Intel 200 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Intel 200, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Intel 200 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Intel 200. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Intel 200 should contain:
- informations concerning technical data of Intel 200
- name of the manufacturer and a year of construction of the Intel 200 item
- rules of operation, control and maintenance of the Intel 200 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Intel 200 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Intel 200, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Intel service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Intel 200.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Intel 200 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    318548 -001 Intel ® Celeron ® Processor 200 Δ Sequence Thermal and Mechanical Design Guidelines — Supporting the Intel ® Celeron ® processor 220 Δ October 2007[...]

  • Page 2

    2 Thermal and Mechanical Design Guidelines INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNE CTION WITH INTEL® PRODUCTS . NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIAB[...]

  • Page 3

    Thermal and Mechanical Design Guidelines 3 Contents 1 Introduc tion ..................................................................................................... 7 1.1 Document Goal s and Sc ope ..................................................................... 7 1.1.1 Importance of Th ermal Manage ment ..................................[...]

  • Page 4

    4 Thermal and Mechanical Design Guidelines Appendix A Heatsink Clip Lo ad Metr ology ............................................................................ 43 A.1 Overview ............................................................................................ 43 A.2 Test Pre paration ......................................................[...]

  • Page 5

    Thermal and Mechanical Design Guidelines 5 Tables Table 1. Micro-FCBGA Packag e M echanical Specifications ..................................... 12 Table 2. Thermal Specifi cations for Intel ® Celeron ® Processor 200 Sequ ence .......... 19 Table 3. System T hermal Solution Design Req uirement ....................................... 22 Table 4. T[...]

  • Page 6

    6 Thermal and Mechanical Design Guidelines Revision History Revision Number Description Revision Date -001 • Initial Re lease October 2007 §[...]

  • Page 7

    Introduction Thermal and Mechanical Design Guidelines 7 1 Introduction 1.1 Document Goals and Scope 1.1.1 Importance of Thermal Management The objective of thermal management is to ensure that the temperatures of all components in a system are maintained withi n their functional temperature range. Within this temperature range, a component i s expe[...]

  • Page 8

    Introduction 8 Thermal and Mechanical Design Guidelines 1.1.3 Document Scope This design guide supports the foll owing processors: • Intel ® Celeron ® Processor 200 sequence applies to the Intel ® Celeron ® processor 220. In this document the Intel Celeron Processo r 200 sequence w ill be refe rred to as “the processor”. In this document [...]

  • Page 9

    Introduction Thermal and Mechanical Design Guidelines 9 1.2 Reference Documents Material and concepts availabl e in the following documents may be benefi cial when reading this docu ment. Document Document No./Location Intel ® Celeron ® Processor 200 Sequence Datasheet http://developer.intel .com/design/processo r/datashts/318546.ht m Power Suppl[...]

  • Page 10

    Introduction 10 Thermal and Mechanical Design Guidelines Term Description (T S – T A ) / Total Package Power. Note: Heat source must be specified for Ψ measurements. TIM Thermal Interface Material: The thermally conductive compound between the heatsink and the processor die surface. This material fills the air gaps and v oids, and enhances the t[...]

  • Page 11

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 11 2 Processor Thermal/Mechanical Information 2.1 Mechanical Requirements 2.1.1 Processor Package The Intel Celeron processor 200 sequence is avail able in a 479-pi n Micro-FCBGA package, as shown in Figure 1 to Figure 3. The proc essor us es a Flip- Chip Ball Grid Ar[...]

  • Page 12

    Processor Thermal/Mechanical Information 12 Thermal and Mechanical Design Guidelines Table 1. Micro-FCBGA Package Mechanical Specifications Symbol Parameter Min Max Unit Figure B1 Package substrate wi dth 34.95 35.05 mm Figure 2 B2 Package substrate length 34.95 35.05 mm Figure 2 C1 Die width 11.1 mm Figure 2 C2 Die length 8.2 mm Figure 2 F2 Die he[...]

  • Page 13

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 13 Figure 1. Micro-FCBGA Processor Package Drawing – Isometric View[...]

