ` to get the expr essio n in the dis play as f ollow s: Notice that , if your CA S is s et to EXA CT (see Appe ndi x C) and you en ter y our e xpr es sion us ing integer number s for in teger v alues , the r esult is a s y mbolic quantity , e . g ., 5*„Ü1+1/7.5™[...]
-
Page 65
Pa g e 2- 5 T o e valuat e the e xpr essi on w e can us e the EV AL functi on , as f ollo ws: μ„î` As in the pr ev ious e xample , yo u wi ll be ask ed to appr ov e c hanging the CAS setti ng to Appr o x . Once this is done , y ou w ill get the same r esult as bef or e . An alte rnati v e wa y to e valuat e the e xpr essi on enter ed earli er b[...]
-
Page 66
Pa g e 2- 6 T his lat t er r esult is pur el y numer ical , so that the two r esults in the stac k, although r epr esenting the same e xpr essi on, seem diff er ent . T o ver ify that they ar e not, w e subtr act the tw o values and e v aluate this differ ence using f uncti on EV AL: - Subtr act le v el 1 fr om lev el 2 μ Evalua te usin g funct i [...]
-
Page 67
Pa g e 2- 7 T he editing cur sor is sho wn a s a blinking left arr o w ov er the f irs t char acter in the line to be edited. Since the editing in this case consists of r emov ing some c har acte rs and r eplac ing them w ith others , w e w ill use the r i ght and left ar r o w keys, š™ , to mo ve the c urs or to the a ppr opri ate place f or ed[...]
-
Page 68
Pa g e 2- 8 W e set the calc ulator oper ating mode to Algebr aic , the CA S to Exac t , and the displa y to T e xtbook . T o ente r this algebr aic e xpr es sion w e us e the foll ow ing keys tro kes : ³2*~l*R„Ü1+~„x/~r™/ „ Ü ~r+~„y™+2*~l/~„b Press ` to get the fo llo w ing re sult: Enter ing this e xpr essi on when the calc ulato[...]
-
Page 69
Pa g e 2- 9 Θ Pr ess the r ight arr o w k e y , ™ , until the c ursor is to the r ight of the x Θ Ty p e Q2 to enter the po wer 2 f or the x Θ Pr ess the r ight arr o w k e y , ™ , until the c ursor is to the r ight of the y Θ Pr ess the de lete k ey , ƒ , once to era se the c har acter s y. Θ Ty p e ~„x to enter an x Θ Pr ess the r ig[...]
-
Page 70
Pa g e 2- 1 0 Θ Pr es sing ` once more to r eturn to normal display . T o see the entir e e xpr essi on in the sc r een, w e can change the optio n _Small Stack Di sp in the DIS P L A Y MODE S input for m (see Chapter 1). After eff ecting this change , the display w ill look as follo ws: Using the Equation W riter (E QW ) to create e xpressions T [...]
-
Page 71
Pa g e 2- 1 1 T he six s oft menu k ey s f or the E quation W rit er acti vat e the follo wing f uncti ons: @EDIT : lets the u ser edit an entry in the line editor (see e x amples abo ve) @CURS : hi ghlights e xpr essi on and adds a graphi cs c urs or to it @BIG : if se lected (se lecti on sho wn b y the char acter in the label) the f ont us ed in [...]
-
Page 72
Pa g e 2- 1 2 T he r esult is the e xpr essi on T he c ursor is sho w n as a left-fac ing ke y . T he c urso r indicat es the c ur ren t edition location . T yp ing a char act er , functi on name , or oper ation w ill enter the cor re sponding char acter or c har acter s in the cur sor location . F or e xample , for the c ursor in the location indi[...]
-
Page 73
Pa g e 2- 1 3 Suppos e that no w y ou w ant to add the fr ac tion 1/3 to this entir e expr ession , i .e ., y ou wan t to en ter the e xpr es sion: F i r st , w e need to hi ghlight the entir e f ir st ter m b y using ei ther the r ight ar r o w ( ™ ) or the upper ar r o w ( — ) k ey s, r epeatedl y , until the entir e e xpr essi on is highli g[...]
-
Page 74
Pa g e 2- 1 4 Sho wing the expression in smaller -siz e T o sho w the expr es sion in a smaller -si z e font ( whi c h could be u sef ul if the e xpr essi on is long and con vo luted), simply pr ess the @BIG soft menu k ey . F or this case, the scr een lo oks as follo ws: T o r ecov er the larger -font displa y , pr ess the @BIG soft me nu k e y on[...]
-
Page 75
Pa g e 2- 1 5 If y ou w ant a floating-po int (numer ical) e v aluation , us e the NUM fu nct ion (i .e ., …ï ) . T he r esult is as follo ws: Use the function UNDO ( …¯ ) on c e m ore t o rec ov er t h e o ri g in a l ex p ress io n : Ev aluating a sub-e xpression Suppos e that y ou w ant to ev a luat e only the e xpre ssio n in pare nth[...]
-
Page 76
Pa g e 2- 1 6 A s ymboli c ev aluation once mor e. Suppo se that , at this point , w e want to e valuate the left-hand side fr acti on onl y . Pr ess the upper ar r o w ke y ( — ) thr ee times to selec t that fr acti on, r esulting in: Then , pres s the @EVAL so f t menu k ey to obtain: Let ’s tr y a numer ical ev aluation o f this term at this[...]
-
Page 77
Pa g e 2- 1 7 Editing arithmetic e xpr essions W e w ill show s ome of the editing featur es in the E quation W riter as an e x erc ise . W e start b y enter ing the follo wi ng expr essi on used in the pr e v iou s ex er c ises: And w ill use the editing f eatur es of the E quati on E ditor to tr ansfo rm it into the fo llo w ing expr essio n: In [...]
-
Page 78
Pa g e 2- 1 8 Pr es s the do wn ar r o w k e y ( ˜ ) to tri gger the c lear editing cur sor . The sc r een no w looks like this: B y using the le f t ar r o w ke y ( š ) y ou can mov e the c ursor in the gener al left dir ecti on , but stopp ing at each indi vi dual component of the e xpr essi on . F or e xam ple , suppose that w e will f irst w [...]
-
Page 79
Pa g e 2- 1 9 Ne xt , we ’ll conv ert the 2 in f r ont of the parenth eses in the denominator into a 2/3 by using: šƒƒ2/3 At this point the e xpr essi on looks as f ollo w s: T he final step is to r emo ve the 1/3 in the r i ght-hand side of the e xpr ession . T his is accomplished by u sing: —————™ƒƒƒƒƒ T he final v ersi on w[...]
-
Page 80
Pa g e 2- 2 0 Use t he fo llow ing k ey str ok es: 2 / R3 ™™ * ~‚n+ „¸ ~‚m ™™ * ‚¹ ~„x + 2 * ~‚m * ~‚c ~„y ——— / ~‚t Q1/3 T his re sults in the output: In this e xample w e us ed se ve ral lo we r -case English lett ers , e .g., x ( ~„x ), se ver a l Gr eek letters, e .g., λ ( ~‚n ) , and e v en a combinati o[...]
-
Page 81
Pa g e 2- 2 1 Editing algebr aic ex pressions T he editing o f algebrai c equati ons follo ws the same r ules as the editing of algebr aic equati ons. Namely : Θ Use the ar r o w k e y s ( š™—˜ ) to highli ght e xpr essi ons Θ Use the do wn ar r o w ke y ( ˜ ) , r epeatedly , to tr igger the c lear editing c ursor . In this mode , use the [...]
-
Page 82
Pa g e 2- 22 2. θ 3. Δ y 4. μ 5. 2 6. x 7. μ in the e xponential f unction 8. λ 9. 3 i n t h e √ 3 ter m 10. the 2 in the 2/ √ 3 fr acti on At an y po int we can c hange the clear editing c urs or into the insertio n cur sor b y pr essing the dele te k e y ( ƒ ) . Let’s u se these two c ursor s (the clear editing c ursor and the inse r [...]
-
Page 83
Pa g e 2- 23 Ev aluating a sub-e xpression Since w e alr eady ha ve the sub-e xpre ssi on highli ghted , let ’s pr ess the @EVAL soft menu k e y to ev aluate this sub-e xpr ession . T he r esult is: Some algebr aic ex pre ssions cannot be simplif ied an ymor e. T r y the fo llow ing keys tro kes : —D . Y ou w ill notice that nothing happens , o[...]
-
Page 84
Pa g e 2- 24 3 in the f irst te rm of the numer ator . Then , pr ess the r ight ar r o w k e y , ™ , to nav igate thr ough the expr essi on. Simplifying an e x pr ession Pr ess the @ BIG soft menu k e y to get the sc r een to look as in the pre vi ous f igur e (see abo ve). Now , pre ss the @SIMP s oft menu k ey , to see if it is pos sible to sim[...]
-
Page 85
Pa g e 2- 2 5 Press ‚¯ to r ecov er the or iginal e xpre ssion . Ne xt , enter the f ollo w ing keys tro kes : ˜ ˜˜™™™™™™™———‚™ to sele c t the last two ter ms in the expr ession , i .e ., pr ess the @ FACTO soft menu k e y , to g e t Press ‚¯ to reco v er the ori ginal e xpre ssion . No w , let’s select the entir[...]
-
Page 86
Pa g e 2- 26 Ne xt , select the command DER VX (the deri vati ve w ith r espec t to the v ari able X, the c urr ent CAS indepe ndent var iable) b y using: ~d˜˜˜ . Command DER VX w ill no w be sele c ted: Pr ess the @ @OK@@ soft me nu k e y to get: Ne xt , pr ess the L k e y to r eco ve r the ori ginal E quati on W r iter men u , and pr ess the @[...]
-
Page 87
Pa g e 2- 27 Detailed e xplanation on the use of the help fac i lity f or the CA S is pr esented in Chapter 1. T o r eturn to the E quation W rite r , pre ss the @EXIT s oft menu k ey . Pr es s the ` k e y to e xit the E quation W rit er . Using the editing func tions BEGIN, END , COP Y , CUT and P ASTE T o f ac ilitate editing , w hether w ith the[...]
-
Page 88
Pa g e 2- 28 Ne xt , we ’ll copy the f r actio n 2/ √ 3 from t he lef tm ost fa ctor in th e exp r es sion, and place it in the numerat or of the ar gument fo r the LN function . T r y the fo llo w ing k ey str ok es: ˜˜šš———‚¨˜˜ ‚™ššš‚¬ T he r esulting sc r een is as f ollo w s: T he functi ons BE GIN and END are no t [...]
-
Page 89
Pa g e 2- 2 9 W e can no w cop y this expr essi on and place it in the denominator o f the LN ar gument , as follo ws: ‚¨™™ … ( 2 7 times ) … ™ ƒƒ … (9 times) … ƒ ‚¬ T he line editor n ow looks lik e this: Pr es sing ` sho w s the expr ession in the E quation W rit er (in small-font f ormat , pr ess the @ BIG soft menu k ey) [...]
-
Page 90
Pa g e 2- 3 0 T o see the cor r esponding e xpr es sio n in the line editor , pr es s ‚— and the A soft menu k ey , to sho w : T his expr es sion sho w s the gener al form o f a summation typed dir ec tly in the stac k or line ed itor : Σ ( inde x = st ar ting_v alue , ending_value , summation e xpres sion ) Press ` to r eturn to the E quation[...]
-
Page 91
Pa g e 2- 3 1 and the v ari able of diff er entiati on . T o f ill these input locati ons, use the f ollo w ing keys tro kes : ~„t™~‚a*~„tQ2 ™™+~‚b*~„t+~‚d The r esulting scr een is the follo w ing: T o see the cor r esponding e xpr es sio n in the line editor , pr es s ‚— and the A soft menu k ey , to sho w : T his indicates [...]
-
Page 92
Pa g e 2- 32 Definite integr als W e w ill use the E quati on W r iter to ent er the follo w ing def inite inte gral: . Pr es s ‚O to ac ti vat e the E quation W rite r . Then pr ess ‚ Á to enter the integral sign . Notice that the si gn, w hen enter ed into the E quati on W rit er sc r een, pr ov ide s input locations f or the limits of integ[...]
-
Page 93
Pa g e 2- 3 3 Double integr als ar e also pos sible . F or e x ample , w hich e v aluates to 3 6. P artial e valuati on is poss ible , for e x ample: T his integral e v aluates t o 3 6. Organi zing data in t he calculator Y ou can or gani z e data in yo ur calculator b y stor ing var iables in a dir ectory tr ee . T o unders tand the calc ulator ?[...]
-
Page 94
Pa g e 2- 3 4 @CHDIR : Change to s elected direct or y @CANCL : Cancel action @@OK@ @ : Appr ov e a selec tion F or ex ample , to c hange dir ectory to the CA SDI R , pr ess the do w n -arr o w k ey , ˜ , and pr ess @CHDIR . T his acti on clo ses the Fi l e M a n a g e r w indow and r eturns us to normal calc ulator dis play . Y ou w ill notice th[...]
-
Page 95
Pa g e 2- 3 5 T o mo ve betw een the differ ent so f t men u commands, y ou can u se not onl y the NEXT k e y ( L ), but also the PREV k ey ( „« ). T he user is in v ited to try these f uncti ons on his or her o w n. Their applicati ons ar e str aightf orwar d. T he HOME director y T he HOME dir ectory , as pointed out ear lier , is the base dir[...]
-
Page 96
Pa g e 2- 36 T his time the CA SD IR is hi ghlighted in the scr een. T o s ee the contents of the dir ect or y pr ess the @@ OK@@ soft menu k e y or ` , to get the f ollo w ing sc r een: T he scr een sho w s a table des cr ibing the var iable s contained in the CA SD IR dir ect or y . T hese ar e v ar iable s pr e -def ined in the calc ulator memor[...]
-
Page 97
Pa g e 2- 3 7 Pr essing the L k e y sho ws one mor e var iable st ored in this dir ectory: • T o see the contents o f the var ia ble EPS , f or e xam ple , use ‚ @EPS@ . T his sho w s the v alue of EP S to be .0000000 001 • T o see the v alue of a numeri cal v ari able , w e need t o pre ss onl y the soft menu k ey f or the v ar iable . F or [...]
-
Page 98
Pa g e 2- 3 8 loc k the alphabetic k ey boar d tempor aril y and enter a f ull name bef or e unloc king it again. T he fo llo w ing combination s of k e y str ok es w ill lock the alphabeti c k e yboar d: ~~ locks the alpha betic k e y boar d in upper case . When lock ed in this fas hio n , press in g th e „ bef or e a letter k ey pr oduces a lo [...]
-
Page 99
Pa g e 2- 3 9 Creating subdir ec tor ies Subdir ector i es can be cr eated by using the FI LE S env ironme nt or by u sing the c om ma nd C RD I R. Th e t wo ap proa ch es for cr e at i ng su b- di r e cto ries a r e pr esen ted next . Using the FI LE S menu Re gardles s of the mode of oper ation of the calc ulator (A lgebrai c or RPN) , w e can c [...]
-
Page 100
Pa g e 2- 4 0 Th e Object input f i eld, the f irst input f ield in the f orm , is highlight ed by def ault . T his input fi eld can hold the conte nts of a ne w var ia ble that is being cr eated. Since w e hav e no contents f or the new sub-dir ectory at this po int , we simpl y skip this input f ield b y pr essing the do w n -ar r o w k ey , ˜ ,[...]
-
Page 101
Pa g e 2- 4 1 T o mo v e into the MAN S dir ect ory , pr ess the co rr es ponding so ft menu k ey ( A in this case) , and ` if in algebr ai c mode. T he dir ectory tr ee w ill be sho wn in the second line o f the display as {HOME M N S} . Ho w e ver , ther e will be no labels as soc iat ed w ith the soft me nu k ey s , as sho w n belo w , becau se [...]
-
Page 102
Pa g e 2- 42 Us e the do wn ar r o w k e y ( ˜ ) to selec t the option 2. M E M O RY … , or ju st press 2 . Then , pre ss @@OK@@ . T his will pr oduce the follo w ing pull-dow n menu: Us e the do wn ar r o w k ey ( ˜ ) t o select the 5 . DIRE CT OR Y option , or j ust press 5 . Then, pr ess @ @OK@@ . This w ill pr od u ce the follo w ing pull-d[...]
-
Page 103
Pa g e 2- 4 3 Pr ess the @ @OK@ soft menu k ey to ac tiv ate the comm and , to cr eate the sub- dir ectory: Mov ing among subdirectories T o mo ve do wn the dir ectory tr ee , y ou need to pr ess the so ft menu k ey cor r esponding to the sub-dir ect or y y ou wan t to mo v e to . T he list o f var iable s in a sub-dir ecto r y can be pr oduced b y[...]
-
Page 104
Pa g e 2- 4 4 T he ‘S2’ str ing in this f orm is the name of the sub-dir ectory that is being deleted . T he soft men u k ey s pro vi de the fo llo w ing options: @YES@ Pr oceed w ith deleting the sub-dir ectory (or var i able) @ALL@ Pr oceed w ith deleting all sub-dir ector ie s (or var iables) !ABORT Do not delete sub-dir ectory (or var ia bl[...]
-
Page 105
Pa g e 2- 4 5 Us e the do wn ar r o w k e y ( ˜ ) to selec t the option 2. M E M O RY … T h e n , press @@OK@ @ . This w ill produ ce the fo llo w ing pull-do w n menu: Us e the dow n arr o w k e y ( ˜ ) to select the 5 . DIRE CT OR Y option . Then , press @@OK@ @ . This w ill produ ce the fo llo w ing pull-do w n menu: Us e the do wn arr ow k [...]
-
Page 106
Pa g e 2- 4 6 Press @@OK@@ , to get: Then , pres s ) @@S3@@ to enter ‘S3 ’ as the ar gument to PGDI R . Press ` to delete the sub-dir ectory: Command PGDIR in RPN m o de T o us e the PGDIR in RPN mode y ou need to hav e the name o f the direc tory , between q uotes , alr eady a vaila ble in the stac k bef or e accessing the command . F or ex am[...]
-
Page 107
Pa g e 2- 4 7 Using the PURGE command fr om the T OOL menu T he T OOL me nu is av ailable by pr essing the I ke y ( Algebr aic and RPN modes sho wn): T he PUR GE command is av ailable by pr essing the @PURGE s oft menu k e y . In the fo llo w ing e xample s w e want t o delete sub-dir ectory S1 : • Algebr aic mode: Enter @PURGE J ) @@S1@@ ` • R[...]
-
Page 108
Pa g e 2- 4 8 Using the FI LE S menu W e w ill use the FILE S menu to enter the v ari able A. W e assume that w e are in the sub- dir ectory {HOME M NS IN TRO}. T o get t o this sub-dir ectory , use the f ollo w ing: „¡ and sel ect the INTR O sub-dir ectory as sho w n in this scr een : Press @@OK@@ to ent er the dir ectory . Y ou w ill get a f i[...]
-
Page 109
Pa g e 2- 49 T o enter v ari able A (see table abov e) , w e fir st enter its contents , na me ly , the number 12 . 5, and then its name, A, as follo ws: 12.5 @@OK@@ ~a @@OK@@ . Resulting in the f ollo wing sc r een: Press @@OK@@ once more to c reate the v ari able. T he ne w var iable is show n in the fo llo w ing var ia ble listing: T he listing [...]
-
Page 110
Pa g e 2- 5 0 Using the ST O command A simpler w ay to cr eate a v ar ia ble is by us ing the S T O command (i .e ., the K k e y) . W e pro vi de e xample s in both the Algebr ai c and RPN modes, b y cr eating the r emaining of the v ar iable s suggested abo ve , namely : • Algebr aic mode Use the f ollo w ing k ey str ok es to s tor e the va[...]
-
Page 111
Pa g e 2- 5 1 z1: 3+5*„¥ K~„z1` (if needed , accept c hange to Comple x mode) p1: ‚å‚é~„r³„ì* ~„rQ2™™™ K~„p1` . T he scr een , at this point , will look as follo ws: Y ou w ill see si x of the se ven v ari ables lis ted at the bottom of the sc r een: p1, z1, R, Q, A12 , α . • RPN mode Use the f ollo w ing k e ys tr ok [...]
-
Page 112
Pa g e 2- 52 z1: ³3+5*„¥ ³~„z1 K (if needed , accept change to Comple x mode) p1: ‚å‚é~„r³„ì* ~„rQ2™™™ ³ ~„p1™` K . T he scr een , at this point , will look as follo ws: Y ou w ill see si x of the se v en var iables lis ted at the bottom of the sc reen: p1, z1, R, Q, A12 , α . Chec king v ariables contents As an ex [...]
-
Page 113
Pa g e 2-53 Pr essing the soft me nu k e y cor r esponding t o p1 will pr o v ide an er r or messa ge (tr y L @@@p1@@ ` ): Note: By pre ss i n g @@@p1@@ ` we ar e trying t o acti vate (r un) the p1 progr am . Ho w ev er , this pr ogr am e xpects a numer ical input . T r y the fo llo w ing ex erc ise: $ @@@p1@ „Ü5` . Th e r esul t is: T he pr ogr[...]
-
Page 114
Pa g e 2- 5 4 At this point , the scr een looks lik e this: T o see the contents o f A, use: L @@@A@@@ . To r u n p r o g r a m p1 w ith r = 5, use: L5 @@@ p1 @@@ . Notice that to run the pr ogram in RPN mo de , yo u only need to enter the in put (5) and pr es s the corr es ponding soft menu k ey . (In algebr aic mode , y ou need to place pare nth [...]
-
Page 115
Pa ge 2- 55 Notice that this time the con tents of pr ogr am p1 are liste d in the scr ee n . T o see the r emaining v ari able s in this direc tory , pr ess L : Listing the con tents of all v ariables in the s c r een Use the k e y str ok e combinati on ‚˜ to list the cont ents of all v ar iable s in the sc r een . F or e xample: Press $ to r e[...]
-
Page 116
Pa g e 2- 5 6 fo llow ed by the var iable ’s soft menu k e y . F or e xample , in RPN , if w e want to c ha nge the conten ts of var iable z1 to ‘ a+b ⋅ i ’, u s e : ³~„a+~„b*„¥` T his wil l place the algebrai c e xpr essi on ‘ a+b ⋅ i ’ in le v el 1: i n t h e st a ck . To en t e r this r esult into var iable z1 , us e: J„ [...]
-
Page 117
Pa g e 2- 57 Use t he up ar r o w k ey — t o select the sub-dir ect or y MAN S and pres s @@O K@@ . If y ou no w press „§ , the scr een will sho w the contents of sub-direc tory MANS (notice that v ar iable A is show n in this list , as e xpected): Press $ @INTRO@ ` (A lgebrai c mode) , or $ @ INTRO@ (RPN mode) to r eturn t o the INTR O direc [...]
-
Page 118
Pa g e 2- 5 8 Ne xt , use the delet e k ey thr ee times, to r emo ve the la st thr ee lines in the displa y : ƒ ƒ ƒ . At this po int , the stac k is r eady t o e xec ute the command ANS( 1) z1. Pr es s ` to e xec ute this command . Then , use ‚ @@z1@ , to ve rify the contents of the v ar iable . Using the stac k in RPN mode T o demonstr a [...]
-
Page 119
Pa g e 2- 59 Cop ying two or mor e v ariables using the stac k in RPN mode T he follo wing is an e xer cis e to de monstr ate ho w to copy tw o or mor e var iable s using the st ack w hen the calc ulator is in RPN mode. W e assume , again, that w e ar e wi thin sub-dir ectory {HOME MAN S INTRO} and that w e want to cop y the v ari able s R and Q in[...]
-
Page 120
Pa g e 2- 6 0 T he sc r een no w sho w s the new o rde ring o f the var ia bles: RPN mode In RPN mode, the lis t of r e -or der ed var iables is list ed in the s tack be for e appl y ing the command ORDER. Su ppose that w e start fr om the same situati on as abo ve , but in RPN mode, i .e ., Th e re ord e red l i st i s c rea t ed by u si n g : „[...]
-
Page 121
Pa g e 2- 6 1 Notice that v ar iable A12 is no longer ther e . If yo u no w pr ess „§ , the sc r een w ill sho w the contents of sub-dir ectory MANS , including v ari able A12 : Deleting va riables V ar iables can be deleted using functi on P URGE . T his fu ncti on can be acc essed dir ectl y b y using the T OOLS men u ( I ), or by using the FI[...]
-
Page 122
Pa g e 2- 6 2 va riab le p1 . Pr ess I @PURGE@ J @@p1@@ ` . The sc reen w ill no w s ho w va riab le p1 rem ove d : Y ou can us e the P URGE command to er as e mor e than one var iable b y plac ing their name s in a list in the ar gument of P URGE . F or e x ample , if no w we w anted to pur ge var iables R and Q , simult aneousl y , we can tr y th[...]
-
Page 123
Pa g e 2- 6 3 the HIS T k ey : UNDO r esults f r om the k e ys tr ok e seq uence ‚¯ , w hile CMD r esults f r om the k e y str ok e seq uence „® . T o illus trat e the us e of UNDO , try the follo w ing ex er c ise in algebr aic (A L G) mode: 5*4/3` . T he UNDO command ( ‚¯ ) wi ll simply er ase the r esult . The same e xer c ise in RPN mo[...]
-
Page 124
Pa g e 2- 6 4 As y ou can see , the number s 3, 2 , and 5, u sed in the fi rst calc ulation abo ve , ar e listed in the s electi on bo x , as w ell as the algebr aic ‘S IN(5x2)’ , but not the SIN f uncti on enter e d pr ev io us to the algebr aic . F lags A flag is a Boo lean value , that can be s et or clear ed (true or f alse) , that spec if [...]
-
Page 125
Pa g e 2- 65 Ex ample of flag setting: general solutions v s. pr incipal value F or e xample , the def ault v alue f or s y ste m flag 01 is Gener al solu tions . What this means is that , if an equation has m ultiple soluti ons, all the s olutions w ill be r eturned b y the calculato r , most lik el y in a list . B y pr essing the @ @CHK@ @ so[...]
-
Page 126
Pa g e 2- 6 6 ` (k eeping a s econd copy in the RPN stack) ³~ „t` Use the follo w ing k ey str oke sequence to enter the Q U AD command: ‚N~q (use the u p and dow n arr ow k ey s , —˜ , to se lect command QU AD) , pr ess @@OK@@ . The sc reen sho ws the pr inc ipal soluti on: No w , change the se t ting o f flag 01 to Ge ner al soluti ons : [...]
-
Page 127
Pa g e 2- 6 7 CHOO SE bo x es vs . Soft MENU In some of the ex er c ises pr es ented in this chapter w e hav e seen menu lists of commands dis play ed in the scr een. T hes e menu lists ar e r ef err ed to as CHOO SE bo x es . F or ex ample, to us e the ORD ER command to r eorde r v ari ables in a dir ect or y , we u se , in alge br aic mode: „°[...]
-
Page 128
Pa g e 2- 6 8 T he sc r een sho w s flag 117 not se t ( CHOO SE box es ) , as sho wn her e: Pr es s the @ @CHK @@ s oft menu k e y to set f lag 117 to soft MENU . The s cr een w ill r ef lect that c hange: Press @@OK@@ t w ice to retur n to normal calc ulator displa y . No w , we ’ll tr y to f i nd the ORDER command using similar k e y str ok[...]
-
Page 129
Pa g e 2- 69 Note: mos t of the e xam ples in this user guide a ssume that the cur r ent s et ting o f flag 117 is its default setting (that is, not se t) . If y ou ha ve s et the flag but w ant to str i ctl y follo w the e xam ples in this guide , y ou should c lear the flag bef or e con tinuing . Selec ted CHOO SE bo x es Some men us w ill onl y [...]
-
Page 130
Pa g e 2- 70 • T he CMDS (CoMmanD S) menu , acti v ated w ithin the Eq uation W rit er , i. e. , ‚O L @CMDS[...]
-
Page 131
Pa g e 3 - 1 Chapter 3 Calculation with re al numbers T his chapte r demonstr ates the us e of the calc ulator f or oper ations and f uncti ons r elated to r eal numbers . Oper ations along the se lines ar e use ful f or mos t common calc ulati ons in the ph ysi cal sc iences and engineer ing. T he user should be acquaint ed w ith the ke yboar d t [...]
-
Page 132
Pa g e 3 - 2 2 . Coordinate sy stem spe c ification (X Y Z , R ∠ Z, R ∠∠ ). T h e s y m b o l ∠ stands f or an angular coor dinate . XYZ: Carte sian or r ect angular (x,y ,z) R ∠ Z: cylindr ic a l P olar co or dinates (r , θ ,z ) R ∠∠ : Spher i cal coor dinates ( ρ,θ,φ ) 3 . Number base s pec ifi cati on (HEX, DEC , OCT , BIN) HEX[...]
-
Page 133
Pa g e 3 - 3 R eal number calc ulations w ill be demonstr ated in both the Algebr ai c (AL G) and R ev er se P olish Notati on (RPN) modes . Changing sign of a number , var iabl e , or e xpression Use the k ey . In AL G mode , y ou can pr ess be fo re e nter ing the number , e.g ., 2.5` . Re sult = - 2 . 5 . In RPN mode , y ou need to enter at[...]
-
Page 134
Pa g e 3 - 4 Alte rnati v el y , in RPN mode, y ou can separ ate the oper ands with a space ( # ) bef or e pr essing the oper ator k e y . Example s: 3.7#5.2 + 6.3#8.5 - 4.2#2.5 * 2.3#4.5 / Using parentheses P ar entheses can be used to gr oup operati ons, as w ell as to enclose ar guments of f unctions . T he par entheses ar e av ailable through t[...]
-
Page 135
Pa g e 3 - 5 Squares and squar e roots T he squar e func tion , S Q, is av ailable thr ough the k e y str ok e combinati on: „º . When calc ulating in the st ack in AL G mode , e nter the fu ncti on bef or e the argument , e.g ., „º2.3` In RPN mode , enter the numbe r fir st , then the f uncti on, e .g., 2.3„º The s quar e r oot functi o[...]
-
Page 136
Pa g e 3 - 6 Using po wers o f 10 in entering data P owe rs of te n, i.e. , nu mb e rs of t he fo rm - 4 .5 ´ 10 -2 , etc., ar e enter e d b y using the V k e y . F or e x ample , in AL G mode: 4.5V2` Or , in RPN mode: 4.5V2` Natural logar ithms and e xponential func tion Natur al logar ithms (i .e ., logarithms of base e = 2. 7 1 82 8 1 82 82[...]
-
Page 137
Pa g e 3 - 7 the in ver se tr igonometr i c functi ons r e present angles , the ans w er fr om these func tions w ill be gi v en in the select ed angular measur e (DEG , R AD , GRD) . Some e xamples ar e show n ne xt: In AL G mode: „¼0.25` „¾0.85` „À1.35` In RPN mode: 0.25`„¼ 0.85`„¾ 1.35`„À All the func tions de sc ribed abo ve ,[...]
-
Page 138
Pa g e 3 - 8 comb ination „´ . W ith the defa ult setting of CHOO SE bo xe s fo r syst em flag 117 (see C hapter 2) , the MTH menu is sho wn as the f ollo w ing menu list: As the y ar e a gr eat number of mathematic f uncti ons a vailable in the calc ulator , the MTH menu is s orted b y the t y pe of ob ject the f uncti ons appl y on . F or e x [...]
-
Page 139
Pa g e 3 - 9 Hy perbolic functions and th eir in verses Selecting Option 4. HYP ERBOLIC.. , in the MTH men u , and pr es sing @@OK@@ , pr oduces the h yper bolic f unction men u: The h y perbolic f unctions ar e: Hy perbo lic sine , SINH , and its inv ers e , AS INH or sinh -1 Hy perbo lic cosine , CO SH, and its inv erse , A CO S H or cosh -1 Hy p[...]
-
Page 140
Pa g e 3 - 1 0 T he r esult is: T he oper ations sho wn abo ve as sume that yo u are u sing the defa ult setting f or s y stem f lag 117 ( CHOO SE box es ). If y ou hav e changed the s etting of this flag (see Chapter 2) to SO FT m e nu , the MTH men u w ill sho w as labe ls of the s oft menu k ey s , as fo llo ws (l eft -hand si de in AL G mode , [...]
-
Page 141
Pa g e 3 - 1 1 F or ex ample , to calculat e tanh( 2 . 5), in the AL G mode , when u sing SO FT m e nu s ove r CHOO SE bo xe s , f ollo w this pr ocedur e: „´ Sele c t MTH menu ) @@HYP@ Selec t the HYP ERBOLIC.. menu @@TANH@ Selec t the TA N H fun cti on 2.5` Ev aluate t anh(2 .5 ) In RPN mode , the same value is calc ulated using: 2.5` Ente r a[...]
-
Page 142
Pa g e 3 - 1 2 Option 19 . MA TH.. r eturns the u ser to the MTH men u . The r emaining functi ons ar e gr ouped in to si x diffe r ent gr oups des cr ibed be low . If s y stem fl ag 117 is set to SO FT m e nu s , the REAL f uncti ons menu w ill look like this (A L G mode used , the same so ft menu k e y s w ill be a vailable in RPN mode) : The v e[...]
-
Page 143
Pa g e 3 - 1 3 T he r esult is sho wn ne xt: In RPN mode , recall that ar gument y is located in the second le v el of the st ack , w hile argument x is located in the f i r st le vel o f the stac k . T his means , y ou should enter x f irst , and then , y , jus t as in AL G mode . Thus , the calculati on of %T(15, 4 5 ) , in RPN mode , and w ith s[...]
-
Page 144
Pa g e 3 - 1 4 P lease notice that MOD is not a function , but r ather an operator , i . e ., in AL G mode , MOD sho uld be us ed as y MOD x , and not as MOD (y,x) . Th us, the oper ation o f MOD is similar to that of + , - , * , / . As an e x er c ise , v er ify that 15 M OD 4 = 15 mod 4 = r esidual o f 15/4 = 3 Absolute value , sign, mantissa, e [...]
-
Page 145
Pa g e 3 - 1 5 G AMM A: T he G amma f unction Γ ( α ) P SI: N -th deri vati v e of the digamma f uncti on P si: Digamma f uncti on, de ri vati v e of the ln(Gamma) T he Gamma functi on is def ined b y . T his functi on has appli cations in applied mathematic s fo r sc ience and engineer ing , as well a s in pr obab ility and statis tic s. Th e PS[...]
-
Page 146
Pa g e 3 - 1 6 Ex amples of thes e spec ial f unctions ar e sho w n her e using both the AL G and RPN modes. As an e x er c ise , v er if y that G AMMA(2 . 3) = 1.166 711…, PSI(1 . 5 , 3) = 1 .40909 .. , and P s i ( 1 .5) = 3. 6489 9 7 39 . . E- 2 . T hese calc ulations ar e sho w n in the fo llo w ing sc r een shot: Calculator constants T he fol[...]
-
Page 147
Pa g e 3 - 1 7 Selec ting an y of thes e entr ies w ill place the value s elected , w hether a sy mbol (e .g ., e , i , π , MINR , or MAXR ) or a v alue ( 2 .71. ., (0,1) , 3 .14 .., 1E - 4 99 , 9. 9 9. . E 4 9 9 ) in the s tac k. P lease notice that e is a v ailable fr om the k e y board as exp ( 1) , i .e ., „¸1` , in AL G mode , or 1` „¸ [...]
-
Page 148
Pa g e 3 - 1 8 T he user w ill recogni z e most o f these units (some , e.g ., dy ne , are not u sed v ery often no w aday s) fr om his or her ph ysi cs c lasse s: N = newto ns, dyn = dyne s, gf = gr ams – for ce (to distinguish f rom gr am-mass, or plainl y gr am, a unit of mas s) , kip = kilo -poundal (1000 pounds) , lbf = pound-f or ce (to dis[...]
-
Page 149
Pa g e 3 - 1 9 A vailable units T he follo w ing is a l ist of the units av ailable in the UNI T S menu . T he unit sy mbol is sho wn f irs t follo wed b y the unit name in parenth eses: LENG TH m (meter ) , cm (centimeter ) , mm (millimeter ) , y d (yar d) , ft (feet) , in (inc h) , Mpc (Mega parsec) , pc (par sec) , ly r (light -y e ar ) , a u (a[...]
-
Page 150
Pa g e 3 - 2 0 SPEED m/s (meter per s econd), cm/s (centimeter per second), f t/s (f eet per s econd) , kph (kilometer per ho ur ) , mph (mile per hour), knot (nautical mile s per hour), c (speed of light) , ga (accelerati on of gr av ity ) MA S S k g (kilogram), g (gr am) , Lb (av oir dupo is pound) , oz (ounce) , slug (slug) , lbt (T r o y pound)[...]
-
Page 151
Pa g e 3 - 2 1 ANGLE (planar and soli d angle measur ements) o (se x agesimal degree), r (radi an) , gr ad (gr ade) , ar cmin (minute of ar c) , ar cs (second of ar c) , sr (ster adian) LIGHT (Illuminati on measur ements) fc (foot candle) , f lam (footlambe rt) , lx (lu x) , ph (phot), sb (stilb), lm (lumem) , cd (candela) , lam (lambert) RAD IA T [...]
-
Page 152
Pa g e 3 - 2 2 Conv erting to base units T o conv er t an y of these units to the def ault units in the SI s yst em, u se the functi on UB A SE . F or e xample , to find out what is the v alue of 1 po ise (uni t of viscosit y) in the SI units , use the f ollo w ing: In AL G mode , s y ste m flag 117 se t to CHOOSE bo xes : ‚Û Select the UNIT S m[...]
-
Page 153
Pa g e 3 - 23 ` Con vert the units In RPN mode , s y stem f lag 117 set to SO FT m e nu s : 1 Enter 1 (n o underline) ‚Û Select the UNIT S menu „« @ ) VISC Select the VIS C OS ITY opti on @@@P@@ Select the unit P (poise) ‚Û Select the UNIT S menu ) @TOOLS Select the T OOLS m en u @UBASE Select the UB A SE functi on Attac hing units to numb[...]
-
Page 154
Pa g e 3 - 24 Notice that the under scor e is ente r ed automati call y when the RPN mode is acti v e . The r esult is the follo w ing sc r een: As indicated ear lier , if s ys tem flag 117 is s et to SOF T m en u s , then the UNI T S menu w ill sho w up as labels f or the soft menu k e ys . This se t up is very con veni ent f or extensi ve oper at[...]
-
Page 155
Pa g e 3 - 25 Yy o t t a + 2 4 d d e c i - 1 Z z etta + 21 c c enti - 2 E e x a +18 m milli -3 P peta +15 μ mic r o -6 T ter a +12 n nano - 9 Gg i g a + 9 p p i c o - 1 2 Mm e g a + 6 f f e m t o - 1 5 k ,K kilo +3 a atto - 18 h,H h ecto +2 z z epto - 21 D(*) dek a +1 y yoc to - 2 4 ___________ _____________________ ___________________ (*) In the [...]
-
Page 156
Pa g e 3 - 26 whi ch sho ws as 6 5_(m ⋅ yd). T o conv ert to units of the SI s y stem , use f uncti on UB A SE: T o calc ulate a di visi on , say , 3 2 50 mi / 5 0 h , ent er it as (3 2 50_mi)/(5 0_h) ` : w hich tr ansfor med to S I units , w ith func tion UB ASE , pr oduces: Additi on and subtr actio n can be perfor med, in AL G mode, w ithout u[...]
-
Page 157
Pa g e 3 - 27 St ack calc ulations in the RPN mode , do not r equir e y ou to enc lose the diff er ent terms in par enth eses, e .g ., 12_m ` 1. 5_y d ` * 3 2 50_mi ` 5 0_h ` / T hese oper ati ons pr oduce the f ollo w ing output: Also , tr y the f ollo wing oper ations: 5_m ` 32 0 0 _ m m ` + 12_mm ` 1_cm^2 `* 2_s ` / T hese las t two ope rati ons[...]
-
Page 158
Pa g e 3 - 28 UF A CT(x ,y) : fac tor s a unit y fr om unit obj ect x UNI T(x ,y) : combines v alue of x w ith units o f y T he UB A SE func tion w as disc ussed in detail in an earli er sec tio n in this cha pter . T o access any o f these f unctions f ollow the e xamples pro vided ear lier f or UB A SE . Notice that , w hile func tion UV AL r[...]
-
Page 159
Pa g e 3 - 2 9 Ex amples of UNI T UNIT( 2 5,1_m) ` UNI T(11. 3,1_mph) ` Ph y sical constants in t he calculator F ollow ing a l ong the treatment o f units, w e disc uss the u se of ph ysi cal constants that ar e av ailable in the calc ulato r’s memory . Thes e ph ysi cal cons tants ar e cont ained in a const ants libr ary acti vat ed[...]
-
Page 160
Pa g e 3 - 3 0 T he soft menu k ey s cor r esponding t o this CONS T A NT S LIBRAR Y sc r een inc lude the f ollo w ing func tions: SI w hen selec ted , constants v alues ar e sho wn in S I units ENGL w hen se lected , constant s value s ar e sho w n in English units ( *) UNIT when s elect ed, cons tants ar e sho wn w ith units attac hed (*) V AL U[...]
-
Page 161
Pa g e 3 - 3 1 T o see the v alues of the const ants in the English (or Imperi al) s ys tem , pre ss the @ENGL opti on: If w e de -select the UNIT S opti on (pr ess @UNITS ) onl y the v alues ar e show n (English units se lected in this case): T o cop y the value o f Vm to the s tack , select the var iable name , and pr ess ! , then , pr ess @QUIT@[...]
-
Page 162
Pa g e 3 - 32 Special ph ysical functions Menu 117 , tr igge r ed by u sing MENU(117) in AL G mode, or 117 ` MENU in RPN mode , pr oduces the fo llo w ing menu (labels lis ted in the displa y b y using ‚˜ ): Th e fu nct ion s i ncl ud e: ZF A CT O R: gas compr essibilit y Z f actor function F AN NI NG : Fan ni ng fr ict ion fact or fo r fl uid f[...]
-
Page 163
Pa g e 3 - 3 3 ZF A C T OR(x T , y P ) , w her e x T is the r educed t emper atur e , i .e ., the r atio of ac tual temper ature t o pseudo -c ri tical temper ature , and y P is the r educed pr essur e, i .e., the r atio of the ac tual pr essur e t o the pseudo -c r itical pr es sur e . The v alue of x T must be betw een 1. 05 and 3 . 0, while the [...]
-
Page 164
Pa g e 3 - 3 4 Function T I NC F uncti on T INC(T 0 , Δ T) calculat es T 0 +D T . The ope rati on of this f uncti on is similar to that of f uncti on TDEL T A in the sense that it r eturns a r esult in the units of T 0 . Otherwise , it re turns a simple additi on of value s, e .g ., Defining and using functions Use rs can def ine the ir ow n funct[...]
-
Page 165
Pa g e 3 - 3 5 Pr ess the J k ey , and y ou will noti ce that ther e is a new v ar iable in y our soft menu k ey ( @@@H@@ ) . T o see the contents of this v ar iable pr ess ‚ @ @@H@@ . The sc r een wi ll s how n o w: T hus , the var iable H contains a pr ogram de fined b y : << x ‘LN(x+1) + EXP(x)’ >> T his is a simple pr ogr [...]
-
Page 166
Pa g e 3 - 3 6 T he contents of the v ar iable K ar e: << α β ‘ α+β ’ >>. Functions defined b y mor e than one e xpression In this secti on w e disc us s the treatme nt of f uncti ons that are de fi ned by tw o or mor e e xpre ssio ns. An e x ample o f such f uncti ons wo uld be The fun ct ion IFT E ( I F- Th en -E lse ) d e[...]
-
Page 167
Pa g e 3 - 37 Combined IFTE functions T o pr ogr am a mor e compli cated f uncti on such as y ou can combine se v er al le ve ls of the IFTE func tion , i .e ., ‘ g(x) = IFTE(x<- 2 , - x, IF TE(x<0, x+1, IFTE(x<2 , x -1, x^2)))’ , Def ine this func tion b y an y of the means pr esent ed abo ve , and c hec k that g(-3) = 3, g(-1) = 0, g[...]
