Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG manual
- Read online or download the manual
- 63 pages
- 1.57 mb
Go to page of
Similar user manuals
-
Computer Hardware
Omega OMB-DAQBOARD-3000
108 pages 3.53 mb -
Computer Hardware
Omega OME-PIO-D144
53 pages 1.84 mb -
Computer Hardware
Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG
63 pages 1.57 mb -
Computer Hardware
Omega OMG-USB-SER-4
22 pages 0.36 mb -
Computer Hardware
Omega Four Port RS-232/422/485 to USB Adaptor
22 pages 0.36 mb -
Computer Hardware
Omega 1002
48 pages 1.04 mb -
Computer Hardware
Omega OMB-DAQBOARD-500
48 pages 1.43 mb -
Computer Hardware
Omega OME-A822PG
63 pages 1.5 mb
A good user manual
The rules should oblige the seller to give the purchaser an operating instrucion of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.
What is an instruction?
The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.
Unfortunately, only a few customers devote their time to read an instruction of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.
What should a perfect user manual contain?
First and foremost, an user manual of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG should contain:
- informations concerning technical data of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG
- name of the manufacturer and a year of construction of the Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG item
- rules of operation, control and maintenance of the Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG item
- safety signs and mark certificates which confirm compatibility with appropriate standards
Why don't we read the manuals?
Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Omega service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG.
Why one should read the manuals?
It is mostly in the manuals where we will find the details concerning construction and possibility of the Omega ISA- BUS MULTI-FUNCTIONAL BOARD OME-A822PG item, and its use of respective accessory, as well as information concerning all the functions and facilities.
After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.
Table of contents for the manual
-
Page 1
www .omega.com e-mail: info@omega.com U ser ’ s Guide OME-A822PG ISA-Bus Multi-Functional Board Hardware Manual Shop online at[...]
-
Page 2
Servicing Nor th America: USA: One Omega Drive, P.O. Box 4047 ISO 9001 Certified Stamford CT 06907-0047 TEL: (203) 359-1660 FAX: (203) 359-7700 e-mail: info@omega.com Canada: 976 Bergar Laval (Quebec) H7L 5A1, Canada TEL: (514) 856-6928 FAX: (514) 856-6886 e-mail: info@omega.ca For immediate technical or application assistance: USA and Canada: Sale[...]
-
Page 3
OME-A-822PGH/PGL Enhanced Multi-Function Card Hardware Manual OME-A-822PGL/PGH Hardware Manual ---- 1[...]
-
Page 4
Tables of Contents 1. Introduction _________________________________________________________ 4 1.1 General Description __________________________________________________ 4 1.2 Features _____________________________________________________________ 4 1.3 Specifica tions _________________________________________________________ 5 1.3.1 Power Consumpti[...]
-
Page 5
2.4.9 A/D Software Trigge r Cont rol Register _________________________________________ 23 2.4.10 D/O Output Latch R egister __________________________________________________ 24 2.5 Digital I/O __________________________________________________________ 25 2.6 8254 Timer/ Counter __________________________________________________ 26 2.7 A/D Co nver[...]
-
Page 6
1. Introduction 1.1 General Description The OME-A-822PGL/PGH is a high performa nce, multifunction analog, digital I/O board for PC AT compatible computers. The OME-A-822PGL provides low gain (0.5,1, 2, 4, 8). The OME-A-822PGH provide s high gain (0.5,1,5,10,50,100,500,1000). The OME-A-822PGL/PGH contains a 12-bit ADC with up to 16 single-ended or [...]
-
Page 7
1.3 Specifications 1.3.1 Power Consumption : z +5V @960 m A m a xi m u m , OME-A-822PGL/PGH z Operating temperature : -20 ° C to 60 ° C 1.3.2 Analog Inputs z Channels : 16 single-ended or 8 differential z Input range : (software programmable) OME-A-822PGL:bipolar : ± 10V, ± 5V, ± 2.5V, ± 1.25V, ± 0.0625V unipolar : 0 to 10V, 0 to 5V, 0 to 0.[...]
