Ir para a página of
Manuais similares
-
Calculator
HP (Hewlett-Packard) 12C#ABA
211 páginas 1.67 mb -
Calculator
HP (Hewlett-Packard) 300
2 páginas 1.06 mb -
Calculator
HP (Hewlett-Packard) 100
32 páginas 0.31 mb -
Calculator
HP (Hewlett-Packard) HP-10B
72 páginas 4.93 mb -
Calculator
HP (Hewlett-Packard) 39g+
294 páginas 4.01 mb -
Calculator
HP (Hewlett-Packard) NW280AAABA
608 páginas 5.42 mb -
Calculator
HP (Hewlett-Packard) 39gs
314 páginas 9.4 mb -
Calculator
HP (Hewlett-Packard) 9s
3 páginas 0.52 mb
Bom manual de uso
As regras impõem ao revendedor a obrigação de fornecer ao comprador o manual com o produto HP (Hewlett-Packard) 32SII. A falta de manual ou informações incorretas fornecidas ao consumidor são a base de uma queixa por não conformidade do produto com o contrato. De acordo com a lei, pode anexar o manual em uma outra forma de que em papel, o que é frequentemente utilizado, anexando uma forma gráfica ou manual electrónicoHP (Hewlett-Packard) 32SII vídeos instrutivos para os usuários. A condição é uma forma legível e compreensível.
O que é a instrução?
A palavra vem do latim "Instructio" ou instruir. Portanto, no manual HP (Hewlett-Packard) 32SII você pode encontrar uma descrição das fases do processo. O objetivo do manual é instruir, facilitar o arranque, a utilização do equipamento ou a execução de determinadas tarefas. O manual é uma coleção de informações sobre o objeto / serviço, um guia.
Infelizmente, pequenos usuários tomam o tempo para ler o manual HP (Hewlett-Packard) 32SII, e um bom manual não só permite conhecer uma série de funcionalidades adicionais do dispositivo, mas evita a formação da maioria das falhas.
Então, o que deve conter o manual perfeito?
Primeiro, o manual HP (Hewlett-Packard) 32SII deve conte:
- dados técnicos do dispositivo HP (Hewlett-Packard) 32SII
- nome do fabricante e ano de fabricação do dispositivo HP (Hewlett-Packard) 32SII
- instruções de utilização, regulação e manutenção do dispositivo HP (Hewlett-Packard) 32SII
- sinais de segurança e certificados que comprovam a conformidade com as normas pertinentes
Por que você não ler manuais?
Normalmente, isso é devido à falta de tempo e à certeza quanto à funcionalidade específica do dispositivo adquirido. Infelizmente, a mesma ligação e o arranque HP (Hewlett-Packard) 32SII não são suficientes. O manual contém uma série de orientações sobre funcionalidades específicas, a segurança, os métodos de manutenção (mesmo sobre produtos que devem ser usados), possíveis defeitos HP (Hewlett-Packard) 32SII e formas de resolver problemas comuns durante o uso. No final, no manual podemos encontrar as coordenadas do serviço HP (Hewlett-Packard) na ausência da eficácia das soluções propostas. Atualmente, muito apreciados são manuais na forma de animações interessantes e vídeos de instrução que de uma forma melhor do que o o folheto falam ao usuário. Este tipo de manual é a chance que o usuário percorrer todo o vídeo instrutivo, sem ignorar especificações e descrições técnicas complicadas HP (Hewlett-Packard) 32SII, como para a versão papel.
Por que ler manuais?
Primeiro de tudo, contem a resposta sobre a construção, as possibilidades do dispositivo HP (Hewlett-Packard) 32SII, uso dos acessórios individuais e uma gama de informações para desfrutar plenamente todos os recursos e facilidades.
Após a compra bem sucedida de um equipamento / dispositivo, é bom ter um momento para se familiarizar com cada parte do manual HP (Hewlett-Packard) 32SII. Atualmente, são cuidadosamente preparados e traduzidos para sejam não só compreensíveis para os usuários, mas para cumprir a sua função básica de informação
Índice do manual
-
Página 1
F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII RPN Scientif ic Calculator Owner’s Manual HP Part No . 00032–90068 Printed in Singapore Edition 5[...]
-
Página 2
Fi l e na me 3 2 si i - M a n u a l - E- 0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Noti ce This man ual and any exam ples contained h erein ar e provide d “ as is ” and are subject to change without notice. Hewle tt -Pac kar d Compa ny makes no w arranty of an y kind with reg ard to this man ual, includin[...]