-
Page 168
Pa g e 4 - 1 Chapter 4 Calculations with compl e x numbers T his chapte r show s e xam ples of calc ulations and a pplication o f functi ons to comp lex n umbers . Definitions A comple x number z is a number w r itten as z = x + iy , wher e x and y ar e real numbers , and i is the imaginary unit defined b y i 2 = - 1. The comple x number x+iy has a[...]
-
Page 169
Pa g e 4 - 2 Press @@OK@@ , t w ice , to r eturn to the stack . Enterin g comple x numbers Comple x numbers in the calc ulator can be enter ed in either of the tw o Car tesian repr esenta tions, nam el y , x+iy , or (x ,y) . T he r esults in t he calc ulator w ill be show n in the or der ed-pair format , i.e ., (x ,y) . F or e x ample , w ith the c[...]
-
Page 170
Pa g e 4 - 3 Notice that the las t entr y sho ws a comple x number in the f orm x+iy . T his is so becaus e the number w as enter ed bet w een single quot es, w hic h r epr ese nts an algebr aic e xpr essi on . T o ev aluate this number u se the EV AL k e y( μ ). Once the algebr aic e xpr essi on is e val uated, y ou reco v er the comple x number [...]
-
Page 171
Pa g e 4 - 4 On the other hand , if the coor dinate s yst em is set to c ylindr ical coor dinates (us e C YLIN) , ent ering a com plex n umber (x,y), wher e x and y are r eal numbers , will pr oduce a polar repr esentati on . F or e x ample , in c y lindr ical coor dinates , enter the number (3 .,2 .) . T he fi gur e belo w show s the RPN st ack , [...]
-
Page 172
Pa g e 4 - 5 Changing sign of a complex number Changing the si gn of a comple x number can be accomplish ed by u sing the k e y , e .g ., -(5-3i) = -5 + 3i Entering the unit imaginary number T o ent er the unit imaginar y number ty pe : „¥ Notice that the n umber i is enter ed as the order ed pair (0,1) if the CA S is set to AP PR O X mode . I[...]
-
Page 173
Pa g e 4 - 6 CMP LX menu through the MTH menu Assuming that s y st em flag 117 is se t to CHOOSE bo x es (s ee Chapter 2), the CMPLX sub-men u w ithin the MTH menu is acc essed by using: „´9 @@OK@ @ . The follo wing sequen ce of scr een shots illustr ates t hese steps: T he fir st menu (opti ons 1 through 6) sho w s the follo w ing functi ons: R[...]
-
Page 174
Pa g e 4 - 7 T his fir st sc r een sho ws f uncti ons RE , IM, and C R . Noti ce that the last f uncti on r eturns a list {3 . 5 .} re pre senting the r eal and imaginar y compone nts of the comp lex n umber : T he follo wing s cr een sho ws func tions R C, AB S , and ARG . Notice that the AB S functi on gets tr anslated to |3 .+5 .·i|, th[...]
-
Page 175
Pa g e 4 - 8 T he re sulting menu inc lude some of the f uncti ons alread y intr oduced in the pr e vi ou s secti on , namely , AR G , AB S, C ONJ , IM, NEG , RE , and SIGN . It also inc ludes fu nctio n i whi c h serve s the same pur pos e as the k e y str ok e comb ination „¥ , i .e ., to enter the unit imaginar y number i in an e xpre ssi on.[...]
-
Page 176
Pa g e 4 - 9 Functions fr om th e MTH menu T he h yper bolic f uncti ons and their in v ers es , as w ell as the Gamma, P SI , and P si func tions (spec ial f uncti ons) we re introduced and appli ed to r eal numbers in Chapte r 3 . Thes e functi ons can also be appli ed to comple x numbers b y fo llo w ing the procedur es pr esented in Chapte r 3 [...]
-
Page 177
Pa g e 4 - 1 0 F uncti on DROI TE is f ound in the command catalog ( ‚N ). Using E V AL(AN S(1)) simplif ies the r esult to:[...]
-
Page 178
Pa g e 5 - 1 Chapter 5 Algebraic and ar it hmetic oper ations An algebr aic ob ject , o r simpl y , algebr aic , is an y number , var i able name or algebr aic e xpr essi on that can be operat ed upon , manipulated, and comb ined accor ding to the rule s of algebr a . Example s of algebr aic ob jec ts ar e the fo llo w ing: • A number : 12 .3, 15[...]
-
Page 179
Pa g e 5 - 2 (e xponential , logar ithmic , tr igonometry , h yper bolic , etc .) , as y ou would an y r eal or comple x number . T o demons trat e basic oper ations w ith algebr aic obj ects , let’s cr eate a c o up le of objects , say ‘ π *R^2’ and ‘ g*t^2/4’ , and stor e them in var iables A1 and A2 (See C hapter 2 to learn ho w to c [...]
-
Page 180
Pa g e 5 - 3 ‚¹ @@A1@ @ „¸ @@A2@ @ T he same r esults ar e obtained in RPN mode if using the fo llo w ing ke ys tr ok es: @@A1@ @ @@A2@ @ +μ @@A1@ @ @@A2@ @ -μ @@A1@ @ @@A2@ @ *μ @@A1@@ @@A2@ @ /μ @@A1@@ ʳ ‚¹ μ @@ A2@@ ʳ „¸ μ Functions in the AL G menu T he AL G ( Algebr aic) menu is av ailable b y using the k e ys tr ok e seq u[...]
-
Page 181
Pa g e 5 - 4 W e notice that , at the bottom of the sc r een , the line See: EXP AND F A CT OR suggests links t o other help f ac ility entr ies , the f unctions E XP AND and F A CT OR. T o mo ve dir ectly t o those entr ie s, pr ess the soft men u k ey @SEE1! for E XP AND , and @SEE2! for F A CT OR. Pr essing @SEE1 ! , f or e xample , show s the f[...]
-
Page 182
Pa g e 5 - 5 F A CT OR: LNCOLLE CT : LIN: P ARTFRA C: S OL VE: S UBS T : TEXP AND: Not e: R ecall that , to use these , or any othe r functi ons in the RPN mode, y ou mus t enter the ar gument f irst , and then the func tion . F or e x ample , the e x ample for TE XP AND , in RPN mode will be s et up as: ³„¸+~x+~y` At this point , select f unct[...]
-
Page 183
Pa g e 5 - 6 Other forms o f substitution in alg ebr aic e xpressions F uncti ons SUB S T , sho wn abo v e , is used to subs titute a var ia ble in an expr ession . A second f orm of substituti on can b e accomplished b y using the ‚¦ (ass oc iated w ith the I k e y) . F or e xample , in AL G mode , the fol lo w ing entry wi ll subs titute the v[...]
-
Page 184
Pa g e 5 - 7 A differ ent appr oach to subs titution consis ts in def ining the substituti on e xpr essi ons in calc ulator v ar iables and plac ing the name of the var iables in the or iginal e xpr essi on . F or e xample , in AL G mode , stor e the fo llow ing var ia bles: Then , enter the e xpre ssion A+B: T he last e xpr essi on enter e d is a [...]
-
Page 185
Pa g e 5 - 8 LNCOLLE CT , and TEXP AND ar e also contained in the AL G menu pr es ented earli er . F uncti ons LNP1 and EXP M wer e intr oduced in menu HYP ERBOLIC, under the MTH men u (See Chapt er 2) . T he only rem ainin g fun ctio n i s EXPL N. Its des cr ipti on is sho w n in the left-hand side , the e x ample fr om the help f ac ility is sho [...]
-
Page 186
Pa g e 5 - 9 Functions in the ARITHME T I C menu T he ARITHME T IC menu cont ains a number of sub-menu s for s pec ifi c appli cations in n umber theory (int egers , poly nomials , etc .) , as w ell as a nu mber of f uncti ons that apply to ge ner al arithme tic ope rati ons . The AR ITHME TI C menu is tr igge r ed through the k ey str ok e combina[...]
-
Page 187
Pa g e 5 - 1 0 L GCD (Greatest C ommon Denominator): P ROPFRA C (pr oper fr action) SI MP 2 : T he functi ons ass oci ated w ith the ARITHME T IC submenus: INTE GER , P OL YNOMIAL , MODUL O , and PERMUT A TION , are the fo llow ing: INT EG ER me nu EU LE R N u mb e r of in te g er s < n, c o - p rim e w i th n IABCUV Sol v es au + b v = c , w it[...]
-
Page 188
Pa g e 5 - 1 1 F A CT OR F act ori z es an integer n umber or a poly nomial FCOEF Gener ates f rac tio n giv en r oots and multipli c ity FR OO T S R eturns r oots and multipli c ity giv en a fr action GCD Gr eatest common di v isor of 2 numbers or pol y nomials HERMITE n -th degree Her mite pol yn omial HORNER Horner e v aluation o f a pol yno mia[...]
-
Page 189
Pa g e 5 - 1 2 Applications of the ARI THME T I C menu T his s ectio n is intended to pr es ent some of the back ground neces sar y f or appli cation of the ARI THMET IC menu f unctions . Def initions ar e pr esen ted ne xt r egarding the su bj ects of pol ynomials , pol ynomi al fr acti ons and modular ar ithmetic . T he ex amples pr esented belo [...]
-
Page 190
Pa g e 5 - 1 3 multipl y ing j times k in modulus n arithmeti c is, in essence , the integer r emainder o f j ⋅ k / n in inf inite arithmeti c , if j ⋅ k>n . F or e xample , in modulus 12 ar ithmetic w e hav e 7 ⋅ 3 = 21 = 12 + 9 , (or , 7 ⋅ 3/12 = 21/12 = 1 + 9/12 , i .e ., the int eger r eminder of 21/12 is 9). W e can no w wr ite 7 ?[...]
-
Page 191
Pa g e 5 - 1 4 Notice that , whene v er a r esult in the ri ght -hand si de of the “ congruence ” s ymbol pr oduces a r esult that is lar ger than the modulo (in this case , n = 6), you can alw ay s subtr act a multiple of the modulo fr om that re sult and simplif y it to a number smaller than the modulo . Thu s, the r esults in the f irst case[...]
-
Page 192
Pa g e 5 - 1 5 [SP C] entry , and then pr es s the corr esponding modular arithme tic f uncti on . F or e x ample , using a modulus o f 12 , tr y the f ollo wing oper ations: ADDTMOD e xamples 6+5 ≡ -1 (mod 12) 6+6 ≡ 0 (mod 12) 6+7 ≡ 1 (mod 12) 11+5 ≡ 4 (mod 12) 8+10 ≡ -6 (mod 12) SUB TMOD ex amples 5 - 7 ≡ - 2 (mod 12) 8 – 4 ≡ 4 (m[...]
-
Page 193
Pa g e 5 - 1 6 oper ating on them. Y ou can also conv er t an y number into a r ing number b y using the f uncti on EXP ANDMOD . F or ex ample, EXP A NDMO D(1 2 5) ≡ 5 (mod 12) EXP A NDMO D(17 ) ≡ 5 (mod 12) EXP ANDMOD(6) ≡ 6 (mod 12) The modular inv erse of a numb er Let a number k belong to a f inite ar ithmetic r ing of modulu s n , then t[...]
-
Page 194
Pa g e 5 - 1 7 P ol ynomials P oly nomials ar e algebrai c expr essi ons consisting of one or mor e ter ms cont aining decr easing po we rs of a gi v en v ari able . F or e xample , ‘X^3+2*X^2 - 3*X+2’ is a thir d-or der poly nomi al in X, while ‘S IN(X)^2 - 2’ is a second-or der poly nomial in SI N(X) . A listing o f poly nomi al-r elated [...]
-
Page 195
Pa g e 5 - 1 8 number s (func tion ICHINREM) . T he input consis ts of tw o v ector s [e xpr essi on_1, modulo_1] and [e xpr es si on_2 , modulo_2] . The o utput is a v ector containing [e xpr essi on_3, modulo_3] , wher e modulo_3 i s r elated to the pr oduct (modulo_1) ⋅ (modulo_2) . Example: CHINREM([X+1, X^2 -1],[X+1,X^2]) = [X+1,-(X^4 -X^2)][...]
-
Page 196
Pa g e 5 - 1 9 An alter nate def initi on of the Hermite pol yn omials is wher e d n /dx n = n- th der i vati ve w ith r espec t to x . This is the def inition u sed in the calc ulator . Ex amples: The Her mite pol ynomi als of or ders 3 and 5 ar e giv en b y: HERMITE( 3) = ‘8*X^3-12*X’ , And HER MI TE(5) = ‘3 2*x^5-160*X^3+120*X’ . T he HO[...]
-
Page 197
Pa g e 5 - 2 0 F or ex ample , for n = 2 , w e w ill w rit e: Chec k this r esult w ith yo ur calculator : L A GR ANGE([[ x1,x2],[y1,y2] ]) = ‘((y1-y2)*X+(y2*x1-y1*x2))/(x1- x2)’ . Other e x ample s: LA GR ANGE([[1, 2 , 3][2 , 8 , 15]]) = ‘(X^2+9* X-6)/2’ L A GRANGE([[0.5,1. 5,2 .5 , 3 .5, 4.5][12 .2 ,13 . 5,19 .2 ,2 7 . 3, 3 2 .5]]) = ‘ [...]
-
Page 198
Pa g e 5 - 2 1 T he PCOEF function Gi ven an ar r ay co ntaining the r oots of a pol y nomial , the fu nction PC OEF gener ates an ar r ay containing the coe ffi c ients o f the corr esponding poly nomial . T he coeffi c ients cor r espond t o decr easing or der o f the independent var ia ble. F or ex ample: PCOEF([- 2 ,–1, 0,1,1,2]) = [1. –1. [...]
-
Page 199
Pa g e 5 - 2 2 T he EPSX0 function and t he CAS v ariable EPS Th e va riab le ε (epsilon) is typ icall y used in mathemati cal te xtbooks to r epr esen t a v ery small number . T he calc ulator’s CAS cr eate s a v ari able EP S , w ith def ault v alue 0. 000000000 1 = 10 -10 , when y ou us e the EPSX0 f unction . Y ou can change this v alue , on[...]
-
Page 200
Pa g e 5 - 23 Fra c ti on s F r acti ons can be expanded and fact or ed b y using func tions EXP AND and F A CT OR, f r om the AL G menu (‚×) . F or ex ample: EXP AND(‘(1+X)^3/((X-1) *(X+3))’) = ‘(X^3+3*X^2+3*X+1)/(X^2+2*X-3)’ EXP AND(‘(X^2)*(X+Y)/( 2*X-X^2)^2)’) = ‘(X+Y )/(X^2 - 4*X+4)’ EXP AND(‘X*(X+Y )/(X^2 -1)’) = ‘(X^2[...]
-
Page 201
Pa g e 5 - 24 If y ou hav e the C omple x mode acti v e , the r esult w ill be: ‘2*X+(1/2/(X+i)+1/2/(X- 2 )+5/(X -5)+1/2/X+1/2/(X- i))’ T he FCOEF func tion T he function FC OEF is used to obta in a r a ti onal fr action , giv en the r oots and poles of the f r action . T he input f or the func tion is a v ector lis ting the r oots fo llo w ed [...]
-
Page 202
Pa g e 5 - 25 mode selec ted, then the r esults w ould be: [0 –2 . 1 –1. – ((1+i* √ 3)/2) –1. – ((1–i* √ 3)/2) –1. 3 1. 2 1.]. Step-b y-step operations w ith poly nomials and fractions B y setting the CA S modes to S tep/st ep the calc ulato r wil l sho w simplif icati ons of fr actions or oper ations w ith poly nomi als in a step[...]
-
Page 203
Pa g e 5 - 26 T he CONVERT M enu and algebr aic oper ations T he CONVER T menu is acti vated b y u sing „Ú ke y (the 6 key ) . T hi s menu summar i z es all con ver sion men us in the calc ulator . The lis t of these men us is sho wn next: T he functi ons a vaila ble in each o f the sub-menu s ar e sho w n next . UNIT S con vert menu (Option 1) [...]
-
Page 204
Pa g e 5 - 27 B ASE con vert menu (Option 2) T his menu is the same as the UNI T S menu obtained b y u sing ‚ã . The appli cations of this menu ar e discu sse d in det ail in Chapter 19 . TRIGONOMETRIC conv er t menu (Option 3) T his menu is the same as the TRIG men u obtained b y using ‚Ñ . The appli cations o f this menu ar e disc uss ed in[...]
-
Page 205
Pa g e 5 - 28 Fu n c ti o n NUM has the same eff ect as the k ey str ok e combination ‚ï (ass oc iated w ith the ` key) . Fun ct io n NU M co nver ts a s ym bo lic res ul t i nt o its floating-po int value . Func tion Q conv er ts a floating-po int v alue into a fr acti on . F uncti on Q π conv erts a floating-point v alue into [...]
-
Page 206
Pa g e 5 - 2 9 LIN LNCOLLE CT P O WEREXP AND S IMPLIF Y[...]
-
Page 207
Pa g e 6 - 1 Chapter 6 Solution to single equations In this c hapter w e featur e thos e functi ons that the calc ulator pr o vi des f or sol v ing single equations o f the for m f(X) = 0. Assoc iat ed with the 7 k e y ther e ar e two men us o f equation-sol v ing func tions , the S y mbolic S O L V er ( „Î ) , and the NUMer ical S oL V er ( ‚[...]
-
Page 208
Pa g e 6 - 2 Using the RPN mode, the s olution is accomplished b y enter ing the equation in the stac k , f ollo we d by the v ar ia ble , bef or e enter ing f uncti on IS OL. R ight bef or e the e xec ution of I SOL , the RPN st ack should look as in the f igur e to the left. After appl y ing IS OL , the r esult is sho w n in the f igur e to the r[...]
-
Page 209
Pa g e 6 - 3 The s cr e e n shot sho wn abo v e displa ys tw o solutions . In the firs t one , β 4 -5 β =12 5, SOL VE produce s no solu tions { }. In the s econd one , β 4 - 5 β = 6, S O L VE pr oduces f our soluti ons, sho w n in the last output line . The v ery last so lutio n is not v isible because the r esult occ up ies mor e c har acter s[...]
-
Page 210
Pa g e 6 - 4 In the f irst case S OL VEVX could not find a s olution . In the second case , S OL VEVX f ound a single solu tion , X = 2 . The fol low i ng scr e ens sh o w the RP N stack for solving th e t wo exam pl es s hown abo ve (be for e and after applicati on of S OL VEVX) : T he equation u sed as ar gument fo r functi on S OL VEVX must be r[...]
-
Page 211
Pa g e 6 - 5 The S ymbolic S olv er functi ons pre sented abo ve pr oduce soluti ons to rati onal equati ons (mainly , poly nomial equations). If the equation to be s ol ved f or has all numer i cal coeffi c ients , a numer ical soluti on is pos sible thr ough the use of the Numer ical S olv er f eatur es of the calc ulator . Numerical sol v er men[...]
-
Page 212
Pa g e 6 - 6 P ol ynomial Equations Using the Sol ve poly… option in the calc ulator’s SOL V E en vir onment y ou can: (1) f ind the solu tions to a pol yn omial equati on; (2) obtain the coeff ic ie nts of the pol y nomial ha v ing a number of gi ven r oots; (3) obtain an algebr aic e xpr essi on f or the p o ly nomial a s a functi on of X. F [...]
-
Page 213
Pa g e 6 - 7 All the s olutions ar e complex n umbers: (0.4 3 2 ,-0. 38 9) , (0.4 3 2 , 0. 38 9) , (-0.7 6 6, 0.6 3 2) , (-0.7 66 , -0.6 3 2) . Gene r ating poly nomial coefficients gi ven the polyn omial's roots Suppos e y ou w ant to gener ate the poly nomial w hose r oots are the n umbers [1, 5, - 2 , 4]. T o us e the calculat or fo r this [...]
-
Page 214
Pa g e 6 - 8 Press ˜ to tr igger the line editor to see all the coeff i c ients . Gene r ating an algebraic e xpression f or the polynomial Y ou can use the calc ulator to gener ate an algebr aic e xpr es sion f or a poly nomial giv en the coe ffi c ients or the r o o ts of the pol y nomial . T he r esulting e xpre ssi on w ill be giv en in ter ms[...]
-
Page 215
Pa g e 6 - 9 T o e xpand the pr oducts , y ou can us e the EXP AND command . The r esulting e xpr es si on is: ' X^4+-3*X^3+ -3*X^2 +11*X-6' . A differ ent appr oach to obtaining an e xpr essi on f or the poly nomi al is to gener a te the coeff ic ients fir st , then gene rat e the algebrai c e xpr essi on w ith the coeff ic ients highli [...]
-
Page 216
Pa g e 6 - 1 0 Ex ample 1 – Calculating pa yment on a loan If $2 milli on ar e borr o w ed at an annual int er est rat e of 6 . 5% to be r epaid in 60 monthly pa y ments , what should be the monthl y pay ment? F or the debt to be totall y r epaid in 6 0 months, the f utur e value s of the loan should be z er o. S o , for the purpo se of using the[...]
-
Page 217
Pa g e 6 - 1 1 pay m ents . Suppo se that w e use 2 4 peri ods in the firs t line of the amorti z ation scr een, i.e ., 24 @@OK @@ . T hen , pr ess @@AMOR@@ . Y ou w ill get the f ollo w ing re su l t : T his scr een is interpr eted as indi cating that after 2 4 months of pa y ing back the debt , the borr ow er has paid up US $ 7 2 3,211.43 int o t[...]
-
Page 218
Pa g e 6 - 1 2 ˜ Skip P MT , since w e w ill be sol v ing fo r it 0 @@OK@@ Enter FV = 0, the opti on End is highlight ed @@CHOOS ! — @@OK@@ Change pa yme nt option t o Begin — š @@S OLVE! Highl ight P MT and so lv e f or it T he scr een no w sho ws the v alue of P MT as –38 , 9 21.4 7 , i .e. , the borr o w er mu st pay the lender US $ 3 8,[...]
-
Page 219
Pa g e 6 - 1 3 ™ ‚í Enter a comma ³ ‚ @@PYR@ @ Enter name o f var iable P YR ™ ‚í Enter a comma ³ ‚ @@FV@ @ . Enter name o f var iable FV ` Ex ec ute P URG E command T he fo llo w ing two s cr een shots sho w the P URGE co mmand for purging all the v ari ables in the dir ectory , and the r esul t af t er e x ecu ting the command. In[...]
-
Page 220
Pa g e 6 - 1 4 ³„¸~„x™-S„ì *~„x/3™‚Å 0™ K~e~q` Press J to see the ne w ly c r eated E Q v ari able: Then , enter the SOL VE env ironment and select S olv e equation… , by using: ‚Ï @@OK@@ . The corr esponding sc r een w ill be sho w n as: T he equation w e s tor ed in v ari able E Q is alr eady loaded in the Eq field in the[...]
-
Page 221
Pa g e 6 - 1 5 This , ho w ev er , is not the only po ssible soluti on fo r this equation . T o obtain a negati ve s olutio n, f or e xampl e, ent er a negati v e number in the X: f ield be for e sol ving the equati on. T r y 3 @@@OK@@ ˜ @SOLVE@ . T he soluti on is no w X: - 3.045. Solution procedur e for Equation Solve ... T he numer ical sol ve[...]
-
Page 222
Pa g e 6 - 1 6 T he equation is her e e xx is the unit str ain in the x -directi on , σ xx , σ yy , and σ zz , are the nor mal str esses on the partic le in the dir ecti ons of the x -, y-, and z -ax es , E is Y oung’s modulus or modulus of elasti c ity of the mat er ial , n is the P ois son r ati o of the mater ial , α is the thermal e xpans[...]
-
Page 223
Pa g e 6 - 1 7 W ith the ex : fi eld highli ghted , pr ess @SOLVE @ to solve f or ex : T he soluti on can be seen fr om within the S OL VE EQU A TION in put for m b y pr essing @EDI T wh il e t he ex: f ield is highli ghted. T he r esulting value is 2. 4 7 0 833333333 E- 3. P r es s @@@OK@@ to e xit the ED I T featur e. Suppos e that y ou no w , w [...]
-
Page 224
Pa g e 6 - 1 8 Spec ifi c ener gy in an open c hannel is def ined as the ener g y per unit w eight measur ed w ith r es pect to the c hannel bottom . Let E = s pec if ic ener g y , y = c hannel depth , V = flo w v eloc ity , g = acceler ation of gra v ity , the n we w rite T he flo w v eloc it y , in tur n , is giv en by V = Q/A, wher e Q = w ater [...]
-
Page 225
Pa g e 6 - 1 9 Θ Solv e for y . T he r esult is 0.14 9 8 3 6.., i .e., y = 0.14 9 8 3 6 . Θ It is kno w n, how ev er , that ther e are ac tuall y two s oluti ons av ailable f or y in the spec if ic ener gy equatio n. T he soluti on w e jus t found cor r esponds to a numer i cal soluti on w i th an initial v alue of 0 (the de faul t va lu e fo r y[...]
-
Page 226
Pa g e 6 - 2 0 In the ne xt e x ample w e w ill use the D ARC Y functi on f or f inding fr ic tion fact ors in pipeline s. T hus , w e def ine the f unctio n in the follo wing f r ame . Special function for pipe flo w: D ARC Y ( ε /D ,Re) T he D ar cy- W eis bach equatio n is used to calc ulate the ener g y loss (per unit wei g ht ) , h f , in a p[...]
-
Page 227
Pa g e 6 - 2 1 Ex ample 3 – F low in a pipe Y ou may w a nt t o cr eate a separ ate sub-dir ectory (PIPE S) to tr y this e x ample . T he main equation go v ernin g flo w in a p ipe is, o f course , the D ar cy- W eisbac h equati on. T hu s, type in the fo llo w ing equation into E Q : Also , e nter the follo w ing var iables (f , A, V , Re): In [...]
-
Page 228
Pa g e 6 - 2 2 T he combined equation has pr imitiv e v ari ables: h f , Q , L, g, D, ε , and Nu . Lau nch t he num erical solver ( ‚Ï @@ OK@@ ) to s ee the primiti ve v ari ables listed in the S OL VE E QU A TION in put f orm: Suppo se that w e us e the value s hf = 2 m, ε = 0. 00001 m , Q = 0. 05 m 3 /s , Nu = 0. 000001 m 2 /s, L = 20 m , an[...]
-
Page 229
Pa g e 6 - 23 Ex ample 4 – Uni versal gr av itation Ne wton ’s la w of uni v ersal gr av itati on indicat es that the magnitude of the attr acti v e f or ce betw een tw o bodi es o f mas ses m 1 and m 2 s eparated b y a distance r is gi ven b y the equati on Her e , G is the uni v ersal gr av itati onal constant , who se v alue can be obtained [...]
-
Page 230
Pa g e 6 - 24 Sol v e for F , and pr ess to r eturn to norm al calculator dis play . T he sol ution is F : 6 .6 7 2 5 9E -15_N , or F = 6 .6 7 2 5 9 × 10 -15 N. Different w ay s to enter equations into EQ In all the e xample s sho wn abo v e we ha ve en ter ed the equati on to be sol ved dir ectl y into v ar iable E Q befo r e acti vating the n um[...]
-
Page 231
Pa g e 6 - 2 5 T ype an equati on, sa y X^2 - 12 5 = 0, dir ectl y on the stac k, and pr es s @@@OK@@@ . At this point the equati on is r eady f or solu tion . Alte rnati v ely , y ou can acti vate the equati on wr iter after pr essing @E DIT to enter y our equation . Pr ess ` to retur n to th e numeri ca l sol ver sc reen . Another wa y to enter a[...]
-
Page 232
Pa g e 6 - 26 The S OL VE soft menu The SOL V E soft menu a llow s a ccess to some of the numerical solv er fu nctions thr ough the soft men u k e ys . T o access this men u us e in RPN mode: 7 4 MENU , or in AL G mode: MENU(7 4) . Alter nativ ely , y ou can use ‚ (hold ) 7 to acti v ate the S OL VE soft men u . T he sub-menu s pr ov ided b y the[...]
-
Page 233
Pa g e 6 - 27 Ex ample 1 - Sol v ing the equati on t 2 -5t = - 4 F or ex ample , if you s tor e the equati on ‘t^2 -5*t=- 4’ into E Q, and pr ess @) SOLVR , it w ill acti v ate the f ollo wing menu: T his result indi cates that y ou can sol v e for a v alue of t f or the equation lis ted at the top of the displa y . If y ou tr y , fo r ex ample[...]
-
Page 234
Pa g e 6 - 2 8 Y ou can also sol ve mor e than one equati on by s olv ing one equation at a time , and r epeating the pr ocess until a soluti on is fo und . F or e xample , if y ou enter the f ollo w ing list of equati ons into var i able E Q: { ‘ a*X+b*Y = c’ , ‘k*X*Y=s ’}, the k e y str ok e sequ ence @) ROOT @ ) SOLVR , w ithin the S OL [...]
-
Page 235
Pa g e 6 - 2 9 Using units with the SOL VR sub-menu T hese ar e some rule s on the us e of units w ith the S OL VR sub-men u: Θ Enter ing a guess w ith units fo r a gi ven v ar ia ble , w ill intr oduce the u se of thos e units in the soluti on. Θ If a ne w gues s is gi ven w ithout units, the units pr ev iousl y sa ved f or that partic ular v ar[...]
-
Page 236
Pa g e 6 - 3 0 T his functi on pr oduces the coeff ic ients [a n , a n- 1 , … , a 2 , a 1 , a 0 ] of a poly nomial a n x n + a n- 1 x n- 1 + … + a 2 x 2 + a 1 x + a 0 , g ive n a ve ct or o f i t s ro o ts [r 1 , r 2 , …, r n ]. F or ex ample, a v ect or who se r oots ar e gi v en b y [-1, 2 , 2 , 1, 0], w ill p r oduce the f ollo w ing coeff[...]
-
Page 237
Pa g e 6 - 3 1 Press J to e x it the S OL VR en vi r onment . F ind y our w ay bac k to the TVM su b- menu w i thin the S OL VE sub-menu to try the other functi ons a vailable . Function T VMROO T This fun c tion requires as argument t he na me of one of the v ariables in t he T VM pr oblem . The f uncti on r eturns the s oluti on fo r that var ia [...]
-
Page 238
Pa g e 7- 1 Chapter 7 Solv ing multiple equations Man y pr oblems of sc i ence and engineer ing req uir e the simultaneous solu tions of mor e than one equation . The calc ulator pro v ides s ev er al pr ocedur es f or solv ing multiple equations as pr esented belo w . P lease notice that no discu ssion of solv ing sy stems of linear equation s is [...]
-
Page 239
Pa g e 7- 2 Use co mmand S OL VE at this point (f r om the S . SL V menu: „Î ) A fter about 40 s econds, may be more , yo u get as re sult a list: { ‘t = (x -x0)/(C OS( θ 0)*v0)’ ‘ y0 = (2*C OS( θ 0)^2*v0^2*y+(g*x^2(2*x0*g+2*SIN( θ 0))*CO S( θ 0 )*v0^2)*x+ (x0^2*g+2*S IN( θ 0)*C OS( θ 0)*v0^2*x0)))/(2*CO S( θ 0)^2*v0^ 2)’]} Press [...]
-
Page 240
Pa g e 7- 3 the cont ents of T1 and T2 to the stac k and adding and subtr acting them . Here is ho w to do it w ith the eq uation w r iter : Enter and s tor e ter m T1: Enter and st or e ter m T2: Notice that w e ar e using the RPN mode in this ex ample, ho we v er , the pr ocedur e in the AL G mode should be v ery simi lar . Cr eate the equation f[...]
-
Page 241
Pa g e 7- 4 Notice that the r esult include s a vec tor [ ] contained w ithin a list { }. T o r emo ve the list s y mbol , use μ . F inally , to decompose the v ector , use f uncti on OB J . T he r esult is: T hese tw o ex amples constitu te sy stems of linear equatio ns that can be handled equall y w ell w ith func tion LIN S OL VE (see Chap [...]
-
Page 242
Pa g e 7- 5 Ex ample 1 - Ex ample from the help facilit y As w ith all functi on entr ie s in the help fac ility , ther e is an e x ample at t ached to the MSL V entr y as sho wn abo v e . Notice that f uncti on MSL V r equir es thr ee ar guments: 1. A v ector co ntaining the equati ons, i .e., ‘[S IN(X)+Y ,X+SIN(Y )=1]’ 2 . A v ector containin[...]
-
Page 243
Pa g e 7- 6 disc har ge (m 3 /s or ft 3 /s) , A is the c ro ss-sec tional ar ea (m 2 or ft 2 ), C u is a coeff ic ient that depends on the s ys tem of units (C u = 1. 0 fo r the SI, C u = 1.4 8 6 fo r the English s ys tem o f units) , n is the Manning’s coe ff ic ient , a measure o f the c ha nnel surf ace r oughness (e . g ., f or conc r ete , n[...]
-
Page 244
Pa g e 7- 7 μ @@@EQ1@@ μ @@@EQ2@ @ . T he equatio ns ar e listed in the s tack a s follo ws (small fo nt option s elected): W e can see that these eq uations ar e indeed giv en in ter ms of the pr imitiv e var iable s b, m , y , g, S o , n, C u , Q, and H o . In or der to solv e for y and Q we need to giv e v alues to the other v ar iables. Suppo[...]
-
Page 245
Pa g e 7- 8 Ne xt , we ’ll enter var iable E QS: LL @@EQS@ , fo llow ed by v ector [y ,Q]: ‚í„Ô~„y‚í~q™ and b y t he in itial gu esses ‚í„Ô5‚í 10 . Bef or e pre ssing ` , the sc r een w ill look like this: Press ` to sol v e the sy stem of equatio ns. Y ou ma y , if your angular measur e is not set to r adians , get the fo l[...]
-
Page 246
Pa g e 7- 9 T he re sult is a list of thr ee v ector s. T he fir st vec tor in the list w ill be the equations sol ved . The second v ector is the list of unkno wns. The thir d v ector r epres ents the solu tion . T o be able to see the se v ector s, pr es s the do wn-a r r o w k e y ˜ to acti v ate the line editor . T he soluti on w ill be sho w [...]
-
Page 247
Pa g e 7- 1 0 T he cosine la w indicat es that: a 2 = b 2 + c 2 – 2 ⋅ b ⋅ c ⋅ cos α , b 2 = a 2 + c 2 – 2 ⋅ a ⋅ c ⋅ cos β , c 2 = a 2 + b 2 – 2 ⋅ a ⋅ b ⋅ co s γ . In or der to sol v e an y tr iangle , you need to kno w at least thr ee of the fo llo w ing si x v ar iable s: a, b, c, α, β, γ . T hen, y ou can use the equ[...]
-
Page 248
Pa g e 7- 1 1 ‘SIN( α )/a = SIN( β )/b ’ ‘SIN( α )/a = S IN( γ )/c’ ‘SIN( β )/b = S IN( γ )/c’ ‘ c^2 = a^2+b^2 - 2*a*b*CO S( γ )’ ‘b^2 = a^2+c^2 - 2*a*c*CO S( β )’ ‘ a^2 = b^2+c^2 - 2*b*c*CO S( α )’ ‘ α+β+γ = 180 ’ ‘ s = (a+b+c)/2’ ‘A = √ (s*(s-a)*(s-b)*(s-c))’ Then , enter the number 9 , and cr eat[...]
-
Page 249
Pa g e 7- 1 2 Press J , if needed , to get y our var i ables me nu . Y our men u should sho w the va riab le s @LVARI! ! @TITLE @@EQ@ @ . Preparing to run t he ME S T he next s tep is to acti vate the ME S and tr y one s ample soluti on. Be for e we do that , ho we v er , w e want to s et the angular units to DEGr ees, if the y ar e not alr eady s [...]
-
Page 250
Pa g e 7- 1 3 Let ’s tr y a sim ple soluti on of Cas e I, using a = 5, b = 3, c = 5 . Us e the fo llo w ing entr ies: 5 [ a ] a:5 is listed in the top left corner of the displa y . 3 [ b ] b:3 is listed in the top left corner of the displa y . 5 [ c ] c:5 is listed in the top left corner of the display . T o so lv e f or the angles u se: „ [ α[...]
-
Page 251
Pa g e 7- 1 4 Pr es sing „ @@ALL@@ will s olv e for all the v ar iables , tempor aril y sho w ing the intermediate r esults. Pr ess ‚ @@ALL @@ to see t he solu tions: When done , pres s $ to r eturn to the ME S env ironment . Pre ss J to ex it t he ME S en v ir onment and r eturn to the nor mal calc ulator displa y . Org anizing th e v ariabl e[...]
-
Page 252
Pa g e 7- 1 5 Progr amming the MES triangle solution using User RPL T o fac ilitate acti vating the ME S for f utur e soluti ons , w e will c r eate a pr ogram that w ill load the ME S wi th a single ke y str oke . The pr ogr am should look lik e this: << DEG MINI T TI TLE L V ARI MI TM MS OL VR >>, and can be ty ped in by using : ‚å[...]
-
Page 253
Pa g e 7- 1 6 Use a = 3, b = 4, c = 6 . The soluti on pr ocedure us ed her e consists of so lv ing fo r all var ia bles at once , and then r ecalling the soluti ons to the st ack: J @TRISO T o clear up data and r e -start ME S 3 [ a ] 4 [ b ] 6 [ c ] T o en ter data L T o mo ve t o the next v ar iable s menu . „ @ALL! S ol v e fo r all the unkno [...]
-
Page 254
Pa g e 7- 1 7 Adding an INFO but ton to your dir ec tory An inf ormati on button can be us ef ul for y our dir ectory to help y ou r emember the oper ation o f the func tions in the dir ectory . In this dir ecto r y , all w e need to r emember is to pr ess @TRISO to get a tr iangle s olution s tarted. Y ou may w ant to type in the fo llo w ing pr o[...]
-
Page 255
Pa g e 7- 1 8 An e xplanatio n of the v ari ables f ollo ws : SOL VEP = a progr am that tr iggers the multiple equati on sol v er fo r the partic ular s et of equations s tor ed in var iable PEQ ; NAME = a v ari able stor ing the name of the multiple equati on sol ve r , namely , "v el . & acc. polar coor d. " ; LIST = a list of the v[...]
-
Page 256
Pa g e 7- 1 9 Notice that afte r y ou enter a partic ular value , the calc ulator displa y s the v ari able and its value in the upper le f t co rner o f the displa y . W e hav e no w enter ed the kno wn v a r iables . T o calc ulate the unkno w ns w e can pr oceed in two ways: a) . So lv e fo r indiv idual var iables , for e xample , „ [ vr ] gi[...]
-
Page 257
Pa g e 7- 2 0[...]
-
Page 258
Pa g e 8 - 1 Chapter 8 Operations w ith lists L ists ar e a type o f calculat or’s ob ject that can be u sef ul f or data pr oces sing and in pr ogr amming. T his Cha pter pr esents e x amples of oper ations w ith lists . Definitions A list , within the conte xt of the calculat or , is a seri es of ob jec ts enclo sed between br aces and se parat[...]
-
Page 259
Pa g e 8 - 2 T he fi gur e belo w sho w s the RPN stac k befo r e pre ssing the K key: Composing and decomposing lists Compo sing and decompo sing lists mak es sense in RPN mode onl y . Under such oper ating mode , decomposing a list is ac hie v ed by u sing functi on OB J . With this func tion , a list in the RPN stac k is decompos ed into its[...]
-
Page 260
Pa g e 8 - 3 In RPN mode , the follo wi ng scr een show s the thr ee lists and their name s read y to be stor ed. T o stor e the lis ts in this case you need to pr ess K three times . Changing sign T he sign - change k e y ( ) , w hen applied to a list of number s, w i ll c hange the sign o f all elements in the list . F or e xam ple: Addition , [...]
-
Page 261
Pa g e 8 - 4 Subtr actio n, multiplicati on, and di v ision o f lists of numbers o f the same length pr oduce a list of the s ame length with ter m-b y- te rm oper ations . Exam ples: T he div ision L4/L3 w ill pr oduce an infinity entry becaus e one of the e lements in L3 is z er o: If the lists in v ol ved in the oper ation ha ve diff er ent leng[...]
-
Page 262
Pa g e 8 - 5 AB S EXP and LN L OG and ANTIL OG S Q and squar e root SIN, ASIN COS, ACOS T AN, A T AN INVER SE (1/x) Real number functions from the MTH menu F uncti ons of inter est fr om the MTH me nu include , fr om the HYPERB OLIC menu: S INH, A S INH, CO SH , A C OSH , T ANH, A T ANH, and fr om the REAL menu: %, %CH, %T , MIN, MAX, MOD , SIGN, M[...]
-
Page 263
Pa g e 8 - 6 T ANH, A T ANH S IGN, MANT , XP ON IP , FP FL OOR, CEIL D R, R D Ex amples of functions t hat use tw o arguments T he scr een shots belo w show appli cations o f the functi on % to list ar guments . F unction % r e quir es t w o ar guments. The f irst tw o ex amples sho w cases in w hic h only one o f the t w o ar guments is a [...]
-
Page 264
Pa g e 8 - 7 %({10,20, 30},{ 1,2 , 3}) = {%(10,1),%(20,2),%(3 0, 3)} T his desc r iption o f func tion % f or list ar guments sh o ws the gener al pattern of e valuati on of an y f uncti on w ith two ar guments when one or both ar guments ar e lists . Ex amples of appli cations o f func tion RND ar e sho wn ne xt: Lists o f comple x numbers T he fo[...]
-
Page 265
Pa g e 8 - 8 T he follo w ing ex ampl e sho w s applicati ons of the f uncti ons RE(R eal part) , IM(imaginar y part) , AB S(magnitude) , and AR G(argument) o f comple x numbers . The r esults are lists o f real n umbers: Lists o f algebraic objects T he follo wing ar e ex amples o f lists of algebr aic obj ects w ith the func tion S IN appl ie d t[...]
-
Page 266
Pa g e 8 - 9 T his menu cont ains the fo llo w ing func tio ns: Δ LIS T : C alc ulate incr ement among consec uti ve elements in list Σ LIS T : Ca lculat e summation o f elemen ts in the list Π LIS T : Calc ulate pr oduct of elements in the list S OR T : Sorts elemen ts in incr easing order REVLI S T : R e v erse s or der of list ADD : Oper ator[...]
-
Page 267
Pa g e 8 - 1 0 M anipulating elements of a list T he PR G (pr ogr amming) menu inc ludes a LI S T sub-m enu w ith a n umber of func tions t o manipulate ele ments of a list . W ith s ys tem f lag 117 se t to CHOO SE bo x es: Item 1. ELEMENT S.. co ntains the fo llo w ing func tions that can be us ed for the manipulation o f elements in lists: List [...]
-
Page 268
Pa g e 8 - 1 1 F uncti ons GET I and PUT I , also av ailable in sub-me nu PR G/ ELEMENT S/, ca n also be us ed to ext rac t and place elements in a list . Thes e t w o functi ons, ho w e ve r , are u se ful mainl y in pr ogr amming . F uncti on GET I us es the same ar guments as GE T and r eturns the lis t , the element locati on plus one , and the[...]
-
Page 269
Pa g e 8 - 1 2 SE Q is use ful t o pr oduce a list of v alues gi ve n a par ti c ular expr essi on and is desc r ibed in mor e detail her e . T he SEQ f uncti on tak es as ar guments an e xpr essi on in ter ms of an index , the name of the inde x , and starting, ending , and incr ement values f or the inde x , and r eturns a lis t consisting of the[...]
-
Page 270
Pa g e 8 - 1 3 In both case s, y ou can ei ther t y pe out the MAP command (as in the e x amples abo v e) or select the command fr om the CA T menu . T he follo w ing call to func tion MAP us es a pr ogr am instead of a f uncti on as second a r gument: Defining functions t hat use lists In Chapte r 3 w e intr oduced the use o f the D EFINE f unctio[...]
-
Page 271
Pa g e 8 - 1 4 to r eplace the plus sign (+) w ith ADD: Ne xt , we s tor e the edited e xpres sion in to v ari able @@@G@@@ : Ev aluating G(L1,L2) now pr oduces the f ollo w ing r esult: As an alter nati ve , y ou can define the f uncti on w ith ADD rathe r than the plus sign (+), fr om the s tart, i .e ., use DEFINE(' G(X,Y)=(X DD 3)*Y')[...]