-
Page 8
1.3.4 DA Converter z Channels : 2 independent z type : 12 bit multiplying , Analog device AD-7541 z Linearity : +/- 1/2 bit z Output range : 0 to 5V or 0 to 10V jumper selected , may be used with other AC or DC reference input. Maximum output lim it +/- 10V z Output drive : +/- 5mA z settling time : 0.6 microseconds to 0.01% for full scale step 1.3[...]
-
Page 9
1.3.7 Programmable Timer/Counter z Type : 82C54 -8 programmable tim er/counter z Counters : Counter1 and counter2 are cascaded as a 32 bit pacer timer. Counter0 is a user available timer/count er. The software driver also uses counter0 to implement a m achine independent timer. z Clock input frequency : DC to 10 MHz z Pacer output : 0.00047Hz to 0.[...]
-
Page 10
1.4 Applications z Signal analysis z FFT & frequency analysis z Transient analysis z Production testing z Process control z Vibration analysis z Energy management z Industrial and laboratory. measurement and control 1.5 Product Check List The OME-A-8322PGL/PGH includes the following items: z OME-A-822PGL/PGH multifunction card z OME-A-822PGL/PG[...]
-
Page 11
2. Hardware Configuration 2.1 Board Layout OME-A-822PGL/PGH VR1/2/3/4/5/6/7 ISA BUS ISA BUS CN2 CN1 J P 5 S W 1 CN3 JP3 JP6 JP8 JP7 JP4 JP1 JP2 OME-A-822PGL/PGH Hardware Manual ---- 9[...]
-
Page 12
2.2 I/O Base Address Setting The OME-A-822PGL/PGH occupies 16 consecutive locations in I/O address space. The base address is set by DIP switch SW1. The default address is 0x220. A 9 A 8 A 7 A 6 A 5 A 4 6 5 4 3 2 1 ON SW1 : BASE ADDRESS BASE ADDR A 9 A 8 A 7 A 6 A 5 A 4 200-20F OFF ON ON ON ON ON 210-21F OFF ON ON ON ON OFF 220-22F( ; ) OFF ON ON O[...]
-
Page 13
The PC I/O port map is given below. ADDRESS Device ADDRESS DEVICE 000-1FF PC reserved 320-32F XT Hard Disk 200-20F Game/control 378-37F Parallel Printer 210-21F XT Expansion Unit 380-38F SDLC 238-23F Bus Mouse/Alt. Bus Mouse 3A0-3AF SDLC 278-27F Parallel Printer 3B0-3BF MDA/Parallel Printer 2B0-2DF EGA 3C0-3CF EGA 2E0-2E7 AT GPIB 3D0-3DF CGA 2E8-2E[...]
-
Page 14
2.3.2 JP2 : D/A Int/Ext Ref Voltage Selection If JP2 is set to internal reference , then JP1 should be set to -5V or -10V internal reference voltage. If JP2 is set to external reference , then ExtRef1, CN3 pin 31 , is the external reference voltage for D/A channel 1. and ExtRef2, CN3 pin 12 , is the external reference voltage for D/A Channel 2. 2.3[...]
-
Page 15
2.3.4 JP4 : A/D Trigger Source Selection EXTTRG INTTRG Internal Trigger (default) EXTTRG INTTRG External Trigger The OME-A-822PGL/PGH supports two trigger types, internal trigger and external trigger. The external trigger comes from ExtTrg, CN3 pin 17 . There are two types of internal triggers, software trigger and pacer trigge r. More detailed inf[...]
-
Page 16
2.3.6 JP6 : User Timer/Counter Clock Input Selection Internal 2M Clock (default) INTCL K EXTCLK External Clock INTCL K EXTCLK The OME-A-822PGL/PGH has 3 independent 16 bit timer/counters. The cascaded counter1 and counter2 are used as a pacer timer . Counter0 can be used as a user programmable tim er/counter. The user programm able timer/counter ca[...]
-
Page 17
2.3.7 JP7 : DMA DACK Selection, JP8 : DMA DRQ Selection J P 8 DAC K 2 6 1 5 J P 7 DR Q 2 6 1 5 NO DMA J P 8 J P 7 1 5 2 6 DR Q 1 5 2 6 DAC K DMA 1 (default) J P 8 J P 7 1 5 2 6 DR Q DAC K 1 5 2 6 DMA 3 The DMA channel can not shared. The OME-A-822 software driver can support 8 different boards in one PC based system, but only two of these boards ca[...]
