Sharp V/R manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Sharp V/R, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Sharp V/R one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Sharp V/R. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Sharp V/R should contain:
- informations concerning technical data of Sharp V/R
- name of the manufacturer and a year of construction of the Sharp V/R item
- rules of operation, control and maintenance of the Sharp V/R item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Sharp V/R alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Sharp V/R, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Sharp service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Sharp V/R.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Sharp V/R item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    S C I E N TI F I C C A L C U L A TO R O P E R A TI O N G U I D E S C I E N TI F I C C A L C U L A TO R O P E R A TI O N G U I D E <V/R Series>[...]

  • Page 2

    1 C O N T EN T S H O W TO O P ER A TE Read Before Using K e y la y ou t/ R es et swi tch 2 D isp l a y p a tte r n 3 D isp l a y f or m a t 3 Ex p on en t d i sp l a y 4 A n g u la r u n it 5 Function and Key Operation O N / O F F , e n tr y cor r ec tion ke y s 6 D a ta en tr y k e ys 7 R a n d om key M od if y k e y 8 B a si c a r ith m etic ke y[...]

  • Page 3

    2 H o w t o O p e r a t e 2nd function key P r e ssi n g th is ke y wi ll en a b le th e f u n cti on s wr i tten i n ye llo w a b ov e th e ca l cu la to r b u t- ton s. ON/C, OFF key D i r e c t fu n c t i o n Mode key T h is ca l cu l a tor ca n op er a te in th r ee d if f er en t m od e s a s f oll ows. <Example> W r i tten in y e ll ow [...]

  • Page 4

    3 F or con v en ie n t a n d ea s y o p er a tion , th is m od el ca n b e u se d in on e of f ou r d is p l a y m od es . T h e se le cted d i sp l a y sta tu s is sh o wn in th e u p p er p a r t of th e d is p l a y ( F or m a t In d ic a tor ) . N ote: I f m or e 0’ s ( ze r os) th a n n e e d ed a r e d is p l a y ed w h en th e O N / C k e [...]

  • Page 5

    4 5 . E X P O N E N T D I S P L A Y T h e d is ta n ce f r om th e ea r th to th e su n is a p p r ox . 1 50,00 0,00 0 ( 1 . 5 x 1 0 8 ) k m . Va lu es su c h a s th is w ith m a n y zer o s a r e of ten u se d in sc ie n tif i c ca l cu la ti on s, b u t en te r in g th e ze r os on e b y on e is a g r ea t d e a l of w or k a n d it’ s e a sy t[...]

  • Page 6

    5 A n g u la r v a lu e s a r e con v e r te d f r om D EG to R A D to G R A D w ith e a ch p u s h of th e D R G ke y . T h i s f u n ction is u se d wh e n d oin g ca l cu l a tion s r e la te d to tr ig on om e tr ic f u n cti on s or coor d in a te g e om e tr y con v er si on s. ( / 2 ) <Example> 6 . A N G U L A R U N I T ( in D EG m od [...]

  • Page 7

    6 T u r n s th e ca lcu l a tor on or cl ea r s th e d a ta . It a l so cle a r s t h e con te n ts of th e ca l cu l a tor d is p l a y a n d v o i d s a n y ca lc u la tor com m a n d ; h ow e v er , coef f i- ci en t s in 3-v a r ia b le li n ea r e q u a tion s a n d sta tis tics , a s we ll a s v a lu e s stor ed in th e in d e p e n d en t m [...]

  • Page 8

    7 D a t a E n t r y K ey s P r ov id e d t h e ea r th is m ov in g a r ou n d th e su n in a ci r cu la r or b it, h ow m a n y k il om e ter s wil l i t t r a v el in a y ea r ? * T h e a v e r a g e d is ta n ce b e tw ee n th e ea r th a n d th e su n b e in g 1 .496 x 1 0 8 km . C ir cu m f er en c e e q u a l s d ia m ete r x π ; th eref or [...]

  • Page 9

    8 R a n d o m G en er a tes r a n d om n u m b er s. R a n d om n u m b er s a re th r ee - d e cim a l-p la ce v a lu es b e tw ee n 0.00 0 a n d 0.999 . U si n g th is f u n cti on en a b l es th e u se r to ob ta in u n b i a sed sa m p l in g d a ta d e r iv e d f r om r a n d om v a lu es g e n er a te d b y th e ca l cu la tor . <Example&g[...]

  • Page 10

    9 Fu n ction to r ou n d ca lc u la ti on r e su l ts. Ev e n a f ter se ttin g th e n u m b er o f d ec im a l p la c es on th e d isp la y , th e ca l cu la tor p e r - f or m s ca lc u la tion s u sin g a la r g er n u m b e r of d ec im a l p la c es th a n th a t wh ic h a p p ea r s on th e d i sp l a y . B y u sin g th is f u n ction , in te[...]