-
Page 272
Pa g e 8 - 1 5 Applications of lists T his sectio n show s a couple of appli cations o f lists to the calc ulation o f statisti cs of a sa mple. B y a samp le w e u nderstand a list of v alu es , sa y , {s 1 , s 2 , …, s n }. Suppo se that the sample o f inter est is the list {1, 5, 3, 1, 2, 1, 3, 4, 2, 1} and that w e stor e it into a var iable [...]
-
Page 273
Pa g e 8 - 1 6 3 . Di v ide the r esult abo ve by n = 10: 4. Appl y the INV() func tion to the lat est r esult: T hus , the harmonic mean o f list S is s h = 1.63 4 8… Geometric mean of a list T he geometri c mean of a sample is def ined as T o f ind the geometri c mean of the list stor ed in S , w e can use the f ollo w ing pr ocedur e: 1. Appl [...]
-
Page 274
Pa g e 8 - 1 7 T hus , the geometri c mean of list S is s g = 1.00 3 203… W eighted aver age Suppo se that the data in list S , def ined abo ve , namel y : S = {1,5,3,1 ,2,1,3,4,2,1 } is affec ted b y the we ights , W = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} If w e def ine the we ight lis t as W = {w 1 ,w 2 ,…,w n }, w e noti ce that the k -t h elemen[...]
-
Page 275
Pa g e 8 - 1 8 3. U se f un c t io n Σ LIS T , once mo r e , to calc ulate the denominat or of s w : 4. Use the e xpre ssi on ANS( 2)/ANS(1) to cal culat e the w ei ghted a v er age: Th us, the w ei ghted av er age of list S w ith w eights in lis t W is s w = 2 .2 . Statistics of gr ouped data Gr ouped dat a is t y p icall y gi v en b y a table sh[...]
-
Page 276
Pa g e 8 - 1 9 T he clas s mar k data can be st ored in v ari able S , while the fr equency coun t can be stor ed in var iable W , as follo ws: Gi ven the list of class marks S = {s 1 , s 2 , …, s n }, and the lis t of fr equenc y counts W = {w 1 , w 2 , …, w n }, the w ei ghted a v er age of the data in S w ith w eights W r epr esents the mean[...]
-
Page 277
Pa g e 8 - 2 0 T o calc ulate this las t r esult , w e can us e the fo llow ing: T he standar d dev iati on of the gr ouped data is the sq uar e r oot of the var iance: N s s w w s s w V n k k k n k k n k k k ∑ ∑ ∑ = = = − ⋅ = − ⋅ = 1 2 1 1 2 ) ( ) ([...]
-
Page 278
Pa g e 9 - 1 Chapter 9 V ec tors T his Chapter pr o v ides e x amples o f enter ing and operating w ith vect ors , both mathematical v ector s of man y elements, as w ell as ph y sical v ectors of 2 and 3 components . Definitions F r om a mathematical po int of v ie w , a vec tor is an arr a y of 2 or mor e elements arr anged int o a r o w or a col[...]
-
Page 279
Pa g e 9 - 2 wher e θ is the angle betw een the tw o vec tors . The c r os s pr oduct pr oduces a vec tor A × B who se magnitude is | A × B | = | A || B |sin( θ ) , and its dir ecti on is gi v en by the s o -ca lled r ight -hand r ule (consult a textbook on Math , Ph y sics , or Mechani cs to s ee this oper ation illu str ated gr aphicall y) . [...]
-
Page 280
Pa g e 9 - 3 Stor ing vectors int o var iables V ector s can b e s tor ed into var iables . The sc r een shots belo w show the v ectors u 2 = [1, 2] , u 3 = [-3, 2, -2] , v 2 = [3 ,-1] , v 3 = [1, -5, 2 ] stor ed into v ariables @ @@u2@@ , @@@u3@@ , @@@v2@@ , and @@@v3@@ , r especti v el y . F irst , in AL G mode: T hen, in RPN mode (bef or e pr es[...]
-
Page 281
Pa g e 9 - 4 Th e ← WID k ey is u sed to decr ease the w idth of the columns in the spr eadsheet . Pr ess this k ey a couple o f times to see the column w idth dec r ease in y our Matr i x W r iter . Th e @ W I D → k ey is used to incr ease the w idth of the columns in the spr eadsheet . Pr ess this k ey a couple o f times to see the column w i[...]
-
Page 282
Pa g e 9 - 5 Th e @+ROW@ k e y w ill add a r o w full o f z er os at the location o f the select ed cell o f the spr eadsheet . Th e @-ROW k ey w ill delete the r o w corr esponding t o the selec ted cell of the spr eadsheet . Th e @+COL@ k e y w ill add a column full o f z er os at the location o f the selec ted cell of the spr eadsheet . Th e @-C[...]
-
Page 283
Pa g e 9 - 6 Building a vector with ARR Y Th e fu nct ion → ARR Y , av ailable in the func tion catalog ( ‚N‚é , us e —˜ to locat e the functi on), ca n als o be u sed to build a v ect or or ar r ay in the f ollo w ing wa y . In AL G mode , enter ARR Y( v ector el ements, numb er of elements ) , e .g ., In RPN mode: (1) Enter the [...]
-
Page 284
Pa g e 9 - 7 In RPN mode , the functi on [ → ARR Y] take s the obj ects fr om stac k lev els n+1, n, n- 1 , …, dow n to st ack le ve ls 3 and 2 , and con v erts them into a v ector of n elements . T he object ori ginally at s tack le v el n+1 becomes the f irst element , the obj ect or iginally at le v el n becomes the second element , and so o[...]
-
Page 285
Pa g e 9 - 8 Highli ghting the entir e e xpr essio n and using the @EV AL@ soft men u ke y , w e get the re su l t : -1 5 . T o r eplace an e lement in an arr a y use f uncti on PUT (y ou can find it in the func tion cat alog ‚N , or i n the P RG/LI S T/ELEMENT S sub-men u – the later w as intr oduced in Chapter 8). In AL G mode , y ou need to [...]
-
Page 286
Pa g e 9 - 9 Simple oper ations with vectors T o illus tr ate oper atio ns w ith vec tor s we w ill use the v ector s A, u2 , u3, v2 , and v3, sto r ed in an ear lier e xe r c ise . Changing sign T o change the si gn of a v ect or use the k e y , e .g., Addition , subtraction Additi on and subtrac tion o f vec tors r equir e that the t w o v ecto[...]
-
Page 287
Pa g e 9 - 1 0 Absolute value func tion T he absolute v alue func tion ( ABS), when appli ed to a vec tor , pr oduces the magnitude of the v ector . F or a v ector A = [ A 1 ,A 2 ,…,A n ], the magnitude is def ined as . In the AL G mode , enter the functi on name f ollo we d by the v ector ar gument . F or e xample: BS([1,-2 ,6]) , BS( ) , BS(u3)[...]
-
Page 288
Pa g e 9 - 1 1 Dot pr oduct F uncti on DO T is used to calc ula t e the dot pr oduct of tw o vec tors o f the same length. S ome e xample s of applicati on of f uncti on DO T , using the v ecto rs A, u2 , u3, v2 , and v3, stor ed ear lie r , ar e show n next in AL G mode . Attempts t o calc ulate the dot pr oduct o f two v ector s of differ ent len[...]
-
Page 289
Pa g e 9 - 1 2 In the RPN mode , appli cation o f func tion V w ill list the components o f a ve ctor in the st ack , e .g., V (A ) will pr oduce the f ollo w ing outpu t in the RPN stack (vector A is li sted in stack lev el 6: ). Building a t w o -dimensional v ec t or Fu n c ti o n V2 is used in the RPN mode to bu ild a vect or w ith [...]
-
Page 290
Pa g e 9 - 1 3 When the r ect angular , or Cartesi an, coor dinate s yst em is select ed, the t op line of the displa y w ill show an XY Z fi eld , and any 2 -D or 3-D v ector ent er ed in the calc ula t or is r eproduced as the (x ,y ,z) components o f the vecto r . T hus , to enter the v ector A = 3 i +2 j -5 k , w e use [3,2 ,-5], and the v ecto[...]
-
Page 291
Pa g e 9 - 1 4 T he fi gur e belo w sho w s the tr ansfor mation o f the v ector f r om spher ical to Cartesi an coor dinates , w ith x = ρ sin( φ ) cos( θ ), y = ρ sin ( φ ) cos ( θ ), z = ρ co s( φ ) . F or this case , x = 3 .204 , y = 1.4 9 4, and z = 3 . 5 3 6. If the C YLINdri cal s y stem is s elected , the top line of the dis play w [...]
-
Page 292
Pa g e 9 - 1 5 equi vale nt (r , θ ,z) with r = ρ sin φ , θ = θ , z = ρ co s φ . F or e x ample , the f ollo w ing f igur e sho ws the v ector ent er ed in spher ical coor d i nates, and tr ansf ormed to polar coor dinates . F or this case , ρ = 5, θ = 2 5 o , and φ = 4 5 o , while the tr ansfor mation sho ws tha t r = 3 .5 6 3, and z = 3[...]
-
Page 293
Pa g e 9 - 1 6 Suppos e that yo u want t o find the angle between v e c tors A = 3 i -5 j +6 k , B = 2 i + j -3 k , y ou could tr y the f ollo w ing oper ati on (angular measur e set to degr ees) in AL G mode: 1 - Enter vec tors [3,-5, 6], pr ess ` , [2 ,1,-3], pr ess ` . 2 - DO T(ANS(1),ANS(2)) calc ulates the dot pr oduc t 3 - ABS( ANS( 3))*ABS(([...]
-
Page 294
Pa g e 9 - 1 7 Thu s, M = (10 i +2 6 j +2 5 k ) m ⋅ N. W e kno w that the magnitud e o f M is such that | M | = | r || F |sin( θ ), wher e θ is the angle between r and F . W e can find this angle as , θ = sin -1 (| M | /| r || F |) by the f ollo w ing oper ati ons: 1 – AB S(AN S(1))/(AB S( ANS( 2))*ABS( ANS( 3)) calc ulates sin( θ ) 2 – A[...]
-
Page 295
Pa g e 9 - 1 8 Ne xt , we calc ulate v ector P 0 P = r as ANS(1) – AN S(2), i .e ., F inally , w e tak e the dot pr oduct o f ANS(1) and ANS( 4) and mak e it equal t o z er o to complete the oper ation N • r =0: W e can no w use f uncti on EXP AND (in the AL G menu) to e xpand this ex p ress io n : T hus , the equation of the plane thr ough poi[...]
-
Page 296
Pa g e 9 - 1 9 In this secti on w e w ill show ing yo u wa y s to transf or m: a column vec tor into a r o w vec tor , a r o w ve ctor int o a column vec tor , a list into a vec tor , and a vec tor (or matr i x) into a list . W e f irst demons tr ate thes e transf ormations u sing the RPN mode. In this mode , w e w ill use f uncti ons OB J , ?[...]
-
Page 297
Pa g e 9 - 2 0 If w e no w appl y func tion OB J once mor e , the list in st ack le vel 1:, {3 .}, w ill be decomposed as follo ws: Function LIS T T his functi on is used to c r eate a list gi ven the eleme nts of the list and the list length or si z e. In RPN mode , the list si z e, s a y , n, should be placed in stac k le vel 1:. T he ele[...]
-
Page 298
Pa g e 9 - 2 1 3 - Use f uncti on ARR Y to build the column vec tor T hese thr ee steps can be put t ogether into a U serRP L pr ogr am, e nter ed as fo llo ws (in RPN mode , still) : ‚å„° @) TYPE! @ OBJ @ 1 + ! ARRY@ `³~~rxc` K A ne w v ar iabl e , @@RXC@@ , will be av ailable in the soft menu labels after pr es sing J : Press ?[...]
-
Page 299
Pa g e 9 - 2 2 2 - Use f uncti on OB J to d ecompose the l ist in stac k le vel 1: 3 - Pr ess the de lete k e y ƒ (also kno wn a s functi on DROP) t o eliminate the number in st ack lev el 1: 4 - Use f uncti on LIS T to cr eate a list 5 - Use f uncti on ARR Y to cr eate the r o w v ecto r T hese f i v e steps can be put t ogether into [...]
-
Page 300
Pa g e 9 - 23 Th is variab le, @@CXR@@ , can no w be used t o dir ectl y transf orm a column v ector to a r o w vec tor . In RPN mode , enter the column v ector , and then pre ss @@CXR@ @ . T ry , fo r ex ample: [[1] ,[2],[3]] ` @@CXR@@ . After hav ing def ined v ar iabl e @@CXR@@ , w e can use it in AL G mode to transf or m a r o w vec tor into a [...]
-
Page 301
Pa g e 9 - 24 A ne w v ar iabl e , @@LXV@@ , will be av ailable in the soft menu labels after pr es sing J : Press ‚ @@LXV@@ to see the pr ogram co ntained in the v ari able LXV : << OBJ 1 LIST RRY >> Th is va r i ab le, @@LXV@@ , can no w be used to dir ectly tr ansfor m a list into a v ector . In RPN mode , enter the lis[...]
-
Page 302
Pa g e 1 0 - 1 Chapter 10 ! Cr eating and manipulating matrices T his chapte r show s a number of e xamples aimed at c reating matr ices in the calc ulator and demons tr ating manipulation of matr i x elements . Definitions A matr i x is simpl y a re ctangular arr ay of ob jec ts (e.g ., numbers , algebr aics) hav ing a n umber of r o w s and colum[...]
-
Page 303
Pa g e 1 0 - 2 Entering matr ices in the stac k In this secti on w e pr esent tw o diffe r ent methods to enter matr ices in the calc ulator st ack: (1) using the Matr i x W rit er , and (2) typ ing the matri x dir ectl y i nto th e sta ck. Using the M atr ix W riter As w i th the case of vectors, discussed in Ch apter 9 , ma tr ices c an be en ter[...]
-
Page 304
Pa g e 1 0 - 3 If y ou ha ve s elected the t extbook displa y option (using H @) DISP! and c hecking off Textbook ) , the matr ix w ill look lik e the one sho w n abo ve . O the r w ise , the displa y w ill sho w: T he displa y in RPN mode w ill look very similar to these . T yping in the matri x directly into the stac k T he same r esult as a [...]
-
Page 305
Pa g e 1 0 - 4 or in the MA TRICE S/CREA TE menu a v ailable thr ough „Ø : T he MTH/M A TRI X/MAKE sub menu (let’s call it the MAKE menu) contains the fo llo w ing fu ncti ons: w hile the MA TRICE S/CREA TE sub-menu (let’s call it the CREA TE menu) has the fo llo w ing fu ncti ons:[...]
-
Page 306
Pa g e 1 0 - 5 As y ou can see f r om e xploring the se menu s (MAKE and CREA TE) , the y both hav e the same f uncti ons GET , GET I, P UT , P U T I , SUB , REP L , RDM, R ANM, HILBERT , V ANDERMONDE , IDN, CON , → DIA G , and DI A G → . The CREA TE menu inc ludes the C OL UM N and RO W sub-menu s, that ar e also a vaila ble under the MTH/MA T[...]
-
Page 307
Pa g e 1 0 - 6 Functions GET and P UT F uncti ons GET , GE TI , P UT , and P UT I, oper ate w ith matri ces in a similar manner as w ith lists or v ectors , i .e ., y ou need to pr o vi de the location o f the element that y ou want to GE T or PUT . Ho we ver , w hile in lists and v ector s only one inde x is r equired to identify an element , in m[...]
-
Page 308
Pa g e 1 0 - 7 Notice that the s cr een is prepar ed fo r a subseq uent appli cation o f GET I or GE T , b y incr easing the column index o f the ori ginal re fer ence b y 1, (i .e., f r om {2 ,2} to {2 , 3}) , w hile sho w ing the ex trac ted v alue , namel y A(2 ,2) = 1.9 , in stac k lev el 1. No w , suppose that y ou w ant to inser t the v alue [...]
-
Page 309
Pa g e 1 0 - 8 If the ar gument is a r eal matri x, TRN simpl y pr oduces the tr anspos e of the r eal matr i x. T r y , f or e xample , TRN(A ) , and compar e it w ith TRAN(A ) . In RPN mode , the tr ansconjugat e of matri x A is calc ulated by using @@@A@@@ TRN . Function CON T he functi on tak es as ar gument a list of tw o elements, cor r espon[...]
-
Page 310
Pa g e 1 0 - 9 In RPN mode this is accomplished b y using {4 ,3} ` 1.5 ` CON . Function IDN F uncti on ID N (IDeNtity matri x) cr eates an identity matri x giv en its si z e. R ecall that an identity matr i x has to be a squar e matri x , ther ef or e , only one v alue is r equir ed to des cr i be it completel y . F or ex ample, t o cr eate a 4 ?[...]
-
Page 311
Pa g e 1 0 - 1 0 v ector ’s dimensi on, in the latte r the number of r o ws and columns of the matr ix . T he follo wing e x amples illus tr ate the use o f functi on RDM: Re -dimensioning a vector into a matr ix T he follo w ing ex ample sho ws ho w to r e -dimension a v e c tor of 6 ele ments into a matr i x of 2 r o w s and 3 columns in AL G m[...]
-
Page 312
Pa g e 1 0 - 1 1 If using RPN mode , we a ssume that the matr i x is in the stac k and us e {6} ` RDM . Function R ANM F uncti on RANM (RANdom Matr i x) w ill gener ate a matr i x w ith r andom integer elements gi ven a list w ith the number of r ow s and columns (i .e ., the dimensions of the matr i x) . F or e xample , in AL G mode , t w o diff e[...]
-
Page 313
Pa g e 1 0 - 1 2 In RPN mode , assuming that the or iginal 2 × 3 matr i x is alread y in the stac k, u se {1,2} ` {2,3} ` SUB . Function REP L F uncti on REPL r e place s or inserts a sub-matr i x into a lar ger one . The input f or this func tio n is the matri x wh ere the r eplacement w ill tak e place, the location w here the r e placeme nt beg[...]
-
Page 314
Pa g e 1 0 - 1 3 In RPN mode , wi th the 3 × 3 matri x in the stac k, w e simply hav e to acti v ate fu nct ion DI G to obtain the same r esult as abo ve . Function DIA G → Fu n c ti o n D I A G → tak es a v ector and a lis t of matr i x dimensions {r o ws , columns}, and c r eates a diago nal matr ix w ith the main diagonal r eplaced w it[...]
-
Page 315
Pa g e 1 0 - 1 4 F or ex ample, the f ollo wing command in AL G mode for the list {1,2 , 3, 4}: In RPN mode, ente r {1,2,3,4} ` V NDER MONDE . Function HIL BER T F uncti on HI LBER T cr eates the Hilbert matri x cor re sponding to a dimensi on n. B y def inition , the n × n Hilbert matr i x is H n = [h jk ] n × n , so that T he Hilbert matri x ha[...]
-
Page 316
Pa g e 1 0 - 1 5 enter ed in the displa y as you perf or m those k ey str ok es . F irs t , we pr esent the steps ne cessar y to produce p r og r am C RMC. Lists r epr esent columns of the matri x Th e p r o gra m @CRMC allo w s yo u to put together a p × n matr i x (i .e., p r o w s, n columns) out of n lists of p elements each . T o cr eate the [...]
-
Page 317
Pa g e 1 0 - 1 6 ~„n # n „´ @) MATRX! @ ) COL! @COL! COL ` Pr ogr am is display ed in le v el 1 To s a v e t h e p r o g r a m : ! ³~~crmc~ K T o see the contents o f the pr ogram u se J ‚ @CRMC . T he pr ogr am listing is the f ollo w ing: « DUP → n « 1 SWAP FOR j OBJ →→ RRY IF j n < TH EN j 1 + ROLL END NEX T IF n 1 >[...]
-
Page 318
Pa g e 1 0 - 1 7 Lists r epr esent ro w s of the matrix T he pre vi ous pr ogram can be easil y modif ied to c r eate a matri x when the input lists w ill become the r o ws o f the r esulting matr i x. T he only ch ange to be perfor med is to c h ange COL → for ROW → in the pr ogr am listing. T o per f or m this c hange use: ‚ @CRMC L ist pr [...]
-
Page 319
Pa g e 1 0 - 1 8 Both appr oa c hes w ill show the same func tions: When s y stem f lag 117 is set to S OFT menus , the COL menu is accessible thr ough „´ !) MATRX ) !)@@COL@ , or thr ough „Ø !) @CREAT@ ! ) @ @COL@ . Both appr oache s w ill sho w the same s et of f uncti ons: The op er ation of these functions is presented b elo w . Function [...]
-
Page 320
Pa g e 1 0 - 1 9 In this r esult , the fir st column occ upi es the highe st stac k lev el af t er decompositi on , and stac k lev el 1 is occu pi ed by the n umber of co lumns of the or iginal matr ix . T he matr i x does not surv i v e decompositi on, i .e ., it is no longe r av ailable in the s tack . Function COL → Fu n c ti o n CO L → has [...]
-
Page 321
Pa g e 1 0 - 2 0 In RPN mode , enter the matr i x fir st , then the v ector , and the column n umber , bef or e appl y ing fu nction C OL+. T he fi gur e belo w sho w s the RPN stac k bef or e and after appl y ing functi on COL+. Function COL - F uncti on COL - tak es as ar gument a matr ix and an intege r number r epr esenting the positi on of a c[...]
-
Page 322
Pa g e 1 0 - 2 1 In RPN mode , functi on CS WP lets y ou s wap the columns of a matri x list ed in stac k le vel 3, who se indi ces ar e listed in s tac k lev els 1 and 2 . F or e x ample , the fo llo w ing fi gur e sho ws the RPN st ack bef or e and after a pply ing functi on CS WP to matr i x A in or der to s wap columns 2 and 3: As y ou can see [...]
-
Page 323
Pa g e 1 0 - 22 When s y st em flag 117 is set to S OFT menus , the R O W menu is acces sible thr ough „´ !) MATRX ! )@@ROW@ , or thr ough „Ø !) @CREAT@ ! ) @@ ROW@ . Both appr oache s w ill sho w the same s et of f uncti ons: The op er ation of these functions is presented b elo w . Function → RO W Fu n c ti o n → R O W tak es as ar gume[...]
-
Page 324
Pa g e 1 0 - 2 3 matr i x does not survi ve decompo sition , i .e ., it is no longer a vailable in the stack. Function RO W → Fu n c ti o n ROW → has the opposite e ffec t of the f unctio n → R O W , i .e ., gi v en n v ector s of the s ame length , and the number n , func tion R O W builds a matri x b y plac ing the input v ectors as r o[...]
-
Page 325
Pa g e 1 0 - 24 Function RO W- F uncti on RO W - tak es as ar gument a matri x and an integer number r epr esenting the positi on of a r o w in the matri x . The f unctio n re turns the or iginal matr i x , minu s a ro w , as w ell as the e xtr acted r o w sho w n as a v ector . H er e is an e x ample in the AL G mode using the matr i x stor ed in [...]
-
Page 326
Pa g e 1 0 - 2 5 As y ou can see , the r ow s that or iginally occ up ied po sitions 2 and 3 ha ve been s wa pped. Function RCI F uncti on R CI stands f or m ultiply ing R ow I by a C onst ant value and r eplace the r esulting r o w at the same location . The f ollo wing e xample , wr itten in AL G mode , tak es the matr ix s tor ed in A, and multi[...]
-
Page 327
Pa g e 1 0 - 26 In RPN mode , enter the matr i x fir st , fo llo w ed by the constant v alue , then b y the r o w to be multiplied b y the co nstant v alue , and f inally ente r the ro w that will be r eplaced. T he fo llo w ing fi gur e sho w s the RPN stac k befor e and af t er apply ing func tion R CIJ under the same conditi ons as in the AL G e[...]
-
Page 328
P age 11-1 Chapter 11 M atr ix Oper ations and Linear Algebra In Chapte r 10 we intr oduced the concept of a matri x and pr esen ted a number of f uncti ons f or enter ing, c r eating, o r manipulating matri ces . In this Chapt er w e pr esen t ex a m ples of matr i x oper ations and appli cations t o problems of linear algebr a. Operations w ith m[...]
-
Page 329
P age 11-2 Addition and subtr ac tion Consi der a pair of matr ices A = [a ij ] m × n and B = [b ij ] m × n . Addition and subtr action of the se tw o matri ces is onl y pos sible if they ha v e the same number of r ow s and columns . The r esulting matr i x , C = A ± B = [c ij ] m × n has elements c ij = a ij ± b ij . Some e xam ples in AL G [...]
-
Page 330
P age 11-3 B y combining addition and subtr acti on w ith multiplicati on b y a scalar w e can fo rm linear combinati ons of matr ices of the same dimensions , e .g., In a linear combinati on of matr i ces, w e can multipl y a matr i x by an imaginary number to obtain a matri x of comple x n umbers, e .g ., M atr ix -vector multipli cation Matr i x[...]
-
Page 331
P age 11-4 Matrix multiplication Matri x multipli cation is def ined b y C m × n = A m × p ⋅ B p × n , wher e A = [a ij ] m × p , B = [b ij ] p × n , and C = [ c ij ] m × n . Noti ce that matr i x multiplicati on is onl y possible if the number of columns in the f ir st oper and is equal to the number o f r o ws of the second oper and . T h[...]
-
Page 332
P age 11-5 (another r o w vect or). F or the calculator to identify a r o w vector , y ou must us e double br ack ets to enter it: T erm-b y-term multiplication T erm-b y- t erm multiplicati on of two matr ice s of the same dimensions is pos sible thr ough the us e of f unction HAD AMARD . T he r esult is, o f course , another matri x of the sa me [...]
-
Page 333
P age 11-6 In algebr aic mode , the k e y str ok es ar e: [enter or se lect the matr i x] Q [enter the po w er] ` . In RPN mode , the k ey str ok es ar e: [ent er or select the matr i x] † [ent er the po we r] Q` . Matri ces can be r aised to negati ve po wer s. In this cas e , the r esult is equi valent to 1/[matr i x]^AB S(po we r). The identit[...]
-
Page 334
P age 11-7 T o v er if y the pr operties of the in v erse matr ix , consider the f ollo w ing multiplicati ons: Characteri zing a matr ix (T he matri x NORM menu) T he matri x NORM (NORMALIZE) menu is accesse d thr ough the k e ys tr ok e sequen ce „´ (s ys tem f lag 117 set t o CHOOSE bo xes): T his menu cont ains the fo llo w ing func tio ns: [...]
-
Page 335
P age 11-8 Function ABS F uncti on ABS calc ulate s what is kno w n as the F r obenius nor m of a matr i x. F or a matr i x A = [a ij ] m × n , the F robeniu s norm of the matr ix is def ined as If the matr i x under consider ation in a r ow v ector or a column v ector , then the F r obe nius nor m , || A || F , is simply the v ector ’s magnitud[...]
-
Page 336
P age 11-9 Functions RNRM and CNRM F uncti on RNRM r etur ns the Ro w NoRM o f a matr i x , whil e functi on CNRM r eturns the C olumn NoRM of a matr i x. Ex amples, Singular value decomposition T o unders tand the oper ation o f F uncti on SNRM, w e need to intr oduce the concept of matr i x decompositi on. Ba sicall y , matri x decompo sition in [...]
-
Page 337
P age 11-10 Function SR AD F uncti on SRAD de termine s the Spectr al R ADius o f a matri x, de fined as the lar gest of the a bsolute v alues of its e igen v alues . F or e x ample , Function COND F uncti on COND deter mines the conditi on number of a matr ix : Definition of eigenv alues and eigenvectors of a matri x T he eigen v alues of a sq uar[...]
-
Page 338
P age 11-11 T ry the follo wing ex erc ise f or matri x condition n umber on matr i x A3 3 . The conditi on number is COND( A3 3) , ro w norm , and column norm f or A3 3 ar e sho w n to the le ft . The cor r esponding numbers f or the in ver se matr i x, INV( A3 3) , ar e sho wn to the ri ght: Since RNRM(A3 3) > CNRM(A3 3) , then w e tak e ||A3 [...]
-
Page 339
P age 11-12 F or ex ample , try finding the r ank for the matr i x: Y ou w ill f ind tha t the rank is 2 . That is becaus e the second r o w [2 , 4, 6] is equal to the f irs t r ow [1,2 , 3] multiplied b y 2 , thu s, r o w tw o is linearl y dependent of r o w 1 and the max imum number o f linearl y independent r o ws is 2 . Y ou can c heck that the[...]
-
Page 340
P age 11-13 The determinant of a matr ix T he deter minant of a 2x2 and o r a 3x3 matr i x ar e r epr esen ted b y the same arr angement of elemen ts of the matr ices , but enc losed be t w een verti cal lines, i. e. , A 2 × 2 dete rminant is cal cul ated b y multiply ing the elemen ts in its diagonal and adding those pr oducts accompanied b y the[...]
-
Page 341
P age 11-14 Function TR A CE F uncti on TRA CE calc ulates the tr ace of sq uare matr ix , def ined as the sum of the elements in its main diagonal , or . Ex amples: F or squar e matr i ces of hi gher or der de terminants can be calc ulated by u sing smaller or der deter minant called co fact ors . The gener al i dea is to "e xpand" a det[...]
-
Page 342
P age 11-15 Function TR AN F uncti on TRAN re turns the tr anspo se of a r eal or the conj ugate tr anspo se of a comple x matri x. TRAN is equi v alent t o TRN. The oper ation of func tion TRN w as pr es ented in Cha pter 10. Additional matri x oper ations (T he matri x OPER menu) T he matri x OPER (OP ER A T IONS) is av ailable thr ough the k ey [...]
-
Page 343
P age 11-16 MAD and RSD ar e relat ed to the soluti on of s y ste ms of linear equati ons and wil l be pr esen ted in a subseq uent secti on in this Chapt er . In this secti on w e ’ll disc us s only f uncti ons AXL and AXM. Function AXL F uncti on AXL con verts an arr a y (matri x) into a list , and v ice v ersa: Note : the latter oper ation is [...]
-
Page 344
P age 11-17 T he implementati on of func tion L CXM fo r this case r equir es y ou to ente r: 2`3`‚ @@P1@@ LCXM ` T he follo w ing fi gur e show s the RPN s tack be fo r e and af t er appl y ing func tion LC X M : In AL G mode , this e x ample can be obtained b y using: T he progr am P1 must still ha ve been c r eated and stor ed in RPN mode . So[...]
-
Page 345
P age 11-18 , , Using the num er ical solv er f or linear s ystems Ther e are man y w a ys to so lv e a s y stem of linear equatio ns w ith the calculator . One pos sibility is thr ough the numer i cal sol v er ‚Ï . F r om the numer ical sol v er scr een, sho w n belo w (left) , selec t the option 4. Sol v e lin s ys .., and pr ess @@@OK@@@ . Th[...]
-
Page 346
P age 11-19 T his sy st em has the same number o f equations as o f unknow ns , and will be r efer r ed to as a sq uare s ys tem. In gener al, ther e should be a unique solu tion to the s y stem . T he soluti on w ill be the po int of inter secti on of the three planes in the coor dinate s ys tem (x 1 , x 2 , x 3 ) r epr esen ted b y the thr ee equ[...]
-
Page 347
P age 11-20 T o chec k that the solu tion is cor r ect , enter the matr i x A and multiply times this solu tion v ector (e xample in algebr aic mode): Under-det ermined s ystem T he sy stem of li near equati ons 2x 1 + 3x 2 –5x 3 = -10, x 1 – 3x 2 + 8x 3 = 85, can be w ritten as the matri x equati on A ⋅ x = b , if T his sy stem has mor e unk[...]
-
Page 348
P age 11-21 T o see the details of the so lutio n vect or , if needed, pr ess the @EDIT! butt on. T his w ill acti vat e the Matri x W r iter . W ithin this env ir onment , use the r ight- and left - arr o w k e y s to mo v e about the v ector : T hus , the solution is x = [15 . 3 7 3, 2 .46 2 6, 9 .6 2 6 8]. T o r eturn to the numer ical s olv er [...]
-
Page 349
P age 11-2 2 Let ’ s store the latest r esult in a var iable X, and the matr i x into var iable A, as fo llo w s: Press K~x` to stor e the solution v ector into var iable X Press ƒ ƒ ƒ to clear thr ee lev els of the stac k Press K~a` to stor e the matri x into v ari able A No w , let’s v er ify the soluti on b y using: @@@A@@@ * @@@X@@@ ` , [...]
-
Page 350
P age 11-2 3 can be w ritten as the matri x equati on A ⋅ x = b , if This s yst em has mor e equations than unkno w ns (an ov er -determined s yste m) . T he sy stem does not ha v e a single s oluti on. E ac h of the linear equations in the s y stem presented abo v e r epresen ts a s tr aight line in a two -dimensi onal Cartesi an coor dinate s y[...]
-
Page 351
P age 11-2 4 Press ` to r eturn to the numer ical so lv er en v iro nment . T o check that the solu tion is corr ect , try the follo wing: • Press —— , to highlight the A: field . • Press L @CALC@ ` , to copy matri x A onto the stack . • Press @@@OK@@@ to r eturn to the n umer ical sol v er en vir onment . • Press ˜ ˜ @CALC@ ` , to co[...]
-
Page 352
P age 11-2 5 • If A is a squar e matr i x and A is non- singul ar (i .e ., it’s in ver se matr i x e xis t , or its determinant is non - z er o) , LS Q r etur ns the ex act so lution to the linear s y stem . • If A has les s than full r ow r ank (u nde rde termined s y st em of equatio ns) , LS Q r eturns the solu tion w ith the minimum E ucl[...]
-
Page 353
P age 11-2 6 Under-det ermined s ystem Consi der the s ys tem 2x 1 + 3x 2 –5x 3 = -10, x 1 – 3x 2 + 8x 3 = 85, wi th T he soluti on using LS Q is sho wn ne xt: Over-determin ed s ystem Consi der the s ys tem x 1 + 3x 2 = 15, 2x 1 – 5x 2 = 5, -x 1 + x 2 = 2 2 , wi th T he soluti on using LS Q is sho wn ne xt: . 85 10 , , 8 3 1 5 3 2 3 2 1 ⎥ [...]
-
Page 354
P age 11-2 7 Compar e these thr ee solu tions w ith the ones calc ulated wi th the numer ical solv er . Solution with the in v erse matri x T he soluti on to the s ys tem A ⋅ x = b , wher e A is a squar e matri x is x = A -1 ⋅ b . T his re sults fr om multiply ing the f irst eq uation b y A -1 , i .e ., A -1 ⋅ A ⋅ x = A -1 ⋅ b . By def in[...]
-
Page 355
Pa g e 1 1 - 2 8 T he pr ocedure f or the cas e of “ di v iding ” b by A is illustr ated belo w for the case 2x 1 + 3x 2 –5x 3 = 13, x 1 – 3x 2 + 8x 3 = -13, 2x 1 – 2x 2 + 4x 3 = -6 , The pr ocedu r e is sho wn in the follo wing s cr een shots: T he same solu tion as f ound abo ve w ith the in ver se matr i x . Solv ing multiple set of eq[...]
-
Page 356
P age 11-29 [[14,9,- 2],[2,-5,2], [5,19,12]] ` [[1,2,3], [3,-2,1],[4,2 ,-1]] `/ T he re sult of this oper ation is: Gaussian and Gauss-Jordan elimination Gaus sian elimination is a pr ocedure b y w hic h the squar e matri x of coe ff ic ients belonging to a s y stem of n linear eq uations in n unkno wns is r educed to an upper - tr iangular matr i [...]
-
Page 357
P age 11-30 T o start the pr ocess o f forw ar d elimination , w e di vi de the f irst equati on (E1) b y 2 , and s tor e it in E1, an d sho w the thr ee equ ation s again to pr oduce: Ne xt, w e r eplac e the s econd equation E2 b y (equ ati on 2 – 3 × equation 1, i . e ., E1-3 × E2) , and the thir d by (eq uation 3 – 4 × equation 1) , to g[...]
-
Page 358
P age 11-31 an e xpre ssi on = 0. Thu s, the las t set of equati ons is interpr eted to be the fo llo w ing equiv alent set of equatio ns: X +2Y+3Z = 7 , Y+ Z = 3, - 7Z = -14. T he pr ocess o f back war d subs titution in Ga ussian e limination consis ts in finding the value s of the unkno wns , starting fr om the last equation and w or king up war[...]
-
Page 359
P age 11-3 2 T o obtain a solution t o the sy stem matr i x equation us ing Gaussi an elimination , we f i r st c re a t e w h a t i s k n ow n a s t h e augmente d matr i x cor re sponding to A , i .e ., T he matri x A aug is the same as the or iginal matr i x A w ith a ne w r o w , cor re sponding to the elements o f the vec tor b , added (i.e .,[...]
-
Page 360
P age 11-3 3 Multiply r o w 2 by –1/8: 8Y2 @RCI! Multiply r ow 2 b y 6 add it to ro w 3, r eplacing it: 6#2#3 @RCIJ! If y ou w er e perfor ming these oper ati ons by hand , y ou w ould wr ite the fo llo w ing: Th e symb ol ≅ ( “ is eq ui vale nt to ”) indicate s that what f ollo ws is equi valent to the pr e vi ou s matri x w ith so me r o[...]
-
Page 361
P age 11-34 Multiply r o w 3 by –1/7 : 7Y 3 @ RCI! Multiply r ow 3 b y –1, add it to r o w 2 , r eplac ing it: 1 # 3 #2 @RCIJ! Multiply r ow 3 b y –3, add it to ro w 1, r eplacing it: 3#3#1 @RCIJ! Multiply r ow 2 b y –2 , add it to r ow 1, r e plac ing it: 2#2#1 @RCIJ! W r iting this pr ocess b y hand w ill r esult in the follo w ing s [...]
-
Page 362
Pa g e 1 1 - 3 5 While perf orming p iv oting in a matr i x elimination pr ocedure , yo u can impro ve the numer i cal soluti on ev en mor e b y selecting a s the pi vo t the element w ith the lar gest ab solut e value in the column and r o w of inte r est . This oper ation ma y r equir e e xc h anging not onl y r o w s, but also columns , in some [...]
-
Page 363
Pa g e 1 1 - 3 6 No w we are r eady to st ar t the Ga uss-Jor dan elimination w ith full p i vo ting . W e w ill need to k eep trac k of the permutati on matr ix b y hand , so tak e yo ur notebook and w r ite the P m a trix s h own ab ove. F i r st , w e chec k the pi vo t a 11 . W e notice that the element w ith the lar gest abs olute v alue in th[...]
-
Page 364
P age 11-3 7 Hav ing f illed up w ith z er os the elements of column 1 below the p i v ot , now w e pr oceed to c heck the pi vot at po sition (2 ,2) . W e find that the number 3 in positi on (2 , 3) will be a better pi v ot , thus , w e ex change columns 2 and 3 b y using: 2#3 ‚N @ @@OK@ @ Chec king the pi v ot at positi on (2 ,2) , we no w find[...]
-
Page 365
P age 11-38 2 Y #3#1 @RCIJ F i nall y , w e eliminate the –1/16 f r om positi on (1,2) by using: 16 Y # 2#1 @RCIJ W e no w hav e an identity matri x in the por ti on of the augmented matr i x cor re sponding to the or i ginal coeff ic ient matr i x A, thus w e can pr oceed to obtain the sol ution w hile accounting f or the ro w and column ex c h[...]
-
Page 366
P age 11-3 9 T hen, f or this partic ular e x ample , in RPN mode , use: [2,-1,41] ` [[1,2,3 ],[2,0,3],[8 ,16,-1]] `/ T he calculat or sho ws an a ugmented matr i x consisting o f the coeff ic ients matr ix A and the iden tit y matr ix I , while , at the s ame time , sho w ing the ne xt pr ocedur e to ca lc ulate: L2 = L2 - 2 ⋅ L1 stands f or “[...]
-
Page 367
P age 11-40 T o see the in ter mediate s teps in calc ulating and inv er se , j ust e nter the matr ix A fr om abov e, and pr ess Y , w hile keep ing the step-b y-st ep op ti on acti v e in the calc ulator’s CA S . Use the f ollo w ing: [[ 1,2,3],[ 3,-2,1],[4,2 ,-1]] `Y After go ing thr ough the diffe rent s teps , the soluti on r eturned is: Wha[...]
-
Page 368
P age 11-41 T he r esult ( A -1 ) n × n = C n × n / det ( A n × n ) , is a gener al r esult that appli es to an y non -singular matr i x A . A gener al for m for the ele ments of C can be w r it te n based on the Gaus s-Jor dan algorithm . Based on the equation A -1 = C /det( A ) , sk etc hed abov e, the in v ers e matri x, A -1 , is not def ine[...]
-
Page 369
P age 11-4 2 LINSOLVE([ X-2*Y+Z=-8,2 *X+Y-2*Z=6,5* X-2*Y+Z=-12], [X,Y,Z]) to pr oduce the s oluti on: [ X=-1,Y=2,Z = - 3]. F uncti on LINS OL VE w or ks wi th sy mb o lic e xpr es sions . F uncti ons REF , rr ef , and RREF , w ork w ith the au gmented matr i x in a Gaus sian eliminati on appr oach . Functions REF , rref , RREF T he upper tr iangula[...]
-
Page 370
P age 11-4 3 T he diagonal matr i x that r esults f r om a Gaus s-Jor dan elimination is called a r o w-r educed echelon f or m. F unction RREF ( R ow-R educed E chelon F or m) The r esult of this functi on call is to pr oduce the r o w-r educed echelon f orm so that the matr i x of coeff ic ients is r educed to an identity matri x. T he e xtra col[...]
-
Page 371
P age 11-44 T he re sult is the augmented matr i x corr esponding to the s yst em of equations: X+Y = 0 X- Y =2 Residual er rors in linear s ystem solutions (F unc tion RSD) F uncti on R SD calculate s the Re SiDuals or err ors in the soluti on of the matr i x equation A ⋅ x = b , repr esenting a s y stem o f n linear equations in n unkno w ns. W[...]
-
Page 372
P age 11-45 Eigenv alues and eigenv ectors Gi v en a sq uar e matri x A , we can wr ite the eige nv alue equation A ⋅ x = λ⋅ x , w here the v alues of λ that satisfy the equation ar e know n as the ei gen value s of matr i x A . F or eac h value o f λ , we can f ind , fr om the same equation , values o f x that satisfy the e igen v alue equa[...]
-
Page 373
Pa g e 1 1 - 4 6 Using the var iable λ to r epre sent e igen value s, this c har acter isti c pol ynomi al is to be interpr eted as λ 3 -2 λ 2 -2 2 λ +21=0. Function EG VL F uncti on E G VL (E iGenV aL ues) pr oduces the ei gen value s of a sq uar e matri x. F or e x ample , the ei gen value s of the matr ix sho wn belo w a r e calc ulated in A[...]
-
Page 374
P age 11-4 7 of a matr i x , while the corr esponding ei gen values ar e the components of a vec tor . F or ex ample , in AL G mode , the ei gen vect ors and e igen v alues of the matr i x listed be lo w ar e found by a pply ing functi on E G V : T he re sult sho ws the e igen v alues as the columns of the matr i x in the re sult list . T o see the[...]
-
Page 375
P age 11-48 • A list w ith the eigen v ect ors cor r es ponding to eac h ei gen v alue of matr i x A (stac k le ve l 2) • A v ector w ith the eige n vec tor s of matr i x A (st ack lev el 4) F or ex ample , try this ex erc ise in RPN mode: [[4,1,-2], [1,2,-1],[-2 ,-1,0]] JORD N T he output is the f ollo w ing: 4: ‘X^3+-6*x^2+2*X+8’ 3: ‘X^[...]
-
Page 376
P age 11-4 9 Notice that the equati on ( x ⋅ I - A ) ⋅ p( x )=m ( x ) ⋅ I is similar , in f orm , to the ei gen value equati on A ⋅ x = λ⋅ x . As an e x ample , in RPN mode , try: [[4,1,-2] [ 1,2,-1][-2,- 1,0]] M D T he r esult is: 4: -8. 3: [[ 0.13 –0.2 5 –0.3 8][-0.25 0. 50 –0.2 5][-0.3 8 –0.2 5 –0.88]] 2: {[[1 0 0][0 1 0][0 [...]