-
Página 3
Contents 1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Contents Pa r t 1 . Basic Op er ation 1. Get ti ng Sta r t e d Impo rtant Pr eliminar ies .................................... ............... 1–1 T urning t he C alcula tor On and O ff .......... .................... 1–[...]
-
Página 4
2 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Number o f Dec i mal P lac e s ............................ ........... 1–15 SHO W i n g F u ll 12–Digit Pr e c i s i o n ......................... 1–16 F r acti ons ............................ ...............[...]
-
Página 5
Contents 3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. S t o r i n g D a t a i n t o V a r i a b l e s Sto r ing and R ecalling Nu mber s................ ........................ 3–1 V ie w ing a V ar iable w itho ut R ecalling It ............................. 3–2 R ev ie[...]
-
Página 6
4 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F actor i al ...................................................... .......... 4–11 Gamma ...................... .......................... ................ 4–11 Pr oba bility Men u .......... ...................[...]
-
Página 7
Contents 5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar enthe ses in E quati on s ............................ ................ 6–7 Displa y ing and Selec ting E qu ati ons .......... ........................ 6–7 E diting and Clear ing E qua ti ons ......................[...]
-
Página 8
6 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F or Mor e Inf or matio n .... ................................ .................. 8–9 9 . Operations w i t h Comb Numbers Th e C om ple x S tac k .......... ................................ .............. 9–1 Co[...]
-
Página 9
Contents 7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Summati on St atisti cs ............................ .................. 11–11 Th e S tatis tic s R egis ter s in Calc ulator Me mory ............ 11–12 A cces s to the Sta tisti cs R egist er s .......... ...............[...]
-
Página 10
8 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Memory ................ .......................... ............. 12–20 V ie w ing Pr ogr am Memory ............................ ......... 12–20 Memory U sag e .......... ................................[...]
-
Página 11
Contents 9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The Indir ect A ddr es s , (i) ...................... ................... 13–21 Pr ogr am Co ntr ol w ith (i) ...................... ................... 13–2 2 E quati ons w ith (i) .......... ...........................[...]
-
Página 12
10 Contents Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar t 3 . Appendix es and Regerence A. Suppor t, Bat teri es, and Ser vice Calc ulator Su pport .......... ................................ ............... A–1 Ans w er s to C ommon Que s tio ns .................[...]
-
Página 13
Contents 11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Neu tral O pe r ations .... ............................................... B–5 Th e S tatu s of the L A S T X R egist er ................ ...................... B–6 C. Mo r e ab ou t Sol v ing Ho w S OL VE F inds a R o[...]
-
Página 14
[...]
-
Página 15
F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 1 Basic Operat ion[...]
-
Página 16
[...]
-
Página 17
Getting St a rt e d 1–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 G e tting Star t ed Impor tant Pr eli minari es T ur ni ng t h e Cal c ul at or O n and O f f To turn the calculator on, press . ON is printed below the key. To turn the calculator off, press { . Tha[...]
-
Página 18
1–2 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m names are printed in orange and blue above each key. Press the appropriat e shift key ( z or { ) befo re pressin g the key for th e desired function. For exam ple, to turn th e calculator off, pre s s and rele[...]
-
Página 19
Getting St a rt e d 1–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing Key Description a Backspace. K ey board–e ntry mode: Er ases the c har acter immedi ately to th e lef t of "_" (the d igit–entr y c ursor) or bac ks out of t he curr ent men[...]
-
Página 20
1–4 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys for Clearing (continued) Key Description zb The CLEAR menu ({ º } { # } { } { Σ } Contains options for clearing x ( the number in the X–register), all Data , all variables, all o f [...]
-
Página 21
Getting St a rt e d 1–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Menu ch oi ces . 2 . K ey s matched to menu cho ices. 3 . Men u k ey s . HP 32II Menus Menu Name Menu Description Chapter Numeric Functions PARTS Numb er–altering functi ons: integer [...]
-
Página 22
1–6 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32II Menus (continued) Menu Name Menu Descript ion Chapter Other func t i o n s MEM QQQ)Q # Memory st atus (bytes of memory available); catalog of variables; catalog of programs (prog ram la[...]