  • Page 14

    Processor Thermal/Mechanical Information 14 Thermal and Mechanical Design Guidelines Figure 2. Micro-FCBGA Processor Package Drawing (Sheet 1 of 2) NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 1 for specific details.[...]

  • Page 15

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 15 Figure 3. Micro-FCBGA Processor Package Drawing (Sheet 2 of 2) NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 1 for specific details.[...]

  • Page 16

    Processor Thermal/Mechanical Information 16 Thermal and Mechanical Design Guidelines 2.1.2 Heatsink Attach 2.1.2.1 General Guidelines The micro-FCBGA package may have capacitors placed i n the area surrounding the processor die. The die-side capaci tors, which are only sli ghtly shorter than the die height, are electrically conductive and contact w[...]

  • Page 17

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 17 depen ding on clip stiffness, the initial pr eload at b eginning o f life of the p roduct may be significantly hi gher than the minimum preload that must be met throughout the li fe of the product. Refer to Append ix A for clip load metrolog y guideline s. 2.1.2.3 [...]

  • Page 18

    Processor Thermal/Mechanical Information 18 Thermal and Mechanical Design Guidelines Figure 4. Vertical Lock-Down Alignment Feature Figure 5. Various Types of Solder Crack 2.2 Thermal Requirements The pro cessor r equires a thermal so lution to maint ain temper atures with in operat ing limits. Refer to the datasheet for the proce ssor ther mal spe[...]

  • Page 19

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 19 2.2.1 Processor Junction Temperature Table 2. Thermal Specifications for Intel ® Celeron ® Processor 200 Sequence Symbol Processor Number Core Frequency and Voltage Cache Thermal Design Power (W) Notes TDP 220 1.20 GHz 512 KB 19 1, 4, 5 Symbol Parameter Min Max N[...]

  • Page 20

    Processor Thermal/Mechanical Information 20 Thermal and Mechanical Design Guidelines air, T A , and the local air veloci ty over the surface. The higher the air veloci ty over the surface, and the cooler the air, the more effici ent is the resulting cool ing. The nature of the airflow can also enhance heat transfer via convecti on. Turbulent flow c[...]

  • Page 21

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 21 2.3.2 Heatsink Mass With the need to push air cooling to better performance, heatsi nk solutions tend to grow larg er (incr ease in fin surface) resultin g in increa sed mas s. The ins ertion of highly thermally conductive materials li ke copper to increase heatsin[...]

  • Page 22

    Processor Thermal/Mechanical Information 22 Thermal and Mechanical Design Guidelines 2.4 System Thermal Solution Considerations 2.4.1 Chassis Thermal Design Capabilities The reference thermal solution for the Intel Cel eron processor 200 sequence on the Intel Desktop Board D201GLY2 is a passive heatsi nk design, which requires chassi s to deliver s[...]

  • Page 23

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 23 By analyzing airflo w condition in an μ ATX chassis, a case study in Figure 6 shows that a chassis layout is criti cal to components cooling in the system. The al ignment of system fan (80×80mm 2 ) with power supply fan results in pass-through airfl ow which bypa[...]

  • Page 24

    Processor Thermal/Mechanical Information 24 Thermal and Mechanical Design Guidelines Figure 7. Case Study #2: Relocate System Fan to CAG Venting for A irflow Improvement Figure 8. Case Study#3: An μ ATX Chassis Equipped with Two Exhaust Fans[...]

  • Page 25

    Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 25 Figure 9. Case Study #4: A “Top Mount Fa n” PSU is located next to Processor in μ ATX Chassis for System Therma l Performance Improvement 2.4.3 Summary In summary, heatsink design considerations for the Intel Celeron processor 200 sequence on the Intel Desktop[...]

  • Page 26

    Processor Thermal/Mechanical Information 26 Thermal and Mechanical Design Guidelines[...]

  • Page 27

    Thermal Metrology Thermal and Mechanical Design Guidelines 27 3 Thermal Metrology This se ction disc usses g uidelines for test ing ther mal solutions , including measuring processor temperatures. In all cases, the thermal engi neer must measure power dissipation and temperature to vali date a thermal solution. To define the performance of a therma[...]

