Mitsubishi Electronics H2iSD-1 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Mitsubishi Electronics H2iSD-1, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Mitsubishi Electronics H2iSD-1 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Mitsubishi Electronics H2iSD-1. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Mitsubishi Electronics H2iSD-1 should contain:
- informations concerning technical data of Mitsubishi Electronics H2iSD-1
- name of the manufacturer and a year of construction of the Mitsubishi Electronics H2iSD-1 item
- rules of operation, control and maintenance of the Mitsubishi Electronics H2iSD-1 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Mitsubishi Electronics H2iSD-1 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Mitsubishi Electronics H2iSD-1, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Mitsubishi Electronics service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Mitsubishi Electronics H2iSD-1.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Mitsubishi Electronics H2iSD-1 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-1 2010 H2i ® Y-SERIES SYSTEM DESIGN CITY MUL TI ® H2I ® Y -SERIES HYPER-HEA TING INVERTER SYSTEM DESIGN 1. ELECTRICAL WORK ........................................................................................................................................... H2iSD-2 1-1. General C[...]

  • Page 2

    H2iSD-2 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 1. ELECTRICAL WORK OK NO F ollow ordinance of your governmental organization for technical standard related to electrical equipment, wiring regulations, and guidance of each electric power compan y. Wiring for control (hereinafter referred to as trans[...]

  • Page 3

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-3 2010 H2i ® Y-SERIES SYSTEM DESIGN 1. ELECTRICAL WORK 1-2. Power Supply for Indoor and Outdoor Units 1-2-1. Electrical Characteristics of the Indoor Units Symbols: MCA : Min.Circuit Amps (=1.25xFLA) FLA : Full Load Amps IFM :Indoor Fan Motor Output : Fan motor rated output Model Indoor[...]

  • Page 4

    H2iSD-4 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 1. ELECTRICAL WORK Symbols: MCA : Min.Circuit Amps (=1.25xFLA) FLA : Full Load Amps IFM :Indoor Fan Motor Model Indoor Unit IFM Hz V olts V oltage range MCA(A) FLA(A) PCFY -P15NKMU-E 60Hz 208 / 230V 188 to 253V 0.44 / 0.44 0.35 / 0.35 PCFY -P24NKMU-E [...]

  • Page 5

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-5 2010 H2i ® Y-SERIES SYSTEM DESIGN 1. ELECTRICAL WORK PUHY -HP-T(S)JMU Symbols: MC A : Min. Circuit Amps SC : Starting Current RLA 15 15 15 15 15 15 0.92 0.92 0.92 0.92 0.92 0.92 Model Outdoor Units V olts Hz Unit Combination V oltage range MOCP MCA(A) Compressor Output(kW) SC(A) Fan R[...]

  • Page 6

    H2iSD-6 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-1. T ransmission Cable Length Limitations Long transmission cable causes voltage down, therefore, the length limitation should be obeyed to secure proper transmission. Max. length via Outdoor (M-NET cable) L1+L2+L3+L4, L1+L2+L6+L7, [...]

  • Page 7

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-7 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-2. T ransmission Cable Specications T ype of cable Cable size Remarks Sheathed 2-core cable (unshielded) CVV 2 Shielding wire (2-core) CVVS, CPEVS or MVVS Transmission cable sM E Remote controller cables CVVS, MVVS : PVC insulate[...]

  • Page 8

    H2iSD-8 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-3. System Conguration Restrictions Fo r each Outdoor unit, the maximum connecta bl e quantity of Indoor unit is specified at its Specifications ta bl e. A) 1 Group of Indoor units can ha ve 1-16 Indoor units; B) Maximum 2 remote [...]

  • Page 9

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-9 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL The power to System controller (excluding LMAP03-U) is supplied via M-NET transmission line. M-NET transmission line at TB7 side is called Central control transmission line while one at TB3 side is called Indoor-Outdoor transmission l[...]

  • Page 10

    H2iSD-10 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 1-phase 208-230V AC power supply is needed. The power supply unit P AC-SC51KUA is not necessary when connecting only the LMAP03U. Ye t, make sure to change the power supply changeover connector CN41 to CN40 on the LM adapter . 2-3-4.[...]