-
Página 23
Getting St a rt e d 1–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t h e functions built into th e calcul ator nor search t hrough the names printed on its keyboard. Exitin g Men us When ever you e xecu te a menu f unc ti on, t he me nu aut omati cal ly disappears, as in the [...]
-
Página 24
1–8 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator Annunciator Meaning Chapter Upper Row: The z and z keys are active for stepping through a list. 1, 6 TS When in Fraction–display m ode (press z ), only one of the " S &q[...]
-
Página 25
Getting St a rt e d 1–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m HP 32SII Annunciator (conti nued) Annunciator Meaning Chapter Lower Row: The top–row keys on the calculator are redefined according to the menu labels displayed above men u pointers. 1 , There ar[...]
-
Página 26
1–10 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ma k in g N u m b e r s N e ga tiv e The _ key change s the sign of a number. T o k ey in a negati ve n umber , t y pe the number , then pr es s _ . T o change the sign o f a number that was e nt e re[...]
-
Página 27
Getting St a rt e d 1–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Display: 6.6262 ) _ 2. Pr ess ` . No ti ce that the c urs or mov es behind the : ` ) _ 3 . K ey in the e xpone nt . (The lar ges t possible e xponent is ± 4 9 9[...]
-
Página 28
1–12 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m < ) Digit entry is term inated. Pressing terminat es digit entry. To sepa rate two numbers, key i n t he first number, press to terminate di git, entry, an d then ke y i n t he[...]
-
Página 29
Getting St a rt e d 1–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Ke y i n t h e n u m b e r . ( Y ou don't need to pr ess .) 2. Pr es s the fun cti on k e y . (F or a shifted f unc ti on , pre ss the ap pr opr iate z or { s h i f t key fi r s t. ) For example, [...]
-
Página 30
1–14 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For example: To calculate: Press: Display: 123 + 3 12 3 ) 12 – 3 12 3 ) 12 × 3 12 3 y ) 12 3 12 3 0 8)?[...]
-
Página 31
Getting St a rt e d 1–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m N um ber of Dec i m al Places All numbers are stored with 12–digit precision, bu t you can select th e num ber of decimal p laces to be displayed by pressing z (the display m enu). During som e complica[...]
-
Página 32
1–16 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Engineering Format ({ }) ENG form at displays a numb er in a man ner similar to scientific notation, except that the ex pone nt is a multiple of three (th e re can be up to th ree digits befor e the &q[...]
-
Página 33
Getting St a rt e d 1–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: z { % } 4 Displays f ou r d e ci ma l p lac es . 45 1.3 y ) Four decimal places d i s p l a y e d . z { } 2 ) Scien [...]
-
Página 34
1–18 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m t e r m i n a t e digit entry . The n umber or r esul t is form atted according to the c u rr en t displa y f orm at . The a b/c symb ol u nder t he key is a rem i nder th at the key is used twi ce fo[...]
-
Página 35
Getting St a rt e d 1–19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Di spl ay i ng F r ac ti on s Press z to switch between Fraction–dis play mode and the c u r r e n t decimal display mode. Keys: Displa y: Description: 12 3 8 + Displays charac[...]
-
Página 36
1–20 Getting St a r te d F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Calc ulat or M emor y The HP 32SII has 384 byt es of memo ry in whic h you can store any combin ation of data (variables, eq uat ions, or program line s). The m emory r equirements of sp ecific activities are[...]
-
Página 37
Getting St a rt e d 1–21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m @ { & } { }, wh ich saf eguar ds against the uninte nti on al cle ar ing o f memor y . 2. Pr ess { & } ( yes ).[...]
-
Página 38
[...]
-
Página 39
The Automatic Memory Stack 2–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2 Th e Au t omat i c Me mor y St ac k This chapter explai ns how calculations take place in the automatic memory stack. You do not need to read and un de rstand this m aterial to use the calc ulato r , [...]
-
Página 40
2–2 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T 0.0000 “Olde st” number Z 0.0000 Y 0.0000 X 0.0000 Dis played The most "recent " number is in the X –register: this is th e number y ou see in the display. In programm ing, the[...]
-
Página 41
The Automatic Memory Stack 2–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R ev i ewi ng t h e st ac k R ¶ (Roll Dow n) The 9 (roll down) key lets you review the enti re contents of the sta ck by "rolling" the contents do wnward, one register at a time. You ca n s e[...]