  • Page 11

    10 B a s i c A ri t h m et i c K ey s , P a ren t h es es U se d to sp e ci f y c a lcu l a tion s in wh i ch ce r ta i n op e r a ti on s h a v e p r ece d en ce . Y ou ca n m a ke a d d ition a n d s u b tr a ction op er a tion s h a v e p r ece d en c e o v er m u ltip li ca ti on a n d d iv isi on b y en closi n g th em in p a r en th e se s. T[...]

  • Page 12

    11 For ca l cu la tin g p e r ce n ta g es . F ou r m e th od s of ca lc u la tin g p er ce n ta g e s a r e p r e se n te d a s f o l low s. 1 ) $ 1 2 5 i n c r e a s e d by 1 0 % … 1 3 7 . 5 2 ) $ 1 2 5 r e d u c e d by 2 0 % … 1 0 0 3 ) 1 5 % o f $ 1 25… 1 8 . 7 5 4 ) W h e n $ 1 2 5 e qu a l s 5 % o f X , X e q u a l s …2 5 0 0 1 2 5 1 [...]

  • Page 13

    12 C a lc u la te s th e cu b e r oot of th e v a lu e on th e d isp la y . I n v er s e, S q u a r e, x t h P o w er o f y , S q u a r e R o o t , C u b e R o o t , x t h R o o t o f y <Example> C a lc u la te s th e in v e r se of th e v a lu e on th e d is p l a y . S q u a r e s th e v a lu e on th e d i sp l a y . C a lc u la te s th e s[...]

  • Page 14

    13 1 0 t o t h e P o w er o f x , C o m m o n L o g a ri t h m <Example> C a lc u la te s th e v a lu e of 1 0 r a is ed to th e x th p ow er . C a lc u la te s log a r i th m , th e ex p on en t of th e p ow e r to wh i ch 1 0 m u st b e r a ise d t o e q u a l t h e g iv en v a lu e. 3 1000 O pe r a t i o n D i s p l ay DEG DEG[...]

  • Page 15

    14 e t o t h e P o w er o f x , N a t u r a l L o g a ri t h m C a lc u la te s p o w e r s b a se d on th e con sta n t e ( 2.7 1 8 28 1 82 8) . <Example> C om p u t e s th e v a lu e n a tu r a l log a r ith m , th e ex p on en t of th e p o w er to wh ich e m u st b e r a ise d t o e q u a l th e g iv e n v a lu e . 5 1 0 O pe r a t i o n [...]

  • Page 16

    15 F a ct o r i a l s T h e p r od u ct of a g iv en p ositi v e in te g er n m u lti p l ie d b y a l l th e les se r p osi tiv e in t e g e r s f r om 1 to n - 1 is in d i ca te d b y n ! a n d ca ll ed th e f a ctor ia l of n . A P P L I C A T I O N S : U se d in sta ti sti cs a n d m a t h e m a tics . In sta tis tics , th i s f u n ction is u [...]

  • Page 17

    6 4 6 4 16 A P P L I C A T I O N S : U se d in sta ti sti cs ( p r ob a b il ity ca lc u la tion s) a n d i n sim u la tion h y p oth - e se s in f ie ld s su c h a s m e d ic in e, p h a r m a ce u tics, a n d p h y si cs. A ls o, ca n b e u se d to d ete r m i n e th e ch a n ces of wi n n in g in l otter ie s. P erm u t a t i o n s , C o m b i n[...]

  • Page 18

    17 T i m e C a l cu l a t i o n C on v er t 2 4° 28 ’ 35” ( 2 4 d eg r e es , 28 m in u tes , 35 se c- on d s) to d eci m a l n ota tion . T h e n con v e r t 24 .476 ° to se x a g es im a l n ota tion . C on v er ts a se x a g e si m a l v a lu e d i sp l a y ed in d e g r ee s, m in u t e s, s ec on d s to d e cim a l n ota tion . A ls o, c[...]

  • Page 19

    18 F ra ct i o n a l C a l cu l a t i o n s A d d 3 a n d , a n d con v er t t o d e cim a l n ota tion . <Example> In p u ts f r a ction s a n d con v e r ts m u tu a l ly b e tw ee n f r a ction s a n d d eci m a l s. C on v er ts b e t w e en m ixed n u m b er s a n d im p r op er f r a ction s . 3 1 2 5 7 C on v er t to a n im p r op e r [...]