  • Page 11

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-1 1 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4. Address Setting Branch No. setting Unit address No. setting Rotary switch In order to constitute CITY MUL TI in a complete system, switch operation for setting the unit address No. and connection No. is required. À Address No.[...]

  • Page 12

    H2iSD-12 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-2. Rule of setting address Unit Indoor unit ME, LOSSNA Y Remote controller (Main) ME, LOSSNA Y Remote controller (Sub) Address setting 01 ~ 50 52 ~ 99, 100 101 ~ 150 151 ~ 199, 200 Note Example The address of outdoor unit + 1 Ple[...]

  • Page 13

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-13 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-1. MA remote controller , Single-refrigerant-system, No System Controller Original switch setting of the outdoors, indoors, controllers and LMAP at shipment is as follows. Outdoor unit : Address: 00, CN41: U (Jumper), DipSW2-1:[...]

  • Page 14

    H2iSD-14 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2. Address should be set to Indoor units and central controller. 3. For a system having more than 16 indoor unit, confirm the need of Booster at 2-3 "System configuration restrictions". NOTE: 1. Outdoor units OC and OS in o[...]

  • Page 15

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-15 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-3. MA remote controller , Multi-refrigerant-system, System Controller at TB7 side, Booster for long M-NET wiring *3 When multiple system controllers are connected in the system, set the controller with more functions than other[...]

  • Page 16

    H2iSD-16 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-4. ME remote controller , Single-refrigerant-system, No system controller 2-4-3-5. ME remote controller , Single-refrigerant-system, System controller , LOSSNA Y 2. Address should be set to Indoor units, system controller and M[...]

  • Page 17

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-17 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-6. ME remote controller , Multi-refrigerant-system, System Controller at TB 7side, LOSSNA Y, Booster for M-NET wiring 2. M-NET power is supplied by the Outdoor unit at TB3, while Indoor unit and ME remote controller consume the[...]

  • Page 18

    H2iSD-18 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-7. ME remote controller , Multi-refrigerant-system, No Power supply unit NOTE It is necessary to change the connecter to CN40 on the outdoor unit control board (only one outdoor unit) when the group is set between other refrige[...]

  • Page 19

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-19 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-9. TG-2000A + AG-150A/GB-50A AG-150A can control max. 50 indoor units. AG-150A can control max. 150 indoor units via expansion controllers (P AC-YG50ECA). TG-2000A can control max. 40 pieces of AG-150A*1 or GB-50A; TG-2000A can[...]

  • Page 20

    H2iSD-20 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3-10. LMAP LMAP(01) 24VDC ( L ON W ORKS adapter) PC L ON W ORKS card L ON W ORKS card L ON W ORKS card For other equipments (Lighting, security, elevator etc.) LMAP can transmit for max. 50 indoor units in single-refrigerant-syst[...]

  • Page 21

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-21 2010 H2i ® Y-SERIES SYSTEM DESIGN 2. M-NET CONTROL 2-4-3- 11 . BM ADAPTER BM ADAPTER(01) HUB For other equipments (Lighting, security , elevator etc.) BM ADAPTER can transmit for max. 50 indoor units in single-refrigerant-system or multi-refrigerant-system. 000 BAC net BM ADAPTER(02)[...]

  • Page 22

    H2iSD-22 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 3-1. R410A Piping Material 3. PIPING DESIGN Refrigerant pipe for CITY MUL TI shall be made of phosphor us deo xidized copper , and has two types . A . Ty pe-O : Soft copper pipe (annealed copper pipe), can be easily bent with human's hand. B . T[...]

  • Page 23

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-23 2010 H2i ® Y-SERIES SYSTEM DESIGN 3. PIPING DESIGN 3-2. Piping Design Ta ble3-2-1-6. R410A Joint selection rule To tal down-stream Indoor capacity Joint ~ P72 CMY -Y102S-G2 P 73 ~ P144 CMY -Y102L-G2 P 145 ~ P234 CMY -Y202-G2 P 235 ~ CMY -Y302-G2 *Concerning detailed usage of Joint pa[...]

  • Page 24

    H2iSD-24 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 3. PIPING DESIGN T able3-2-2-4. R410A Joint selection rule To tal down-stream Indoor capacity Joint ~ P7 2C MY -Y102S-G2 P7 3~ P144 CM Y- Y102L-G2 P145 ~ P234 CM Y- Y202-G2 *First Joint is always CM Y- Y202-G2; *Concerning detailed usage of Joint par[...]