-
Page 377
P age 11-50 Function L U F uncti on L U tak es as input a s quar e matr ix A , and r eturns a lo wer - tr iangular matr i x L , an upper tr i angular matri x U , and a p e rmut ation matr i x P , in st ack le vels 3, 2 , and 1, re specti v el y . The r esult s L , U , and P , satisf y the equati on P ⋅ A = L ⋅ U . When y ou call t he L U func t[...]
-
Page 378
P age 11-51 decompositi on, w hile the v ector s r epr esents the main diagonal of the matr i x S used earli er . F or ex ample, in RPN mode: [[ 5,4,-1],[2,- 3,5],[7,2,8] ] SVD 3: [[-0.2 7 0.81 –0. 5 3][-0. 3 7 –0. 5 9 –0.7 2][-0.8 9 3 . 09E -3 0.46]] 2 : [[ -0.68 –0.14 –0.7 2][ 0.4 2 0.7 3 –0. 54][-0.6 0 0.6 7 0.4 4]] 1: [ 12 .15 6 .88[...]
-
Page 379
Pa g e 1 1 - 52 Function QR In RPN, f unction QR produces the QR fa ctoriz a tio n of a ma tr ix A n × m r eturning a Q n × n orthogonal matri x , a R n × m upper tr apez oi dal matri x, and a P m × m permu tation matr i x, in stac k le vels 3, 2 , and 1. The matr ices A , P , Q and R are re la t ed by A ⋅ P = Q ⋅ R . F or ex ample, [[ 1,-2[...]
-
Page 380
Pa g e 1 1 - 5 3 T his menu includes f uncti ons AXQ, CHOLE SKY , G A US S, QX A, and S YL VE S TER. Function AX Q In RPN mode , f unction AXQ pr oduces the quadr ati c f orm cor r esponding to a matr i x A n × n in stac k le ve l 2 using the n var iable s in a vec tor placed in stac k le vel 1. F uncti on r eturns the quadr atic f orm in stac k l[...]
-
Page 381
P age 11-54 suc h that x = P ⋅ y , b y using Q = x ⋅ A ⋅ x T = ( P ⋅ y ) ⋅ A ⋅ ( P ⋅ y ) T = y ⋅ ( P T ⋅ A ⋅ P ) ⋅ y T = y ⋅ D ⋅ y T . Function S YL VE STER F uncti on S YL V E S TER tak es as ar gument a s y mmetr ic s quar e matr ix A and r eturns a v ector cont aining the diagonal te rms of a diagonal matr i x D , and a[...]
-
Page 382
Pa g e 1 1 - 5 5 Inf ormati on on the func tions list ed in this menu is pr esen ted belo w b y using the calc ulator ’s o w n help fac ility . The f igur es sho w the he lp fac ility entry and the attached e xamples . Function IMAGE Function ISOM[...]
-
Page 383
P age 11-5 6 Function KER Function MKISOM[...]
-
Page 384
Pa g e 1 2 - 1 Chapter 12 Gr a phi cs In this c hapter w e intr oduce some o f the gr aphic s capabiliti es of the calculat or . W e w ill pr esent gr aphics of f uncti ons in Cartesian coor dinates and polar coor dinates , par ametr ic plots , gr aphic s of coni cs , bar plots, scatter plots , and a v ari ety of thr ee -dimensi onal gr aphs . Grap[...]
-
Page 385
Pa g e 1 2 - 2 T hese gr aph opti ons ar e desc ri bed bri ef ly ne xt . Fu n c ti o n : f or equations o f the for m y = f(x) in plane Cartesi an coordinates P olar : for equati ons of the fr om r = f( θ ) in polar coordinat es in the plane Pa r a m e t r i c : for plotting equati ons of the fo rm x = x(t) , y = y(t) in the plane Diff E q : f or [...]
-
Page 386
Pa g e 1 2 - 3 Θ Ente r the PL O T en v ir onment b y pr es sing „ñ (pr ess them simultaneou sly if in RPN mode). Pr ess @ADD to get y ou into the equati on w riter . Y ou will be pr ompted to f ill the r ight-hand side of an equati on Y1(x) = . T ype the f unction t o be plotted so that the E quatio n W rit er sho ws the follo wing: Θ Pre[...]
-
Page 387
Pa g e 1 2 - 4 Θ Enter the P L O T WINDO W env ironme nt by enter ing „ò (pr ess them simultaneousl y if in RPN mode). Us e a range of –4 to 4 f or H- VI EW , then p r ess @AUT O to generate the V - VIEW automaticall y . The PL O T WINDO W sc r een looks as f ollo ws: Θ Pl ot t h e g ra ph : @ERASE @ DRAW ( wait till the calc ulator f inishe[...]
-
Page 388
Pa g e 1 2 - 5 Some useful PL O T operations f or FUNCTION plots In or der to disc u ss these P L O T options , w e'll modif y the func tion to f or ce it to hav e some r eal r oots (Since the cur r ent curve is totall y contained abov e the x ax is, it has no r e al r oots.) Pr ess ‚ @@@Y1@@ to list the contents of the functi on Y1 on the s[...]
-
Page 389
Pa g e 1 2 - 6 R OO T : 1.66 3 5 ... The calc ulator indicated , bef or e sho w ing the r oot , that it w as found thr ough SIGN REVER S A L . Press L to r ecov er the menu . Θ Pr es sing @ISE CT w ill gi ve y ou the int ersecti on of the c urve w ith the x -ax is, w hic h is esse ntiall y the roo t . Place the c urs or e xac tly at the r oot and [...]
-
Page 390
Pa g e 1 2 - 7 Θ Enter the PL O T env ir onment by pr essing , simultaneously if in RPN mode , „ñ . Noti ce that the highli ghted fi eld in the PL O T en vir onment no w contain s the der i vati ve of Y1(X) . Pr ess L @@@OK@@@ to r eturn to return to nor mal calculat or displa y . Θ Press ‚ @@EQ@@ to chec k the contents of E Q. Y ou w ill no[...]
-
Page 391
Pa g e 1 2 - 8 T o r etur n to nor mal calc ulator f uncti on , pr ess @) PICT @ CANCL . Graphics of tr anscendental functions In this secti on w e us e some of the gr aphics f eatur es of the calc ulator to sho w the typi cal beha vi or of the natur al log, e xponential , tri gonometr ic and h yper bolic func tions . Y ou w ill not see mor e gr ap[...]
-
Page 392
Pa g e 1 2 - 9 10 by u si n g 1 @@@OK@@ 10 @@@OK@@@ . Ne xt , pr ess the s oft k e y labeled @AUTO to let the calc ulator det ermine the cor r esponding v ertical r ange . After a cou ple of seconds this r ange w ill be sho wn in the P L O T WINDOW -FUNCTION w indo w . At this po int w e ar e r eady to pr oduce the graph of ln(X) . Pre ss @ERASE @[...]
-
Page 393
Pa g e 1 2 - 1 0 Graph of the e xponential function F irst , load the f uncti on e xp(X) , b y pr essing , simultaneous ly if in RPN mode , the left-shif t k e y „ and the ñ ( V ) k e y to acces s the PL O T -FUNCTI ON w indo w . Pres s @@DEL@ @ to r emo v e the func tion LN(X), if y ou didn ’t delete Y1 a s suggest ed in the pre vi ous n ote [...]
-
Page 394
Pa g e 1 2 - 1 1 T he PP AR var iable Press J to r ecov er y our v ari ables menu , if needed. In y our v ari ables menu y ou should ha v e a v ar iable labe led PP AR . Pr ess ‚ @ PPAR to get the contents of this v ariable in the stac k . Pres s the do wn-arr o w k ey , , to launch the s tack editor , and u se the up- and do w n -ar ro w k e ys [...]
-
Page 395
Pa g e 1 2 - 1 2 As indicated ear lier , the l n(x) and exp(x) f uncti ons ar e in v ers e of each othe r , i .e ., ln(e xp(x)) = x , and e xp(ln(x)) = x. T his can be v er if ied in the calc ulator b y typing and e v aluating the follo wi ng expr essi ons in the Eq uation W rit er: LN(EXP(X)) and EXP(LN( X)) . T he y should both ev aluate to X. Wh[...]
-
Page 396
Pa g e 1 2 - 1 3 Summary of FUNCT I ON plot oper ation In this secti on w e pr esent inf ormati on r egar ding the PL O T SETUP , P L O T- FUNCT ION, and P L O T WINDO W sc r eens accessible thr ough the left-shif t k ey comb ined w ith the soft-menu k e y s A thr ough D . Based on the gr aphing e x amples pr esented abo ve , the procedur e to fo l[...]
-
Page 397
Pa g e 1 2 - 1 4 Θ Use @CANCL t o cancel an y c hanges to the P L O T SE TUP w indo w and r eturn to nor mal calc ulator dis play . Θ Press @@@OK@@@ to sav e changes to the options in the P L O T SE TUP w indo w an d r etur n to normal calc ulator displa y . „ñ , simultaneousl y if in RP N mode: Ac cess to the PL O T windo w (in this case it w[...]
-
Page 398
Pa g e 1 2 - 1 5 Θ Ente r lo w er and uppe r limits fo r hor i z ont al v ie w (H- V ie w) , and pr ess @AUTO , w hile the c urso r is in one of the V - Vi e w f ields , to ge ner ate the v ertical v i e w (V - Vie w) range automaticall y . Or , Θ Enter lo we r and upper limits f or v ertical v ie w (V- Vi ew), and pr ess @AUTO , w hile the c urs[...]
-
Page 399
Pa g e 1 2 - 1 6 „ó , simult aneousl y if in RPN mode: Plots the gr aph based on the setting s stor ed in var ia ble PP AR and the cur r ent f unctions de fined in the PL O T – FUNCT ION scr een. I f a gr aph, diff er en t fr om the one y ou ar e plotting , alr eady e xis ts in the graphi c display s cr een, the ne w plot w ill be superimpo se[...]
-
Page 400
Pa g e 1 2 - 1 7 Generating a table of v alues for a function T he combinati ons „õ ( E ) and „ö ( F ), pressed simultaneousl y if in RPN mode , let’s the us er pr oduce a table o f values o f functi ons . F or e x ample , w e wi ll pr oduce a table of the f unction Y(X) = X/(X+10), in the r ange -5 < X < 5 f ollo w ing thes e instruc[...]
-
Page 401
Pa g e 1 2 - 1 8 the corr esponding value s of f(x) , listed as Y1 b y de fault . Y ou can use the up and do wn ar r o w k ey s to mov e about in the t able . Y ou w ill notice that w e did not ha ve to indicate an ending value f or the independent v ar iable x . Th us, the table co ntinues be y ond the max imum v alue fo r x suggested earl y , nam[...]
-
Page 402
Pa g e 1 2 - 1 9 W e w ill tr y to plot the f uncti on f( θ ) = 2(1-sin( θ )), as follo w s: Θ F irs t , mak e sur e that y our calc ulator ’s angle measur e is set t o r adians. Θ Press „ô , simultaneousl y if in RPN mode , to access to the PL O T SE TUP wi ndo w . Θ Chan ge TYPE to Polar , by pr essing @CHOOS ˜ @@@OK@@@ . Θ Press ˜ a[...]
-
Page 403
Pa g e 1 2 - 2 0 Θ Press L @ CANCL to ret urn to th e PL O T WI ND OW s cr e en. Press L @@@OK@@@ to r etur n to normal calc ulator displa y . In this e xe r c ise w e enter ed the eq uation to be plotted dir ectl y in the PL O T SETUP w indo w . W e can also enter equati ons f or plotting using the P L O T wi ndow , i .e., simultaneou sly if in R[...]
-
Page 404
Pa g e 1 2 - 2 1 T he calculator ha s the ability of plotting one or more coni c c ur v es b y selecting Con ic as the functi on TYPE in the PL O T e nv ir onment . Mak e sure to dele te the var iables P P AR and E Q bef or e continuing . F or e x ample , let's sto r e the list o f equations { ‘(X-1)^2+(Y - 2)^2=3’ , ‘X^2/4+Y^2/3=1’ } [...]
-
Page 405
Pa g e 1 2 - 2 2 Θ T o see labels: @EDI T L @) LABEL @MENU Θ T o r eco ver the men u: LL @) PICT Θ T o es timate the coor dinates of the po int of inter secti on, pr ess the @ ( X,Y ) @ menu k ey and mo v e the cur sor as c lose as po ssible to thos e points using the arr ow k ey s . The coor dinates of the c ursor ar e show n in the display . F[...]
-
Page 406
Pa g e 1 2 - 23 whi ch in vol ve constant values x 0 , y 0 , v 0 , and θ 0 , we need to st ore the v alues of those par ameters in v ar iables . T o de velop this e xample , cr eate a sub-dir ect or y called ‘PR O JM’ fo r PR O Jectile Motion , and w ithin that sub-dir ectory stor e the fo llo w ing var iable s: X0 = 0, Y0 = 10, V0 = 10 , θ 0[...]
-
Page 407
Pa g e 1 2 - 24 Θ Press @AUTO . This w ill gener ate autom ati c values of the H-V ie w and V - Vi e w r anges based on the v alues of the independent var iable t and the def initi ons of X(t) and Y(t) u sed . The r esult w ill be: Θ Press @ERASE @DR AW to dr a w the paramet ri c plot . Θ Press @EDIT L @LABEL @ MENU to s ee the gr aph w ith labe[...]
-
Page 408
Pa g e 1 2 - 2 5 par ameters . The other v ar iables contain the v a lues o f constants us ed in the def initions o f X(t) and Y(t) . Y ou can stor e differ ent v alues in the v ari ables and pr oduce ne w par ametr ic plots of the pr o jectile eq uations us ed in this e xample . If you w ant to er as e the c urr en t pic tur e contents bef ore pr [...]
-
Page 409
Pa g e 1 2 - 26 P lotting th e solution to simple differ ential equations T he plot of a simple differ ential equati on can be obtained by selec ting Diff Eq in the TYPE f ield o f the PL O T SETUP en v ir onment as f ollo ws: suppo se that w e w ant to plot x(t) fr om the diff er ential equati on dx/dt = exp(-t 2 ), w it h i ni ti al conditi ons: [...]
-
Page 410
Pa g e 1 2 - 27 Θ Press L to reco v er th e menu . Pr ess L @) PICT to reco ver the or igin al gr aphics menu . Θ When w e obs erved the gr aph being plo tted, y ou'll noti ce that the gr aph is not v ery smooth . T hat is becaus e the plotter is using a time step that is too lar ge . T o r ef ine the gr aph and mak e it smoother , use a st [...]
-
Page 411
Pa g e 1 2 - 28 T ruth plots T ruth plots ar e used to pr oduce two -dimensi onal plots of r egio ns that satisfy a certain mathemati cal condition that can be e ither true or f alse . F or ex a m ple , suppo se that y ou w ant to pl ot the regi on f or X^2/3 6 + Y^2/9 < 1, pr oceed as fo llo w s: Θ Press „ô , simultaneou sly if in RPN mode [...]
-
Page 412
Pa g e 1 2 - 2 9 Θ Press „ô , simultaneou sly if in RPN mode , to access t o the PL O T SETUP wi n dow . Θ Press ˜ and ty pe ‘(X^2/3 6+Y^2/9 < 1) ⋅ (X^2/16+Y^2/9 > 1)’ @@@OK@@@ to def ine the conditions t o be plot t ed. Θ Press @ERASE @DRAW t o dra w the tr uth plot . Again , y ou ha v e to be patient w hile the calc ulato r pro[...]
-
Page 413
Pa g e 1 2 - 3 0 [4. 5,5 .6, 4.4 ],[4.9 , 3.8 ,5 .5],[5 .2 ,2 .2 , 6.6]] ` to stor e it in Σ D A T , use the f uncti on S T O Σ (av ailable in the functi on catalog, ‚N ) . Pr ess V AR to reco v er y our var iable s menu . A soft menu k ey labeled Σ D A T should be a v ailable in the stac k. T he f igur e belo w sho w s the stor age of this ma[...]
-
Page 414
Pa g e 1 2 - 3 1 accommodate the max imum v alue in column 1 of Σ D A T . Bar plots ar e usef ul when plotting categori cal (i .e ., non -numeri cal) data. Suppo se that y ou w ant to plot the data in co lumn 2 o f the Σ DA T m a t rix : Θ Press „ô , simultaneou sly if in RPN mode , to access t o the PL O T SETUP wi n dow . Θ Press ˜˜ to h[...]
-
Page 415
Pa g e 1 2 - 32 Θ Press @ERASE @ DRAW to dr aw the bar plot . Pre ss @EDIT L @LA BEL @MENU to see the plot unenc umber ed b y the menu and w ith identify ing la bels (the c ursor w ill be in the middle of the plot , ho w e ver ) : Θ Press LL @) PICT to l eav e the EDI T en v ir onment . Θ Press @CANCL to r eturn to the PL O T W INDO W env ir onm[...]
-
Page 416
Pa g e 1 2 - 3 3 Slope fields Slope fi elds ar e used to v isuali z e the solutio ns to a differ ential equati on of the fo rm y’ = f(x ,y) . Basi call y , what is pres ented in the plot ar e segmen ts tangenti al to the so lution c ur v es, since y’ = dy/dx , ev aluated at an y po int (x,y), repr esents the slope of the tangent line at point ([...]
-
Page 417
Pa g e 1 2 - 3 4 of y(x ,y) = constant , for the soluti on of y ’ = f(x ,y) . Th us, slope f ie lds are u sef ul tools f or v isuali zing par ti c ularl y diffi cult equations t o sol v e . T ry als o a slope fi eld plot for the f uncti on y’ = f(x ,y) = - (y/x) 2 , by u sing: Θ Press „ô , simultaneou sly if in RPN mode , to access t o the [...]
-
Page 418
Pa g e 1 2 - 3 5 Θ Press @ERASE @ DRAW to dr a w the thr ee -dimensional surf ace . The r esult is a w ir ef rame p ictur e of the surface w ith the re fer ence coor dinate sy stem sho w n at the lo w er left corner of the s cr e e n. B y using the arr ow k ey s ( š™— ˜ ) y ou can change the or ient ation of the surf ace. T he ori entati on [...]
-
Page 419
Pa g e 1 2 - 3 6 Θ Press „ô , simul taneousl y if in RPN mode , to access the P L O T SETUP wi n dow . Θ Press ˜ and type ‘S IN(X^2+Y^2) ’ @@@OK@@@ . Θ Press @ERASE @DR AW to dr aw the plot . Θ When done , pres s @ EXIT . Θ Press @CANCL to r etur n to P L O T W INDO W . Θ Press $ , or L @@@OK@@@ , to retur n to normal calculator dis p[...]
-
Page 420
Pa g e 1 2 - 37 Θ Press @EDIT L @LABEL @ MENU to s ee the gr aph w ith labels and r anges . This partic ular v ersi on of the gr aph is limited to the lo wer part of the dis play . W e can change the v ie wpoint to see a differ ent versi on of the gr aph. Θ Press LL @) PICT @CANCL to r eturn to the PL O T WINDO W env ir onment . Θ Change the e y[...]
-
Page 421
Pa g e 1 2 - 3 8 T ry also a Wir ef r ame plot f or the surface z = f(x,y) = x 2 +y 2 Θ Press „ô , simul taneousl y if in RPN mode , to access the P L O T SETUP wi n dow . Θ Press ˜ and t y pe ‘X^2+Y^2’ @@@OK@@@ . Θ Press @ERASE @DRAW to dr aw the slope fie ld plot . Pr ess @ED IT L @) MENU @LABEL to see the plot unenc umb e red b y the [...]
-
Page 422
Pa g e 1 2 - 3 9 Θ Press @EDIT ! L @ LABEL @MENU to see the gr aph w ith labels and r anges. Θ Press LL @) PICT@CANCL to retur n to the PL O T WINDOW en v ir onment . Θ Press $ , or L @@@OK@@@ , to retur n to normal calculator dis play . T ry als o a P s-Conto ur plot for the surf ace z = f(x,y) = sin x cos y . Θ Press „ô , simul taneousl y [...]
-
Page 423
Pa g e 1 2 - 4 0 Θ Mak e sur e that ‘X’ is s elected as the Indep: and ‘ Y’ as the Depnd: variab le s. Θ Press L @@@OK@@@ to r eturn to nor mal calculat or displa y . Θ Press „ò , simultaneou sl y if in RPN mode , to acce ss the P L O T WINDO W sc r een. Θ Chan ge the def ault plot w indow r anges t o r ead: X-L eft:-1, X-Ri ght:1, Y[...]
-
Page 424
Pa g e 1 2 - 4 1 Θ Press „ô , sim ultaneo usl y if in RPN mode , to acces s to the P L O T SETUP w indow . Θ Cha ng e TYPE to Gr idma p . Θ Press ˜ and t y pe ‘SIN(X+i*Y )’ @@@OK@@@ . Θ Mak e sur e that ‘X’ is s elected as the Indep: and ‘ Y’ as the Depnd: variab le s. Θ Press L @@@OK@@@ to r eturn to nor mal calculat or displa[...]
-
Page 425
Pa g e 1 2 - 4 2 F or ex ample, t o pr oduce a Pr- Surface plot f or the surface x = x(X,Y ) = X sin Y , y = y(X,Y) = x cos Y , z=z(X,Y)=X, us e the fo llo w ing: Θ Press „ô , sim ultaneo usl y if in RPN mode , to acces s to the P L O T SETUP w indow . Θ Cha ng e TYPE to Pr - Surface . Θ Press ˜ and t y pe ‘{X*SIN( Y), X*COS( Y), X}’ @ @[...]
-
Page 426
Pa g e 1 2 - 4 3 Inter ac ti ve dr a wing Whene v er w e pr oduce a tw o -dimensi onal gr aph , w e f ind in the gr aphic s sc r een a so ft men u k e y labe led @) EDIT . Pr essing @) EDIT pr oduces a menu that inc lude the fo llo w ing options (pr ess L to see additi onal func tions): T hro ugh the ex amples abo v e , yo u hav e the opportunit y [...]
-
Page 427
Pa g e 1 2 - 4 4 Ne xt , we illus tr ate the use o f the differ ent dr a w ing functi ons on the r esulting gr aphi cs sc r een . The y req uir e use of the c ursor and the ar r o w k ey s ( š™— ˜ ) to mo v e the c ursor about the gr aphic s scr een. DO T+ and DO T - When DO T+ is selec ted , pi xels w ill be ac ti vat ed wher ev er the c urs[...]
-
Page 428
Pa g e 1 2 - 4 5 should ha ve a s tr aight angle tr aced b y a hori z ontal and a v ertical segme nts. T he cur sor is still acti ve . T o deacti vat e it , w ithout mov ing it at all, pr ess @LINE . T he cu rsor r eturns to its n ormal sha pe (a cr o ss) and the LINE func tion is no longer acti ve . TLINE (T oggle LINE) Mo v e the cur sor to the s[...]
-
Page 429
Pa g e 1 2 - 4 6 DEL T his command is u sed to r emov e parts of the gr aph betw een two MARK positi ons. Mo v e the cur sor to a po int in the gr aph, and pr ess @MARK . Mov e the c ursor t o a diff er ent point , pres s @M ARK again . Then , pr ess @@DEL@ . The s ection o f the gr aph bo x ed between the tw o marks w i ll be de leted. ERASE T he [...]
-
Page 430
Pa g e 1 2 - 47 X,Y T his command copies the coor dinates o f the cur r ent cur sor positi on, in us er coor dinates , in the stac k . Z ooming in and out in th e gr aphics display Whene v er y ou pr oduce a tw o -dimensi onal FUNCTION gr aphi c inter acti ve ly , the f irst s oft-menu k e y , labeled @) ZOOM , lets yo u access func tions that [...]
-
Page 431
Pa g e 1 2 - 4 8 Y ou can alw a ys r etu r n to the v er y last z oom wi ndow b y u sing @ ZLAST . BO XZ Z ooming in and out of a gi v en gr aph can be pe rfor med by u sing the soft-menu k ey B O XZ . W ith BO XZ you s elect the re ctangular s ector (the “bo x”) that y ou want to z oom in into . Mo v e the curs or to one of the corners of the [...]
-
Page 432
Pa g e 1 2 - 4 9 c ursor at the cent er of the sc reen , the w indo w gets z oomed so that the x -ax is e xtends fr om –64. 5 to 6 5 . 5 . ZSQR Z ooms the gra ph so that the plotting scale is maintained at 1:1 b y adjus ting the x scale , keep ing the y scale f i xe d, if the w indow is w ider than tall er . This f or ces a pr oportional z ooming[...]
-
Page 433
Pa g e 1 2 - 5 0 S OL VER.. „Î (the 7 key ) C h. 6 TRIGONO ME TRIC. . ‚Ñ (the 8 key ) Ch. 5 EXP &LN.. „Ð (the 8 key ) C h. 5 T he S YMB/GRAPH menu T he GR AP H su b-menu w ithin the S YMB menu inc ludes the f ollo w ing f unctions: DEFINE: same as the k ey stro k e sequence „à (the 2 key ) GR OB ADD: paste s two GROB s fir st o v er[...]
-
Page 434
Pa g e 1 2 - 5 1 T AB V AL(X^2 -1,{1, 3}) pr oduces a list of {min max} v alues o f the functi on in the interv al {1, 3}, w hile SIGNT AB(X^2 -1) show s the sign o f the func tion in the interv al (- ∞ ,+) , w ith f(x) > 0 in (- ∞ ,-1) , f(x) <0, in (-1,1) , and f(x) > 0 in (1,+ ∞ ). T AB V AR(LN(X)/X) pr oduces the f ollo w ing tab[...]
-
Page 435
Pa g e 1 2 - 52 of F . T he question marks indicates uncer tainty or non-d ef inition. F or ex ample, fo r X<0, LN(X) is not defined , thu s the X lines sho ws a que stion mar k in that interv al. R ight at z er o (0+0) F is inf inite , for X = e , F = 1/e . F incr eas es bef or e r eaching this v alue , as indi cated by the u p war d ar r o w ,[...]
-
Page 436
P age 13-1 Chapter 13 Calculus Applications In this Chapte r we dis cu ss appli cations of the calc ulator ’s functi ons to oper ations r elated to Calc ulus, e .g., limits , der i vati v es , integr als, po we r ser ies , etc. T he CAL C (Calc ulus) menu Man y of the func tions pr esented in this Chapte r ar e contained in the calc ulator ’s C[...]
-
Page 437
P age 13-2 Function lim T he calculat or pr ov ides f uncti on lim t o c a l cu l at e l i m i t s of fu n c t io n s. Th i s f un c t io n use s as input an e xpre ssi on re pr esenting a func tion and the v alue wher e the limit is to be calc ulated. F unction lim is av ailable thr ough the command catalog ( ‚N~„l ) or thr ough opti on 2 . LI[...]
-
Page 438
P age 13-3 T o calc ulate one -sided limits, add +0 or -0 t o the value to the v ari able . A “+0” means limit fr om the ri ght , w hile a “-0” means limit fr om the left . F or ex ampl e , the limit of as x appr oache s 1 fr om the le ft can be determined with the fo llo w ing k ey str ok es (AL G mode): ‚N~„l˜ $OK$ R!ÜX- 1™@íX@Å[...]
-
Page 439
P age 13-4 in AL G mode . Re call that in RPN mode the ar guments must be e nter ed bef ore the func tion is appli ed. T he DERIV&INTEG menu T he functi ons a vailable in this sub-me nu ar e listed be low : Out of the se func tions DERIV and DER VX ar e used f or deri vati v es. The other func tions inc lude functi ons r elated to anti-der i va[...]
-
Page 440
P age 13-5 be differ entiated . T hus , to calc ulate the deri vati v e d(sin(r ) ,r ) , us e , in AL G mode: ‚¿~„r„ÜS~„r` In RPN mode , this expr essi on must be enc los ed in quot es befo r e enter ing it into t he sta ck. Th e r e su lt in AL G mo de i s: In the E quati on W r iter , w hen y ou pr es s ‚¿ , the calc ulator pr ov ide[...]
-
Page 441
P age 13-6 T o e valuate the der iv ati v e in the E quation W r iter , pr es s the up-arr o w k e y — , fo ur times, t o selec t the entir e e xpr essi on , then, pr ess @ EVAL . The der i vati ve w ill be e valuated in the E quation W riter as: T he c hain r ule T he chain rule f or der i vati ves appli es to der i vati ve s of composite f unct[...]
-
Page 442
P age 13-7 Deri v ativ es of equations Y ou can use the calc ulator to calc ulate der i v ativ es o f equations , i .e ., e xpr essi ons in w hic h deri vati v es w ill ex ist in both sides o f the equal sign. S ome e xample s ar e sho wn belo w: Notice that in the e xpr es sions w her e the deri v ati ve si gn ( ∂ ) or function DERIV w as used ,[...]
-
Page 443
P age 13-8 Analyzing gr aphics of func tions In Chapter 11 w e pre sented some f unctions that ar e av ailable in the graphic s sc r een f or anal yzing gr aphi cs of func tions of the f orm y = f(x). The se fu nctio ns inc lude (X,Y) and TR A CE f or determining po ints on the gr aph , as w ell as func tions in the Z OOM and FCN menu . The f uncti[...]
-
Page 444
P age 13-9 Θ Press L @PICT @CANCL $ to r eturn to normal calc ulator displa y . Notice that the slope and tangent line that y ou r eques ted ar e listed in the stac k . Function DOMAIN F uncti on DOMAIN , av ailable thr ough the command catalog ( ‚N ), pr o v ides the domain of def inition of a func tion as a list of numbers and spec if icati on[...]
-
Page 445
P age 13-10 T his re sult indicat es that the r ange of the f uncti on cor r esponding to the domain D = { -1,5 } is R = . Function SIGNT AB F uncti on SIGNT AB, a v ailable thr ough the command catalog ( ‚N ), pro v ides inf orma tion on th e sign of a function th r o ugh it s domai n . F or ex a mple , fo r the T AN(X) func tion , SIGNT AB indi[...]
-
Page 446
P age 13-11 Θ Le v el 3: the f uncti on f(VX) Θ T w o lists, the f irs t one indicate s the var iati on of the f unction (i .e., w her e it inc reas es or dec reas es) in ter ms o f the independent var iable VX, the second one indicate s the var iati on of the f uncti on in term s of the dependent v a r iable . Θ A gr aphi c obj ect sh ow ing ho[...]
-
Page 447
P age 13-12 The interpr etation of the v ariati on table show n abov e is as follo ws: the functi on F(X) incr eases f or X in the int erval (- ∞ , -1), reac hing a max imum equal to 3 6 at X = -1. Then , F(X) decr eas es until X = 11/3, r eaching a minimum of –4 00/2 7 . After that F(X) incr eases until r eac hing + ∞. Al so , at X = ±∞ ,[...]
-
Page 448
P age 13-13 W e fi nd two c r itical po ints, one at x = 11/3 and one at x = -1. T o ev aluate the second der i vati ve at eac h point use: T he last s cr een show s that f”(11/3) = 14 , thus , x = 11/3 is a r elati v e minimum . F or x = -1, we ha ve the f ollow ing: T his r esult indi cate s that f ”(-1) = -14 , th us , x = -1 is a r elati v [...]
-
Page 449
P age 13-14 Anti-deri v ati ves and integr als An anti-der iv ati ve o f a func tion f(x) is a func tion F(x) su ch that f(x) = dF/dx . F or e x ample , since d(x 3 ) /dx = 3x 2 , an anti-der i v ati ve o f f(x) = 3x 2 is F(x) = x 3 + C, w here C is a constant . One w ay to r ep r esent a n anti-der i vati ve is as a indefinite inte gr al , i .e .,[...]
-
Page 450
P age 13-15 abo v e . The ir re sult is the so -called discr ete der i vati ve , i .e . , one de fined f or integer n umbers onl y . Definite integr als In a def inite integr al of a f uncti on, the r esulting anti-der i vati ve is e valuated at the upper and lo wer limit o f an int erval (a ,b) and the ev a l uated value s subtr acted . S y mbolic[...]
-
Page 451
P age 13-16 T his is the gener al for mat for the de finit e integral w hen typed dir ectly into the stac k, i .e ., ∫ (lo w er limit , upper limit , in tegr and , var iable of in tegr ation) Pr es sing ` at this point w ill ev aluate the integral in the st ack: T he integral can be e valuated also in the E quation W rite r by s electing the enti[...]
-
Page 452
P age 13-17 T he follo w ing ex ample sh o ws the e v aluation of a defi nite integr al in the E quation W riter , step-b y-step: ʳʳʳʳʳ Notice that the st ep-by-s tep pr ocess pr ov ide s infor mation on the inter mediate step s follo wed b y the CAS to solv e this integr al . F irst , CAS ide ntif ies a squar e r oot integr al, ne xt, a r ati[...]
-
Page 453
P age 13-18 T ec hniques o f integr ation Se v er al techni ques of int egr ation can be im plemented in the calc ulators , as sho w n in the f ollo w ing e x amples . Substitution or chang e o f var iables Suppose w e want to calc ulate the integr al . If w e us e step-by- step calc ulatio n in the Eq uation W rit er , this is the sequence of v ar[...]
-
Page 454
P age 13-19 Integration b y par ts and differentials A differ ential o f a functi on y = f(x) , is de fined a s dy = f’(x) dx , w her e f’(x) is the der i vati v e of f(x). Differ enti als ar e used to r epr esen t small incr ements in the var iables . The diff er ential o f a pr oduct of tw o functi ons , y = u(x)v(x) , is gi v en by dy = u(x)[...]
-
Page 455
P age 13-20 Integration b y par tial fr actions F unction P A R TFRA C, pr esented in Chap te r 5, pr ov ides the decomposition of a fr action int o par ti al fr acti ons. T his techni que is us eful t o r educe a complicated fr action into a sum of simple f r actio ns that can then be integrated t erm b y ter m. F or ex ample , to integrate w e ca[...]
-
Page 456
P age 13-21 Using the calc ulator , w e pr oceed as f ollo ws: Alternati ve ly , y ou can ev aluate the i n tegra l to inf inity fr om the start, e .g ., Integr ation with units An integr al can be calculated w ith units incorpor ated into the limits of integr ation , as in the e x ample sho w n belo w that uses AL G mode , w ith the CAS set to A p[...]
-
Page 457
P age 13-2 2 Some n otes in the u se of units in the limits of int egrati ons: 1 – T he units of the low er limit of integr ation w i ll be the ones u sed in the f inal r esult , as illu str ated in the tw o e x amples belo w : 2 - Upper limit units mu st be consisten t w ith low er limit units. Otherw ise , the calc ulator sim ply r eturns the u[...]
-
Page 458
Pa g e 1 3 - 23 T a ylor and Mac laur in’s series A fu nction f( x) can be expanded in to an inf inite ser ie s ar ound a point x=x 0 by using a T a y lor’s ser ie s, namel y , , wher e f (n) (x) repr esen ts the n - th der i vati ve of f(x) w ith respect to x , f (0) (x) = f(x) . If the v alue x 0 is z er o , the s er ies is r ef err ed to as [...]
-
Page 459
P age 13-2 4 wher e ξ is a n umber near x = x 0 . Since ξ is ty pi cally unkn o wn , inst ead of an estimat e of the r esidual , w e pr ov ide an es timate of the or der of the r esi dual in re fe ren c e t o h, i. e. , we s ay t h a t R k (x) ha s an err or of orde r h n+1 , or R ≈ O(h k+1 ). If h is a small number , sa y , h<<1, then h [...]
-
Page 460
P age 13-2 5 inc reme nt h. T he list r etur ned as the fir st output ob ject inc ludes the fo llo w ing items: 1 - Bi-dir ecti onal limit of the func tio n at point of e xpansion , i .e . , 2 - An eq uiv alent v alue of the f unctio n near x = a 3 - Expr essi on f or the T ay lor po ly nomi al 4 - Or der of the r esidual or r emainder Becau se of [...]
-
Page 461
Pa g e 1 4 - 1 Chapter 14 M ulti-v ariate Calculus Applications Multi- v ar iate calculus r ef ers to functi ons of two or mor e v ar iables . In this Chapte r we dis c uss the basi c concepts of multi-v ari ate calc ulus including partial der i vati v es and multiple int egrals . Multi-var iate func tions A func tion of tw o or mor e var iables ca[...]
-
Page 462
Pa g e 1 4 - 2 . Similarl y , . W e w ill use the multi-var i ate functi ons def ined earli er to calc ulate partial der i vati v es using thes e def initions . Her e ar e the der i vati ves o f f(x ,y) w ith r espec t to x and y , re specti vel y: Notice that the def inition of partial der i vati ve w ith r espec t to x, f or e xample , r equir es[...]
-
Page 463
Pa g e 1 4 - 3 ther ef or e , w ith DERVX y ou can onl y calculat e deri vati v es w ith r espect to X . Some e xamples o f fir st-order partial der iv ati ve s are sho wn ne xt: ʳʳʳʳʳ Hi gh er -o rde r d erivat ives T he fo llo wing s econd-or der der i vati ves can be def ined T he last tw o e xpr essi ons r epr esen t cr oss-der i v ati ve [...]
-
Page 464
Pa g e 1 4 - 4 T hir d-, fourth-, and higher or der der i vati ves ar e def ined in a similar manner . T o calc ulate higher o r der der i vati ves in the calculator , simply r e peat the der i vati v e functi on as man y times as needed . Some e xamples ar e show n belo w : T he c hain rule for partial deri vati ves Consi der the func tion z = f(x[...]
-
Page 465
Pa g e 1 4 - 5 A diff er ent v ersi on of the c hain rule appli es to the cas e in whi ch z = f(x,y), x = x(u ,v), y = y(u, v) , so that z = f[x(u ,v) , y(u ,v)]. The f ollo wing f orm ulas r epre sent the c hain rule for this situati on: Determining e xtrema in functions of t w o v ariables In or der f or the functi on z = f(x ,y) to hav e an extr[...]
-
Page 466
Pa g e 1 4 - 6 W e find c r itical points at (X,Y ) = (1, 0) , and (X,Y) = (-1, 0 ). T o c alc ulate the disc r iminant , we pr oceed t o calculate the second der i v ati ves , fXX(X,Y) = ∂ 2 f/ ∂ X 2 , fXY(X,Y) = ∂ 2 f/ ∂ X/ ∂ Y , and fYY(X,Y) = ∂ 2 f/ ∂ Y 2 . T he last r esult indi cates that the disc r iminant i s Δ = -12X, thus ,[...]
-
Page 467
Pa g e 1 4 - 7 Appli cations of f uncti on HE S S ar e easier to v i suali z e in the RPN mode . Consi der as an ex ample the f uncti on φ (X,Y ,Z) = X 2 + XY + XZ , w e ’ll appl y fu nct ion H E S S to fu nct ion φ i n t h e f ol l owi n g e xa m p l e. T h e s cr e e n s h o t s s h ow t h e RPN stac k bef or e and after appl y ing func tion [...]
-
Page 468
Pa g e 1 4 - 8 T he re sulting matri x has elements a 11 = ∂ 2 φ / ∂ X 2 = 6 ., a 22 = ∂ 2 φ / ∂ X 2 = - 2 ., and a 12 = a 21 = ∂ 2 φ / ∂ X ∂ Y = 0. T he disc r iminant , f or this cr itical point s2(1, 0) is Δ = ( ∂ 2 f/ ∂ x 2 ) ⋅ ( ∂ 2 f/ ∂ y 2 )- [ ∂ 2 f/ ∂ x ∂ y] 2 = (6.)(- 2 .) = -12 . 0 < 0, indicating a s[...]
-
Page 469
Pa g e 1 4 - 9 Jacobian of coor dinate transf ormation Consi der the coordinat e tr ansfor mation x = x(u ,v) , y = y(u ,v) . T he Jacobi an of this tr ansf ormati on is def i ned as . When calc ulating an int egr al using suc h transf ormati on , the expr ession to u se is , w her e R’ is the r egi on R e xpre ssed in (u ,v ) coor dina te s. Dou[...]
-
Page 470
Pa g e 1 4 - 1 0 w here the r egion R’ in polar coor dinates is R’ = { α < θ < β , f( θ ) < r < g( θ )}. Double integr als in polar coor dinates can be enter ed in the ca lc ulator , making sur e that the Jacobi an |J| = r is includ ed in the integr and . The f ollo w ing is an e x ample of a double in tegr al calc ulated in po[...]
-
Page 471
P age 15-1 Chapter 15 V ec tor Anal y sis Applications In this Chapt er we pr esent a number of f unctio ns fr om the CAL C menu that appl y to the analy sis of scalar and ve ctor f iel ds. The CAL C menu w as pr esen ted in detail in Chapte r 13 . In partic ular , in the DERI V&INTE G menu w e identif ied a number of functi ons that hav e appl[...]
-
Page 472
P age 15-2 At an y partic ular point , the maximum r a t e of change o f the functi on occ urs in the dir ecti on of the gr adien t , i .e ., along a unit vec tor u = ∇φ /| ∇φ |. The v alu e o f that dir ectional der iv ati ve is equal to the magnitude of the gr adient at an y point D max φ (x ,y ,z) = ∇φ •∇φ /| ∇φ | = | ∇φ | T[...]
-
Page 473
P age 15-3 as the matri x H = [h ij ] = [ ∂φ / ∂ x i ∂ x j ], the gr adient o f the func tion w ith re spect t o the n -v ar ia bles , grad f = [ ∂φ / ∂ x 1 , ∂φ / ∂ x 2 , … ∂φ / ∂ x n ], and the list of va riab le s [ ‘ x 1 ’ ‘ x 2 ’…’x n ’]. Consider as an e xample the f unction φ (X,Y ,Z) = X 2 + XY + XZ , [...]
-
Page 474
P age 15-4 not hav e a potential func tion assoc iated w ith it , since, ∂ f/ ∂ z ≠∂ h/ ∂ x. The cal c ula tor r espon se in th is case is sho wn bel o w: Di ver gence T he div er gence of a v ector f uncti on, F (x,y ,z ) = f(x ,y ,z) i +g(x,y ,z) j +h(x ,y ,z) k , is def ined b y taking a “ dot -pr oduct” o f the del oper ator w ith[...]
-
Page 475
P age 15-5 Cur l The c url of a v ector fi eld F (x ,y ,z) = f(x, y ,z) i +g(x ,y ,z) j +h(x ,y ,z) k , is def ined b y a “ cr oss-pr oduct” of the del oper ator w ith the vec tor f ield, i .e ., T he cur l of v ect or fi eld can be calculat ed with f uncti on CURL . F or ex ample , f or the fu nction F (X,Y ,Z) = [XY ,X 2 +Y 2 +Z 2 ,Y Z], the [...]
-
Page 476
P age 15-6 As an e xample , in an earlie r ex ample w e attempted to f ind a potenti al func tion for th e ve ctor f ie ld F (x,y ,z) = (x+y) i + (x-y+z) j + xz k , and got an e rr or message back f r om func tion P O TENT IAL. T o ve rify that this is a r otati onal f ield (i .e., ∇× F ≠ 0) , w e us e functi on CURL on this fi eld: On the oth[...]
-
Page 477
P age 15-7 pr oduces the v e c tor potenti al func tion Φ 2 = [0, ZYX- 2YX, Y -( 2ZX-X)], w hic h is diffe r ent fr om Φ 1 . T he last command in the sc reen shot sho w s that indeed F = ∇× Φ 2 . Th us, a v ector potenti al functi on is not uniquel y determined . T he components of the gi ve n vect or fi eld, F (x ,y ,z) = f(x,y ,z) i +g(x,y [...]
-
Page 478
Pa g e 1 6 - 1 Chapter 16 Differ ential Equations In this Chapte r we pr esent e xample s of so lv ing or dinar y diff er ential equati ons (ODE) using calc ulator f uncti ons. A differ ential equatio n is an equati on in vol v ing der i vati ves of the independen t var iable . In mo st cases , w e seek the dependent f uncti on that satisf ies the [...]
-
Page 479
Pa g e 1 6 - 2 ( H @) DISP ) is not se lected . Pr ess ˜ to see the equati on in the E quati on Wr i t e r. An alter nati v e notatio n for der iv ati v es typed dir ectl y in the st ack is to u se ‘ d1’ f or the der i vati v e w ith r espect to the f irs t independent var ia ble , ‘ d2’ for the der i vati v e w ith r espec t to the seco n[...]