  • Page 28

    Thermal Metrology 28 Thermal and Mechanical Design Guidelines For reference thermal solution of Intel Cel eron processor 200 sequence on Intel Desktop Board D201GLY2, the junction-to-local ambient thermal characterization parameter of the processor, Ψ JA , is comprised of Ψ JS , the thermal interface material thermal characterization parameter, ?[...]

  • Page 29

    Thermal Metrology Thermal and Mechanical Design Guidelines 29 Figure 10 illustrate s the combin ation of the different th ermal chara cterization parameters. Figure 10. Processor Thermal Charac terization Parameter Relationships 3.1.1 Example The cooling performance, Ψ JA, is then defi ned using the principle of thermal characterization parameter [...]

  • Page 30

    Thermal Metrology 30 Thermal and Mechanical Design Guidelines To determine the required heatsink performance, a heatsink sol ution provider would need to determine Ψ JS performance for the selected TIM and mechanical load configuration. If the heatsink soluti on were designed to work with a TIM material performing at Ψ JS ≤ 0.50 °C/W, solving [...]

  • Page 31

    Thermal Metrology Thermal and Mechanical Design Guidelines 31 measureme nts will reveal a high ly non-uniform temp erature dist ribution across the inlet fan s ection. For passive heatsinks , thermocouples should be placed approximatel y 3 mm away from the heatsink as shown in Figure 12. Note: Testing an active heatsink with a variabl e speed fan c[...]

  • Page 32

    Thermal Metrology 32 Thermal and Mechanical Design Guidelines Figure 12. Locations for Measuring Loca l Ambient Temperature, Passive Heatsink 3M M AW AY FR O M H E AT S I N K SI D E S TOP VIEW POTISTION THERMOCOUPLES (X4) AT L O C AT I O N S AS I N D I C AT E D TO MEASURE T A . TC1 TC2 TC3 TC4 HALF OF HEATSINK FIN HEIGHT SIDE VIEW 3M M AW AY FR O M[...]

  • Page 33

    Thermal Metrology Thermal and Mechanical Design Guidelines 33 3.3.1 Sample Preparation In order to accurately measure the processor power consumption, it is requi red to attach sense resistor and replace one of the motherboard resistors. Schematic diagram in Figure 13 illustrat es the p recisio n resist or (R SENSE ) attached in series with process[...]

  • Page 34

    Thermal Metrology 34 Thermal and Mechanical Design Guidelines Figure 13. Precision Resistor Connected in -series with Processor Circuitry for Power Measurement Figure 14. Installation of Isotek Resistor on Intel ® Desktop Board D201GLY2 to Setup Connection for Power Measurement Isote k Resistor Measuring V i Measuring V CC 1 2 1 2 Isote k Resistor[...]

  • Page 35

    Thermal Metrology Thermal and Mechanical Design Guidelines 35 Figure 15. Probing Resistance of the Soldered Walsin Resistor (R =19.6 K Ω ) on Intel ® Desktop Board D201GLY2 to Ensure Proper Attachment Figure 16. Precision Resistor Soldered on on Intel ® Desktop Board D201GLY2, and Connected to netDAQ for Voltage Measurement §[...]

  • Page 36

    Thermal Metrology 36 Thermal and Mechanical Design Guidelines[...]

  • Page 37

    System Thermal/ Mechanical Design Informat ion Thermal and Mechanical Design Guidelines 37 4 System Thermal/Mechanical Design Information 4.1 Overview of the Reference Design This chap ter will docu ment the re quiremen ts for des igning a pas sive heatsin k that meets the maximum usage power consumption that mentioned in Secti on 2.4. The Intel ®[...]

  • Page 38

    System Thermal/Mechanic al Design Information 38 Thermal and Mechanical Design Guidelines 4.2 Environmental Reliability Testing 4.2.1 Structural Reliability Testing Structur al reliability t ests con sist of unp ackaged , board- level vibrat ion and sho ck tests of a given th ermal solution in the asse mbled sta te. The th ermal solution should mee[...]