  • Page 25

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-25 2010 H2i ® Y-SERIES SYSTEM DESIGN 3. PIPING DESIGN 3-3. Refrigerant Charge Calculation (1) Calculation of additional refrigerant charge Calculate the amount of additional charge based on the length of the piping extension and the size of the refrigerant line. Use the table to the bel[...]

  • Page 26

    H2iSD-26 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 1. Do not install in an area where the unit could be subjected to direct heat. 2. Av oid installing the unit in a location where the operating sound could be an annoyance. 3. Av oid the sites where strong winds blow . 4. Ins[...]

  • Page 27

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-27 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 1000 [39-3/8] 240 [9-15/32] 45° 50 [1-31/32] <C> (Unit : mm [in.]) <B> 500 [19-11/16] H h h H 100* [3-15/16] 450* [17-23/32] 50* [1-31/32] 50* [1-31/32] <A> (1) If the distance is 300 mm [11-13/16 in.] or [...]

  • Page 28

    H2iSD-28 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION In case of collective installation and continuous installation : : Wall height (H) (Unit : mm [in.]) A B C 30 450* 300* 100 450* 100* 450* 100* 450 450 15* 450 450 900 300* 300* 1000* 900 300* • When multiple units are ins[...]

  • Page 29

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-29 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-3. Piping Direction 4-3-1. Lifting method · When lifting the unit with ropes, run the ropes under the unit and use the lifting hole. · Support the unit at four points with two ropes, and avoid giving mechanical shock. ·[...]

  • Page 30

    H2iSD-30 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-3-2. Installation 30mm [1-3/16in] Install the unit in such a way that the corner of the angle bracket at the base of the unit shown in the figure is securely supported. The brackets may bend if they are not securely suppor[...]

  • Page 31

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-31 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-3-5. Refrigerant pipe routing 4-3-4. Installation Installation base perpendicular to the unit’s front panel Installation base parallel to the unit’s front panel When the pipes and/or cables are routed at the bottom of [...]

  • Page 32

    H2iSD-32 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-3-6. Tw inning on the outdoor unit side Reducer ± 15° The tilt angle of the reducer should be within ±15° with the horizontal plane. Note: See the following drawing for the fitting position of the twinning pipe. The ti[...]

  • Page 33

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-33 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION Field piping Field piping Tw inning kit The length of the straight pipe must be 500 mm [19 in. ] or longer See the fo llo wing dr aw ing for connecting the pipes between the outdoor units. <PUHY -HP144 TSJMU-A> <PUH[...]

  • Page 34

    H2iSD-34 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-4. Weather Countermeasures • Snow hood Countermeasure to wind Outlet Inlet Referring to the figure shown below, take appropriate measures which will suit the actual situation of the place for installati on. Note: 1.Heigh[...]

  • Page 35

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-35 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION 4-5. Low Ambient Kit Application Guidelines General Unit Placement and Clearances • Outdoor units should be located in an area protected from prevailing winds. • In high wind locations, it may be advisable to insta[...]

  • Page 36

    H2iSD-36 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 4. OUTDOOR INST ALLA TION Safety strap Prov ided by others Important! For al l roof t op installat ions, saf ety stra ps must be attac hed be tween t he hood(s ) and t he uni t mounti ng str ucture. Additional Rooftop Mounting Guidelines Ground-level[...]

  • Page 37

    2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) H2iSD-37 2010 H2i ® Y-SERIES SYSTEM DESIGN 5. ST ANDARD AND SEACOAST (BS) PROTECTION TREA TMENT Component Base Material Standard Models Seacoast Protection Models (-BS) Surface T reatment Coating Thickness External Surface Internal Surface External Panel Base Alloyed Galvanized Steel Sheet ?[...]

  • Page 38

    H2iSD-38 2010 Hyper-heating Y -SERIES SYSTEM DESIGN (Sept. 2010) 2010 H2i ® Y-SERIES SYSTEM DESIGN 6. CAUTIONS R410A refrigerant is harmless and incombustible. R410A is heavier than the indoor air in density . Leakage of the refrigerant in a room has possibility to lead to a hypoxia situation. Therefore, the critical concentration specified below [...]