-
Page 480
Pa g e 1 6 - 3 EV AL(AN S(1)) ` In RPN mode: ‘ ∂ t( ∂ t(u(t)))+ ω 0^2*u(t) = 0’ ` ‘ u(t)=A*SIN ( ω 0*t)’ ` SUBST EVAL The r esult is ‘0=0’ . F or this e xample , y ou could also us e: ‘ ∂ t( ∂ t(u(t))))+ ω 0^2*u (t) = 0’ to enter the diffe r ential equation . Slope field v isualiz ation of solutions Slope fi eld plots, in[...]
-
Page 481
Pa g e 1 6 - 4 T hese f unctions ar e brie fl y desc r ibed next . T he y w ill be desc r ibed in mor e detail in later parts of this Chapte r . DE S OL VE: Differ enti al E quati on S OL VEr , pro vi des a solu tion if pos sible IL AP: In ver se L AP lac e tr ansf orm , L -1 [F(s)] = f(t) L AP: LAPl ace transf orm , L[f(t)]=F(s) LDE C: solv es Lin[...]
-
Page 482
Pa g e 1 6 - 5 Both of thes e inputs must be gi ven in ter ms of the def ault independent v ar iable fo r the calculator ’s CAS (ty pi cally ‘X’) . T he output fr om the functi on is the gener a l soluti on of the ODE . The f unction LDE C is a v ailable thr ough in the CAL C/DI FF men u . The e x amples ar e sho wn in the RPN mode , ho w ev [...]
-
Page 483
Pa g e 1 6 - 6 T he soluti on, sho w n par ti ally he re in the E quation W r iter , is: R eplac ing the combinatio n of constants accompan y ing the e xponenti al terms w ith simpler values , the e xpr essi on can be simplifi ed to y = K 1 ⋅ e –3x + K 2 ⋅ e 5x + K 3 ⋅ e 2x + ( 4 5 0 ⋅ x 2 +3 3 0 ⋅ x+2 41)/13 500. W e r ecogni z e the f[...]
-
Page 484
Pa g e 1 6 - 7 2x 1 ’(t) + x 2 ’(t) = 0. In algebr aic f orm , this is wr itten as : A ⋅ x ’(t) = 0, wher e . T he s y stem can be s olv ed b y using func tion LDE C w ith argume nts [0, 0] and matri x A, as sho w n in the f ollo wing sc r een using AL G mode: T he soluti on is gi ve n as a vec tor containing the func tio ns [x 1 (t), x 2 ([...]
-
Page 485
Pa g e 1 6 - 8 Ex ample 2 -- So lv e the second-o rde r ODE: d 2 y/dx 2 + x (dy/dx) = e xp(x) . In the calc ulator use: ‘ d1d1y(x)+x *d1y(x) = EXP( x) ’ ` ‘ y(x) ’ ` DESOLVE T he r esult is an e xpr essi on hav ing tw o impli c it integr ations , namel y , F or this parti cular eq uation , ho w ev er , w e r eali z e that the le ft -hand si[...]
-
Page 486
Pa g e 1 6 - 9 P er f or ming the integr ation by hand, w e can only ge t it as far as: becaus e the integr al of exp(x)/x is no t av ailable in c losed f or m. Ex ample 3 – Sol v ing an equati on w ith initial co nditions . Sol ve d 2 y/dt 2 + 5y = 2 cos(t/2) , w ith initial conditi ons y(0) = 1.2 , y’(0) = -0. 5 . In the calculator , use: [?[...]
-
Page 487
Pa g e 1 6 - 1 0 Press J @ODETY to get the str ing “ Linear w/ cst coeff ” for the ODE ty pe in this case . Laplace T r ansfor ms T he Laplace tr ansform o f a func tion f(t) pr oduces a f unction F(s) in the image domain that can be utili z ed to find the so lution o f a linear differ ential eq uation in vo lv ing f(t) thr ough algebr aic me t[...]
-
Page 488
Pa g e 1 6 - 1 1 Laplace tr ansfor m and inv erses in the calc ulator T he calculat or pr o vi des the f uncti ons L AP and ILAP to calc ulate the L aplace tr ansfor m and the in v erse L aplace tr ansfor m, r especti v ely , of a func tion f(VX) , w here VX is the CA S def ault independent v ar iable , whi ch y ou should set t o ‘X’ . T hus , [...]
-
Page 489
Pa g e 1 6 - 1 2 Ex ample 3 – Deter mine the in ve rse L aplace tr ansfor m of F(s) = sin(s) . Use: ‘SIN(X)’ ` IL AP . The calc ulator tak es a fe w seconds to r eturn the r esul t: ‘IL AP( SIN(X))’ , meaning that ther e is no c los ed-fo rm e xpr es sion f(t), such that f(t ) = L -1 {sin(s)}. Ex ample 4 – Determine the in ve rse L apla[...]
-
Page 490
Pa g e 1 6 - 1 3 Θ Differ entiati on theor em for the n- th der iv ati v e . Let f (k) o = d k f/dx k | t = 0 , and f o = f(0) , then L{d n f/dt n } = s n ⋅ F(s) – s n-1 ⋅ f o − …– s ⋅ f (n - 2) o – f (n-1) o . Θ L inear it y theor em . L{af(t)+bg(t)} = a ⋅ L{f(t)} + b ⋅ L{g(t)}. Θ Differ entiati on theor em f or the image f [...]
-
Page 491
Pa g e 1 6 - 1 4 Θ Shift theor em fo r a shif t t o the ri ght . Le t F(s) = L{f(t)}, then L{f(t-a)}=e –as ⋅ L{f(t)} = e –as ⋅ F(s) . Θ Shift theor em f or a shift to the left . Le t F(s) = L{f(t)}, and a >0, then Θ Similar ity theor em . L et F(s) = L{f(t)}, and a>0, then L{f(a ⋅ t)} = (1/a) ⋅ F(s/a) . Θ Damp ing theor em . L[...]
-
Page 492
Pa g e 1 6 - 1 5 Dir ac’s d elta function and Heav isid e’s step function In the analy sis of contr ol s y stems it is cu stomary to utili z e a t y pe of f uncti ons that r epr esent certain ph y sical occ urr ences suc h as the sudden acti vati on of a s w itc h (Heav iside’s s tep func tion , H(t)) or a sudden, ins tantaneous , peak in an [...]
-
Page 493
Pa g e 1 6 - 1 6 Y ou can pr o v e that L{H(t)} = 1/s , from wh ich it fol lows th a t L { U o ⋅ H(t)} = U o /s , wher e U o is a cons tant . Also , L -1 {1/s}=H(t) , and L -1 { U o /s}= U o ⋅ H(t) . Also , using the shift theor em f or a shift to the ri ght , L{f(t -a)}=e –a s ⋅ L{f(t)} = e –as ⋅ F ( s) , we c a n writ e L{ H ( t -k ) [...]
-
Page 494
Pa g e 1 6 - 1 7 Applications of L aplace transf orm in the solution of linear ODEs At the beginning of the s ectio n on Laplace tr ansfor ms we indi cated that y ou could us e these tr ansfor ms to con v ert a linear ODE in the time do main into an algebr aic eq uation in the image domain . T he r esulting equati on is then sol v ed fo r a functi [...]
-
Page 495
Pa g e 1 6 - 1 8 T he r esult is ‘H=( (X+1)*h0+a)/(X^2+(k +1)*X+k)’ . T o f ind the soluti on to the ODE , h(t) , w e need to us e the inv erse L aplace tr ansfor m, as f ollo w s: OB J ƒ ƒ Isolat es ri ght -hand si de of las t expr essi on ILAP μ Obtains the in ver se L aplace tr ansfor m T he r esult is . R eplac ing X w ith t in this [...]
-
Page 496
Pa g e 1 6 - 1 9 W ith Y(s) = L{y(t)}, and L{d 2 y/dt 2 } = s 2 ⋅ Y(s) - s ⋅ y o – y 1 , wher e y o = h(0) and y 1 = h ’(0) , the tr ansfor med equati on is s 2 ⋅ Y(s) – s ⋅ y o – y 1 + 2 ⋅ Y(s) = 3/(s 2 +9) . Use the c alc ulator to solv e for Y(s) , b y wr iting : ‘X^2*Y -X*y0 -y1+2*Y=3/(X^2+9)’ ` ‘Y’ I S O L T he r esul[...]
-
Page 497
Pa g e 1 6 - 2 0 Ex ample 3 – Consider the equati on d 2 y/dt 2 +y = δ (t-3) , wher e δ (t) is Dir ac’s d e lta func tion . Using La place transf orms , w e can wr ite: L{d 2 y/dt 2 +y} = L{ δ (t- 3)}, L{d 2 y/dt 2 } + L{y(t)} = L{ δ (t-3)}. Wi th ‘ Delta(X-3) ’ ` L AP , the calc ulator pr oduces EXP(-3*X) , i .e., L{ δ (t -3)} = e –[...]
-
Page 498
Pa g e 1 6 - 2 1 Chec k what the s olution t o the OD E w ould be if y ou us e the functi on LDEC: ‘Delta(X- 3)’ ` ‘X^2+1’ ` LDE C μ Note s : [1]. An alter nati ve w a y to obtain the in ver se L aplace tr ansfo rm of the e xpr es sion ‘(X*y0+(y1+E XP(-(3*X))))/(X^2+1)’ is b y separ ating the e xpr es sion in to partial f r actions , i[...]
-
Page 499
Pa g e 1 6 - 22 T he re sult is: ‘S IN(X-3)*Heav isi de(X-3) + cC1*S IN(X) + cC0*CO S(X)’ . P lease notice that the v ari able X in this expr essi on actuall y r e p r esen ts the v ari able t in the or iginal ODE . Thu s, the tr anslation of the so lution in pape r may be w ritt en as: When compar ing this r esult w ith the pr ev i ous r esult[...]
-
Page 500
Pa g e 1 6 - 2 3 Use o f the f unction H(X) w ith LD E C, L AP , or IL AP , is not allo wed in the calc ulator . Y ou hav e to us e the main results pr ov ided earlier w hen dealing w ith the Heav iside step f uncti on , i .e ., L{H(t)} = 1/s, L -1 {1/s}=H(t) , L{H(t-k)}=e –ks ⋅ L{H(t)} = e –ks ⋅ (1/s) = ⋅ (1/s) ⋅ e –ks and L -1 {e ?[...]
-
Page 501
Pa g e 1 6 - 24 w here H(t) is Hea v iside ’s step f uncti on. Us ing Laplace tr ansfor ms, w e can wri te : L {d 2 y/dt 2 +y} = L{H(t- 3)}, L{d 2 y/dt 2 } + L{y(t)} = L{H(t- 3)} . The la st ter m in this e xpr essi on is: L{H(t -3)} = (1/s) ⋅ e –3s . With Y(s) = L{y(t)}, and L{d 2 y/dt 2 } = s 2 ⋅ Y(s) - s ⋅ y o – y 1 , w here y o = h([...]
-
Page 502
Pa g e 1 6 - 2 5 Ex ample 4 – P lot the so lution to Ex ample 3 using the same v alues of y o and y 1 used in the plot of Ex ample 1, abov e . W e now plot the f unction y(t) = 0. 5 cos t –0.2 5 sin t + ( 1+sin(t -3)) ⋅ H(t-3) . In the r ange 0 < t < 20, and c hanging the vertical r ange to (-1, 3) , the gr aph should look lik e this: A[...]
-
Page 503
Pa g e 1 6 - 26 f(t) = U o ⋅ [1-(t-a)/(b-1)] ⋅ [H(t-a) -H(t -b)]. Ex amples of the plots gener ated by the se func tions , fo r Uo = 1, a = 2 , b = 3, c = 4 , hori z ontal r ange = (0,5 ) , and v ertical r ange = (-1, 1.5 ) , ar e sho wn in the fig ure s b el ow: F ourier ser ies F ouri er ser ie s are s er ies in v olv ing sine and cosine func[...]
-
Page 504
Pa g e 1 6 - 2 7 T he follo w ing ex erc ises ar e in AL G mode , with CA S mode s et to Ex act . ( W hen y ou pr oduce a gr aph , the CAS mode w ill be re set to Appr o x. Mak e sur e to se t it back t o Exact afte r pr oduc ing the gra ph.) Suppo se , f or ex ample , that the func tion f(t) = t 2 +t is per iodi c w ith per iod T = 2 . T o determi[...]
-
Page 505
Pa g e 1 6 - 2 8 Function FOURIER An alter nati ve w a y to def ine a F our ier ser ies is by using comple x number s as fo llo w s: wh ere F uncti on FOURIER pr ov i des the coeff ic ient c n o f the complex -for m of the F ouri er ser i es giv en the functi on f(t) and the v alue of n. T he functi on F OURIER r equir es y ou to st or e the value [...]
-
Page 506
Pa g e 1 6 - 2 9 Ne xt, w e mo ve to the CA SDI R sub-dir ector y under HOME to c hange the value of var iable PERIOD , e.g ., „ (hold ) §`J @) CASDI `2 K @PERIOD ` R eturn to the su b-dir ectory wher e y ou defined f uncti ons f and g, and calc ulate the coeff ic ients (A ccept change to C omple x mode w hen req uested): Th us, c 0 = 1/3, c 1 =[...]
-
Page 507
Pa g e 1 6 - 3 0 T he fitting is some what accepta ble for 0<t<2 , although not as good as in the pr ev ious e xample . A general e xpression for c n T he functi on F OURIER can pro v ide a gener al e xpr essi on f or the coeff ic ient c n of the comple x F our ier ser ies e xpansion . F or ex ample , using the same f unction g(t) as befor e,[...]
-
Page 508
Pa g e 1 6 - 3 1 The r esult is c n = (i ⋅ n ⋅π +2)/(n 2 ⋅π 2 ). P utting t ogether the comple x F ouri er ser ies Hav ing deter mined the gener al expr ession for c n , we can put toge ther a finite comple x F our ier se ri es b y using the summati on f unction ( Σ ) in the calculator as fo llo w s: Θ F irst , def ine a f uncti on c(n) r[...]
-
Page 509
Pa g e 1 6 - 32 Or , in the calculator entry line as: DEFINE(‘F(X,k,c0) = c0+ Σ (n=1,k ,c(n)*EXP(2*i* π *n*X/T)+ c(-n)*EXP(-( 2*i* π *n*X/T))’) , w here T is the per iod , T = 2 . The fo llo w ing s cr een shots show the def i niti on of func tion F and the st orin g of T = 2 : Th e fu nct ion @@@F@@@ can be us ed to gener ate the e xpre ssi[...]
-
Page 510
Pa g e 1 6 - 33 Accept c hange to Approx mode if r eques ted . The r esult is the v alue –0.40 46 7…. The ac tual value of the f uncti on g(0. 5) is g(0. 5) = -0.2 5 . Th e fo llo w ing calc ulations sh ow ho w w ell the F our ier ser ie s appr o x imate s this v alue as the number of componen ts in the ser ie s, gi v en b y k, inc r eases: F ([...]
-
Page 511
Pa g e 1 6 - 3 4 per iodi c ity in the gr aph o f the ser ies . This per i odic it y is eas y to v isuali z e by e xpa nding the hor i z ontal range of the plot to (-0.5, 4) : F ourier series f or a triangular w av e Consi der the functi on w hich w e assume to be per i odic w ith peri od T = 2 . This f uncti on can be def ined in the calc ulator ,[...]
-
Page 512
Pa g e 1 6 - 3 5 T he calculat or r eturns an int egr al that cannot be e valuat ed numer icall y becaus e it depends on the par ameter n . The coeff ic ient can s till be calc ulated by typing its de finiti on in the calc ulator , i .e ., w here T = 2 is the per i od. T he value of T can be st or ed using: T yp ing the firs t integr al abo ve in t[...]
-
Page 513
Pa g e 1 6 - 3 6 Press `` to cop y this re sult to the scr een. T hen , r eacti vat e the E quation W r iter to calc ulate the second integr al defi ning the coeffi c ie nt c n , namel y , Once again, r eplac ing e in π = (-1) n , and using e 2in π = 1, we get: Press `` to cop y this second r esult to the sc r een . No w , add ANS(1) and ANS( 2) [...]
-
Page 514
Pa g e 1 6 - 37 T his re sult is used to de fine the f unction c(n) as f ollo ws: DEFINE(‘ c(n) = - (((-1)^n-1)/(n^2* π ^2*(-1)^n)’) i. e. , Ne xt, w e def ine function F(X,k ,c0) to calc ulate the F our ier seri es (if you completed e x ample 1, y ou alr eady ha v e this functi on stor ed) : DEFINE(‘F(X,k,c0) = c0+ Σ (n=1,k ,c(n)*EXP(2*i* [...]
-
Page 515
Pa g e 1 6 - 3 8 F r om the plot it is very diffi c ult to distinguish the or iginal functi on fr om the F ourier s eri es appr o ximati on. U sing k = 2 , or 5 ter ms in the ser ies, sho ws not so good a f itting: T he F our ier s eri es can be us ed to gener ate a per i odic tr iangular w a ve (or sa w tooth w av e ) by c hanging the hor iz ontal[...]
-
Page 516
Pa g e 1 6 - 3 9 In th is case , th e per iod T , is 4. Mak e s ur e to chang e the value of v ari abl e @@@T@@@ to 4 (use: 4K @@@T@@ ` ) . F unction g(X) can be de fined in the calc ulator by us in g DEFINE(‘ g(X) = IFTE((X>1) AND (X<3) ,1, 0)’) The function plot ted as follo ws (hori z ontal r ange : 0 to 4 , v ert i cal r a nge: 0 to 1[...]
-
Page 517
Pa g e 1 6 - 4 0 Th e si m pl i fic at io n of th e rig h t -h a nd s id e of c (n ) , a bove, i s ea si er d on e on p ap e r (i .e ., b y hand) . T hen , r et y pe the expr es sion f or c(n) as sho wn in the f igur e to the left abo v e , to def ine func tion c(n). T he F our ier s er ies is calc ulated w ith F(X,k ,c0) , as in e x amples 1 and 2[...]
-
Page 518
Pa g e 1 6 - 4 1 W e can use this r esult as the f irs t input to the f uncti on LD E C w hen us ed to obtain a soluti on to the s y ste m d 2 y/dX 2 + 0.2 5y = S W(X) , w her e S W(X) stands f or Squar e W av e f uncti on of X. T he second inpu t item w ill be the char acter isti c equati on corr es ponding to the homogeneous ODE sho wn abo ve , i[...]
-
Page 519
Pa g e 1 6 - 42 T he soluti on is sho wn belo w: F ourier T r ansf orms Befor e pr esen ting the concept of F our ier tr ansf orms , we ’ll d i scus s the gener al def initio n of an integr al tr ansf orm . In gener al , an integr al tr ansf orm is a tr ansfor mation that r elate s a functi on f(t) to a new f uncti on F(s) by an integr ation of t[...]
-
Page 520
Pa g e 1 6 - 4 3 T he amplitudes A n w ill be r ef er red t o as the spectr um of the f uncti on and w ill be a measur e of the magnitude of the component of f(x) w ith fr equency f n = n/T . T he basic or f undamental fr equency in the F ouri er ser ies is f 0 = 1/T , thu s, all other fr equenc ies ar e multiple s of this basi c f req uency , i .e[...]
-
Page 521
Pa g e 1 6 - 4 4 and The continuous spectrum is giv en by Th e fu nct ion s C ( ω ), S ( ω ), and A( ω ) ar e continuous functi ons of a v ari able ω , w hich beco mes the tr ansfor m v ari able fo r the F our ier tr ansfor ms def ined belo w . Ex ample 1 – D eter min e the coeffic ients C( ω ), S ( ω ) , and the continu ous spectr um A( ω[...]
-
Page 522
Pa g e 1 6 - 4 5 Def ine this e xpr essio n as a f unction by u sing func tion DEFINE ( „à ) . Then , plot the continuo us spectr um, in the r ange 0 < ω < 10 , as: Definition o f Four ier transf orms Diffe r ent t y p e s of F ourie r transf or ms can be defined . T he fo llo wing ar e the def initio ns of the sine , cosine , and full F [...]
-
Page 523
Pa g e 1 6 - 4 6 The continuous spect r um, F( ω ) , is calculated w ith the integral: T his re sult can be r ationali z ed b y multipl y ing numer ator and denominator b y the conjugat e of the denominator , namel y , 1-i ω . T he r esult is now : which is a co mp lex fu nct ion. T he absolute v alue of the r eal and imaginar y parts of the func[...]
-
Page 524
Pa g e 1 6 - 4 7 Pr oper ties o f th e F ourier transfor m L inearity : If a and b are co nstants , and f and g functi ons, then F{a ⋅ f + b ⋅ g} = a F{f }+ b F{g}. T r ansfor mati on of partial deri vati v es . Let u = u(x ,t) . If the F ouri er tr ansfor m tr ansfor ms the var i able x , then F{ ∂ u/ ∂ x} = i ω F{u}, F{ ∂ 2 u/ ∂ x 2 [...]
-
Page 525
Pa g e 1 6 - 4 8 the number o f oper ations u sing the FFT is r e du ced by a f act or of 10000/6 64 ≈ 15 . The FFT op er ates on t he sequenc e {x j } b y par titi oning it int o a number o f shorter seque nces . The DFT ’s of the shorter seq uences ar e calc ulated and later comb ined together in a highl y eff ic ient manner . F or details on[...]
-
Page 526
Pa g e 1 6 - 49 T he fi gur e belo w is a box plot o f the data pr oduced. T o obtain the gra ph, f irs t cop y the ar r ay j ust c r eated, then tr ansfor m it into a column v ector b y using: OB J 1 + ARR Y (F uncti ons OB J and ARR Y ar e av ailable in the command cat alog, ‚N ) . S tor e the arr ay into var ia ble Σ DA T by u[...]
-
Page 527
Pa g e 1 6 - 50 Ex ample 2 – T o pr oduce the signal gi ven the s pectr um, w e modif y the pr ogr am GD A T A to inc lude an abso lute v alue , so that it r eads: << m a b << ‘2^m ’ EV AL n << ‘(b-a)/(n+1)’ EV AL Dx << 1 n F OR j ‘ a+(j-1 )*Dx ’ EV AL f AB S NEXT n ARR Y > > >> >[...]
-
Page 528
Pa g e 1 6 - 5 1 Ex cept for a lar ge peak at t = 0, the signal is mo stl y nois e . A smaller v er ti cal scale (-0. 5 to 0. 5) sho ws the si gnal as f ollo ws: Solution to specific second-or der differential equations In this secti on w e pr esent and so lv e spec ifi c t y pes of or dinar y differ ential equati ons who se solu tions ar e def ine[...]
-
Page 529
Pa g e 1 6 - 52 w here M = n/2 or (n-1)/2 , whi che v er is an integer . Legendr e’s pol y nomials ar e pr e -pr ogr ammed in the calculator and can be r ecalled by u sing the func tion LE GENDRE gi v en the or der of the pol ynomi al , n. T he functi on LE GENDR E can be obtained fr om the command catalog ( ‚N ) or thr ough the menu ARITHME T [...]
-
Page 530
Pa g e 1 6 - 5 3 wher e ν is not an integer , and the func tion Gamma Γ ( α ) is def ined in Chapter 3. If ν = n , an integer , the Bessel f uncti ons of the f ir st kind for n = intege r ar e def ined b y Regar dless of whether w e use ν (n on -int eger ) or n (integer ) in the calc ulato r , we can def ine the Bess el f unctions o f the fir [...]
-
Page 531
Pa g e 1 6 - 5 4 Y ν (x) = [J ν (x) cos νπ – J −ν ( x)]/sin νπ , fo r non -int eger ν , and f or n integer , w ith n > 0, by wher e γ is the Euler cons tant , def ined by and h m r epre sents the har monic se r ies F or the case n = 0, the Bes sel f uncti on of the seco nd kind is def ined as With these def i niti ons, a gener al so[...]
-
Page 532
Pa g e 1 6 - 5 5 T he modifi ed Bessel f unctions o f the second kind , K ν (x) = ( π /2) ⋅ [I - ν (x) − I ν (x)]/sin νπ , ar e also so lutions o f this OD E . Y ou can implement f uncti ons r epr esenting Bes sel’s f unctions in the calc ulator in a similar ma nn er to that used to def ine Bess el’s func tions of the f irst kind, but[...]
-
Page 533
Pa g e 1 6 - 5 6 Laguerr e’s equation Lague rr e ’s equation is the s econd-orde r , linear OD E of the f orm x ⋅ (d 2 y/dx 2 ) +(1 − x) ⋅ (d y/dx) + n ⋅ y = 0. L aguerr e pol ynomi als, de fined as , ar e soluti ons to L aguerr e ’s equation . Laguer r e ’s pol ynomi als can also be calc ulated w ith: Th e te rm is the m-th coeff i[...]
-
Page 534
Pa g e 1 6 - 57 L 2 (x) = 1- 2x+ 0.5x 2 L 3 (x) = 1-3x+1. 5x 2 - 0 . 16 666… x 3 . W eber ’s equation and H er mite poly nomials W eber’s eq uation is def ined as d 2 y/dx 2 +(n+1/2 - x 2 /4)y = 0, f or n = 0, 1, 2 , … A partic ular so lutio n of this eq uation is gi ven b y the functi on , y(x) = ex p (-x 2 /4)H * (x/ √ 2) , w her e the [...]
-
Page 535
Pa g e 1 6 - 5 8 F i r st , c r eate the e xpr es sion de fining the de ri vati v e and stor e it into var i able E Q. T he fi gur e to the left sho ws the AL G mode command, w hile the ri ght-hand side f igur e sho ws the RPN s tack be for e pre ssing K . T hen, enter the NUMERICAL S OL VER en vir onment and select the differ ential equation s olv[...]
-
Page 536
Pa g e 1 6 - 59 @@OK@ @ @INIT+ — .7 5 @@OK@@ ™™ @SOLVE (wai t) @EDIT (Changes initial v alue of t t o 0.5, and f inal v alue of t to 0.7 5, sol v e f or v(0.7 5) = 2 . 066…) @@OK@ @ @INIT+ — 1 @@OK@@ ™ ™ @SOLVE (wa it ) @EDIT (Changes initi al value o f t to 0.7 5, and final v alue of t to 1, s olv e for v(1) = 1. 5 6 2…) R epeat fo[...]
-
Page 537
Pa g e 1 6 - 6 0 Θ „ô (simultaneousl y , if in RPN mode) to enter P L O T env i r onment Θ Hi ghligh t the f ield in f r ont o f TYPE , using the —˜ k ey s. T hen , pres s @CHOOS , and highlight Diff Eq , u sing the —˜ k ey s. Pr ess @@OK@@ . Θ Chan ge fi eld F: to ‘EXP(- t^2)’ Θ Mak e sur e that the f ollow ing paramet ers ar e se[...]
-
Page 538
Pa g e 1 6 - 6 1 LL @) PICT T o re c over m e nu a n d re t u rn to PI C T envi ro n me n t. @ ( X,Y ) @ T o determine coor dina t es of an y point on the gr aph . Use the š™ k ey s to mo ve the cursor ar oun d the plot a r ea . At th e bottom of the sc r een y ou w ill see the coor dinates of the c urs or as (X,Y) , i .e., the calc ulator use s[...]
-
Page 539
Pa g e 1 6 - 62 time t = 2 , the input for m fo r the differ ential equation s olv er should look a s fo llo w s (notice that the Init: v alue f or the Soln: is a v ect or [0, 6]) : Press @SOLVE (wai t) @EDIT to s ol ve f or w(t=2) . The so lution r eads [.16 716… - .6 2 71…], i .e ., x(2 ) = 0.16 716 , and x'( 2) = v(2) = -0.6 2 71. Pre s[...]
-
Page 540
Pa g e 1 6 - 6 3 (Changes initi al value of t to 0.7 5, and f inal value o f t to 1, sol ve again f or w(1) = [-0.4 6 9 -0.6 0 7]) R epeat for t = 1.2 5, 1.5 0, 1.7 5, 2 .0 0. Pre ss @@OK@@ after v ie w ing the last r esult in @EDIT . T o r eturn to nor mal calculator displa y , pr ess $ or L @@OK@@ . T he diffe r ent soluti ons w ill be sho w n in[...]
-
Page 541
Pa g e 1 6 - 6 4 Notice that the opti on V - V ar : is set to 1, indicating that the f irst ele ment in the v ector s oluti on, namel y , x ’ , is to be plotted against the independent v ar iable t . Accept c hanges to P L O T SETUP b y pr essing L @@OK@@ . Press „ò (simultaneousl y , if in RPN mode) to enter the P L O T WINDO W en vi r onment[...]
-
Page 542
Pa g e 1 6 - 65 Press LL @PICT @CANCL $ to r etur n to nor mal calc ulator dis play . Numerical solution for stiff first-or d er ODE Consi der the ODE: d y/dt = -100y+100t+ 101, sub jec t to the initial conditi on y(0) = 1. Ex ac t solution T his equation can be w ri t t en as dy/dt + 100 y = 100 t + 101, and so lv ed using an integr ating fact or [...]
-
Page 543
Pa g e 1 6 - 6 6 Her e w e are try ing to obtain the v alue of y( 2) giv en y(0) = 1. W ith the Soln: Final f ield highli ghted, pr ess @SOLVE . Y ou can chec k that a soluti on tak es abo ut 6 sec on ds, wh il e i n t he previou s fi rst - orde r exa mp le th e s ol ut ion was alm os t instantaneou s. Pr ess $ to cancel the calc ulati on. T his is[...]
-
Page 544
Pa g e 1 6 - 67 Note: T he opti on Stiff is also a vailable f or gr aphical s oluti ons of differ ential equati ons. Numerical solution to ODEs w it h th e S O L VE/DIFF menu T he S OL VE soft men u is acti va ted b y using 7 4 MENU in RPN mode . T his menu is pr esent ed in detail in Cha pter 6 . One of the sub-menu s, DIFF , contains func tions f[...]
-
Page 545
Pa g e 1 6 - 6 8 T he value of the so lution , y fin a l , w ill be av ailable in v ar iable @@@y@@@ . This f uncti on is appr opr iate f or pr ogramming since it lea v es the diff er ential eq uation spec if icati ons and the toler ance in the st ack r eady f or a new s olution . Notice that the soluti on use s the initial conditions x = 0 at y = [...]
-
Page 546
Pa g e 1 6 - 69 contain only the v alue of ε , and the step Δ x w ill be tak en as a small default value . After running f unction @@RKF@ @ , the s tack w ill show the lines: 2 : {‘ x ’ , ‘ y’ , ‘f(x ,y)’ ‘ ∂ f/ ∂ x’ ‘ ∂ f/vy’ } 1: { εΔ x } T he value o f the soluti on , y fi nal , w ill be a vaila ble in var iable @@@[...]
-
Page 547
Pa g e 1 6 - 70 T hese r esults indi cate that ( Δ x) ne xt = 0. 34 04 9… Function RRKS TEP T his f uncti on use s an input list similar to that of func tion RRK , as well as the toler ance for the so lution , a po ssible st ep Δ x , and a n umber (L A ST) spec ifying the last me thod used in the solu tion (1, if RKF w as used , or 2 , if R RK [...]
-
Page 548
Pa g e 1 6 - 7 1 T hese r esults indi cate that ( Δ x) ne xt = 0. 005 5 8… and that the RKF method (CURRENT = 1) should be used. Function RKFERR T his functi on r etur ns the abso lute er r or estimate f or a gi ven s tep whe n sol v ing a pr oblem as that des cr ibed f or func tion RKF . T he input st ack looks as f ollo ws: 2: ʳʳʳ {‘ x ?[...]
-
Page 549
Pa g e 1 6 - 72 T he follo w ing scr een shots sho w the RPN st ack bef ore and af t er applicati on of func tion R SBERR: T hese r esults indi cate that Δ y = 4.1514… and err or = 2 .7 6 2 ..., fo r Dx = 0.1. Chec k that , if Dx is redu ced to 0. 01, Δ y = -0. 003 0 7… and err or = 0. 0005 4 7 . Not e : As y ou e xec ute the commands in the [...]
-
Page 550
Pa g e 1 7- 1 Chapter 17 Pr obability Applications In this Chapte r w e pr ov ide e xample s of applicati ons of calc ulator’s func tions to pr obab ility distr ibutions . T he MTH/PR OB ABILITY .. sub-m enu - part 1 T he MTH/PR OB ABILITY .. sub-men u is accessible thr ough the ke ys tr ok e sequence „´ . W ith sy stem flag 117 se t to CHOOSE[...]
-
Page 551
Pa g e 1 7- 2 T o simplify notation , use P(n ,r) f or per mutati ons, and C(n ,r) f or combinations . W e can calculat e combinations , perm utations , and factor i als with f uncti ons CO MB, P ERM, and ! fr om the MT H/P R OBA BILITY .. sub-menu . The oper ation of those f uncti ons is desc r ibed next: Θ CO MB(n,r ): Combinati ons of n items t[...]
-
Page 552
Pa g e 1 7- 3 R andom number gener ators , in gener al, oper ate b y taking a v alue , called the “ seed” of the gener ator , and per f or ming some mathematical algor ithm on that “ seed” that gener ates a ne w (ps eudo)r andom number . If yo u wa nt to gener ate a sequence o f number and be able to r epeat the s ame sequence lat er , yo u[...]
-
Page 553
Pa g e 1 7- 4 fu nct ion (pmf) is r epr esented by f (x) = P[X=x], i .e ., the pr obability that the ra nd om va riab le X ta kes th e val ue x. T he mass distr ibuti on functi on mus t satisf y the conditi ons that f(x) >0, f or all x , and A c umulati ve dis tributi on func tio n (cdf) is def ined as Ne xt, w e w ill define a number o f functi[...]
-
Page 554
Pa g e 1 7- 5 P oisson distribution The probabilit y mass f unction of the P oisson di str ibut ion is giv en by . In this e xpre ssi on, if the r andom var i able X r epre sents the n umber of occ urr ences o f an e ven t or observati on per unit time , length , area , volume , etc., then the par a meter l r epres ents the a v er age number of occ[...]
-
Page 555
Pa g e 1 7- 6 Continuous pr obabilit y distr ibutions T he proba bility distributi on f or a continuou s r andom var ia ble , X, is c harac ter i z e d b y a f uncti on f(x) know n as the pr obab ilit y density functi on (pdf) . T he pdf has the foll o wing pr operties: f(x) > 0, f or all x , and Pr obabiliti es ar e calc ulated using the c u m [...]
-
Page 556
Pa g e 1 7- 7 , w hile its cdf is giv en b y F(x) = 1 - e xp(- x/ β ) , f or x>0, β >0. T he beta distribution T he pdf for the gamma dis tr ibution is gi v en b y As in the case of the gamma dis tribut ion , the corr esponding cdf for the bet a distr ibuti on is also gi v en b y an integr al w ith no c losed-f orm solu tion . T he W eibull[...]
-
Page 557
Pa g e 1 7- 8 Exponential pdf: 'epdf(x) = EXP(-x/ β )/ β ' Exponential cdf: 'ecdf(x) = 1 - EXP(-x/ β )' W eibull pdf: 'Wpdf(x) = α * β *x^( β -1)*EXP(- α *x ^ β )' W eibull cdf: 'Wcdf(x) = 1 - EXP(- α *x^ β )' Use f uncti on DEFINE to def ine all these f unctions . Ne xt , enter the v alues of α an[...]
-
Page 558
Pa g e 1 7- 9 Continuous distributions f or statistical infer ence In this sec tion w e disc uss f our contin uous pr obability distr ibutions that ar e commonl y used f or pr oblems r elated to statis tical inf er ence . The se distr ibuti ons ar e the normal dis tributi on , the Student’s t distr ibution , the Chi-s quar e ( χ 2 ) distr ibuti [...]
-
Page 559
Pa g e 1 7- 1 0 wher e μ is the mean , and σ 2 is the v ari ance of the dis tributi on . T o calc ulate the val ue of f( μ , σ 2 ,x) fo r the normal distr ibution , us e functi on NDIS T with the fo llo w ing ar guments: the mean , μ , the var iance , σ 2 , and, the v alue x , i.e ., NDIS T( μ , σ 2 ,x) . F or e xample , chec k that for a n[...]
-
Page 560
Pa g e 1 7- 1 1 wher e Γ ( α ) = ( α -1)! is the G AMMA functi on def ined in Chapter 3 . T he calculator pr ov ides f or values o f the upper - t ail (cumulati v e) distr ibution func tion f or the t-distr ibution , f uncti on UTPT , gi ve n the paramet er ν and the value of t , i .e ., UTPT( ν ,t) . T he def inition of this f unction is , th[...]
-
Page 561
Pa g e 1 7- 1 2 T he calculator pr ov ides f or values o f the upper - t ail (cumulati v e) distr ibution fu nct ion fo r th e χ 2 -distr ibutio n using [UTP C] gi v en the v alue of x and the par ameter ν . T he def inition of this f uncti on is, ther ef or e , T o use this f uncti on , we need the degr ees of f reedo m, ν , and the value of th[...]
-
Page 562
Pa g e 1 7- 1 3 T he calculator pr ov ides f or values o f the upper - t ail (cumulati v e) distr ibution func tion f or the F distr ibuti on, f uncti on UTPF , gi ven the par ameter s ν N and ν D, and the value of F . The definition of th is function is, theref ore , F or ex ample, to calc ulate UTPF(10,5, 2 .5 ) = 0.1618 3 4… Diffe r ent pr o[...]
-
Page 563
Pa g e 1 7- 1 4 Exponential: W eibull: F or the Gamma and Beta distr ibuti ons the e xpr essi ons to s olv e w ill be mor e compli cated due to the pr esence o f integr als, i .e ., • Gamma, • Beta , A numer ical soluti on w ith the numer i cal sol ver w ill not be feasible beca use of the integr al sign in v olv ed in the e xpre ssi on. Ho w e[...]
-
Page 564
Pa g e 1 7- 1 5 Ther e are tw o r oots of this functi on f ound by using f unction @ROOT w i thin the plo t en vi r onment . Because o f the integr al in the equatio n, the r oot is appro ximat ed and w ill not be sho wn in the plot s cr een . Y ou w ill only get the me ssage Cons tant? Sho wn in the sc r een. Ho we v er , if you pr ess ` at this p[...]
-
Page 565
Pa g e 1 7- 1 6 Notice that the second par amet er in the UTPN functi on is σ 2, n o t σ 2 , r epr esenting the v ar iance of the distr ibuti on. A lso , the s ymbol ν (the low er-case Gr eek letter no) is not a v ailable in the calc ulator . Y ou can us e , for e xample , γ (gamma) instead o f ν . T he letter γ is a vailable thought the c ha[...]
-
Page 566
Pa g e 1 7- 1 7 Th us, at this point , you w ill hav e the four equati ons av ailable for so lution . Y ou needs ju st load one of the equati ons into the E Q f ie ld in the nume ri cal solv er and pr oceed w ith sol v ing for one o f the var ia bles . Example s of the UTPT , UTP C, and UPTF ar e show n belo w: Notice that in all the e xample s sho[...]
-
Page 567
Pa g e 1 7- 1 8 W ith these four equati ons, w henev er y ou launch the numer i cal s olv er y ou ha ve the f ollo w ing cho i ces: Ex amples of s olution o f equations E QNA, E QT A, E QCA, and E QF A ar e sho w n belo w : ʳʳʳʳʳ[...]
-
Page 568
P age 18-1 Chapter 18 Statistical Applications In this Chapte r we intr oduce statisti cal applicati ons of the calc ulator including statis tic s of a sample , f r equency dis tributi on of data , simple r egre ssi on, conf i dence int ervals , and h ypothe sis te sting . Pre-progr amm ed statistical f eatures T he calculat or pr o vi des pr e -pr[...]
-
Page 569
P age 18-2 St or e the pr ogram in a v ar iable called LX C. After st or ing this pr ogram in RPN mode y ou can also us e it in AL G mode. T o sto r e a column vec tor into v ar iable Σ D A T use functi on S T O Σ , av ailable thr ough the catalog ( ‚N ) , e .g., S T O Σ ( ANS(1)) in AL G mode . Ex ample 1 – Using the pr ogram LX C, def ined[...]
-
Page 570
P age 18-3 Ex ample 1 -- F or the data st or ed in the pr ev ious e x ample , the single -var iable statis tic s r esults ar e the f ollo w ing: M e a n : 2. 1 3333333333 , S t d D e v: 0 . 9 6 42 0 7 9 49 4 0 6, Va r i a n c e : 0 . 9 2969696969 7 T otal: 2 5 .6, Max imum: 4. 5, Minimum: 1.1 Definition s Th e d efi ni ti on s u sed f or these quan[...]
-
Page 571
P age 18-4 Ex amples of calc ulation of these measur es, using lis ts, ar e a vailable in C hapter 8. T he median is the value that s plits the data set in the mi ddle when the e lements ar e placed in incr easing orde r . If y ou hav e an odd number , n, of or dered elements , the median of this sam ple is the value located in positi on (n+1)/2 . [...]
-
Page 572
P age 18-5 Th e ran g e of the sample is the differ ence betw een the maximum and minim um v alues of the sample . Since the calc ulator , thr ough the pr e -pr ogr ammed statis tical f uncti ons pr o v ides the max imum and minimum values o f the sample , y ou can easily calc ulate the range . Coefficient of variation T he coeffi c ient o f var ia[...]
-
Page 573
P age 18-6 Definition s T o unders tand the meaning of thes e par ameters w e pr esent the follo w ing def initions : Gi ven a se t of n data values: {x 1 , x 2 , …, x n } lis ted in no partic ular or der , it is often r equir ed to gr ou p these data into a ser ies of c lass es by counting the f r eque ncy or number o f values cor r esponding to[...]
-
Page 574
P age 18-7 Θ Gener ate the list o f 200 number b y using RDLIS T(200) in AL G mode , or 200 ` @ RDLIST@ in RPN mode . Θ Us e pr ogram LXC (s ee abo ve) to con vert the list th us gener ated into a column vec tor . Θ St ore the column v ector into Σ DA T , by u s i n g f un c t i o n ST O Σ . Θ Obtain single -v ari able inf ormation u sing: ?[...]
-
Page 575
P age 18-8 to calc ulate for unif orm-si z e c lasses (or bins) , and the class mar k is just the a ver age of the clas s boundari es f or eac h cla ss. F inally , the c umulati ve fr equency is obtain ed by adding to eac h v alue in the last column , e x cept the f irst , the fr equenc y in the ne xt r o w , and r eplac ing the r esult in the la s[...]
-
Page 576
P age 18-9 « DUP S I ZE 1 GET fr eq k « {k 1} 0 CON cfr eq « ‘fr eq(1,1)’ EV AL ‘ cfr eq(1,1)’ S T O 2 k FOR j ‘ cfr eq(j-1,1) +fr eq(j,1)’ EV AL ‘ cfr eq (j,1)’ S T O NEXT cfr e q » » » Sa ve it un der the name CFRE Q. Use this pr ogram t o gener ate the list o f c umulati ve f r equenc ies (pr ess @CFRE Q w ith the c[...]
-
Page 577
P age 18-10 Θ Press @CAN CEL to r etur n to the pre vi ous s cr een. Change the V - v ie w and Bar W idth once mor e , now to r ead V- Vi e w: 0 3 0, Bar Wi dth: 10. The ne w histogr am, bas ed on the same data set , no w looks lik e this: A plot of f r equency count , f i , v s. c lass mar ks, xM i , is kno wn as a f r eque ncy poly gon. A plot o[...]
-
Page 578
P age 18-11 Θ F i r st , enter the two r ow s of data into column in the var iable Σ DA T by u s i n g the matri x wr iter , and func tion S T O Σ . Θ T o access the pr ogr am 3. Fit data.. , us e the follo wi ng k ey str ok es: ‚Ù˜˜ @@@OK@@@ T he input fo rm w ill sho w the c urr ent Σ D A T , alread y loaded. If needed , change y our se[...]
-
Page 579
P age 18-12 Wher e s x , s y ar e the standar d de v iati ons of x and y , re spec ti vel y , i .e . Th e va lu es s xy and r xy ar e the "Co var iance" and "Cor r elati on," r es pecti v ely , obtained b y using the "F it data" featur e of the calc ulator . Lineari zed relationships Man y curv ilinear r elatio nships [...]