-
Page 18
2.4 I/O Register Address The OME-A-822PGL/PGH occupies 16 consecutive PC I/O addresses. The following table lists the registers and their locations. Address Read Write Base+0 8254 Counter 0 8254 Counter 0 Base+1 8254 Counter 1 8254 Counter 1 Base+2 8254 Counter 2 8254 Counter 2 Base+3 Reserved 8254 Counter Control Base+4 A/D Low Byte D/A Channel 0 [...]
-
Page 19
2.4.1 8254 Counter The 8254 Programmable tim er/counter has 4 registers from Base+0 through Base+3. For detailed programming inform ation on the 8254 , please refer to Intel‘s “Microsystem Components Handbook”. Address Read Write Base+0 8254 Counter 0 8254 Counter 0 Base+1 8254 Counter 1 8254 Counter 1 Base+2 8254 Counter 2 8254 Counter 2 Bas[...]
-
Page 20
2.4.3 D/A Output Latch Register (WRITE) Base+4 : Channel 1 D/A Low Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 (WRITE) Base+5 :Channel 1 D/A High Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 X X X X D11 D10 D9 D8 (WRITE) Base+6 : Channel 2 D/A Low Byte Data Format Bit 7 Bit 6 Bit 5 Bi[...]
-
Page 21
2.4.4 D/I Input Buffer Register (READ) Base+6 : D/I Input Buffer Low Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 (READ) Base+7 : D/I Input Buffer High Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D15 D14 D13 D12 D11 D10 D9 D8 D/I 16 bits input data : D15..D0, D15=MSB, D0=LSB The OME-A[...]
-
Page 22
2.4.6 A/D Gain Control Register (WRITE) Base+9 : A/D Gain Control Register Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 X X X X GAIN3 GAI N2 GAIN1 GAIN0 The only difference between the OME-A-822PGL and OME-A-822PGH is the GAIN control function. The OME-A-822PGL provides gains of 1/2/4/8 and the OME-A-822PGH provides gains of 1/10/100/1000[...]
-
Page 23
OME-A-822PGH GAIN CONTROL CODE TABLE BI/UN Settling Time GAIN Input Range GAIN3 GAIN2 GAIN1 GAIN0 BI 23 us 1 +/- 5V 0 0 0 0 BI 28 us 10 +/- 0.5V 0 0 0 1 BI 140 us 100 +/- 0.05V 0 0 1 0 BI 1300 us 1000 +/- 0.005V 0 0 1 1 UNI 23 us 1 0 to 10V 0 1 0 0 UNI 28 us 10 0 to 1V 0 1 0 1 UNI 140 us 100 0 to 0.1V 0 1 1 0 UNI 1300 us 1000 0 to 0.01V 0 1 1 1 BI [...]
-
Page 24
2.4.8 A/D Mode Control Register (WRITE) Base+B : A/D Mode Control Register Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 X X X X X D2 D1 D0 X=don‘t care J P 4 S e l e c t I n t e r n a l T r i g g e r Mode Select Trigger Type Transfer Type D2 D1 D0 Software Trig Pacer Trig Software Interrupt DMA 0 0 0 X X X X X 0 0 1 Select X Select X X [...]
-
Page 25
The software driver provides three data transfer methods, polling, interrupt and DMA. The polling subroutine, A-822_AD_PollingVar() or A-822_AD_PollingArray(), set the A/D mode control register to 0x01. This control word enables software trigger and polling transfer. The interrupt subroutine, A-822_AD_ INT_START(…), sets the A/D mode control mode[...]
-
Page 26
2.4.10 D/O Output Latch Register (WRITE) Base+D : D/O Output Latch Low Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 (WRITE) Base+E : D/O Output Latch High Byte Data Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D15 D14 D13 D12 D11 D10 D9 D8 D/O 16 bits output data : D15..D0, D15=MSB, D0=LSB The O[...]
-
Page 27
2.5 Digital I/O The OME-A-822PGL/PGH provides 16 di gital input channels and 16 digital output channels. All levels are TTL compatible. The connection diagram and block diagram are given below: Latch Reset Power on reset Reset Latch D0..D7 Base+D Base+E D0..D7 D8..D15 1..8 9..16 Output Latch Register Output Latch Register CN2 17..18 DGND DGND DI TT[...]