  • Page 20

    19 S t or e s d i sp l a y ed v a lu e s in m e m or ie s A ~D, X , Y , M. R ec a ll s v a lu e s stor e d in A ~D, X , Y , M. A d d s th e d isp la y ed v a lu e to th e v a lu e in th e in d e p e n d en t m e m or y M. M em o r y C a l cu l a t i o n s <Example> ( En ter 0 f or M ) 2 5 2 7 7 3 T em p or a r y m em or i es 0 ~ DEG M DEG M D[...]

  • Page 21

    20 S o l v e f or x f ir st a n d th e n solv e f or y u sin g x. L a s t A n s w er M em o r y <Example> y = 4 ÷ x a n d x = 2 + 3 O pe r a t i o n D i s pl a y M DEG M DEG 2 3 4 A u tom a ti ca l ly r ec a ll s th e la st a n s we r ca lc u la te d b y p r e ss in g[...]

  • Page 22

    21 T h e a n g le f r o m a p o i n t 1 5 m e t e r s f r o m a b u i ld i n g to th e h ig h e st f loor of th e b u i ld i n g is 45 ° . H ow ta ll is th e b u il d in g ? T ri g o n o m et ri c F u n ct i o n s [DEG mode] V iew point A P P L I C A T I O N S : T r ig o n om etr ic f u n ction s a r e u se f u l i n m a th e m a tic s a n d v a r[...]

  • Page 23

    22 A r c tr i g on om e t r ic f u n cti on s, th e in v er se of tr ig on om e t - r ic f u n cti on s, a r e u sed to d e ter m i n e a n a n g l e f r o m r a tios of a r ig h t tr ia n g l e. T h e com b in a t i on s of th e th r ee si d e s a r e sin - 1 , c os - 1 , a n d ta n - 1 . T h e ir r e la ti on s a r e ; A r c T r i g o n o m et ri[...]

  • Page 24

    23 H y p erb o l i c F u n ct i o n s T h e h y p e r b o l ic f u n ction i s d e f in e d b y u sin g n a tu r a l e x p on e n ts in tr ig o- n om e tr ic f u n cti on s. A P P L I C A T I O N S : H yp er b olic a n d a r c h y p e r b oli c f u n ction s a r e v er y u se f u l i n el ec tr i ca l e n g in e e r in g a n d p h y sic s. A r c h [...]

  • Page 25

    24 C o o rd i n a t e C o n v ers i o n Rectangular coordinates P ( x,y ) y x o y x y P ( r, θ ) x o r Polar coordinates θ C on v er ts r ec ta n g u la r coor d in a te s to p ola r coor d in a tes ( x , y r , θ ) C on v er ts p ol a r coor d in a te s to r e cta n g u la r coor d in a t e s ( r , θ x , y ) S p li ts d a ta u se d f or d u a l[...]

  • Page 26

    25 DEG STAT H er e i s a ta b l e of ex a m i n a tion r es u lts. In p u t th i s d a ta f or a n a ly sis ( a lon g w ith d a ta cor r e ction ) . <Example 1> En ter s d a ta f or sta tis tic a l ca l cu l a tion s. C le a r s la s t d a ta in p u t. S p li ts d a ta u se d f o r d u a l-v a r i a b l e d a ta in p u t. ( U se d f or d u a [...]

  • Page 27

    26 C a lc u la te s th e a v e r a g e f or in p u t d a ta ( sa m p l e d a ta x ) . C a lc u la te s th e sta n d a r d d e v ia ti on of sa m p le s f r om i n p u t d a ta ( sa m p le d a ta x ) . C a lc u la te s th e sta n d a r d d e v ia ti on f or a p op u la ti on f r om in p u t d a ta ( sa m p le d a ta x ) . D i sp l a y s th e n u m b[...]

  • Page 28

    27 T h e ta b l e b e low su m m a r i ze s th e d a te s in A p r il wh e n ch e r r y b l ossom s b l oom , a n d th e a v e r a g e te m p er a tu r e f or M a r ch i n th a t sa m e a r ea . D e ter m i n e b a si c sta ti stic a l q u a n titie s f or d a ta X a n d d a ta Y b a sed on th e d a ta ta b le. <Example 2> 6 2 1 3 <D a t a[...]

  • Page 29

    28 7. 1 7 5 ( A v e r a g e f o r d a ta X ) 0.97 35 795 5 1 ( S ta n d a r d d e v ia ti on f or d a ta X ) 0.9 1 070 02 8 ( S ta n d a r d d e v ia ti on of th e p o p u la ti on f o r d a ta X ) 9.87 5 ( A v e r a g e f o r d a ta Y ) 3.44 08 263 1 3 ( S ta n d a r d d e v ia tion f or d a ta Y ) 3.2 1 859 82 97 ( S ta n d a r d d e v ia ti on o[...]

  • Page 30

    ©SHARP CORP. (MAR. '05)[...]