-
Page 580
P age 18-13 T he gener al fo rm of the r egr essi on equati on is η = A + B ξ . Best data fitting T he calculat or can deter mine whi ch one of its linear or linear i z ed r elatio nship off ers the bes t fitting f or a set of (x ,y) data points . W e w ill illustr ate the u se of this featur e w ith an e x ample . Suppos e y ou w ant to f ind w [...]
-
Page 581
P age 18-14 X-Col, Y -Co l: these options a pply onl y w hen yo u hav e mor e than t w o columns in the matr ix Σ D A T . B y def ault , the x column is column 1, and the y col umn is column 2 . _ Σ X _ Σ Y… : summary statis tics that y ou can choo se as r esults of this pr ogr am b y chec king the appr opri ate f ield u sing [ CHK] w hen [...]
-
Page 582
P age 18-15 B. I f n ⋅ p is an integer , say k , calc ulate the mean of the k - th and (k -1) th or der ed observ ations . T his algorithm can be implemented in the f ollo w ing pr ogr am typed in RPN mode (See C hapter 21 for pr ogr amming inf ormati on): « S ORT DUP S I ZE p X n « n p * k « IF k CEIL k FL OOR - NO T THEN X k GE T X k[...]
-
Page 583
P age 18-16 T he D A T A sub-menu T he D A T A sub-menu cont ains functi ons us ed to manipulate the statis tic s matri x Σ DA TA : The ope rati on of thes e func tions is as f ollo w s: Σ + : add r o w in lev el 1 to bottom of Σ DA T A ma t rix. Σ - : r emo ve s last r o w in Σ D A T A matri x and place s it in le vel o f 1 of the s tack . Th[...]
-
Page 584
P age 18-17 Σ P AR: show s statis tical par ameter s. RE SET : r eset par ameter s to default v alues INFO: sh o ws s tatist ical par ameter s The MODL sub-menu w ithin Σ PA R T his sub-menu con tains fu nctio ns that let y ou change the dat a -f itting model to LINFIT , L OGFIT , EXPFI T , P WRFIT or BE S TFIT b y pr essing the appr opri ate but[...]
-
Page 585
P age 18-18 T he functi ons inc luded ar e: B ARP L: produce s a bar plot with data in Xcol column of the Σ D ATA m a t r i x . HIS TP: pr oduces his togr am of the data in Xcol co lumn in the Σ DA T A m a t rix, using the de fault w idth corr esponding to 13 bi ns unless the bin si z e is modifi ed using func tion BIN S in the 1V AR sub-menu (se[...]
-
Page 586
P age 18-19 Σ X^2 : pr o v ides the sum of s quar es of v alues in Xcol column . Σ Y^2 : pr ov ides the sum of squar es of value s in Ycol column . Σ X*Y : pr ov ides the sum o f x ⋅ y , i .e., the pr oducts o f data in columns Xcol and Ycol. N Σ : pr o v ides the number of col umns in the Σ DA T A m a tr ix. Ex ample of S T A T menu oper at[...]
-
Page 587
P age 18-20 @) STAT @ ) £PAR @ RESET r esets statis tical par ameters L @ ) STAT @PLOT @SCATR pr oduces s catter plot @STATL dr aw s data fit as a s trai ght line @CANCL r eturns t o main display Θ Deter mine the f itting equation and so me of its statis tic s: @) STAT @ ) FIT@ @£LINE pr oduces '1.5+2*X' @@@LR@@@ pr oduces Intercept: 1[...]
-
Page 588
P age 18-21 Θ F it data using columns 1 (x) and 3 (y) using a logar ithmic f itting: L @ ) STAT @ ) £ PAR 3 @YCO L sel ect Y col = 3, and @) MODL @LOGFI sele ct Mod el = Log f it L @ ) STAT @PLOT @ SCATR pr oduce scatter gr am of y v s. x @STATL sho w line for log f itting Ob v iou sly , the log-f it is not a good ch oi ce . @CANCL r eturns to no[...]
-
Page 589
P age 18-2 2 L @ ) STAT @PLOT @ SCATR pr oduce scatter gr am of y v s. x @STATL sho w line for log f itting Θ T o r eturn to S T A T menu use: L @) STAT Θ T o get y our var iable menu bac k use: J . Confidence inter v als St atistical inf er ence is the proce ss of making conc lusi ons about a populati on based on info rmati on fr om sample data.[...]
-
Page 590
P age 18-2 3 Θ P oint es timation: w hen a single value of the par amet er θ is pro v ided . Θ Co nfi dence interval: a n umer ical interv al that contains the par ameter θ at a gi ven le v el of pr obability . Θ E stimator : rule o r method of estimati on of the par ameter θ . Θ E stimate: v alue that the estimator y ields in a partic ular [...]
-
Page 591
P age 18-2 4 Θ The par ameter α is kno wn as the si gnif icance le v el . T y pi cal v alues of α ar e 0. 01, 0. 05, 0.1, cor re sponding to conf idence le v els of 0.9 9 , 0.9 5, and 0.90, r especti vely . Confidence inter v als f or th e population mean w hen t he population v ariance is kno wn Let ⎯ X be the mean o f a random s ample of si [...]
-
Page 592
P age 18-2 5 Small samples and large sampl es T he behav i or of the Student’s t distr ibution is suc h that for n>3 0, the distr ibution is indistinguishable fr om the standar d nor mal distribu tion . Th us, f or samples lar ger than 30 elements w hen the populati on var iance is unkno w n, y ou can use the same conf idence interval as w hen[...]
-
Page 593
P age 18-2 6 E stimator s for the mean and s tandar d dev iation o f the diff er ence and sum of the statis tics S 1 and S 2 ar e gi v en b y: In t hese expressions, ⎯ X 1 and ⎯ X 2 ar e the v alues of the statis tics S 1 and S 2 fr om samples tak en fr om the t w o populati ons, and σ S1 2 and σ S2 2 ar e the v ar iance s of the populati ons[...]
-
Page 594
P age 18-2 7 In this case , the cente red conf idence intervals f or the sum and diff er ence of the mean v alues of the populations , i .e ., μ 1 ±μ 2 , are gi ven b y : wher e ν = n 1 +n 2 - 2 is the number of degrees o f fr eedom in the Student’s t distr ibuti on. In the last tw o options w e spec ify that the population v ari ances, altho[...]
-
Page 595
P age 18-2 8 These options ar e to be i nterpr eted as follow s : 1. Z -INT : 1 μ .: Single sample conf idence in te r v al fo r the population mean , μ , w ith kno wn populati on var iance , or for lar ge s amples w ith unkno wn populatio n v ari ance . 2. Z - I N T: μ1−μ2 .: Conf ide nce interval f or the differ ence o f the population mean[...]
-
Page 596
P age 18-29 Press @HELP to obtain a sc r een e xplaining the meaning of the confi dence interval in terms o f r andom numbers gener ated by a calc ulator . T o scr oll do wn the r esulting sc r een use the do w n -ar r o w k ey ˜ . Pr ess @@@OK@@@ whe n done with the help sc r een. T his w ill r eturn y ou to the sc r een sho wn abo v e. T o calcu[...]
-
Page 597
P age 18-30 Ex ample 2 -- Data f r om two s amples (s amples 1 and 2) indicat e that ⎯ x 1 = 5 7 .8 and ⎯ x 2 = 60. 0. The sample si z es ar e n 1 = 4 5 and n 2 = 7 5 . If it is kno w n that the populations ’ standar d dev iati ons ar e σ 1 = 3 .2 , and σ 2 = 4. 5, deter mine the 90% co nfi dence interval f or the diff er ence of the popula[...]
-
Page 598
P age 18-31 When done , pre ss @@@OK@@@ . The r esults, as te xt and gr aph, ar e sho wn be lo w: Ex ample 4 -- Determine a 90% conf idence inter v al f or the differ ence between two pr oportions if sample 1 sho ws 20 su ccess es out of 120 tr ials , and sample 2 s ho ws 15 s uccesses out of 1 00 trial s . Press ‚Ù— @@@OK@@@ to access the con[...]
-
Page 599
P age 18-3 2 Ex ample 5 – Determine a 9 5% conf idence in terval f or the mean of the populatio n if a s ample of 50 elements has a mean of 15 . 5 and a st andard de vi atio n of 5 . The popul ation ’s standar d dev iation is unkno wn . Press ‚Ù— @@@OK@@@ to access the confi dence inter v al f eatur e in the calc ulator . Pr ess —— @@@[...]
-
Page 600
P age 18-3 3 T hese r esults assume that the v alues s 1 and s 2 ar e the population st andar d de vi ations . If these v alues actuall y r epr esent the s amples ’ standar d de v iatio ns, y ou should enter the s ame values as be for e, bu t wi th the option _pooled selected . T he r esults no w become: Confidence inter v als f or th e v ariance[...]
-
Page 601
P age 18-34 T he confi dence interv al fo r the population v ari ance σ 2 i s therefor e , [(n -1) ⋅ S 2 / χ 2 n-1 , α /2 ; (n-1) ⋅ S 2 / χ 2 n-1,1- α /2 ]. wher e χ 2 n-1 , α /2 , and χ 2 n -1,1- α /2 ar e the value s that a χ 2 va riab le, wi th ν = n-1 degr ees of fr eedom , e x ceeds with pr obabiliti es α /2 and 1- α /2 , r es[...]
-
Page 602
P age 18-35 Hy pot hesis testing A h ypo thesis is a declar ation made about a populati on (for ins tance , w ith r espect to its mean) . A cceptance of the h y pothesis is based o n a statisti cal test on a sample tak en fr om the population . The consequent acti on and dec isi on - making ar e called h y pothesis te sting . T he proce ss of h ypo[...]
-
Page 603
Pa g e 1 8 - 3 6 Err ors in h ypothesis testing In h ypothe sis testing w e use the ter ms err ors of T y pe I and T y pe II to def ine the case s in w hich a tr ue h ypothe sis is re jec ted or a fals e h ypothe sis is accepted (not r ejected) , respect i vel y . Let T = val ue of test sta tistic, R = re ject i on region, A = acceptance r egion , [...]
-
Page 604
P age 18-3 7 Th e va lu e of β , i .e ., the pr obability of making an er r or of T ype II , depends on α , the sample si z e n, and on the tr ue value o f the paramet er tes ted . Th us, the val ue of β is deter mined af t er the hy pothesis testing is perf ormed . It is c ust omary to dr a w gra phs sho w ing β , or the pow er of the test (1-[...]
-
Page 605
P age 18-38 T he cr ite ri a to use f or h y pothesis te sting is: Θ Rej ec t H o if P -value < α Θ Do not r ej ect H o if P -value > α . T he P -v alue fo r a two -si ded tes t can be calc ulated using the pr obability f unctio ns in the calc ulator as f ollo w s: Θ If using z , P -value = 2 ⋅ UTPN(0,1,|z o |) Θ If using t , P -value[...]
-
Page 606
P age 18-3 9 Ne xt, w e u se the P - v alue assoc iated w ith either z ο or t ο , and compar e it to α to dec ide w hether or no t to r ej ect the n ull hy pothesis. T he P - v alue f or a tw o -sided tes t is defined as e ither P -value = P(z > |z o |), or , P -value = P(t > |t o |) . T he cr ite ri a to use f or h y pothesis te sting is:[...]
-
Page 607
P age 18-40 val ue s ⎯ x 1 and ⎯ x 2 , and st andard de vi ations s 1 and s 2 . If the populations standar d dev iati ons cor r esponding to the samples , σ 1 and σ 2 , ar e kno wn , or if n 1 > 30 and n 2 > 30 (la r ge sa mples) , th e test stati stic to be used is If n 1 < 30 o r n 2 < 30 (at least one small s ample) , u se the [...]
-
Page 608
P age 18-41 T he cr ite ri a to use f or h y pothesis te sting is: Θ Rej ec t H o if P -value < α Θ Do not r ej ect H o if P -value > α . P aired sample tests When w e deal w ith tw o samples o f si z e n w ith pair ed data point s, ins tead of tes ting the null h y pothesis , H o : μ 1 - μ 2 = δ , using the mean v a l ues and st andar[...]
-
Page 609
P age 18-4 2 wher e Φ (z) is the c umulativ e distributi on fu nctio n (CD F ) of the st andar d normal distr ibuti on (see Cha pter 17). R ejec t the null h ypothe sis, H 0 , if z 0 >z α /2 , or if z 0 < - z α /2 . In other w ords , the r ej ecti on r egi on is R = { |z 0 | > z α /2 }, whil e the acceptance r egion is A = {|z 0 | <[...]
-
Page 610
P age 18-4 3 T wo - tail ed test If using a two -tailed test w e w ill find the v alue of z α /2 , fr om Pr[Z> z α /2 ] = 1- Φ (z α /2 ) = α /2 , or Φ (z α /2 ) = 1- α /2 , wher e Φ (z) is the c umulativ e distributi on fu nctio n (CD F ) of the st andar d normal distr ibuti on. R ejec t the null h ypothe sis, H 0 , if z 0 >z α /2 ,[...]
-
Page 611
P age 18-44 1. Z - T est : 1 μ .: Single s ample hy pothesis testing f or the population mean , μ , w ith kno w n population v ar iance , or f or lar ge samples w ith unknow n populatio n v ari ance . 2. Z - Te s t : μ1−μ2 .: Hy pothesis tes ting for the diff er ence of the population means, μ 1 - μ 2 , with e ither kno wn populati on var i[...]
-
Page 612
P age 18-45 Then , w e r ej ect H 0 : μ = 150 , against H 1 : μ ≠ 150 . The test z v alue is z 0 = 5. 656854 . T he P- va l u e i s 1. 54 × 10 -8 . Th e cri ti ca l va lu es of ± z α /2 = ± 1.9 5 9 9 64 , corr esponding to cr iti cal ⎯ x r ange of {14 7 .2 15 2 .8}. T his infor mation can be obse r v ed gra phicall y b y pre ssing the sof[...]
-
Page 613
P age 18-46 W e r ej ect the null h ypothe sis, H 0 : μ 0 = 15 0, against the alter nati v e h ypo thesis , H 1 : μ > 15 0. The t est t v alue is t 0 = 5. 6 5 68 5 4, w ith a P -v alue = 0. 000000 3 9 3 5 2 5 . The c r itical v alue of t is t α = 1.6 7 6 5 51, cor r esponding to a cri tic al ⎯ x = 15 2 . 3 71. Press @GRAPH to see the re sul[...]
-
Page 614
P age 18-4 7 T hus , w e accept (mor e acc urat ely , we do no t r ejec t) the h y pothesis: H 0 : μ 1 −μ 2 = 0 , or H 0 : μ 1 =μ 2 , against the alternati ve h y pothesis H 1 : μ 1 −μ 2 < 0 , or H 1 : μ 1 =μ 2 . The test t value is t 0 = -1. 3417 7 6 , w ith a P - v alue = 0. 0 91309 61, and cr itical t is –t α = -1.6 5 9 7 8 2 .[...]
-
Page 615
P age 18-48 T he test c r iter ia ar e the same as in h y pothesis te sting of means , namely , Θ Rej ec t H o if P -value < α Θ Do not r ej ect H o if P -value > α . P lease noti ce that this pr ocedur e is valid onl y if the populati on fr om w hic h the sample w as tak en is a Normal populati on . Ex ample 1 -- Co nsider the case in w [...]
-
Page 616
P age 18-4 9 T he follo w ing table sho ws h ow to select the nu merat or and denominator f or F o depending on the alter nati ve h ypothe sis cho sen: ___________ _____________________ _____________________ _______________ Alterna ti ve T est Degr e es h ypothe sis statis tic o f fr eedom ___________ _____________________ _____________________ ___[...]
-
Page 617
P age 18-50 Ther efor e , the F test stati stics is F o = s M 2 /s m 2 =0. 3 6/0.2 5=1. 44 T he P -v alue is P -value = P(F>F o ) = P(F>1.44) = UTPF( ν N , ν D ,F o ) = UTPF( 20, 30,1.44) = 0.17 88 … Since 0.17 88… > 0 . 05, i .e ., P - v a l ue > α , ther ef or e , w e cannot re ject the null h ypothe sis that H o : σ 1 2 = σ [...]
-
Page 618
P age 18-51 W e get the , so -called, nor mal equations: T his is a s y stem o f linear equati ons w ith a and b a s the unkno w ns, whi c h can be sol v ed using the linear equation f eature s of the calculator . T her e is, ho w ev er , no need to bother wi th these calc ulations becau se y ou can use the 3. Fit Data … option in the ‚Ù men u[...]
-
Page 619
Pa g e 1 8 - 52 F r om w hic h it fo llow s that the standar d dev iations o f x and y , and the co var iance of x ,y ar e giv en , r espec tiv el y , by , , and Also , the sample corr elation coeff ic ient is In ter ms of ⎯ x, ⎯ y, S xx , S yy , and S xy , the soluti on to the no rmal equati ons is: , Prediction error T he r egr essi on c urve[...]
-
Page 620
Pa g e 1 8 - 5 3 Θ Co nfi dence limits for r egres sion coeff i c ients: F or the slope ( Β ): b − (t n- 2 , α /2 ) ⋅ s e / √ S xx < Β < b + (t n- 2 , α /2 ) ⋅ s e / √ S xx , F or the inter cept ( Α ): a − (t n- 2 , α /2 ) ⋅ s e ⋅ [(1/n)+ ⎯ x 2 /S xx ] 1/2 < Α < a + (t n- 2 , α /2 ) ⋅ s e ⋅ [(1/n)+ ⎯ x 2[...]
-
Page 621
P age 18-54 a+ b ⋅ x+(t n- 2 , α /2 ) ⋅ s e ⋅ [1+(1/n)+(x 0 - ⎯ x) 2 /S xx ] 1/2 . Pr ocedure f or inference statistics f or linear regression using the calculator 1) Ent er (x ,y) as columns of data in the st atistical matr ix Σ D AT. 2) Pr oduce a scatter plot f or the appr opri ate column s of Σ D A T , and use appr opri ate H- and V [...]
-
Page 622
Pa g e 1 8 - 5 5 1: Covariance: 2.025 T hese r esults ar e interpr eted as a = -0.8 6 , b = 3 .2 4, r xy = 0.9 8 9 7 20 2 2 9 7 4 9 , and s xy = 2 . 0 2 5 . T he corr elati on coeff ic ient is c los e enough to 1. 0 to co nfir m the linear tr end obs erved in the gr aph . Fro m t he Single-var… option o f the ‚Ù menu w e f ind: ⎯ x = 3, s x [...]
-
Page 623
P age 18-5 6 Ex ample 2 -- Suppos e that the y-data used in Ex ample 1 r e pr esent the elongation (in h undr edths of an inc h) of a me tal w ir e w hen sub jec ted to a f or ce x (in tens o f pounds) . The ph y sical phe nomenon is suc h that w e e xpect t he inter cept , A, to be z er o . T o chec k if that should be the ca se , w e test the nu [...]
-
Page 624
P age 18-5 7 Multiple lin ear fitting Consi der a data set of the fo rm Suppo se that w e sear c h for a data f itting of the for m y = b 0 + b 1 ⋅ x 1 + b 2 ⋅ x 2 + b 3 ⋅ x 3 + … + b n ⋅ x n . Y ou can obtain the least-squar e appr ox imation to the values of the coeffi cients b = [b 0 b 1 b 2 b 3 … b n ], b y pu t ti ng together the m[...]
-
Page 625
P age 18-5 8 W ith the calculat or , in RPN mode , yo u can pr oceed as fo llo ws: F irst , w ithin y our HOME dir ect ory , cr eate a sub-dir ect or y to be called MPFI T (Multiple linear and P oly nomial data FI Tting) , and ent er the M P FIT su b- dir ectory . Within the sub-dir ectory , t y pe this pr ogr am: « X y « X TRAN X * INV X TRA[...]
-
Page 626
P age 18-5 9 Compar e these f itted value s with the or iginal data as sho w n in the table belo w: P oly nomial fitting Consi der the x -y data set {(x 1 ,y 1 ), ( x 2 ,y 2 ), … , ( x n ,y n )}. Suppos e that we w ant to f it a poly nomial or or der p to this data set . In other w or ds, w e seek a f it ting of the f or m y = b 0 + b 1 ⋅ x + b[...]
-
Page 627
P age 18-60 If p > n -1 , then add columns n+1, …, p-1, p+1 , to V n to f or m matri x X . In st ep 3 fr om this lis t , we hav e to be a war e that column i ( i = n+1, n+2 , …, p+1 ) is the v ector [x 1 i x 2 i … x n i ]. If w e w er e to use a list o f data values f or x r ather than a v ector , i .e ., x = { x 1 x 2 … x n }, w e can e[...]
-
Page 628
P age 18-61 « Open pr ogram x y p Enter l ists x and y , and p (le v els 3,2 ,1) « Open subpr ogram 1 x SI ZE n Deter mine siz e of x list « Open subpr ogram 2 x V ANDERMOND E P lace x in stac k , obtain V n I F ‘ p<n -1’ THEN This IF implements st ep 3 in algorithm n P lace n in stac k p 2 + Calculate p+1 FOR j Start loop j = n -[...]
-
Page 629
P age 18-6 2 Becau se w e w ill be using the same x -y data for f itting poly nomi als of diff er ent or ders , it is adv isable to s av e the lists of data v alues x and y into v ari ables xx and yy , re specti vel y . This w a y , we w ill not ha ve to t y pe them all o v er again in eac h applicati on of the pr ogr am P OL Y . Th us, pr oceed as[...]
-
Page 630
P age 18-63 Θ T he corr elation coe ff ic ient , r . T h is value is constr ained to the r a nge –1 < r < 1. T he cl os er r is to +1 or –1, the better the data f itting. Θ T he sum of squar ed er ro rs, S SE . T his is the quantity tha t is to be minimi z ed by lea st-squar e appr oac h. Θ A plot of re siduals . T his is a plot of the[...]
-
Page 631
P age 18-64 x V ANDERMOND E P lace x in stac k, obtain V n I F ‘ p<n -1’ THEN T his I F is s tep 3 in algor ithm n P lace n in stac k p 2 + Calc ulate p+1 FOR j S tar t loop , j = n-1 to p+1, step = -1 j C OL − D R OP R emo ve column , drop f r om stac k -1 S TEP Clos e FOR -S TEP loop ELSE I F ‘ p>n -1’ THEN n 1 + Calc ulate n+1 p [...]
-
Page 632
P age 18-6 5 “SSE” T A G T ag r esult as S SE » Close sub-progr am 4 » Clo se sub-pr ogram 3 » C lose su b-pr ogr am 2 » Clo se sub-pr ogr am 1 » Clo se main pr ogram Sa ve this pr ogr am under the name P OL YR , to emph asi z e calculati on of the correlation coeffic ient r . Using the POL YR progr am for v alues of p between 2 and 6 [...]
-
Page 633
P age 19-1 Chapter 19 Numbers in Differ ent Bases In this Chapt er w e pre sent e x amples of calculati ons of number in bases other than the dec imal basis . Definitions T h e nu m b e r sys t e m u s e d fo r e ve r yd a y a ri t h m e t ic i s k n own a s t h e decimal syst em fo r it uses 10 (L atin , deca) digits , namely 0 -9 , to w r ite out[...]
-
Page 634
P age 19-2 W ith sy st em flag 117 set to S OFT menus, the B A SE menu sho ws the f ollo w ing: W ith this for mat , it is ev ident that the L OGIC, BIT , and B YTE entri es w ithin the B ASE menu ar e th emselv es sub-menus. These menus are discussed later in this Chapter . Functions HEX, DEC, OCT , and B IN Number s in non-dec imal s ys tems ar e[...]
-
Page 635
P age 19-3 As the dec imal (D E C) sy stem has 10 digits (0,1,2 , 3, 4,5, 6, 7 , 8 , 9) , the he xadec imal (HEX) sy stem has 16 digits (0, 1,2 , 3, 4 ,5,6 , 7 , 8 , 9 ,A,B ,C,D ,E ,F) , the octal (OCT) sy stem has 8 digits (0,1,2 , 3, 4,5, 6, 7) , and the binar y (BIN) s ys tem has only 2 di gits (0,1) . Conv ersion between number s ystems Whate v[...]
-
Page 636
P age 19-4 T he only e ffec t of selecting the DE C imal s y stem is that dec imal numbers , whe n started w ith the s ymbol #, ar e wr itten with the suff ix d . W ordsi ze T he wor dsi z e is the number of b its in a b inar y obj ect . B y defa ult , the w ordsi z e is 64 bites . F uncti on RCW S (R eCall W ordSi z e) show s the c urr ent wor d s[...]
-
Page 637
P age 19-5 The L OGIC m enu T he L OGIC menu , av ailable thr ough the B A SE ( ‚ã ) pr ov ides the f ollo wing fu nct ions : T he functi ons AND , OR, X OR (e x c lusi v e OR) , and NO T ar e logical f uncti ons. T he input to these f uncti ons ar e t w o v alu e s or e xpre ssi ons (one in the cas e of NO T) that can be e xpr esse d as binar y[...]
-
Page 638
P age 19-6 AND (BIN) OR (BIN) X OR (BIN) NO T (HEX) T he B I T menu T he BIT men u , av ailable thr ough the B ASE ( ‚ã ) pr ov ide s the follo w ing fu nct ions : F uncti ons RL, SL , A SR, SR, RR , contained in the BIT menu , ar e used to manipulate b its in a binary integer . T he def initi on of thes e func tions are sho wn belo w : RL: R ot[...]
-
Page 639
P age 19-7 T he B Y TE menu T he B YTE menu , av ailable thr ough the B A SE ( ‚ã ) pr o v ides the f ollo w ing fu nct ions : F uncti ons RLB, SLB , SRB , RRB, cont ained in the BIT menu , ar e used to manipulate b its in a binary integer . T he def initi on of thes e func tions are sho wn belo w : RLB: R otate Left one byte , e.g ., #110 0b ?[...]
-
Page 640
Pa g e 2 0 - 1 Chapter 20 Customi zing menus and k e yboar d T hro ugh the use of the man y calc ulator menus y ou hav e become famili ar w ith the oper ati on of men us f or a v ar iety of appli catio ns. A lso , y ou ar e f amiliar w ith the man y func tions a vaila ble by u sing the k ey s in the ke yboar d , whether thr ough the ir main functi [...]
-
Page 641
Pa g e 2 0 - 2 M enu numbers (R CLMENU and MENU func tions) E ac h pre-defined men u has a number attac hed to it . F or ex ample, su ppose that y ou acti vate the MTH menu ( „´ ). Then , using the f uncti on catalog ( ‚N ) f ind functi on R CLMENU and ac ti vate it. In AL G mode simple pres s ` after RCLMEN U() sho ws u p in the s cr een . Th[...]
-
Page 642
Pa g e 2 0 - 3 T o acti vate an y of those functi ons y ou simply need to enter the f unction ar gument (a number ) , and then pr es s the corr es ponding soft menu k ey . In AL G mode , the list to be ent er ed as ar gument o f functi on TMENU or MENU is mor e complicated: {{“ exp ” , ”EXP(“},{“ln” , ”LN( “},{“Gamma ” , ”G AM[...]
-
Page 643
Pa g e 2 0 - 4 Y ou can try using this list w ith TMENU or MENU in RPN mode to ve rify that y ou get the same menu a s obtained ear lier in AL G mode . M enu specification and CST v a r iable F r om the tw o e xer c ises sho wn abo v e w e notice that the most general men u spec if icati on list include a n umber of sub-lists equal to the number of[...]
-
Page 644
Pa g e 2 0 - 5 Customizing the k e y board E ach k ey in the k e yboar d can be i dentif ied by tw o numbers r e pr esenting their r o w and column. F or e xam ple , the V AR ke y ( J ) is located in r o w 3 of column 1, and w ill be r ef er red t o as k ey 31. No w , since each k e y has up t o ten func tions as soc iated w ith it , eac h func tio[...]
-
Page 645
Pa g e 2 0 - 6 T he functi ons av ailable ar e: A SN: Assigns an obj ect to a k e y spec ified b y XY .Z S T O KE Y S : Stor es user -d ef ined k e y l ist RC LK EY S : Ret urn s curren t use r-de fine d key l ist DELKEY S: Un-assigns one or mor e ke y s in the cu rr ent us er -def ined k ey lis t , the ar guments ar e either 0, to un -assi gn all [...]
-
Page 646
Pa g e 2 0 - 7 Operating user-defined ke ys T o oper a t e this user -def ined k e y , enter „Ì be fo re pre ssing the C key . Notice that afte r pre ssing „Ì the sc r een sho w s the spec ifi cation 1US R in the second displa y line . Pr essing f or „Ì C for this e xample , y ou should r eco v er the P L O T menu as follo ws: If y ou hav [...]
-
Page 647
Pa g e 2 0 - 8 T o un -assign all user -defined k ey s use: AL G mode: DELKE YS(0) RPN mode: 0 DELKEYS Chec k that the use r -k e y def initions w er e r emov ed b y using f unction R C LKE Y S.[...]
-
Page 648
P age 21-1 Chapter 21 Pr ogr amming in User RP L language Use r RP L language is the pr ogramming language mo st commonl y used to pr ogr am the calculator . The pr ogram components can be put t ogether in the line editor by inc luding them betw een pr ogram container s « » in the appr opr iat e orde r . Because ther e is more e xperi ence among [...]
-
Page 649
P age 21-2 „´ @LIST @ADD@ AD D Calc ulate (1+x 2 ), / / then di v ide ['] ~„x™ 'x' „° @) @MEM@@ @ ) @DIR@@ @ PURGE PURGE P u rge varia b le x ` Pr ogr am in lev el 1 ___________ ____________ ________ __ _____________________ T o sa v e the pr ogra m use: ['] ~„gK Press J to r ecov er your v ar iable menu , and ev alu[...]
-
Page 650
P age 21-3 use a local v ar iable w ithin the pr ogram that is only de fi ned for that pr ogr am and w ill not be a v ailable fo r use afte r pr ogr am e xec ution . The pr e v iou s pr ogr am could be modifi ed to r ead: « → x « x SINH 1 x SQ ADD / »» T he arr ow s ymbol ( → ) is obtained b y combining the r i ght-shift k e y ‚ w ith the[...]
-
Page 651
P age 21-4 Global V ariable Scope An y var iable that y ou def i ne in the HO ME dir ectory or an y other dir ecto r y or sub-dir ectory w ill be consider ed a global var iable fr om the point o f vi ew of pr ogr am dev elopment . Ho we v er , the sco pe of suc h v ari able , i .e ., the locati on in the dir ecto r y tr ee w her e the var iable is [...]
-
Page 652
P age 21-5 Local V ariable Scope L ocal var iable s are ac tiv e only w ithin a pr ogr am or sub-pr ogram . The r ef or e , their scope is limited t o the pr ogr am or sub-pr ogram w her e the y’r e def ined . An e x ample of a local v ari able is the inde x in a F OR loop (des cr ibed late r in this chapter ) , f or e x ample « → n x « 1 n F[...]
-
Page 653
P age 21-6 S T ART : S T AR T -NEXT -S TEP constru ct f or br anching FOR: F O R - NE XT- S TEP constr uct f or loops DO: DO-UNT IL -END constr uct f or loops WHILE: WHILE-REP EA T-END co nstru ct f or loops TE S T : Compar iso n operator s, logi cal oper ators , flag t esting f unctio ns TYPE: F unctions f or conv erting objec t types , splitting [...]
-
Page 654
P age 21-7 Functions listed b y sub-menu T he follo wing is a lis ting of the func tions w ithin the P RG sub-menus lis ted b y sub- menu . ST A CK MEM/DIR BR CH/IF BRCH/WHILE TYP E DUP P URGE IF WHILE OB J SW A P RC L T H E N R E PE A T ARR Y DR OP S T O EL SE END LIS T O VER P A TH END ST R RO T CRD IR TE ST TAG UNRO T PGDIR B[...]
-
Page 655
P age 21-8 LIS T/ELEM GROB CHARS MODES/FLAG MO DES/MISC GE T GROB S UB SF BEEP GE TI BL ANK REP L CF CLK PU T GO R POS F S ? S Y M PU TI G X O R SIZE F C ? S T K S IZE SUB NUM F S?C ARG P O S REPL CH R F S?C CMD HEAD LC D O B J FC?C INF O TA I L L C D ST R STO F SIZE H EA D RC LF IN LIS T/PR OC ANIMA TE T AIL RE SET INF ORM DOLIS[...]
-
Page 656
P age 21-9 Shortc uts in the PR G menu Man y of the func tions lis ted abo ve f or the P RG menu ar e r eadily a v ailable thr ough other means: Θ Compar ison oper ators ( ≠ , ≤ , <, ≥ , >) ar e a vailable in the k ey boar d. Θ Man y func tions and settings in th e MODE S sub-me nu can be acti v ated b y using the input f uncti ons pr[...]
-
Page 657
P age 21-10 „ @ ) @IF@ @ „ @CASE@ „ @ ) @IF@ @ „ @CASE@ „ @ ) START „ @) @ FOR@ „ @ ) START „ @) @ FOR@ „ @ ) @@DO@@ „ @ WHILE Notice that the ins ert pr ompt ( ) is av ailabl e after the k e y w or d fo r each constr uct s o yo u can start t y ping at the r ight locatio n. K e y strok e sequence for commonl y used commands [...]
-
Page 658
P age 21-11 @) STACK DUP „° @) STACK @ @DUP@@ SW A P „° @) STACK @SWAP@ DR OP „° @) STACK @DROP@ @) @MEM@@ @ ) @DIR@@ PU RG E „° @) @MEM@@ @ ) @ DIR@@ @PUR GE ORDER „° @) @MEM@@ @ ) @DIR@@ @ORDER @) @BRCH@ @ )@IF@@ IF „° @) @BRCH@ @ ) @IF@@ @@@IF@@@ THEN „° @) @BRCH@ @ ) @IF@@ @THEN@ ELSE „° @) @B RCH@ @ ) @ IF@@ @ELSE @ END[...]
-
Page 659
P age 21-12 @) @BRCH@ @ ) WHILE@ WHILE „° @) @B RCH@ @ ) WHILE @ @WHILE REP EA T „° ) @BRCH@ @ ) WHILE@ @REPEA END „° ) @BRCH@ @ ) WHILE@ @ @END@ @ ) TEST@ == „° @ ) TEST@ @ @@ ≠ @@@ AND „° @ ) TEST@ L @@AND @ OR „° @ ) TEST@ L @@@OR@@ XO R „° @ ) TE ST@ L @@XOR@ NO T „° @ ) TEST@ L @@NOT@ SA M E „° @ ) TEST@ L @SAME SF[...]
-
Page 660
P age 21-13 @) LIST@ @ ) PROC@ REVLI S T „° @) LIST@ @ ) PROC@ @REVLI@ SO RT „° @) LIST@ @ ) PROC@ L @SORT@ SE Q „° @) LIST@ @ ) P ROC@ L @@SEQ@@ @) MODES @ ) ANG LE@ DE G „°L @) MODES @ ) A NGLE@ @@DE G@@ RAD „°L @) MODES @ ) ANGLE@ @ @RAD@@ @) MODES @ ) MEN U@ CS T „°L @) MODES @ ) MENU@ @@CST@ @ MENU „°L @) MODES @ ) M ENU@ [...]
-
Page 661
P age 21-14 fu nctio ns from th e M TH m enu . Spe c ifica lly , you ca n use fun ction s for li st oper ations suc h as S ORT , Σ LIS T , etc ., a vail able thr ough the MTH/LI S T menu . As additional pr ogramming e xer cis es, and to try the ke ystr ok e seque nces listed abo v e , we pr esent her ein thr ee pr og r ams for c r eating or manipu[...]
-
Page 662
P age 21-15 Ex amples of sequential pr ogramming In gener al , a pr ogr am is an y sequence o f calc ulato r instruc tions enc lo sed between the pr ogram container s and ». Subpr ograms can be inc luded as part o f a pr ogr am. The e xamples pr esented pr e v iou sly in this guide (e .g., in Chapt ers 3 and 8) 6 can be cla ssif ied ba sicall y in[...]
-
Page 663
P age 21-16 wher e C u is a constant that depends on the sy st em of units used [C u = 1. 0 for units of the Internati onal S ys tem (S.I .) , and C u = 1.4 8 6 f or units o f the English S y ste m (E . S .)], n is the Manning’s r esist ance coeff ic ient , whi ch depends on the type of c hannel lining and other f actor s, y 0 is the flo w depth,[...]
-
Page 664
P age 21-17 Y ou can also separ ate the in put data w ith spaces in a single stac k line r ather than using ` . Pr ograms that simulate a sequence of stack operations In this case , the terms to be in v olv ed in the sequence o f oper ations ar e as sumed to be pr es ent in the stac k . The pr ogram is ty ped in by f ir st opening the pr ogr am con[...]
-
Page 665
P age 21-18 As y ou can see , y is used f i r st , then w e us e b, g , a n d Q, in that order . Ther efor e, for the pur pose of this calculatio n we need to enter the v ar iables in the in ve rse or der , i .e. , (do not t y pe the f ollo w ing) : Q ` g ` b ` y ` F or the spec if ic v alues under consider ation w e use: 23 ` 32. 2 ` 3 ` 2 ` T he [...]
-
Page 666
P age 21-19 Sa ve the pr ogram int o a var iable called hv: ³~„h~„v K A ne w var iable @@@hv @@@ should be av ailable in y our soft k e y menu . (Pr ess J to see y our v ar iable lis t .) The pr ogram le ft in the stac k can be e valuat ed by u sing func tion EV AL. T he r esult should be 0.2 2 8 17 4…, as befor e. Als o , the progr am is av[...]
-
Page 667
P age 21-20 it is al wa y s pos sible to r ecall the pr ogr am def inition int o the stac k ( ‚ @@@q@@@ ) to see the or der in w hic h the v ari ables mu st be ent er ed , namely , → Cu n y0 S0 . Ho w ev er , f or the case of the pr ogram @@hv@@ , its def inition « * SQ * 2 * S W AP SQ S W AP / » does not pr o v ide a c lue of the or der in w[...]
-
Page 668
P age 21-21 w hich indi cates the positi on of the diff er ent stac k input le vels in the fo rmula . B y compar ing this r esult w ith the or iginal f ormula that w e pr ogr ammed , i .e ., w e find that w e mu st enter y in s tack le vel 1 (S1), b in stac k lev el 2 (S2), g in stac k le v el 3 (S3) , and Q in st ack le vel 4 (S4). Pr ompt with an[...]
-
Page 669
P age 21-2 2 T he re sult is a stac k pr ompting the user f or the value o f a and plac ing the cu rsor r ight in fr on t of the prompt :a: Ent er a value f or a , sa y 3 5, then pre ss ` . T he r esult is the input s tring :a:35 in stac k lev el 1. A function with an input string If y ou w er e to use this p iece o f code to calculate the functi o[...]
-
Page 670
P age 21-2 3 @SST ↓ @ R esult: em pt y s tack , e x ec uting → a @SST ↓ @ R esult: empty stac k, ente ring subpr ogr am « @SST ↓ @ R esult: ‘2*a^2+3’ @SST ↓ @ R esult: ‘2*a^2+3’ , leav ing subpr ogram » @SST ↓ @ R esult: ‘2*a^2+3’ , leav ing main pr ogr am» F urther pr essing the @SST ↓ @ s oft menu k e y pr oduces no m[...]
-
Page 671
P age 21-2 4 F ixi ng th e pr ogram T he only pos sible explanati on f or the failur e of the pr ogr am to pr oduce a numer ical r esult seems to be the lac k of the command NUM after the algebr aic e xpr essi on ‘2*a^2+3’ . Let ’s edit the progr am by adding the mis sing EV AL functi on . T he progr am, after editing , should read as f o[...]
-
Page 672
P age 21-2 5 Input string progr am for two input v alues T he input str ing pr ogr am fo r t w o input values , say a and b , looks as f ollo ws: « “ Enter a and b: “ { “ :a: :b: “ {2 0} V } INPUT OBJ → » T his progr am can be ea sily c r eated b y modif y ing the contents o f INPT a. St or e this pr ogr am into v ar iable INP T[...]
-
Page 673
P age 21-2 6 ` . The r esult is 4 9 88 7 . 06_J /m^3 . The units of J/m^3 ar e equiv alent to P ascals (P a) , the pr ef err ed pres sur e unit in the S .I. s y stem . In pu t st ring prog ram for th ree i npu t val ues T he input str ing pr ogr am f or thr ee input value s, sa y a ,b , and c, loo ks as fo llo w s: « “ Enter a, b and c: “ { ?[...]
-
Page 674
P age 21-2 7 Enter v alues o f V = 0. 01_m^3, T = 300_K , and n = 0.8_mol . Bef or e pr es sing ` , the stac k w ill look like this: Press ` to get the re sult 199 5 4 8.2 4_J/m^3, or 199 5 48.2 4_ P a = 199 .5 5 kP a. Input through input f orms F uncti on INFORM ( „°L @) @@IN@ @ @INFOR@ .) can be used to c r eate detailed input f orms f or a pr[...]
-
Page 675
Pa g e 2 1 - 2 8 T he lists in items 4 and 5 can be em pty lists. Also , if no v alue is to be select ed for these opti ons y ou can use the NO V AL command ( „°L @) @@IN@ @ @NOVAL@ ). After f unction INFORM is acti vated y ou will get as a r esult either a z er o , in case the @CANCEL option is en ter ed , or a list w ith the v alues ente r ed [...]
-
Page 676
P age 21-29 3 . F ield f ormat info rmation: { } (an empty lis t , thus , defa ult value s used) 4. L ist of r eset val ues: { 120 1 .0001} 5 . L ist of initial v alues: { 110 1.5 .00001} Save th e prog ram i nto va riab le IN F P1 . P ress @INFP 1 to run the pr ogram . T he input f orm , w ith initial v alues loaded , is as follo ws: T o see the e[...]
-
Page 677
P age 21-30 T hus , we demonstr ated the u se of f uncti on INFORM. T o see h o w to use the se input v alues in a calc ulation modify the pr ogr am as follo ws: « “ CHEZY’S EQN” { { “ C:” “Chezy’s coefficient” 0} { “R:” “Hydraulic radius” 0 } { “S:” “Channel bed slope” 0} } { } { 120 1 .0001} { 110 1.5 .000 01 } IN[...]
-
Page 678
P age 21-31 « “ CHEZY’S EQN” { { “C:” “Chezy’s coefficient” 0} { “R:” “Hydraulic radius” 0 } { “S:” “Channel bed slope” 0} } { 2 1 } { 120 1 .0001} { 110 1.5 .00001 } INFORM IF THEN OBJ DROP C R S ‘C*(R*S)’ NUM “Q” TAG ELSE “Operation cancelled” MSGBOX END » R unning pr ogr am @INFP2 pr [...]
-
Page 679
P age 21-3 2 Ac tiv ati on of the CHOO SE func tion w ill re turn e ither a z er o, if a @CANCEL ac ti on is used , or , if a c hoi ce is made , the ch oi ce s elect ed (e .g., v) and the numbe r 1, i .e ., in the RPN stac k: Ex ample 1 – Manning ’s equation f or calc ulating the v eloc ity in an open ch an nel fl o w in clu de s a co ef fic ie[...]
-
Page 680
P age 21-3 3 commands “Operation canc elled” MSGBOX w ill sho w a message bo x indicating that the oper ation w as cancelled. Identif y ing output in pr ograms T he simplest w ay to identify numer ical pr ogr am output is to “tag ” the pr ogr am r esults . A tag is simply a str ing attached to a numbe r , o r to a n y objec t . The str ing [...]
-
Page 681
P age 21-34 Ex amples of tagged output Ex ample 1 – tagging output fr om function FUNC a Let ’s modif y the f uncti on FUNCa, de f ined earlier , to pr oduce a tagged output . Use ‚ @FUNCa to r ecall the contents of FUNCa to the s tack . T he ori ginal func tion pr ogram r eads « “ Enter a: “ { “ :a: “ {2 0} V } INPU T OBJ →→[...]