-
Page 28
2.6 8254 Timer/Counter The 8254 Programmable tim er/counter has 4 registers from Base+0 through Base+3. For detailed programming inform ation about the 8254 , please refer to Intel‘s “Microsystem Components Handbook”.The block diagram is shown below. Cin : clock input Cout : clock output INTCLK : internal clock CN3 : connector CN3 Cin Gate Co[...]
-
Page 29
2.7 A/D Conversion This section explains how to perfor m A/D conversions. The A/D conversion can be triggered 3 ways, by software trigger, by pacer trigger or by external trigger to the A/D converter. At the end of A/D conversion, it is possible to transfer data by 3 ways, those are polling , interrupt and DMA. Before using the A/D conversion funct[...]
-
Page 30
2.7.1 A/D conversion flow Before using the A/D converter, the user s hould configure the following hardware settings: 1. select single-ended or differential input (JP3) (refer to Sec. 2.9 first) 2. select internal trigger or external trigger (JP4) 3. select IRQ level if needed (JP5) 4. select DMA channel if needed (JP7,JP8) 5. select internal clock[...]
-
Page 31
2.7.2 A/D Conversion Trigger Modes OME-A-822PGL/PGH supports three trigger modes. 1 : Software Trigger : Write any value to the A/D software trigge r control register, BASE+A, to initiate an A/D conversion cycle. This mode is very si mple but it is very difficult to achieve a precise sample rate. 2 : Pacer Trigger Mode : The block diagram of the pa[...]
-
Page 32
2.7.4 Using software trigger and polling transfer If the user needs to control the A/D converter without the A-822 software driver, software trigger and polling transfer is suggested. The program steps are listed below: 1. send 0x01 to the A/D mode control register (software trigger + polling transfer) (refer to Sec. 2.4.8) 2. send channel number t[...]
-
Page 33
2.8 D/A Conversion The OME-A-822PGL/PGH provides two 12 bit D/A converters. Before using the D/A converter function, you should address the following items: z D/A output register, BASE+4/BASE+5/BASE+6/BASE+7, (sec. 2.4.3) z JP1 jumper set to internal reference voltage -5V or -10V (sec. 2.3.1) z JP2 jumper set to internal or external reference volta[...]
-
Page 34
2.9 Analog Input Signal Connection The OME-A-822 can measure signals in the si ngle-ended or differential mode. In the differential mode each channel has a unique signal HIGH and signal LOW connection. In the single-ended mode all channels have a uni que signal HIGH connection but share a comm on LOW or ground connection. Differential connecti ons [...]
-
Page 35
Figure 1-A Figure 1-B If the source is grounded, a second ground connection on the card could res ult in a ground loop. OME-A-822PGL/PGH Hardware Manual ---- 33[...]
-
Page 36
Figure 2 Figure 3 OME-A-822PGL/PGH Hardware Manual ---- 34[...]
-
Page 37
Figure 4 R is a shunt resistor. A 250 Ω shunt resistor converts 4-20mA to 1-5Vdc. Signal Shielding z The signal shielding is the same for the connections shown in Figure 1 to Figure 4 z Use a single connection to frame ground (not A.GND or D.GND) Vin Frame Ground OME-A-822PGL/PGH A.GND D.GND OME-A-822PGL/PGH Hardware Manual ---- 35[...]
-
Page 38
2.10 Using OME-DB-8225 CJC Output The OME-DB-8225 daughter board contains built-in cold junction compensation (CJC) circuitry that provides a 10mV per Deg C output. With 0.0 Volts @ -273 Deg C. The OME-A-822 should be protected from drafts and direct sunlight in order to accura tely reflect room temperature. CJC Calibration: 1. Connect the OME-A-82[...]
-
Page 39
3. Connector The OME-A-822PGL/PGH provides th ree connectors. Connector 1, CN1 contains the 16 digital inputs. Connector 2, CN2, contains the 16 digital outputs . Connector 3, CN3, contains the analog inputs, analog outputs and timer/counter I/O . 3.1 CN1/CN2/CN3 Pin Assignment CN1 : Digital Input Pin Assignment. Pin Number Description Pin Number D[...]