  • Page 39

    System Thermal/ Mechanical Design Informat ion Thermal and Mechanical Design Guidelines 39 Figure 18. Shock Acceleration Curve 0 10 20 30 40 50 60 0 2 4 6 8 10 12 Ti me ( m illi s e c o n d s ) A c c e l e r a t i o n (g ) 4.2.1.2.1 Recommended Test Sequence Each test sequence should start with components (i.e. motherboard, heatsink assembly, e tc.[...]

  • Page 40

    System Thermal/Mechanic al Design Information 40 Thermal and Mechanical Design Guidelines 4.2.2 Power Cycling Thermal performance degradation due to TIM degradation i s evaluated using power cycling testing. The test i s defined by 7500 cycles for the heatsink temperature from room temperature (~23 ºC) to T S-TOP-MAX at usage power consumption. 4.[...]

  • Page 41

    System Thermal/ Mechanical Design Informat ion Thermal and Mechanical Design Guidelines 41 4.4 Safety Requirements Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards: • UL Recog nition-app roved for flammability at th e system le vel. All mechanic al and thermal enabling components [...]

  • Page 42

    System Thermal/Mechanic al Design Information 42 Thermal and Mechanical Design Guidelines[...]

  • Page 43

    Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines 43 Appendix A Heatsink Clip Load Metrology A.1 Overview The primary objective of the preload measur ement is to ensure the prel oad designed into the re tention me chanism is able to meet minimum o f 8.7lbf at e nd-of-line a nd does not violate the maximum specifi cations of the [...]

  • Page 44

    Heatsink Clip Load Metrology 44 Thermal and Mechanical Design Guidelines Table 5. Typical Test Equipment 7. Item 18. Description 9 . Part Number (Model) 20. Load cell 21. Notes: 1, 5 22. Honeywell*-Sensotec* Model 13 subminiature load cells, compression only 23. Select a load range depending on load level being tested. 24. www.sensotec.com 25. AL32[...]

  • Page 45

    Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines 45 A.3 Test Procedure Examples The following proced ure is for a generic z- clip solut ion using the clip force time0 measurement machine at room temperature: 1. Install anchors onto top plate. Anchor can be secured usi ng epoxy or glue. 2. Fasten top plate onto the clip force me[...]

  • Page 46

    Heatsink Clip Load Metrology 46 Thermal and Mechanical Design Guidelines Figure 20. Anchors Installed and Glued Down the BTX Base Plate – for reference only §[...]

  • Page 47

    Intel® Enabled Boxed Processor Thermal Solut ion Information Thermal and Mechanical Design Guidelines 47 Appendix B Intel ® Enabled Boxed Processor Thermal Solution Information This ap pendix inc ludes sup plier inform ation for I ntel enab led vend ors. Table 6 lists sup pliers th at prod uce Inte l ® Boxed Processor thermal solution E21953- 00[...]

  • Page 48

    Intel® Enabled Boxed Processor Thermal Solut ion Information 48 Thermal and Mechanical Design Guidelines[...]

  • Page 49

    Mechanical Drawings Thermal and Mechanical Design Guidelines 49 Appendix C Mechanical Drawings The following table list s the mec hanical dra wings includ ed in this append ix. These drawings refer to the reference thermal mechanical enabl ing components for the processor. Note: Intel reserves the right to make changes and modifications to the desi[...]

  • Page 50

    Mechanical Drawings 50 Thermal and Mechanical Design Guidelines Figure 21. Motherboard Keep-out Footprin t Definition and Height Restrictions for Enabling Components[...]

  • Page 51

    Mechanical Drawings Thermal and Mechanical Design Guidelines 51 Figure 22. Reference Clip E21952-001[...]

  • Page 52

    Mechanical Drawings 52 Thermal and Mechanical Design Guidelines Figure 23. Reference Heatsink D96271-001[...]

  • Page 53

    Mechanical Drawings Thermal and Mechanical Design Guidelines 53 Figure 24. Intel ® Boxed Processor Thermal Solution E21953-001 §[...]