-
Page 682
Pa g e 2 1 - 3 5 « “ Enter a: “ { “ :a: “ {2 0} V } INPUT OBJ →→ a « ‘ 2*a^2+3 ‘ EVAL ” F ” → TAG a SWAP »» (R ecall that the functi on S W AP is av ailable b y using „° @) STACK @SW AP@ ). Stor e the pr ogram bac k into FUNCa b y using „ @FUNCa . Ne xt , run the pr ogr am by pr essing @FUNCa . En ter a v alue of [...]
-
Page 683
Pa g e 2 1 - 3 6 Ex ample 3 – tagging input and outpu t fr om f uncti on p(V ,T) In this e xample w e modify the pr ogr am @@@p@@@ so that the o utput tagged input v alues and t agged r esult . Use ‚ @@@p@@@ t o recall the conte nts of the pr ogr am to the st ack: « “ Enter V, T, and n: “ { “ :V: :T: :n: “ {2 0} V } INPUT O[...]
-
Page 684
P age 21-3 7 Stor e the progr am back into var ia ble p by using „ @@@p@@@ . Ne xt , r un the pr ogr am by pr essing @@@p@@@ . Ent er value s of V = 0. 01_m^3, T = 30 0_K, and n = 0.8_mol , when pr ompted . Bef or e pre ssing ` for input , the stack w ill look lik e this: After e xec uti on of the pr ogr am , the stac k w ill look lik e this: Usi[...]
-
Page 685
P age 21-38 T he r esult is the f ollo w ing message bo x: Press @@@OK@@@ to c ancel the mes sage bo x . Y ou could us e a message bo x for o utput fr om a progr am b y using a tagged output , con verted to a s tring , as the output str ing f or MS GBO X. T o con v ert any tagged r esult , or any algebr ai c or non- tagged v alue , to a str ing , u[...]
-
Page 686
P age 21-3 9 Press @@@OK@@@ to cancel message b o x output . The stack w ill now look like this: Including input and output in a m essage bo x W e could modify the pr ogram so that not onl y the output , but also the input , is inc luded in a message bo x . F or the case of pr ogram @@@p@@@ , the modifi ed pr ogr am wi ll look lik e: « “ Enter V[...]
-
Page 687
P age 21-40 Y ou w ill notice that after ty ping the k e ys tr ok e sequence ‚ë a ne w line is gener a t ed in the stac k. T he last modif icati on that needs to be included is to type in the plu s sign three times after the call t o the functi on at the v ery e nd of the sub-pr ogram . T o see the pr ogr am oper ating: Θ S tor e the pr ogr am [...]
-
Page 688
P age 21-41 Incorpor ating units within a program As y ou ha ve bee n able to obse r v e fr om all the ex amples f or the diffe r ent vers ion s of pro gram @@@p@@@ pr es ented in this cha pter , attac hing units to input v alues may be a t ediou s pr ocess . Y ou could ha v e the pr ogr am itself attach those units to the input and output v alues [...]
-
Page 689
P age 21-4 2 2. ‘ 1_m^3 ’ : T he S .I. un its corr espo nding to V ar e then placed in stac k lev el 1, the tagged input f or V is mo v ed to stack lev el 2 . 3 . * : B y multiply ing the contents of st ack le vels 1 and 2 , w e gener ate a number w ith units (e .g ., 0. 01_m^3) , but the ta g is lost . 4. T ‘ 1_K ’ * : Calc ulating v alue [...]
-
Page 690
P age 21-4 3 Press @@@OK@@@ to cancel me ssage bo x output . Me s sag e bo x output without units Let ’s modify the progr a m @@@p@@@ once mor e to eliminate the us e of units thr oughout it . The unit-less pr ogram w ill look like this: « “ Enter V,T,n [S.I.]: “ { “ :V: :T: :n: “ {2 0} V } INPUT OBJ →→ V T n « V DTAG T [...]
-
Page 691
P age 21-44 oper ators ar e used to mak e a statement r egarding the r elativ e position of t w o or mor e r eal numbers . Depending on the ac tual numbers us ed, su ch a st atement can be true (r epr es ented b y the numer i cal value o f 1. in the calc ulator ) , or fals e (r epr ese nted by the numer ical value of 0. in the calc ulator ) . T he [...]
-
Page 692
P age 21-45 Logical oper ators L ogical oper ator s ar e logical partic les that ar e used to jo in or modify simple logical s tatements . The logical ope rat ors a vaila ble in the calculat or can be easily acc essed thr ough the ke ys trok e sequence: „° @ ) TEST@ L . T he av ailable logi cal oper ator s ar e: AND , OR, X OR (e xc lusi ve or )[...]
-
Page 693
Pa g e 2 1 - 4 6 T he calculat or include s also the logi cal oper ator S AME . This is a non-standar d logical ope rat or used t o deter mine if two ob jec ts ar e identi cal . If they are identi cal , a value o f 1 (true) is r eturned , if no t, a value of 0 (f alse) is r etur ned. F or ex ample , the f ollo wing e xer cis e , in RPN mod e , re t[...]
-
Page 694
P age 21-4 7 Br anc hing w ith I F In this secti on w e pr esen ts e xample s using the constr ucts IF…THEN…END and IF…THEN…ELSE…END . T he I F…THEN…END construct T he IF…THEN…END is the simplest of the IF pr ogr am constr ucts . The gener al fo rmat of this co nstruc t is: IF logical_statement THEN program_statements END . T he o[...]
-
Page 695
P age 21-48 W ith the cur sor in fr ont of the IF st atement pr ompting the user f or the logical stat ement that wi ll acti vate the I F cons truct when the pr ogr am is e xec ut ed. Ex ample : T y pe in the follo w ing pr ogr am: « → x « IF ‘ x<3 ’ THEN ‘ x^2 ‘ EVAL END ” Done ” MSGBOX » » and sa v e it under the name ‘[...]
-
Page 696
P age 21-4 9 Ex ample : T y pe in the f ollo w i ng pr ogram: « → x « IF ‘ x<3 ’ THEN ‘ x^2 ‘ ELSE ‘ 1-x ’ END EVAL ” Done ” MSGBOX » » and sa v e it under the name ‘f2 ’ . Pre ss J and v er ify that var iable @@@f2@@@ is indeed av ailable in your var ia ble menu . V er ify the follo wing r esults: 0 @@@f2@@@ Result: 0 [...]
-
Page 697
P age 21-50 IF x<3 THEN x 2 ELSE 1-x END While this simple cons truc t w orks f ine w hen y our f uncti on has onl y tw o br anche s, y ou ma y need to nes t IF…THEN…ELSE…END constru cts to deal w ith func tion w ith three or mor e branc hes . F or e xample , conside r the functi on Her e is a possible w a y to e valuate this f uncti on us[...]
-
Page 698
P age 21-51 A comple x IF construc t like this is called a set o f n ested IF … THEN … EL SE … END constr ucts . A poss ible wa y to e valuate f3(x), based on the nested IF constr uct sho wn abo ve , is to w rite the pr ogr am: « → x « IF ‘ x<3 ‘ THEN ‘ x^2 ‘ ELSE IF ‘ x<5 ‘ THEN ‘ 1-x ‘ ELSE IF ‘ x<3* π ‘ TH[...]
-
Page 699
Pa g e 2 1 - 52 pr ogr am_stateme nts , and pa sses pr ogram f lo w to the statement f ollow ing the END state ment. T he CASE , THEN, and END st atements ar e a vailable f or selecti ve typ ing by using „° @) @ BRCH@ @ ) CASE@ . If y ou ar e in the BRCH menu , i .e., ( „° @) @ BRCH@ ) y ou can use the f ollo w ing shortc uts to type in y our[...]
-
Page 700
Pa g e 2 1 - 5 3 5. 6 @@ f3c@ Re su l t : -0.6 312 6 6… (i .e ., sin(x) , w ith x in r adians) 12 @@f3c@ Res ul t : 16 2 7 54.7 91419 (i.e ., e xp(x)) 23 @@f3c@ Res ul t - 2 . (i .e ., - 2) As yo u can see , f3c produces e xactl y the same r esults as f3 . The onl y diffe r ence in the pr ogr ams is the branc hing constr ucts u sed . F or the cas[...]
-
Page 701
P age 21-54 Commands in v ol ved in the S T AR T constru ct ar e av ailable thr ough: „° @) @BRCH@ @ ) START @ST ART W ithin the BRCH men u ( „° @) @BRCH@ ) the follo wi ng ke ys tr ok es ar e a vailabl e to gener ate S T AR T construc ts (the s y mbol indicates c ur sor positi on) : Θ „ @START : S tarts the S T ART…NE XT constru ct: S T[...]
-
Page 702
Pa g e 2 1 - 5 5 1. T his pr ogr am needs an integer numbe r as inpu t . Th us , bef or e e xec utio n, that number (n) is in st ack le v el 1. The pr ogram is the n ex ec uted . 2 . A z er o is ente r ed , mov ing n to stac k lev el 2 . 3 . T he command DUP , w hi ch can be typed in a s ~~dup~ , copi es the contents of s tack le v el 1, mo ves all[...]
-
Page 703
P age 21-5 6 „°LL @) @RUN@ @@DBG@ Start the debugger . SL1 = 2 . @SST ↓ @ SL1 = 0., SL2 = 2 . @SST ↓ @ SL1 = 0., SL2 = 0. , SL3 = 2 . (DUP) @SST ↓ @ Empty stac k (-> n S k) @SST ↓ @ Empty stac k ( « - s tart subpr ogr am) @SST ↓ @ SL1 = 0., (s tart value of loop inde x) @SST ↓ @ SL1 = 2 .(n) , SL2 = 0. (end v alue of loop inde x)[...]
-
Page 704
P age 21-5 7 @SST ↓ @ SL1 = 1. (S + k 2 ) [Stor es value o f SL2 = 2 , into SL1 = ‘k ’] @SST ↓ @ SL1 = ‘S’ , SL2 = 1. (S + k 2 ) @SST ↓ @ Empty st ack [S tor es value of SL2 = 1, int o SL1 = ‘S’] @SST ↓ @ Empty stac k (NEXT – end of loop) --- loop e xec ution n umber 3 f or k = 2 @SST ↓ @ SL1 = 2 . (k) @SST ↓ @ SL1 = 4. (S[...]
-
Page 705
P age 21-5 8 3 @@@S1@@ Re su lt : S:14 4 @@@S1@@ Res ul t: S:30 5 @@@S1@@ Re su lt : S:55 8 @@@S1@@ Res ul t: S:204 10 @@@S1@@ Res ul t: S:385 20 @@@S1@@ Res u lt : S:2870 30 @@@S1@@ Res ul t: S:9455 100 @@@S1@@ Re su l t: S:338350 The ST ART…STEP construct T he gener al fo rm of this statemen t is: start_value end_value START program_statements [...]
-
Page 706
P age 21-5 9 J 1 # 1. 5 # 0.5 ` Enter par ame ters 1 1. 5 0. 5 [ ‘ ] @GLIST ` En ter the pr ogr am name in lev el 1 „°LL @) @RUN@ @@DBG@ S tart the debugger . Use @SST ↓ @ t o step into the pr ogr am and see the detailed ope rati on of eac h command . T he FOR construct As in the case of the S T AR T command, the F OR command has tw o v ari [...]
-
Page 707
P age 21-60 T o av oid an inf inite loop , mak e sur e that start_value < end_value . Ex ample – ca lc ulate the summation S using a F OR…NEXT construc t T he follo w ing pr ogram calc ulates the summation Using a FOR…NEXT loop : « 0 → n S « 0 n FOR k k SQ S + ‘ S ‘ STO NEXT S “ S ” → TAG » » Stor e this pr ogram in a v ar [...]
-
Page 708
P age 21-61 Ex ample – gener ate a list of number s using a FOR…S TEP construc t T ype in the pr ogram: « → xs xe dx « xe xs – dx / ABS 1. + → n « xs xe FOR x x dx STEP n → LIST » » » and stor e it in var ia ble @GLIS2 . Θ Chec k out that the pr ogr am call 0. 5 ` 2. 5 ` 0.5 ` @ GLIS2 pr oduces the list {0. 5 1. 1.5 2 . 2 . 5}. ?[...]
-
Page 709
P age 21-6 2 T he follo w ing pr ogram calc ulates the summation Using a DO…UNTIL…END loop: « 0. → n S « DO n SQ S + ‘ S ‘ STO n 1 – ‘ n ‘ STO UNTIL ‘ n<0 ‘ END S “ S ” → TAG » » Stor e this pr ogram in a v ar iable @@ S3@@ . V er ify the follo wing e xe r c ises: J 3 @@@S3@@ Re su lt : S:14 4 @@@S3@@ Res ul t: S:30[...]
-
Page 710
Pa g e 2 1 - 6 3 T he WHILE construct T he gener al str uctur e of this command is: WHILE logical_statement REPEAT program_statements END T he WHILE stateme nt w ill r epeat the program_statements wh il e logical_statement is tr ue (non z er o) . If not , pr ogram contr ol is pa ssed to the stat ement r ight afte r END . The program_statements must[...]
-
Page 711
P age 21-64 and stor e it in var ia ble @GLIS4 . Θ Chec k out that the pr ogr am call 0. 5 ` 2. 5 ` 0.5 ` @ GLIS4 pr oduces the list {0. 5 1. 1.5 2 . 2 . 5}. Θ T o see st ep-by-step oper ation u se the pr ogr am D B UG for a short list , for e xample: J 1 # 1. 5 # 0.5 ` Enter par ame ters 1 1. 5 0. 5 [‘] @GLIS4 ` Enter the pr ogram name in lev [...]
-
Page 712
P age 21-6 5 If y ou enter “ TR Y A G AIN” ` @ DOERR , p r oduc e s the follow ing m essage: TR Y AGA I N F inally , 0` @DOERR , pr oduces the messa ge: I nter rupted ERRN T his functi on r etur ns a number r epr es enting the most r ecent err or . F or e xample , if y ou try 0Y$ @ERRN , y ou get the n umber #30 5h . This is the binary integer [...]
-
Page 713
P age 21-66 T hese ar e the components of the IFERR … THEN … END construc t or of the IFERR … THEN … EL SE … END constr uct . Both logi cal constr ucts ar e used fo r tr appi ng err or s dur ing pr ogr am ex ec uti on . Within the @) ER ROR sub-men u , enter ing „ @) IFERR , or ‚ @) IFERR , w ill place the IFERR s truc tur e component[...]
-
Page 714
P age 21-6 7 User RP L pr ogramming in algebraic mode While all the pr ogr ams pre sent ed earli er are pr oduced and run in RPN mode , y ou can al wa y s type a pr ogr am in Us er RPL w hen in algebrai c mode b y using func tion RP L>. T his functi on is a vaila ble thr ough the command catalog . As an e x ample , try cr eating the follo wing p[...]
-
Page 715
P age 21-6 8 Wher eas , using RP L, ther e is no proble m when loading this pr ogram in algebr aic mode:[...]
-
Page 716
Pa g e 22 - 1 Chapter 2 2 Pr ogr ams for gr aphic s manipulation T his chapt er include s a number of e x amples sho w ing ho w to use the calculat or’s func tions f or manipulating gr aphics int er acti v el y or thr ough the us e of pr ogr ams. As in Cha pter 21 w e r ecommend u sing RPN mode and setting s ys tem f lag 117 to S OFT menu labels.[...]
-
Page 717
Pa g e 22 - 2 T o us er -def ine a k e y yo u need to add to this list a command or pr ogram fo llo w ed by a r efer ence to the k e y (see details in C hapter 20) . T y pe the list { S << 81.01 M ENU >> 13.0 } in the stac k and use f uncti on S T OKEY S ( „°L @) MODES @ ) @ KEYS@ @@ STOK@ ) to user -d ef ine k ey C as the acc e ss t[...]
-
Page 718
Pa g e 22 - 3 LA BE L (10) T he functi on L ABEL is us ed to label the ax es in a plot including the v ar iable names and minimum and max imum value s of the axe s. T he var ia ble names ar e select ed fr om info rmatio n contained in the var ia ble PP AR. AU TO ( 1 1 ) T he func tion A UT O (A UT Oscale) calc ulates a dis play r ange for the y-ax [...]
-
Page 719
Pa g e 22 - 4 EQ ( 3) T he var ia ble name EQ is r es er v ed by the calc ulator to stor e the c urr ent equatio n in plots or solut ion to eq uations (s ee chapt er …) . T he soft menu k ey la beled E Q in this menu can be us ed as it w ould be if y ou hav e y our v ar iable men u av ailable , e .g., if y ou pr es s [ E Q ] it w ill lis t the c [...]
-
Page 720
Pa g e 22 - 5 T he follo w ing diagr am illu str ates the f uncti ons av ailable in the P P AR menu . T he letter s attached to eac h f unction in the di agr am ar e used f or r ef er ence purpos es in the desc ripti on of the func tions sho wn belo w . INFO (n) and PP AR (m) If y ou pr ess @INFO , or enter ‚ @PPAR , while in this menu , you w il[...]
-
Page 721
Pa g e 22 - 6 INDEP (a) T he command IND EP spec ifi es the independent v ar iable and its plotting r ange . T hese spec ifi cations ar e stor ed as the thir d paramet er in the v ar ia ble PP AR. T he def ault v alue is 'X'. T he v alues that can be assigned t o the independent var iable spec if icati on ar e: Θ A v ari able name , e .g[...]
-
Page 722
Pa g e 22 - 7 CENTR (g) T he command CENTR tak es as ar gument an or der e d pair (x ,y) or a value x , and adju sts the fi rst tw o elements in the v ari able P P AR, i .e., (x min , y min ) and (x max , y max ) , s o that the center o f the plot is (x ,y) or (x , 0) , r especti v el y . S CALE (h) T he SCALE command dete rmines the plotting scale[...]
-
Page 723
Pa g e 22 - 8 A list o f two b inar y intege rs {#n #m}: sets the ti c k annotations in the x - and y- ax es to #n and #m pi xels , r espec tiv el y . AXE S (k) T he input value f or the axes command consis ts of e ither an order ed pair (x,y) or a list {(x ,y) atic k "x-ax is label" "y-ax is label"}. The par ameter atick s tand[...]
-
Page 724
Pa g e 22 - 9 The PTYP E menu within 3D (IV) T he PTYP E menu under 3D cont ains the follo w ing functi ons: T hese f uncti ons corr espond to the gr aphi cs opti ons Slopef ield , Wir efr ame , Y - Slice , P s-Contour , Gri dmap and Pr -Sur f ace pre sented ear lie r in this chapt er . Pr essing one o f these s oft menu k e y s , while ty ping a p[...]
-
Page 725
Pa ge 22- 1 0 XV OL (N) , YV OL (O) , and ZV OL (P) T hese f unctions t ake as input a minimum and maxi mum value and ar e used to spec ify the extent o f the parallelep iped wher e the gr aph w ill be gener ated (the v ie w ing par allelepiped). Thes e values ar e s tor ed in the v ar iable VP AR . The def ault values f or the r anges XV OL , YV O[...]
-
Page 726
Pa ge 22- 1 1 The S T A T menu within PL O T T he S T A T menu pr o v ide s access to plots r elated to st atistical anal y sis. W ithin this menu w e find the f ollo wing men us: T he diagr am belo w sho ws the br anc hing of the S T A T me nu w ithin P L O T . The numbers and let t ers accompan ying eac h f unction or menu ar e us ed f or r ef er[...]
-
Page 727
Pa ge 22- 1 2 The P T YP E m enu wi thin ST A T (I) The P TYP E menu pr o v ides the f ollo wing f uncti ons: The se ke ys cor res pond to the p lot ty pes Bar (A ) , H istogr am (B) , and Scatter (C) , pr esented ear lier . Pr essing one of these soft menu k ey s, w hile typing a pr ogr am, w ill place the corr esponding f uncti on call in the pr [...]
-
Page 728
Pa ge 22- 1 3 X COL (H) T he command XC OL is used t o indicate w hi ch o f the columns of Σ D A T , if mor e than one , w ill be the x - column or independent var iable column . YC O L ( I ) T he command Y COL is used to indicate w hic h of the columns of Σ DA T , i f m o re than one , w ill be the y- column or dependent v ar iable column . MODL[...]
-
Page 729
Pa ge 22- 1 4 Θ SIMU: w hen selec ted , and if more than one gr aph is to be plotted in the same set o f axe s, plots all the gr aphs simultaneousl y . Press @) PLOT to r eturn to the PL O T menu . Generating plots w ith progr ams Depending on w hether w e ar e dealing w ith a tw o -dimensional gr aph def ined by a fun ctio n, by d at a from Σ D [...]
-
Page 730
Pa ge 22- 1 5 T hree -dimensional gr aphics T he thr ee -dimensional gr aphi cs a vaila ble , namel y , options Slopef ield , Wir efr ame , Y -Sli ce , P s-Contour , G r idmap and Pr -Surface , use the VP AR v ar iabl e w ith the fol low ing fo rmat: { x left , x right , y near , y far , z low , z high , x min , x max , y min , y max , x eye , y ey[...]
-
Page 731
Pa ge 22- 1 6 @) PPAR Sho w plot par ameters ~„r` @INDEP Def ine ‘ r’ as the indep . v ari able ~„s` @DEPND De fine ‘ s ’ as the depende nt v ari able 1 # 10 @XRNG De f ine (-1, 10) as the x -r ange 1 # 5 @YRN G L Def ine (-1, 5 ) as t he y-r ange { (0, 0) {.4 .2} “Rs ” “Sr ”} ` Axes de finiti on list @AXES Def in e ax es cent[...]
-
Page 732
Pa ge 22- 1 7 @) PPAR Sho w plot par ameters { θ 0 6 .2 9} ` @INDEP De f ine ‘ θ ’ as the indep . V ariable ~y` @DEPND De fine ‘ Y’ a s the dependent v ar iable 3 # 3 @XRNG De fine (-3, 3) as the x -r ange 0. 5 # 2. 5 @YRNG L Def ine (-0. 5,2 . 5) as the y-r ange { (0, 0) {. 5 .5} “ x ” “ y”} ` Ax es def inition lis t @AXES Defi[...]
-
Page 733
Pa ge 22- 1 8 « S tart pr ogram {PPAR EQ} PURGE P u r ge c urr ent P P AR and E Q ‘ √ r’ STEQ Sto r e ‘ √ r’ i nto E Q ‘r’ INDEP Set independent v ari able to ‘ r’ ‘s’ DEPND Set dependent v ar iable t o ‘ s ’ FUNCTION Selec t FUNCTION as the plot type { (0.,0.) {.4 .2} “Rs” “Sr” } AXES Se t axe s inf or matio n [...]
-
Page 734
Pa ge 22- 1 9 Ex ample 3 – A polar plot . Enter the follo wing pr ogr am: «S t a r t p r o g r a m RAD {PPAR EQ} PURGE Change to r adians , pur ge vars . ‘1+SIN( θ )’ STEQ St ore ‘ f( θ )’ into E Q { θ 0. 6.29} INDEP Set indep . var iable to ‘ θ ’ , w ith range ‘Y’ DEPND Set dependent v ar iable t o ‘Y ’ POLAR Selec t POL[...]
-
Page 735
Pa ge 22- 2 0 P I CT T his soft k e y re fer s to a var iable called PICT that stor es the cur r ent conten ts of the gr aphi cs w indo w . This v ar iable name , ho w ev er , cannot be placed within quot es, an d ca n only stor e graph i cs object s. In tha t sens e , PIC T is like no oth er calc ulato r v ari ables . PDI M T he functi on P DIM ta[...]
-
Page 736
Pa ge 22- 2 1 BO X T his command tak es as in put two or dered pair s (x 1 ,y 1 ) (x 2 , y 2 ) , or two pair s of pi xel coor dinates {#n 1 #m 1 } {#n 2 #m 2 }. It dr aw s the bo x wh ose di agonals ar e r epr esente d by the tw o pairs of coor dinates in the input . ARC T his command is u sed to dr aw an ar c. AR C tak es as in put the fol low ing[...]
-
Page 737
Pa ge 22- 22 Θ PI X? Chec ks if pi xe l at location (x ,y) or {#n, #m} is on . Θ PI X OFF turns o ff pi x el at location (x ,y) or {#n , #m}. Θ PI X ON turns on p i xe l at location (x ,y) or {#n , #m}. PVIEW T his command take s as input the coor dinates of a po int as use r coor dinates (x ,y) or pi x els {#n, #m}, and place s the contents of [...]
-
Page 738
Pa g e 22 - 23 (5 0., 5 0.) 12 . –180. 180. AR C Dr aw a c ir cle cen ter (5 0,5 0) , r= 12 . 1 8 FOR j Dr aw 8 lines w ithin the c ir cle (50., 5 0 .) DUP L ines ar e center ed as (5 0,5 0) ‘12*COS( 45 *(j-1))’ NUM Calc ulate x, other end at 5 0 + x ‘12*SIN( 4 5*(j-1))’ NUM Calc ulates y , other end at 5 0 + y R C Con vert x [...]
-
Page 739
Pa g e 22 - 24 It is suggest ed that you c r eate a separ a t e sub-dir ectory to sto r e the progr ams. Y ou could call the sub-dir ectory RIVER , since w e ar e dealing w ith irr egular open c han nel c r os s-secti ons , t y pi cal of r i ver s . T o see the pr ogram XSE CT in acti on, use the f ollo wi ng data sets . Enter the m as matr ices o [...]
-
Page 740
Pa g e 22 - 2 5 P ix el coordinates T he fi gur e belo w sho w s the gr aphic coor dinate s fo r the t y pi cal (minimum) scr een of 13 1 × 64 pi xels . P i x els coor dinates ar e measured f r om the top left corner of the screen {# 0 h # 0h}, w hich corresponds to user-defined coor din ates Data set 1 Data set 2 xy x y 0.4 6 .3 0.7 4.8 1. 0 4.9 [...]
-
Page 741
Pa ge 22- 26 (x min , y max ) . T he max imum coor dinates in terms of p i xels cor r espond to the lo w er ri ght corner of the sc r een {# 8 2h #3Fh}, w hic h in use r-coor d inate s is the point (x max , y min ). T h e coor dinates of the t w o other corner s both in p i xel as w ell as in user - def ine d coor di nates ar e show n i n the figur[...]
-
Page 742
Pa g e 22 - 27 Animating a collec tion o f graphics T he calc ulato r pr o v ide s the f unction ANIMA TE to animate a n umber o f gr aphi cs that hav e been placed in the st ack . Y ou can gener ate a gr aph in the gr aphic s sc r een b y using the commands in the PL O T and PICT men us . T o place the gener ated gr aph in the stac k, u se PICT R [...]
-
Page 743
Pa g e 22-2 8 ANIMA TE is av ailable b y us ing „°L @) GROB L @ ANIMA ) . T he animation w ill be r e -started. Pr ess $ to st op the animation once mor e. Noti ce that the number 11 w ill still be lis ted in stac k le v el 1. Pr ess ƒ to dr op it fr om the stack. Suppos e that yo u want t o keep the f igur es that compose this animation in a v[...]
-
Page 744
Pa g e 22 - 2 9 Ex ample 2 - Animating the plotting of diff er ent po w er f uncti ons Suppos e that yo u want t o animate the plotting of the functi ons f(x) = x n , n = 0, 1, 2 , 3, 4, in the same set o f axe s. Y ou could use the f ollo w ing pr ogr am: «B e g i n p r o g r a m RA D Set angle units to r adians 131 R B 64 R B PD IM Se t [...]
-
Page 745
Pa ge 22- 3 0 pr oduced in the calc ulator’s sc reen . T her ef or e , when an image is con v er ted into a GROB , it becomes a s equence of binary digits ( b inary dig its = bit s ), i . e . , 0’s and 1’s . T o illustr ate GR OBs and con ve rsi on of image s to GR OBS consider the f ollo w ing e xe r c ise . When w e pr oduce a gr aph in the[...]
-
Page 746
Pa ge 22- 3 1 1` „°L @) GROB @ GRO B . Y ou w ill no w ha ve in le v el 1 the GROB desc r ibed as: As a gr aphic ob ject this eq uation can no w be placed in the gr aphi cs displa y . T o r ecov er the gr aphics dis play pr ess š . Then , mo ve the c urso r to an empt y sect or in the graph , and pr ess @) EDIT LL @ REPL . The equatio n ‘[...]
-
Page 747
Pa g e 22 - 32 BLANK T he functi on BL ANK , w ith ar guments #n and #m, c r eates a blank gra phics obj ect of w i dth and height spec ifi ed by the v alues #n and #m, r es pecti v ely . T his is similar to the func tion P DIM in the GRAPH men u . GOR The fun ctio n GO R ( Grap hics OR ) ta k es as in put gr ob 2 (a target GROB) , a set of coor di[...]
-
Page 748
Pa g e 22 - 3 3 An e xample o f a progr am using GROB T he follo w ing pr ogram pr oduces the gr aph of the sine f unctio n including a fr ame – dra w n w ith the func tion B O X – and a GROB t o label the gr aph. Here is the listing o f the progr am: «B e g i n p r o g r a m RA D Set angle units t o radi ans 131 R B 64 R B PD IM Se t [...]
-
Page 749
Pa g e 22 - 3 4 sho w s the state o f str es ses w hen the element is r otated b y an angle φ . In this case, the normal str esses are σ ’ xx and σ ’ yy , while the shear str esses ar e τ ’ xy and τ ’ yx . The relationsh ip bet w een the origina l state of str esses ( σ xx , σ yy , τ xy , τ yx ) and the stat e of str ess w hen the [...]
-
Page 750
Pa g e 22 - 35 The stress cond ition for whic h t he she ar stress , τ ’ xy , is z er o , ind i cated by segment D’E’ , produces the s o -called princ ipal str esses , σ P xx (at po int D’) and σ P yy (at point E’). T o obtain the princ ipal str esses y ou nee d to r otate the coor dinate s y stem x ’-y’ by an angle φ n , counter [...]
-
Page 751
Pa g e 22-3 6 separ ate v ar iables in the calc ulator . Thes e sub-pr ogr ams are then link ed by a main pr ogr am, that w e w ill call MOHRCIRCL . W e will fir st c r eate a sub- dir ect or y called MOHR C w ithin the HOME dir ectory , and mov e into that dir ect or y t o type the pr ograms . T he next s tep is to c r eate the main pr ogr am and [...]
-
Page 752
Pa g e 22 - 37 At this point the pr ogram MOHR CIRCL s tarts calling the su b-pr ograms t o pr oduce the fi gur e . Be pa ti ent . The r esulting Mohr ’s c ir cle w ill look as in the pic tur e to the le ft. Becau se this v ie w of P ICT is in vok ed through the f uncti on PVIEW , we cannot get an y other inf ormati on out of the plot beside s th[...]
-
Page 753
Pa g e 22 - 3 8 inf ormatio n tell us is that some w here betw een φ = 5 8 o and φ = 5 9 o , the shear stress, τ ’ xy , becomes z er o . T o f ind the actual v alue of φ n, pr ess $ . Then type the list corr esponding to the v alues { σ x σ y τ xy}, for this case , it w ill be { 25 75 50 } [ENTER] Then , pres s @CC&r . T he last r esul[...]
-
Page 754
Pa g e 22 - 3 9 necess ar y to plot the c irc le . It is suggest that w e r e -or der the var iable s in the sub-dir ectory , so that the pr ogr ams @MOHRC and @PRNST ar e the two f ir st v ari ables in the soft-menu k e y labels. T his can be accomplished b y cr eating the list { MOHRCIRCL PRNS T } using: J„ä @MOHRC @PRNST ` And then , order in[...]
-
Page 755
Pa ge 22- 4 0 T o find the v alues o f the str ess es corr esponding to a r otatio n of 3 5 o in the angle of th e stressed p art i cle, w e use: $š Clea r sc reen, show PICT in graphics scr e en @TRACE @ ( x,y ) @ . T o mov e c ursor o v er the c irc le sho w ing φ and (x ,y) Ne xt , pr ess ™ until y ou r ead φ = 3 5 . T he corr esponding coo[...]
-
Page 756
Pa ge 22- 4 1 Since pr ogr am IND A T is use d also f or pr ogram @PRNST (P R iNc ipal S T resses), running that partic ular pr ogr am w ill no w use an input f or m, f or e x ample , T he r esult , after pr es sing @@@OK@@@ , is the follo wing:[...]
-
Page 757
Pa g e 23 - 1 Chapter 2 3 Character strings Char acter s tring s are calc ulator obj ects enc losed betw een double quotes . T hey ar e tr eated as te xt b y the calc ulator . F or e x ample , the str ing “SINE FUNCT ION” , can be transf or med into a GR OB (Gra phic s Objec t) , to la bel a gr aph , or can be us ed as output in a pr ogr am. Se[...]
-
Page 758
Pa g e 23 - 2 String concatenation Str ing s can be concatenated (j oined together ) b y using the plu s sign +, f or exa mp l e: Concat enating str ings is a pr actical w a y to cr ea t e output in pr ogr ams. F or e x ample , concatenating "Y OU ARE " A GE + " YEAR OLD" cr eate s the string "Y OU ARE 2 5 YE AR OLD", [...]
-
Page 759
Pa g e 23 - 3 T he operati on of NUM, CHR , OB J , and S TR w as pr esen ted ear lier in this Chapt er . W e hav e also s een the functi ons S UB and REP L in r elation t o gr aphic s earli er in this chapte r . Func tions S UB , REPL , P OS , S IZE , HEAD , and T AIL hav e similar eff e c ts as in lis ts, namel y : SI ZE: number o f a sub-[...]
-
Page 760
Pa g e 23 - 4 sc r een the ke y str ok e sequence to get such c harac ter ( . fo r this case) and the numer ical code corr esponding to the c har acter (10 in this cas e) . Char acte rs that ar e not def ined appear a s a dark squar e in the c har acte rs list ( ) and sho w ( None ) at the bottom of the displa y , e ven t hough a numer ical[...]
-
Page 761
Pa g e 24 - 1 Chapter 2 4 Calculator objec ts and flags Numbers , lists, v ec tors, matri ces, algebr ai cs, etc ., ar e calc ulator objec ts. T hey ar e classif ied accor ding to its nature into 30 diff er ent t y pes , whic h ar e desc r ibed belo w . F lags ar e var ia bles that can be us ed to contr ol the calculat or propert ies . F la gs w er[...]
-
Page 762
Pa g e 24 - 2 Number T y pe Ex am ple ___________ _____________________ _____________________ _______________ 21 Ext ended Real Number Long Real 2 2 Extended C omple x Number Long Complex 2 3 Link ed Arr a y Linked rr ay 2 4 Char acter Ob ject Character 25 C o d e O b j e ct Code 2 6 L ibrary Data Library D ata 2 7 Exter nal Obj ect External 28 I n[...]
-
Page 763
Pa g e 24 - 3 Calculator flags A flag is a v ar iable that can e ither be set or uns et . The st atus of a f lag affec ts the behav ior of the calc ulator , if the f lag is a sy stem f lag, or o f a pr ogr am, if it is a user f lag . The y ar e desc r ibed in mor e detail ne xt . S y stem flags S y ste m flags can be access ed by using H @) FLAGS! [...]
-
Page 764
Pa g e 24 - 4 T he functi ons contained w ithin the FL A G menu ar e the f ollow ing: The ope rati on of thes e func tions is as f ollo w s: SF Set a f lag CF C lear a flag F S? R eturns 1 if flag is set , 0 if not set FC? R eturns 1 if flag is c lear (not set), 0 if f lag is set F S?C T ests flag as F S does, then c lears it FC?C T ests flag as FC[...]
-
Page 765
Pa g e 2 5 - 1 Chapter 2 5 Date and T ime F unc tions In this Chapt er w e demonstr ate some o f the func tions and calc ulations using times and date s. T he TIME menu T he TIME men u , av ailable thr ough the ke ys trok e sequence ‚Ó (the 9 k ey) pr o v ides the f ollo w ing f unctio ns, w hic h ar e des cr ibed ne xt: Setting an alarm Option [...]
-
Page 766
Pa g e 2 5 - 2 Br ow sing alarms Option 1. Br o ws e alarms ... in the T IME menu lets y ou r e v ie w y our cur r ent alarms . F or e x ample , after enter ing the alarm us ed in the ex ample a bov e, this option w ill show the f ollo w ing scr een: T his s cr een pro vi des four s oft menu k ey labe ls: EDIT : F or editing the selected alar m , p[...]
-
Page 767
Pa g e 2 5 - 3 T he applicati on of these f uncti ons is demonstr ated belo w . D A TE: P laces c urr ent date in the stac k D A TE: Set s y stem date to spec ifi ed value T IME: P laces c ur r ent time in 2 4 -hr HH.MM S S f ormat T IME: Set sy stem time to spec if ied v alue in 2 4 -hr HH.MM. S S f ormat T ICK S: Pr o v ides s y stem time[...]
-
Page 768
Pa g e 2 5 - 4 Calculating with tim es Th e fu nct ion s HMS , HM S , HMS+, and HM S - ar e us ed to manipulate value s in the HH.MM S S for mat . This is the same f ormat us ed to calc ulate w ith angle measur es in degr ees, min utes , and seconds. T hu s, thes e oper ations ar e usef ul not onl y fo r time calculati ons, but als o for an[...]
-
Page 769
Pa g e 26 - 1 Chapter 2 6 M anaging memory In Chapte r 2 w e intr oduced the basic co ncepts of , a nd ope rati ons fo r , cr eating and managing var i ables and dir ec tor ies . In this Chapt er w e disc uss the management of the cal culat or’s memory , including the partition of memo r y and tec hniques f or backing u p data. Me mo ry S t r uct[...]
-
Page 770
Pa g e 26 - 2 P or t 1 (ERAM ) can contain up to 12 8 KB of data . P ort 1, together with P ort 0 and the HOME dir ectory , cons titute the calc ulator’s RAM (R andom Acce ss Memory) segment of calc ulator ’s memory . T he R AM memory segment r equir es contin uous elec tr ic po w er suppl y f r om the calculat or bat t er ies t o operat e. T o[...]
-
Page 771
Pa g e 26 - 3 Chec king objec ts in memor y T o see the ob jec ts stor ed in memor y y ou can use the FILE S func tio n ( „¡ ). Th e sc ree n b el ow sh ows t he H OM E d i rec to r y wi th five d i re cto ri es, n a m ely , TRIANG , MA TRX , MPFIT , GRPH S , and CASDIR . Additi onal dir ector ie s can be vi e wed b y mo v ing the c ursor do wn [...]
-
Page 772
Pa g e 26 - 4 Bac k up objec ts Bac ku p obj ects ar e used t o copy data f r om y our home dir ect or y int o a memor y port. The pur pose of bac king up obj ects in memory port is to pr eserve the contents of the objects f or f utur e usage . Back up objec ts hav e the fo llow ing ch ara cte ris ti cs: Θ Bac k up obj ects can onl y e x ist in po[...]
-
Page 773
Pa g e 26 - 5 Bac king up and r estoring HOME Y ou can back u p the cont ents of the c urr ent HOME dir ectory in a single bac k up obj ect . T his ob jec t w ill contain all var iables , k e y assi gnments , and alar ms c urr en tly def ined in the HO ME dir ectory . Y ou can also r esto r e the contents o f y our HOME dir ectory fr om a back u p [...]
-
Page 774
Pa g e 26 - 6 Stor ing, deleting, and r estoring back up objects T o c r eate a bac k up obj ect us e one of the f ollow ing appr oaches: Θ Us e the F ile Manager ( „¡ ) t o c o p y t h e o b j e c t t o p o r t . U s i n g t h i s appr oach , the back up obj ect w ill hav e the same name as the o ri ginal object . Θ Us e the S T O co mmand to[...]
-
Page 775
Pa g e 26 - 7 Using data in backup objects Although y ou cannot dir ectl y modify the contents o f back up objec ts, y ou can use tho se cont ents in calculat or oper ations. F or e x ample , y ou can r un pr ogr ams stor ed as back up objec ts or us e data fr om back up obj ects t o run pr ograms . T o run bac k up-obj ect pr ogr ams or use data f[...]
-
Page 776
Pa g e 26 - 8 T o r emo ve an SD car d , turn o ff the HP 50 g, pr ess ge ntly on the e xposed edge of the car d and push in . The car d should spring out o f the slot a small distance , allo w ing it now to be easil y r emo ved f r om the calculator . F ormatting an SD card Most SD car ds will alr ead y be fo rmatted, but the y may be f or matted [...]
-
Page 777
Pa g e 26 - 9 Accessing objects on an SD card Acce ssing an obj ect f r om the SD car d is similar to whe n an objec t is located in ports 0, 1, or 2 . How ev er , P ort 3 wi ll not appear in the menu when using the LIB fu ncti on ( ‚á ) . T he SD file s can only be managed u sing the F iler , or F i le Manager ( „¡ ). When st ar ting the F i[...]
-
Page 778
Pa g e 26 - 1 0 Note that if the name of the object y ou intend to st ore on an SD car d is longer than ei ght c harac ters , it will a ppear in 8. 3 DOS f or mat in por t 3 in the F iler once it is stor ed on the ca r d. Recalling an object from an SD car d T o r ecall an ob ject f r om the SD card onto the sc r een, u se functi on RCL , as fo llo[...]
-
Page 779
Pa g e 26 - 1 1 Note that in the case of objects w ith long file s names , yo u can spec ify the f ull name of the objec t , or its truncat ed 8. 3 name , when ev aluating an obj ect on an SD car d. P urging an object from the SD card T o pur ge an ob ject f r om the SD car d onto the s cr een , us e functi on P URGE , as fo llo w s: Θ In algebr a[...]
-
Page 780
Pa g e 26 - 1 2 T his will s tor e the obj ect pr ev iousl y on the stac k onto the SD card int o the dir ect or y named P ROG S into an obj ect named P ROG1. Not e: If PR OGS doe s not e xis t, the dir ectory will be au tomaticall y cr eated. Y ou can spec ify an y number of nested subdir ector ies . F or ex ample , to re fer t o an obj ect in a t[...]
-
Page 781
Pa g e 26 - 1 3 Libr ary numbers If y ou us e the LIB menu ( ‚á ) and pr ess the so ft menu k e y corr es ponding to port 0, 1 or 2 , yo u wi ll see libr ar y n umbers list ed in the soft menu k e y labels . E ac h library has a thr ee or f our -digit n umber assoc iated w ith it . (F or e x ample , the two libr ar ies that mak e up the Eq uatio[...]
-
Page 782
Pa g e 26 - 1 4 w ill indicat e when this battery needs r eplacement . The diagr am belo w sho ws the location o f the back up bat t er y in the top compartment at the back o f the calc ulat or .[...]
-
Page 783
Pa g e 27- 1 Chapter 2 7 T he Equation Libr ar y T he E quation L ibrary is a collection o f equations and commands that enable y ou to so lv e simple s c ience and e ngineer ing pr oblems. T he libr ary consists o f mor e than 300 equatio ns gr ouped int o 15 techni cal subj ects con taining mor e than 100 pr oblem titles . E ach pr oblem title co[...]
-
Page 784
Pa g e 27- 2 7 . F or eac h know n var iable , type its value and pr es s the corr espo nding menu k e y . If a v ari able is not show n , pre ss L to disp la y furt h er variables. 8. Optional: su pply a gues s f or an unkno wn v ar iable . This can speed up the soluti on pr ocess or help to f oc us on one of s ev er al soluti ons. Enter a gue ss [...]
-
Page 785
Pa g e 27- 3 Using the m enu k ey s T he actions o f the unshifted and shifted var iable menu k ey s f or both sol ver s ar e identi cal. No tice that the Multiple Eq uation S olv er us es two f orms o f menu labels: blac k and w hite . The L k e y displa y s additional menu la bels, if r equir ed . In addition , each s olv er ha s spec ial me nu k[...]
-
Page 786
Pa g e 27- 4 Br o wsing in the Equation L ibrary When y ou se lect a sub ject and title in the E quation L ibrary , y ou spec ify a set of one or mor e equati ons. Y ou can get the f ollo w ing infor mation a bout the equati on set fr om the E quatio n Li brary catalogs: The equati ons themsel ves and the number o f equa ti ons . T he var i[...]
-
Page 787
Pa g e 27- 5 Vie wing v ariables and sel ecting units After y ou select a sub jec t and title , y ou can vi e w the catalog of names , desc r iptions , and units for the v ari ables in the equati on set b y pre ssing #VARS# . T he table belo w summari z es the oper ations av a i lable to y ou in the V ari able catalogs . Oper atio ns i n V ariable [...]