-
Page 40
SINGLE-ENDED SIGNAL MODE CN3 : Analog input, Analog output a nd Timer/Counter Pin Assignment. Pin Number Description Pin Num ber Description 1 Analog Input 0/+ 20 Analog Input 8/+ 2 Analog Input 1/+ 21 Analog Input 9/+ 3 Analog Input 2/+ 22 Analog Input 10/+ 4 Analog Input 3/+ 23 Analog Input 11/+ 5 Analog Input 4/+ 24 Analog Input 12/+ 6 Analog In[...]
-
Page 41
DIFFERENTIAL SIGNALS CN3 : Analog input, Analog output a nd Timer/Counter Pin Assignment. Pin Number Description Pin Num ber Description 1 Analog Input 0/+ 20 Analog Input 0/- 2 Analog Input 1/+ 21 Analog Input 1/- 3 Analog Input 2/+ 22 Analog Input 2/- 4 Analog Input 3/+ 23 Analog Input 3/- 5 Analog Input 4/+ 24 Analog Input 4/- 6 Analog Input 5/+[...]
-
Page 42
3.2 Daughter Board The OME-A-822PGL/PGH can be connected with many different daughter boards. The daughter boards are described below: 3.2.1 OME-DB-8225 The OME-DB-8225 provides an on-board CJC (Cold Junction Compensation) circuit for thermocouple measurem ent and a terminal block for easy signal connection. The CJC is connected to A/D channel_0. T[...]
-
Page 43
4. Calibration The OME-A-822PGL/PGH is factory calibrated fo r optimum performance. Recalibration is suggested for high vibration environments . The following items are required for calibrating the OME-A-822PGL/PGH. z One 6 digit multimeter z One stable voltage source (4.9988V) z Diagnostic program : this program included with the OME-A822PGL/PGH. [...]
-
Page 44
4.2 D/A Calibration 1. Run the A82 X DIAG.EXE program 2. Press the “Right Arrow Key” to select “CALIBRATION”. 3. Press the “Down Arrow Key” to select “G. D/A REFERENCE”. 4. Press the “Enter Key” 5. Connect VREF, pin 11 of CN3, to a DVM (Digital Volt Meter) 6. Adjust VR5 until the DVM=4.9988V 7. Press the “ESC Key” 8. Select [...]
-
Page 45
4.3 A/D Calibration 1. Run the A82XDIAG.EXE 2. Press “Right Arrow Key” to select “CALIBRATION” 3. Press the “Down Arrow Key” to select “C. A/D REFERENCE” item. 4. Press the “Enter Key” 5. Input a stable 4.9988V to A/D channel 0, pin 1 of CN3 6. Adjust VR2 until the A/D data shown on the screen is between 4094 to 4095 7. Press th[...]
-
Page 46
5. Diagnostic Utility 5.1 Introduction The A82XDIAG.EXE diagnostic utility is a m enu-driven program which allows complete testing of the OME-A-822PGL/P GH board. To run the diagnostic utility, change to the subdirectory used in the in stallation process (C:OME-A-822 for example). Then type " A82XDIAG " <Enter> to st art the applic[...]
-
Page 47
Although you can continue by pressing any ke y, it is recommended that the jum per situation be corrected since m any operations in the A82XDIA utility check the I/O base address and report an error if the confi guration file and the actual jumper settings do not match. OME-A-822PGL/PGH Hardware Manual ---- 45[...]
-
Page 48
5.2 Running The Diagnostic Utility The initial screen of A82XDIAG is shown below. There are five main menus in the initial screen. They are Setup, Calibration, FunctionTest, sPecialTest and Help. Use the Left or Right key to select the main m enu. Then use the Up or Down key to select the menu item. Alternately, the user can press the command key t[...]
-
Page 49
5.2.1 Setup The Setup menu allows the user to setup the boa rd configuration. There are six functions in this muen, Card type, Base Addresss, DMA no, IRQ no, Save option, eXit. Card type : <Up/Do w n> key to select A-822PGL/PGH, <Enter> key to select Base Address : <Up/Down> key to select base address, <Enter> key to select [...]
-
Page 50
DMA no and IRQ no selection screen OME-A-822PGL/PGH Hardware Manual ---- 48[...]
-
Page 51
5.2.2 CALIBRATION The CALIBRATION menu contains ten submenu item s: they are, D/A Reference voltage, D/A Channel 0 gain, D/A channe l 1 gain, A/D Gain, A/D Offset, A/D Bi polar Offset, A/D Unipolar Offset. These items relate to the calibration of the OME-A-822PGL/PGH. The CALIBRATION main menu, is a graphic repr esentation of the OME-A-822PGL/PGH b[...]
-
Page 52
5.2.3 FUNCTION TEST The FUNCTION TEST main menu contains seve n submenus: they are D/A TEST, Digital I/O, A/D MULTIPLEX, A/D use IRQ, A/D use DMA, A/D GAIN, Timer 0. The main menu is shown below. The “D/A TEST” menu, is shown below. OME-A-822PGL/PGH Hardware Manual ---- 50[...]
-
Page 53
<D/A TEST > Test Screen z Assume D/A output range 0 to 5V z Send D/A output to both channels simultaneously z Press <p> pause screen, press <p> again release screen z Press <Up> key to increase screen delay z Press <Down > key to decrease screen delay z Press <ESC> key to quit OME-A-822PGL/PGH Hardware Manual ---[...]
-
Page 54
<Digital I/O> Test Screen z Connect CN1 to CN2 z 16 bit up counter is sent to 16 channel DO z 16 channel DO is connected to 16 channel DI z 16 channel DI are readback and show on the screen z If DO equals DI then OK shown on screen z If DO does not equal DI then Error shown on screen z Press <p> pause screen, press <p> again relea[...]
-
Page 55
<A/D Multiplexer> Test Screen z Assume 16 channel single-ended, bipolar, gain=1, analog input signals z Input range from -5V to +5V z Continue to scan 16 channels z Press <ESC> key to quit OME-A-822PGL/PGH Hardware Manual ---- 53[...]
-
Page 56
<A/D use IRQ> Test Screen z Assume single-ended, bipolar, gain=1 z Use <PgUp> key to select the next channel z Use <PgDn> key to select the previous channel z Use <Up>/<Down> key to adjust C1 z Use <Left>/<Right> key to adjust C2 z The sample rate = The pacer timer rate = 2000/(C1*C2) K z Use <p> key [...]
-
Page 57
<A/D use DMA> Test Screen z Assume single-ended, bipolar, gain=1 z Use <PgUp> key to select the next channel z Use <PgDn> key to select the previous channel z Use <Up>/<Down> key to adjust C1 z Use <Left>/<Right> key to adjust C2 z Sample rate = pacer timer rate = 2000/(C1*C2) K z Use <p> key to pause[...]
-
Page 58
<DA GAIN> Test Screen z Assume single-ended, bipolar, gain=1, A/D channel 0 connected to D/A channel 0 z Use <Up>/<Down> key to adjust gain control code z Use <Left>/<Right> key to adjust D/A output value z Use software trigger and polling transfer mode z Press <ESC> key to quit OME-A-822PGL/PGH Hardware Manual -[...]
-
Page 59
<Timer 0> Test Screen z Assume JP6 set to internal 2M clock z If the counter0 is functioning normally, the value will increment autom atically. OME-A-822PGL/PGH Hardware Manual ---- 57[...]
-
Page 60
5.2.4 SPECIAL TEST The SPECIAL TEST menu contains four subme nu item s: they are D/A Volt Set, DIO Bit Pattern, IRQ Clock Test and DMA Clock Test. These functions are reserved for factory testing. OME-A-822PGL/PGH Hardware Manual ---- 58[...]
-
Page 61
5.2.5 Help The Help menu will display the software version as shown below. OME-A-822PGL/PGH Hardware Manual ---- 59[...]
-
Page 62
W ARRANTY / DISCLAIMER OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OME GA ’ s W ARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA ’ s cust[...]
-
Page 63
M4031/0104 Where Do I Find Ever ything I Need for Pr ocess Measurement and Control? OM EGA…Of Course! Shop online at www .omega.com TEMPERA TURE Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies Wire: Thermocouple, RTD & Thermistor Calibrators & Ice Point References Recorders, C[...]