-
Page 788
Pa g e 27- 6 Pr ess to stor e the pic tur e in PIC T , the gra phics memory . T hen y ou can use © PIC T ( or © P ICTURE) to v ie w the pi ctur e again af t er y ou hav e quit the E q uation L ibr ar y . Pr ess a menu k ey or to v ie w other equati on infor mation . Using the M ultiple -Equation Sol ver T he E quation L ibrary starts the [...]
-
Page 789
Pa g e 27- 7 T he menu labels f or the var iable k ey s ar e w hite at fir st , but c hange during the solu tion pr ocess as des cr ibed belo w . Becau se a solu tion in v olv es man y equations and man y v ar ia bles, the Multiple - E quati on Sol ver mu st k eep tr ack o f var ia bles that are u ser -def ined and not def ined—those it can ’t [...]
-
Page 790
Pa g e 27- 8 Mea nings of Menu Labe ls Defining a set o f equations When y ou design a s et of eq uations , y ou should do it w ith an under standing o f ho w the Multiple -E quation Sol ver use s the equations to sol ve pr oblems. T he Multiple -E quati on Sol v er uses the sa me pr ocess y ou ’d use t o sol ve f or an unkno wn v ar ia ble (assu[...]
-
Page 791
Pa g e 27- 9 F or ex ample , the f ollo w ing thr ee equati ons defi ne initial v eloc ity a nd acceler atio n based on tw o observed dis tances and times . T he fir st tw o equations alone ar e mathematicall y suff ic ient f or solv ing the problem , but eac h equati on contains tw o unkno w n var ia bles. Adding the thir d equation allo ws a succ[...]
-
Page 792
Pa g e 27- 1 0 6. P ress ! MSOLV! to launc h the sol ver w ith the ne w set of equati ons . T o c hange the title and menu for a set of equations 1. Mak e sur e that the set o f equati ons is the c urr ent set (a s the y are u sed w hen the Multiple -E quati on Sol ve r is launc hed) . 2 . En ter a te xt str ing cont aining the new titl e onto the [...]
-
Page 793
Pa g e 27- 1 1 Constant? The initi al value of a v ar iable ma y be leading the r oot - f inder in the wr ong direc tion . Suppl y a guess in the oppo site dir ectio n fr om a cr iti cal value . (If negati ve v alues ar e vali d , tr y one . ) Chec king solutions Th e va riab le s h avin g a š mark in their men u labels ar e r elated fo r the [...]
-
Page 794
Pa g e 27- 1 2 Not r elated . A var iable ma y not be in v olv ed in the s oluti on (no mark in the label) , s o it is not com patible wi th the var ia bles that w er e inv ol ved . W r ong dir ecti on . The initial v alue of a var iable ma y be leading the roo t - f inder in the wr ong direc tion . Suppl y a guess in the oppo site dir ecti[...]
-
Page 795
Pa g e A - 1 Appendi x A Using input forms T his ex ample o f setting time and date illu str ates the use of input f orms in the calc ulator . Some gener al rules: Θ Use the ar ro w ke ys ( š™˜— ) to mov e fr om on e f ield to th e ne xt in the input f or m. Θ Use an y the @C HOOS sof t menu k ey to see the options av ailab le for an y gi v[...]
-
Page 796
Pa g e A - 2 In this par ti c ular case w e can giv e v alues to all but one of the var iables, s ay , n = 10, I%YR = 8. 5, PV = 10000, FV = 1000, and sol ve fo r va ri able P MT (the meaning of thes e var iables w ill be pr esent ed later ) . T r y the f ollo w ing: 10 @@OK@@ Enter n = 10 8. 5 @@ OK@@ Ente r I%YR = 8. 5 10000 @@ OK@@ Ent er PV = 1[...]
-
Page 797
Pa g e A - 3 !CALC Pr es s to access the stac k f or calculati ons !TYPES Pr ess to determin e the t y pe of object in highlighte d f ield !CANCL Cancel operation @@OK@ @ Ac cep t en tr y If y ou pr ess !RESET y ou w ill be ask ed to se lect between the tw o options: If y ou select R es et value onl y the highli ghted v alue w ill be r eset t o the[...]
-
Page 798
Pa g e A - 4 (In RPN mode , w e would ha v e used 113 6 .2 2 ` 2 `/ ). Press @ @OK@@ to en ter this ne w v alue. T he inpu t for m w ill no w look lik e this: Press !TYPES t o see the type o f data in the P MT fi eld (the highligh ted f ield). As a r esult , y ou get the f ollo w ing spec if icati on: T his indicates that the v alue in the P MT f i[...]
-
Page 799
Pa g e B - 1 Appendi x B T he calc ulator ’s k e y board T he fi gur e belo w sho w s a diagr am o f the calc ulato r’s k e y board w ith the number ing of its r o ws and columns . T he fi gure sho ws 10 r ow s of k e y s combined w ith 3, 5, or 6 columns. R o w 1 has 6 k ey s, r o ws 2 and 3 ha ve 3 k ey s eac h , and r o w s 4 thro ugh 10 hav[...]
-
Page 800
Pa g e B - 2 f i ve f uncti ons. T he main k e y func tions ar e sho wn in the f igur e belo w . T o oper ate this main k e y func tions simpl y pr ess the cor r esponding k e y . W e w ill r ef er to the ke y s by the r o w and column wher e the y are located in the sk etc h abo v e , th us , k e y (10,1) is the ON key . Mai n k ey functio ns in t[...]
-
Page 801
Pa g e B - 3 M ain k e y functions Ke ys A thr ough F k ey s ar e assoc iated w ith the soft men u options that appear at the bottom of the calc ulator’s dis play . T hus , thes e k ey s will ac tiv a t e a v ari ety of func tions that c hange acco rding t o the acti v e menu . Th e a rrow keys, —˜š™ , ar e used to mo ve one c har act e[...]
-
Page 802
P age B-4 The l eft- shi ft k e y „ and the r ight-shift key … ar e combi ned with other k ey s to acti vat e menus, en ter char acters , or calc ulate functi ons as desc r ibed else wher e. The n umeri cal k ey s ( 0 to 9 ) ar e used to enter the digits of the dec imal number s ys tem. Ther e is a d ec imal po in t k e y (.) and a [...]
-
Page 803
P age B-5 the other thr ee functi ons is a ssoc iated w ith the le f t-shift „ ( MTH ) , r ight-shift … ( CA T ) , and ~ ( P ) ke y s. Diagr ams show ing the f uncti on or char acter r esulting fr om com b ining the calculat or k ey s w ith the lef t-shift „ , r ight-shift … , ALPH A ~ , ALPHA-left - shift ~„ , and ALP HA -r ight-shif t ~[...]
-
Page 804
Pa g e B - 6 Th e CMD fu nction sho ws the most r e cent commands , the PRG fun ctio n acti v ates the pr ogramming men us , the MTRW f uncti on acti vat es the Matri x Wr i t e r, Left-shift „ func tions of th e calculator ’s k e yboard Th e CMD fu nction sho w s the most r ecent commands. Th e PRG functi on acti v ates the pr ogr [...]
-
Page 805
Pa g e B - 7 Th e e x k e y calc ulates the e xponenti al func tion o f x . Th e x 2 k e y calc ulates the sq uar e of x (this is re fer red to as the SQ fu nct ion) . T he AS IN , A CO S, and A T AN fu ncti ons calc ulate the ar csine , ar ccosine , and ar c tangent f uncti ons, r especti vel y . Th e 10 x func tion calc ulates the[...]
-
Page 806
Pa g e B - 8 Rig ht-s hif t … func tions of the calculator ’s k ey board Right-shift functions The sk etch abo v e show s the functi ons , char acter s, or men us ass oci ated w ith the diffe r ent calculator k ey s w hen the r igh t -shift k e y … is acti vated . Th e fu nct ion s BE GIN, END , COP Y , CUT and PA S T E ar e used f or edi[...]
-
Page 807
Pa g e B - 9 Th e CA T functi on is used to ac tiv ate the command c atalog . Th e CLE AR functi on c lears the sc r een . Th e LN func tion calc ulates the natur al logarithm . T he functi on calc ulates the x – th r oot of y . Th e Σ f uncti on is used to ent er summations (or the upper case Gree k letter sigma). Th e ?[...]
-
Page 808
Pa g e B - 1 0 is used mainl y to e nter the upper -case letter s of the English alpha bet ( A thr ough Z ) . T he numbers , mathematical s ymbols ( - , + ), dec imal poi nt ( . ) , and the s pace ( SP C ) ar e the same as the main functi ons of these k ey s. T he ~ fu nc tion pr oduc es an aster isk ( * ) whe n combined w ith the time s ke y , i .[...]
-
Page 809
Pa g e B - 1 1 Notice that the ~„ combinati on is used mainl y to enter the lo wer -c ase letters of the English alphabet ( A thr ough Z ) . T he numbe rs , mathematical sym bo l s ( - , +, × ) , dec imal p o int ( . ) , and the spac e ( SP C ) are the s ame as the main func tions of these k ey s. The ENTER and CONT k e y s also w ork as their m[...]
-
Page 810
Pa g e B - 1 2 Alpha-right-shift c har ac ters T he follo wing sk etch sho ws the c harac ter s assoc iated w ith the diffe r ent calc ulat or k e y s w hen the ALPH A ~ is combined w ith the ri ght -shift k e y … . Alpha ~… functions of the calculator’s ke y board Notice that the ~… combinati on is used mainly to enter a n umber of spec ia[...]
-
Page 811
Pa g e B - 1 3 ~… combination inc lude Gr eek let ter s ( α, β, Δ, δ, ε, ρ, μ, λ, σ, θ, τ , ω , and Π ) , other c har acte rs gener ated b y the ~… combinati on ar e |, ‘ , ^, =, <, >, /, “ , , __, ~, !, ?, <<>>, and @.[...]
-
Page 812
Pa g e C - 1 Appendi x C CAS settings CA S stands f or C omputer A lge br aic S y stem . T his is the mathematical cor e of the calc ulator w her e the sy mbolic mathematical oper atio ns and functi ons ar e pr ogr ammed. T he CA S offe rs a number of settings can be adj ust ed according to the type of oper ation of inter est . T o see the optional[...]
-
Page 813
Pa g e C - 2 Θ T o r eco ver the or iginal menu in the CAL CUL A T OR MODE S input bo x , pr ess the L k e y . Of inter est at this point is the c hanging of the CA S settings . T his is accomplished by pr essing the @ @ CAS@@ s oft menu k e y . The def ault v alues of the CA S setting ar e sho w n belo w: Θ T o na vi gate thr ough the man y opti[...]
-
Page 814
Pa g e C - 3 A v ari able called VX ex ists in the calc ulator ’s {HOME CA SDI R} dir ect or y that tak es, b y def ault , the v alue of ‘X’ . T his is the name of the pr efer r ed independent v ar iable f or algebr aic and calc ulus a pplicati ons. F or that re ason , most e xamples in this C hapter u se X as the unkno wn v ar iable . If y o[...]
-
Page 815
Pa g e C - 4 T he same e x ample , corr es ponding to the RPN oper ating mode, is sho wn ne xt: Appr o x imate v s. Ex ac t CA S mode When the _ A ppr ox is s elected , sy mbolic oper ati ons (e.g ., def inite integrals , squar e roots , etc .) , w ill be calc ulated numer i cally . When the _A ppr o x is unselec ted (Ex act mode is acti v e) , s y[...]
-
Page 816
Pa g e C - 5 T he k ey str ok es nece ssary for ent er ing these v alues in Algebr ai c mode ar e the fo llow ing: …¹2` R5` T he same calc ulations can be pr oduced in RPN mode . Stac k lev els 3: and 4: sho w the case of Ex act CAS se tting (i .e ., the _Numeri c CAS opti on is unselec ted) , w hile stac k lev els 1: and 2: show the cas e in wh[...]
-
Page 817
Pa g e C - 6 It is r ecommended that y ou se lect EXA CT mode as def ault CA S mode , and c hange to APP R O X mode if r equest ed b y the calc ulator in the perf ormance of an oper ation . F or add iti onal inf ormati on on r eal and integer numbers , as w ell as other c alcul at or’s obje cts, r efe r to Cha pte r 2 . Comple x vs . R eal CAS mo[...]
-
Page 818
Pa g e C - 7 If y ou pr ess the OK so ft menu ke y (), then the _Comple x optio n is for ced, and the r esult is the f ollo wing: T he k ey str ok es us ed abo ve ar e the follo w ing: R„Ü5„Q2+ 8„Q2` When ask ed to change to C OMP LEX mode , u se: F . If y ou deci de not to accept the change t o COMP LEX mode , y ou get the f ollo wing er r [...]
-
Page 819
Pa g e C - 8 F or ex ample , hav ing selec ted the S tep/step opti on, the f ollo wing s cr eens sho w the step-b y-step di v ision of tw o poly nomials , namel y , (X 3 -5X 2 +3X - 2)/(X - 2) . T his is accomplished b y using f uncti on DIV2 a s sho w n belo w . Pr ess ` to show the f irst s tep: T he scr een infor m us that the calc ulator is ope[...]
-
Page 820
Pa g e C - 9 . Increasing-po w er CAS mode When the _Incr po w CA S option is selec ted , poly nomi als wi ll be listed so that the ter ms w ill hav e incr easing po we rs of the independent v ar iable . If the _Inc r po w CAS opti on is not select ed (defa ult v alue) then pol ynomi als w ill be list ed so that the ter ms wi ll hav e dec r easing [...]
-
Page 821
Pa g e C - 1 0 Rigor ous CAS setting When the _Ri gorous CA S option is se lected , the algebrai c e xpr essi on |X|, i .e., the absolute v alue , is not simplified to X . If the _R igor ous CA S option is not selec ted , the algebrai c e xpr essi on |X| is simplif ied to X . T he CA S can sol v e a lar ger v ar iety of pr oblems if the r igor ous [...]
-
Page 822
Pa g e C - 1 1 Notice that , in this ins tance , soft menu k ey s E and F are the o nly o ne w ith as soc iated commands , namel y: !!CANCL E CANCeL the help f ac ilit y !!@@OK#@ F OK to ac ti vate help fac ilit y f or the selected comman d If y ou pr ess the !! CANCL E k e y , the HELP f aci lit y is skipped, and the calc ulator r eturns t o norma[...]
-
Page 823
Pa g e C - 1 2 Notice that the re ar e six co mmands assoc iated w ith the s oft menu k e y s in this case (y ou can chec k that ther e are onl y si x commands because pr essing the L pr oduces no additi onal menu items). T he so ft menu ke y commands are the f ollo w ing: @EXIT A EX IT the help fac ilit y @ECHO B Cop y the ex ample command to the [...]
-
Page 824
Pa g e C - 1 3 T o nav igate qui ckl y to a partic ular command in the help fac ility list w ithout ha ving to u se the arr o w k e ys all the time , we can us e a shortcu t consisting of typing the f irs t letter in the command’s name . Suppose that w e w ant to find inf ormati on on the co mmand IBP (Integr ation B y P ar ts), once the help f a[...]
-
Page 825
Pa g e C - 1 4 In no e vent unle ss r equir ed b y applicable la w w ill an y copy r ight holde r be liable t o yo u for damage s, inc luding an y general , speci al , inc ident al or cons equential damage s ar ising out of the us e or inability to us e the CA S Softwar e (including but not limit ed to loss o f data or data being r ender ed inacc u[...]
-
Page 826
Pa g e D - 1 Appendi x D Additional c har acter set While y ou can us e an y of the u pper -case and lo w er -case English letter f r om the k e yboar d, ther e are 2 5 5 char acter s usable in the calc ulator . Including spec ial ch arac ter s l ike θ , λ , et c., that that can be used in algebr ai c expr essions . T o access the se char acters [...]
-
Page 827
Pa g e D - 2 func tions assoc iated w ith the soft menu k e y s, f4 , f5, and f6. The se func tions ar e: @MODIF : Opens a graphi cs sc r een whe r e the user can modify highlight ed c harac ter . Use this opti on car ef ull y , since it w ill alter the modif ied c har acter u p to the ne xt r ese t of the calc ulator . (Imagine the e ffec t of c h[...]
-
Page 828
Pa g e D - 3 Gr ee k lett er s α (alpha) ~‚a β (beta) ~‚b δ (delta) ~‚d ε (epsilon) ~‚e θ (theta) ~‚t λ (lambda) ~‚n μ (mu) ~‚m ρ (r ho) ~‚f σ (sigma) ~‚s τ (tau) ~‚u ω (omega) ~‚v Δ (upper -case delta) ~‚c Π (upper -case pi) ~‚p Ot her char ac ters ~( t i l d e ) ~‚1 !( f a c t o r i a l ) ~‚2 ? (questi o[...]
-
Page 829
Pa g e E - 1 Appendi x E T h e Selec tion T ree in the Equation W riter T he expr essi on tr ee is a diagr am sho w ing ho w the E quati on W r iter inte rpr ets an ex p r e ss io n. The fo rm of th e exp re ss io n t re e i s de t erm i ne d by a n u mb er o f r ul es kno wn as the hi er ar ch y of oper ation . T he rules ar e as follo ws: 1. Oper[...]
-
Page 830
Pa g e E - 2 Step A1 Ste p A2 Step A3 Ste p A4 Step A5 Ste p A6 W e notice the appli cation o f the hier ar ch y-of-oper ation r ules in this selecti on. F i r st the y (Step A1) . T hen, y-3 (S tep A2 , par enth eses) . Then , (y-3)x (Step A3, multiplicati on) . T hen (y-3)x+5, (Step A4 , additi on) . T hen , ((y-3)x+5)(x 2 +4) (St ep A5, multipli[...]
-
Page 831
Pa g e E - 3 Step B1 S te p B2 Step B3 St ep B4 = Step A5 St ep B5 = Step A6 W e can also fol lo w the ev aluation o f the expr essi on starting fr om the 4 in the ar gument of the S IN func tion in the denominat or . Pr ess the do wn ar r o w k e y ˜ , continuousl y , until the clear , editing cu rsor is tr igger ed around the y , once mor e . T [...]
-
Page 832
Pa g e E - 4 Step C3 Step C 4 St ep C5 = St ep B5 = Step A6 The expr ession t r ee f or t he expr ession p r esente d abov e is s ho wn next: T he steps in the e v aluation of the thr ee terms ( A1 thr ough A6 , B1 thro ugh B5, and C1 thr ough C5) ar e sho w n ne xt to the c ir c le containing numbers , v ari able s, or oper ators .[...]
-
Page 833
Pa g e F - 1 Appendi x F T he Applications (APP S) menu T he Applicati ons ( APP S) menu is av ailable thr ough the G key ( fi rst key i n second r o w fr om the k e yboar d’s top) . T he G k ey sh o ws the f ollo w ing applicati ons: T he differ ent appli cations ar e desc ribed ne xt . P lot func tions.. Selec ting option 1. P lot f u nc tions [...]
-
Page 834
Pa g e F - 2 I/O func tions .. Selecting opti on 2 . I/O f uncti ons .. in the APP S menu w i ll pr oduce the f ollo w ing menu lis t of input/ou tput func tions T hese appli cations ar e desc r ibed next: Send to C alc ulator Send data to another calc ulator (or to a P C with an infr ared port) Get fr om C alculator R ecei ve data f r om another c[...]
-
Page 835
Pa g e F - 3 T he Const ants Libr ar y is disc us sed in detail in C hapter 3 . Numeric sol ver .. Selec ting option 3 . Constan ts lib .. in the APP S menu pr oduces the nume ri cal solver me nu: This oper ation is equi valent to the k e y str ok e sequence ‚Ï . T he numer ical sol v er menu is pr esent ed in detail in Chapt ers 6 and 7 . Time [...]
-
Page 836
Pa g e F - 4 Equation wr iter .. Selec ting option 6 .E quation w r iter .. in the APP S menu opens the equation wri ter: T his oper ation is eq ui val ent to the k ey str ok e seq uence ‚O . The equati on w rit er is intr oduced in det ail in Chapter 2 . Examples that u se the equatio n w rite r are a v ailable thr oughout this guide . F ile man[...]
-
Page 837
Pa g e F - 5 M atr ix W riter .. Selec ting option 8.Matr i x W r iter .. in the APP S menu launc hes the matr i x wr iter : T his oper ation is eq ui val ent to the k ey str ok e seq uence „² .The Matr i x W r iter is pr esen ted in detail in Chapter 10. T e xt editor .. Selec ting option 9 .T e xt editor .. in the APP S menu launc hes the line[...]
-
Page 838
Pa g e F - 6 T his oper ation is eq ui val ent to the k ey str ok e seq uence „´ . T he MTH menu is intr oduced in Chapt er 3 (r eal numbers). Other func tions f r om the MTH menu ar e pr esented in Chapters 4 (comple x numbers), 8 (lists) , 9 (vec tors) , 10 (matr i x cr eation) , 11 (matr ix oper ation), 16 (f as t F our ier tr ansfor ms) , 17[...]
-
Page 839
Pa g e F - 7 Note that flag –117 should be se t if you ar e going to us e the E quatio n L ibrary . Note too that the E quation L ibr ary w ill only appear on the AP P S menu if the two E quation L ibrary files ar e stor ed on the calculator . T he E quation L ibrary is e xplained in de tail in chapt er 2 7 .[...]
-
Page 840
P age G-1 Appendi x G Useful shortc uts Pr esented her ein ar e a number o f k e yboar d shor tc uts commonl y used in the calc ulat or : Θ Adjust d isplay c ontrast: $ (hold) + , or $ (hold) - Θ T oggle between RPN and AL G modes: H @@@OK@@ or H` . Θ Set/c lear s ys tem flag 9 5 (AL G vs. RPN oper ating mode) H @) FLAGS —„—„—„ —[...]
-
Page 841
P age G-2 Θ Set/c lear sy stem flag 117 (CHOO SE bo xe s vs . S OFT menus): H @) FLAGS —„ —˜ @@CHK@ Θ In AL G mode , SF(-117) selects S O FT menus CF(-117) se lects CHOO SE BO XE S . Θ In RPN mode , 117 ` SF se lects S OFT me nus 117 ` CF selec ts SOF T menus Θ Change angular mea sur e: o T o degr ees: ~~deg` o T o r adian: ~~ra d` Θ [...]
-
Page 842
P age G-3 Θ S ystem-lev el o per ation (H old $ , r elease it after enter ing second or thir d k e y) : o $ (ho ld) AF : “C old” r estart - all memory er ased o $ (ho ld) B : Cancels k ey str ok e o $ (ho ld) C : “W arm ” re start - memor y pr eserved o $ (ho ld) D : Starts inter acti ve se lf- test o $ (ho ld) E : Starts continuou s self-[...]
-
Page 843
P age H-1 Appendi x H T he CAS help facilit y T he CAS help f ac ilit y is a vaila ble thro ugh the k ey str ok e sequence I L @HELP ` . The f ollo w ing sc r een shots sh o w the fir st menu page in the listing of the CAS help fac i lity . T he commands ar e listed in alphabeti cal or der . Using the v er ti cal arr o w k e ys —˜ one can na v i[...]
-
Page 844
P age H-2 Θ Y ou c an type t w o or mor e let ters of the c ommand of inter est , by locking the alphabeti c k e y boar d. T his w ill tak e yo u to the command of int er est , or to its nei ghborhood. A fterwar d s, y ou need to unloc k the alpha k e yboar d, and u se the v ertical arr ow k ey s —˜ to locate the command , if needed. Pr ess @@O[...]
-
Page 845
Pa g e I - 1 Appendi x I Command catalog list T his is a l ist of all commands in the command catalog ( ‚N ) . Those commands that belong t o the CA S (C omput er Algebr aic S y stem) ar e lis ted also in Appendi x H. CAS help f ac ilit y en tri es ar e a vailabl e for a gi v en command if the so ft menu k ey @HELP sho ws up w hen yo u highli ght[...]
-
Page 846
Pa g e J - 1 Appendi x J T he MA THS me nu T he MA THS menu , accessible thr ough the command MA THS (a v ailable in the catalog N ), contains the fo llo w ing sub-menu s: T he CMPLX sub-menu T he CM P L X su b-menu contains fu nctions pertinent to oper ations w ith complex numbers: T hese f uncti ons are des cr ibed in Chapter 4. T he CONST A NT S[...]
-
Page 847
Pa g e J - 2 T he HYPERBOLIC sub-menu T he HYPERB OLIC sub-menu co ntains the h y perboli c func tio ns and their in v ers es . T hese f unctions ar e descr ibed in Chapter 3 . T he I NTE GER sub-menu T he INTEGER su b-menu pr o v ides f uncti ons for manipulating integer number s and some pol ynomi als. T hese f unctions ar e pre sented in Cha pte[...]
-
Page 848
Pa g e J - 3 T he POL YNOM IAL sub-menu T he POL YNOMIAL sub-men u includes f uncti ons for ge ner ating and manipulating pol yno mials . The se func tions ar e pr es ented in Chapte r 5: T he TES T S sub-menu T he TE S TS su b-menu inc ludes r elati onal oper ator s (e .g ., ==, <, etc .) , logical oper ators (e .g., AND , OR, et c.), the IFTE [...]
-
Page 849
Pa g e K - 1 Appendi x K Th e MA I N m en u T he MAIN menu is av ailable in the command catalog . This menu inc lude the fo llo w ing sub-menu s: T he CASCF G command T his is the f irs t entr y in the MAIN menu . T his command conf igur es the CA S . F or CA S conf igur ation inf orm atio n see A ppendi x C. T he AL GB sub-menu T he AL GB sub-menu[...]
-
Page 850
Pa g e K - 2 T he DIFF sub-m enu T he DI FF sub-me nu contains the f ollo w ing f unctio ns: T hese f unctions ar e also av ailable thr ough the CAL C/DI FF sub-menu (s tart wi th „Ö ) . T hese f uncti ons ar e desc r ibed in Chapte rs 13, 14, and 15, e x cept fo r func tion TR UNC, w hic h is desc r ibed next us ing its CAS help f ac ilit y en [...]
-
Page 851
Pa g e K - 3 T hese f uncti ons are als o av ailable in the TRIG menu ( ‚Ñ ) . Description of these f uncti ons is incl uded in C hapter 5 . T he SOL VER sub-m enu T he S OL VER menu include s the fo llo w ing func tions: T hese f uncti ons are a v ailable in the CAL C/S OL VE menu (st art with „Ö ). T he functi ons ar e des cr ibed in Cha pt[...]
-
Page 852
Pa g e K - 4 T he sub-menus INTE GER , MODUL AR , and P OL YNOMIAL ar e pre sented in detail in Appe ndi x J. The E XP &LN sub-menu T he EXP&LN menu contains the follo w ing functions: T his menu is also acces sible thr ough the k e yboar d by using „Ð . T he functi ons in this menu are pr esented in Chapter 5 . T he MA TR sub-m enu T he[...]
-
Page 853
Pa g e K - 5 T hese f uncti ons ar e av ailable thr ough the CONVER T/REWR ITE me nu (start w ith „Ú ) . T he func tions ar e pr esent ed in Chapter 5, ex cept for f uncti ons XNUM and XQ , whi ch ar e desc ribed ne xt using the corr es ponding entr ies in the CA S help fac i lity ( IL @HELP ): XNUM X Q[...]
-
Page 854
Pa g e L - 1 Appendi x L L ine editor commands When y ou tr igger the line editor b y u sing „˜ in the RPN stac k or in AL G mode , the follo wing s oft menu f unctions ar e pr ov ided (pr ess L to see the r emaining fu nctions): T he functi ons ar e br ief ly de sc ribed as follo ws: SKIP: Skip s char acters to beginning o f wor d. SKIP [...]
-
Page 855
Pa g e L - 2 T he items sho w in this scr e en are s elf-e xplanator y . F or e x ample , X and Y positi ons mean the po sition on a line (X) and the line number (Y ) . Stk Siz e means the number of ob jects in the AL G mode history or in the RPN stac k. Mem(KB) means the amount o f fr ee memory . Clip Si z e is the number of c har acte rs in the c[...]
-
Page 856
Pa g e L - 3 T he SEARCH sub-menu T he functi ons of the SE ARCH sub-me nu ar e: Fi n d : Use this functi on to find a str ing in the command line . The input f orm pr o v ided w ith this command is sho wn next: Rep l ac e : Use this co mmand to f ind and r eplace a s tr ing. T he input f or m pr o v ided for this co mmand is: F ind next .. : F ind[...]
-
Page 857
Pa g e L - 4 T he GO T O sub-menu T he functi ons in the GO T O sub-men u are t he follo w ing: Goto L ine: to mo ve to a spec ifi ed line. T he input fo rm pr o v ided w ith this command is: Goto P ositi on : mov e to a spec ifi ed position in the command line . The input fo rm pr o v ided f or this command is: Lab els : mo v e to a spec if ied la[...]
-
Page 858
Pa g e L - 5[...]
-
Page 859
Pa g e M - 1 Appendi x M T abl e o f Built-In Equations T he E quation Libr ar y consists o f 15 sub jects cor r esponding t o the secti ons in the table belo w) and mor e than 100 titles. T he n umbers in par e ntheses belo w indicat e the number of equati ons in the set and the number of v ari ables in the set . T here ar e 315 equati ons in tota[...]
-
Page 860
Pa g e M - 2 3: Fluids ( 2 9 , 29) 1: Pr essur e a t D epth (1, 4) 3: F lo w w ith Lo ss es (10, 17) 2 : Bernoulli E quation (10, 15 ) 4: F lo w in F ull P ipes (8 , 19) 4 : F o r ces an d Energy (3 1 , 3 6) 1: L inear Mechanic s (8, 11) 5: ID Elas tic Collisi ons (2 , 5) 2 : Angular Mec hanics (12 , 15 ) 6: Dr ag F or ce (1, 5 ) 3: Centr ipetal F [...]
-
Page 861
Pa g e M - 3 9: Op ti cs ( 1 1 , 1 4) 1: La w of Ref r acti on (1, 4) 4: Spher i cal Ref lecti on (3, 5) 2 : Criti cal Angle (1, 3) 5: Spher i cal Ref r acti on (1, 5) 3: Br ew ster’s L a w (2 , 4) 6: Thin Le ns (3, 7) 1 0: Osc illations ( 1 7 , 1 7) 1: Mass–S pr ing S ys tem (1, 4) 4: T ors ional P endulum (3, 7) 2 : Sim ple P endulum (3, 4) 5[...]
-
Page 862
Pa g e N - 1 Appendi x N Inde x A ABCUV 5-10 ABS 3-4, 4-6, 11-8 ACK 25-4 ACKALL 25-4 ACOS 3-6 ADD 8-9, 12-20 Additional character set D-1 ADDTMOD 5-11 Alarm functions 25-4 Alarms 25-2 ALG menu 5-3 Algebraic objects 5-1 ALOG 3 -5 ALPHA characters B-9 ALPHA keyboard lock-unlock G-2 Alpha-left-shift characters B-10 Alpha-right-shift characters B-12 AL[...]
-
Page 863
Pa g e N - 2 Bar plots 12-29 BASE menu 19-1 Base units 3-22 Beep 1-25 BEG 6-31 BEGIN 2-27 Bessel’s equation 16-52 Bessel’s functions 16-53 Best data fitting 18-13, 18-62 Best polynomial fitting 18-62 Beta distribution 17-7 BIG 12-18 BIN 3-2 Binary numbers 19-1 Binary system 19-3 Binomial distribution 17-4 BIT menu 19-6 BLANK 22-32 BOL L-4 BOX 1[...]
-
Page 864
Pa g e N - 3 Clock display 1-30 CMD 2-62 CMDS 2-25 CMPLX menus 4-5 CNCT 22-13 CNTR 12-48 Coefficient of variation 18-5 COL+ 10-19 COL 10-19 "Cold" calculator restart G-3 COLLECT 5-4 Column no rm 11-7 Column vectors 9-18 COL- 10-2 0 COMB 1 7-2 Combinations 17-1 Command catalog list I-1 Complex CAS mode C-6 Complex Fourier series 16-26 [...]
-
Page 865
Pa g e N - 4 Dates calculations 25-4 DBUG 21-35 DDAYS 25-3 Debugging programs 21-22 DEC 19-2 Decimal comma 1-22 Decimal numbers 19-4 decimal point 1-22 Decomposing a vector 9-11 Decomposing lists 8-2 Deep-sleep shutdown G-3 DEFINE 3-36 Definite integrals 13-15 DEFN 12-18 DEG 3-1 Degrees 1-23 DEL 12-46 DEL L L-1 DEL L-1 DELALARM 25-4 Deleting su[...]
-
Page 866
Pa g e N - 5 DISTRIB 5-28 DIV 15-4 DIV2 5-10 DIV2MOD 5-11, 5-14 Divergence 15-4 DIVIS 5-9 DIVMOD 5-11, 5-14 DO construct 21-61 DOERR 21-64 DOLIST 8-11 DOMAIN 13-9 DOSUBS 8-11 DOT 9-11 Dot product 9-11 DOT+ DOT- 12-44 Double integrals 14-8 DRAW 12-20, 22-4 DRAW3DMATRIX 12-52 Drawing functions programs 22-22 DRAX 22-4 DROITE 4-9 DROP 9-20 DTAG 23-1 E[...]
-
Page 867
Pa g e N - 6 ERRN 21-65 Error trapping in programming 21-64 Errors in hypothesis testi ng 18-36 Errors in programming 21-64 EULER 5-10 Euler constant 16-54 Euler equation 16-51 Euler formula 4-1 EVAL 2-5 Exact CAS mode C-4 EXEC L-2 EXP 3-6 EXP2POW 5-28 EXPAND 5-4 EXPANDMOD 5-11 EXPLN 5-8, 5-28 EXPM 3-9 Exponential distribution 17-6 Extrema 13-12 Ex[...]
-
Page 868
Pa g e N - 7 Function, table of values 12-17, 12-25 Functions, multi-variate 14-1 Fundamental theorem of algebra 6-7 G GAMMA 3-15 Gamma distribution 17-6 GAUSS 11-54 Gaussian elimination 11- 14, 11-29 Gauss-Jordan elimination 11-33, 11-38, 11-40 , 11-43 GCD 5-11, 5-18 GCDMOD 5-11 Geometric mean 8-16, 18-3 GET 10-6 GETI 8-11 Global vari able 21-2 Gl[...]
-
Page 869
Pa g e N - 8 HELP 2-26 HERMITE 5-11, 5-18 HESS 15-2 Hessian matrix 15-2 HEX 3-2, 19-2 Hexadecimal numbers 19-7 Higher-order derivatives 13-13 Higher-order partial derivatives 14-3 HILBERT 10-14 Histogram s 12-29 HMS- 25-3 HMS+ 25-3 HMS 25-3 HORNER 5-11, 5-19 H-VIEW 12-19 Hyperbolic functions graphs 12-16 Hypothesis testing 18-35 Hypothesis test[...]
-
Page 870
Pa g e N - 9 Integrals step-by-step 13-16 Integration by partial fractions 13-20 Integration by parts 13-19 Integration change of variable 13-19 Integration substitution 13-18 Integration techniques 13-18 Interactive drawing 12-43 Interactive input programming 21-19 Interactive plots with PLOT menu 22-15 Interactive self-test G-3 INTVX 13-14 INV 4-[...]
-
Page 871
Pa g e N - 1 0 Left-shift functions B-5 LEGENDRE 5-11, 5-20 Legendre’s equation 16-51 Length units 3-19 LGCD 5-10 lim 13-2 Limits 13-1 LIN 5-5 LINE 12-44 Line editor commands L-1 Line editor properties 1-28 Linear Algebra 11-1 Linear Applications 11-54 Linear differ ential equations 16-4 Linear regression additional notes 18- 50 Linear regression[...]
-
Page 872
Pa g e N - 1 1 Mass units 3-20 Math menu.. F-5 MATHS menu G-3, J-1 MATHS/CMPLX m enu J-1 MATHS/CONSTANTS menu J-1 MATHS/HYPERBOLIC menu J-2 MATHS/INTEGER menu J-2 MATHS/MODULAR menu J-2 MATHS/POLYNOMIAL menu J-3 MATHS/TESTS menu J-3 matrices 10-1 Matrix "division" 11-27 Matrix augmented 11-32 Matrix factorization 11-49 Matrix Jordan-cycle[...]
-
Page 873
Pa g e N - 1 2 Multiple integrals 14-8 Multiple linear fitting 18-57 Multiple-Equation Solver 27-6 Multi-variate calculus 14-1 MULTMOD 5-11 N NDIST 17-10 NEG 4-6 Nested IF...THEN..ELSE..END 21-49 NEW 2-34 NEXTPRIME 5-10 Non-CAS commands C-13 Non-linear differential equations 16-4 Non-verbose CAS mode C-7 NORM menu 11-7 Normal distribution 17-10 Nor[...]
-
Page 874
Pa g e N - 1 3 Partial fractions integration 13-20 Partial pivoting 11-34 PASTE 2-27 PCAR 11-45 PCOEF 5-11, 5-21 PDIM 22-20 Percentiles 18-14 PERIOD 2-37, 16-34 PERM 17-2 Permutation matrix 11-50, 11-51 Permutations 17-1 PEVAL 5-22 PGDIR 2-44 Physical constants 3-29 PICT 12-8 Pivoting 11-34 PIX? 22-22 Pixel coordinates 22-25 Pixel references 19- 7 [...]
-
Page 875
Pa g e N - 1 4 17-6 Probability distributions discrete 17-4 Probability distributions for statistical inference 17-9 Probability mass function 17-4 Program branching 21-46 Program loops 21-53 Program-generated plots 22-17 Programming 21-1 Programming choose box 21-31 Programming debugging 21-22 Programming drawing commands 22-19 Programming drawing[...]
-
Page 876
Pa g e N - 1 5 RCLMENU 20-1 RCWS 19-4 RDM 10-9 RDZ 17- 3 RE 4-6 Real CAS mode C-6 Real numbers C-6 Real numbers vs. Integer numbers C-5 Real objects 2-1 Real part 4-1 RECT 4-3 REF. RREF, rref 11-43 Relational operators 21-43 REMAINDER 5-11, 5-21 RENAM 2-34 REPL 10-12 Replace L-3 Replace All L-3 Replace Selection L-3 Replace/Find Next L-3 RES 22-6 R[...]
-
Page 877
Pa g e N - 1 6 SEARCH menu L-2 Selection tree in Equation Writer E-1 SEND 2-34 SEQ 8-11 Sequential programming 21-15 Series Fourier 16-26 Series Maclaurin 13-23 Series Taylor 13-23 Setting time and date 25-2 SHADE in plots 12-6 Shortcuts G-1 SI 3-30 SIGMA 13-14 SIGMAVX 13-14 SIGN 3-14, 4-6 SIGNTAB 12-50, 13-10 SIMP2 5-10, 5-23 SIMPLIFY 5-2 9 Simpli[...]
-
Page 878
Pa g e N - 1 7 Stiff differential equations 16-67 Stiff ODE 16- 66 Stiff ODEs numerical solution 16-67 STOALA RM 25-4 STOKEYS 20-6 STREAM 8-11 String 23-1 String concatenation 23-2 Student t distribution 17-11 STURM 5-11 STURMAB 5-11 STWS 19-4 Style menu L-4 SUB 10-11 Subdirectories creating 2-39 Subdirectories deleting 2-43 SUBST 5-5 SUBTMOD 5-11,[...]
-
Page 879
Pa g e N - 1 8 TINC 3-34 TITLE 7-1 4 TLINE 12-45, 22-20 TMENU 20-1 TOOL menu CASCMD 1-7 CLEAR 1-7 EDIT 1-7 HELP 1-7 PURGE 1-7 RCL 1-7 VIEW 1-7 TOOL menu 1-7 Total differential 14-5 TPAR 12-17 TRACE 11-14 TRAN 11-15 Transforms Laplace 16-10 Transpos e 10-1 Triangle solution 7-9 Triangular wave Fourier series 16-34 TRIG menu 5-8 Trigonometric functio[...]
-
Page 880
Pa g e N - 1 9 Vector elements 9-7 Vector fields 15-1 Vector fields curl 15-5 Vector fields divergence 15-4 VECTOR menu 9-10 Vector potential 15-6 Vectors 9-1 Verbose CAS mode C-7 Verbose vs. non-verbose CAS mode C-7 VIEW in plots 12-6 Viscosity 3-21 Volume units 3-19 VPAR 12-42, 22-10 VPOTENTIAL 15-6 VTYPE 24-2 V-VIEW 12-19 VX 2-37, 5-19 VZIN 12-4[...]
-
Page 881
Pa g e N - 2 0 ! 17-2 % 3-12 %CH 3-12 %T 3-12 ARRY 9-6, 9-20 BEG L-1 COL 10-18 DATE 25-3 DIAG 10-12 END L-1 GROB 22-31 HMS 25-3 LCD 22-32 LIST 9-20 ROW 10-22 STK 3-30 STR 23-1 TAG 21-33, 23-1 TIME 25-3 UNIT 3-28 V2 9-12 V3 9-12 Σ DAT 18-7 Δ DLIST 8-9 Σ PAR 22-13 Π PLIST 8-9[...]
-
Page 882
Pa g e LW- 1 L imited W arr ant y HP 5 0g graphing calc ulator ; W arr anty peri od: 12 months 1. HP w arr ants to y ou , the end-us er cu stomer , that HP hard w ar e, access or ies and suppli es w ill be fr ee fr om d e fec ts in mater ials and w orkmanship afte r the date of pur chas e , for the per iod s pecif ied abo v e . If HP r ecei ves not[...]
-
Page 883
Pa g e LW- 2 W ARR ANTY S T A TEMENT ARE Y OUR SOLE AND EX CL US IVE REMEDIE S . EX CEPT A S INDICA TED ABO VE , IN NO EVENT WILL HP OR I T S S UP PLIER S BE LIABLE FOR L OS S OF D A T A OR F OR DIRE CT , SPE CIAL, INCIDENT AL , CON SE QUENT IAL (INCL UDING L O S T P ROFI T OR D A T A), OR O THER D AMA GE , WHETHER B ASED IN C ONTR A CT , T ORT , O[...]
-
Page 884
Pa g e LW- 3 Swi t ze r l a n d +41-1- 4 3 9 5 3 5 8 (German) + 4 1 -2 2- 8 27878 0 ( F r e n c h ) +3 9-0 2 - 7 5419 7 8 2 (Italian) T urk e y +4 20 -5- 414 2 2 5 2 3 UK +44 - 20 7 - 4 5 80161 Cz ech R epubli c +4 20 -5- 414 2 2 5 2 3 South A f ri ca +2 7 -11- 2 3 7 6 200 L u xembour g + 3 2 - 2 - 712 6 219 Other E ur opean coun tr ies +4 20 -5- 4[...]
-
Page 885
Pa g e LW- 4 Regulat or y inf ormation F edera l C o mmunications Commission Notice T his equipment has bee n tes ted and fo und to compl y w ith the limits for a C lass B digital de vi ce , pursuant t o P art 15 of the FCC R ules . T hese limits ar e designed to pr o v ide r easonable pr otection agains t harmf ul interfer ence in a r esidenti al [...]
-
Page 886
Pa g e LW- 5 This de v ice complie s with P ar t 15 of the FCC R ules. Oper ation is sub ject to the follo wing tw o c ondi tions: (1) this dev ice may not caus e harmful interf er ence , and (2) this de vi ce must accept an y interfer ence rece iv ed , including interf er ence that may ca use undesir ed oper ation . F or questi ons r egarding y ou[...]
-
Page 887
Pa g e LW- 6 This compli ance is indicated b y the follo w ing confor mit y marking placed on the pr oduc t: Japanese Notice 䈖 䈱ⵝ⟎䈲䇮 ᖱႎಣℂⵝ⟎╬㔚ᵄ㓚ኂ⥄ਥ ⷙද⼏ળ (V CCI) 䈱ၮḰ 䈮 ၮ䈨 䈒 ╙ੑᖱႎᛛⴚⵝ⟎ 䈪 䈜 䇯 䈖 䈱ⵝ⟎䈲䇮 ኅᐸⅣႺ 䈪 ↪䈜 䉎 䈖 䈫 䉕 ⋡ ⊛ 䈫 䈚 [...]