-
Página 42
2–4 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exc hangi ng t h e X– and Y –Regi ster s in t h e S tac k Another key that manipu lates the s tack contents i s Z ( x e xchange y ). This key swa ps the contents of the X – an d Y –regis[...]
-
Página 43
The Automatic Memory Stack 2–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 + 4 – 9 T 1 1 1 1 Z 2 1 2 1 Y 3 2 7 2 X 4 7 9 –2 1 2 3 1. T he st ac k "dr ops" its conten ts. T he T– (top) r egister r eplicate s its conte nts . 2. T he stac k "[...]
-
Página 44
2–6 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 + 6 1 lost 2 lost T 1 2 3 3 3 Z 2 3 4 4 3 Y 3 4 5 5 4 X 4 5 5 6 11 1 2 3 4 1. Li f t s t h e s ta c k. 2. L ifts the stac k and r eplicate s the X–r egiste r . 3. Does [...]
-
Página 45
The Automatic Memory Stack 2–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: G iven bacterial culture with a constant growth rate of 50% , how large would population of 100 be at the end 3 days ? Replicates T–register T 1.5 1.5 1.5 1.5 1.5 Z 1.5 1.5 1.5 1. 5 1.5 Y 1.5[...]
-
Página 46
2–8 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m or a cancel that displa y and sho w s the X–r egiste r . When v ie w ing an equati on , a dis pla y s the c urso r at the end the equati on to allo w f or editing . During equation[...]
-
Página 47
The Automatic Memory Stack 2–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m See app endi x B f or a c ompr ehe nsi ve li st of the fun ctions that save x in t h e LAST X register. Corr ec ti ng M ist akes wit h L AS T X Wrong On e–Number Function If you execute th e wr on g o[...]
-
Página 48
2–10 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Suppose you m ade a mistake w hile calculatin g 16 × 19 = 304. There are three kinds of mistakes you coul d ha ve ma d e: Wring Calculation: Mistake: Correctio n: 16 19 Wrong function [...]
-
Página 49
The Automatic Memory Stack 2–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t t t Z z z t 96.704 Y 96.704 96.704 z X 96.704 52.3947 52.3947 149.0987 LAST X l 52.3947 l 52.3947 T t t Z z t Y 149.0987 z z X 52.3947 p 2.8457 LAST X 52.3947 52.3947 Keys: Displa y[...]
-
Página 50
2–12 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Rigel Centaurus: 4.3 yr × (9.5 × 10 15 m/yr). To Sirius: 8.7 yr × (9 .5 × 10 15 m/yr). Keys: Displa y: Description: 4.3 ) Light–years to Rigel Centaurus. 9.5 ` 15[...]
-
Página 51
The Automatic Memory Stack 2–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You don't need to press t o s a ve this interm ediate re sult before proceeding; since it is a calculated result, it is saved automatically. Keys: Displa y: Des cription: 7 y )?[...]
-
Página 52
2–14 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Work thro ugh the pro blem the same way with the HP 32SII, e xcept that you don't have to w rite down intermediat e answ ers—the calculator rem embers them for you. Keys: Displa y: Descr[...]
-
Página 53
The Automatic Memory Stack 2–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m O r d er o f Cal c ul at ion We recom men d solving ch ain calculations by w orking from the i nn erm os t parentheses outward. Howe ve r, you can also choose to work p r ob l e m s i n a left–to–r[...]
-
Página 54
2–16 The Automatic Memory Stack Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 3 _ At this point th e stack is full with numbers for this calculation. y ) Intermediate result. ) Intermediate result. 2 )[...]
-
Página 55
The Automatic Memory Stack 2–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 5.2 8.33 y z 7.46 0.32 y p 3.15 2.75 4.3 y 1.71 2.01 y p <[...]
-
Página 56
[...]
-
Página 57
S t o r i n g D a t a into Variables 3–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3 Stori ng Dat a in to V a r ia b l e s T he HP 32 II ha s 384 byt es of user m emory : memory that you can u se to store numbers, equations, and pr ogram lines . Numbers are stored in locatio[...]
-
Página 58
3–2 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Storing Number s. Store Avogadro's number (approximately 6.0225 × 10 23 ) in A . Keys: Displa y: Description: 6.0225 ` 23 ) _ Avo gadro's nu[...]
-
Página 59
S t o r i n g D a t a into Variables 3–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To cancel the VIEW display, press a or once. R e v i e w i n g Va r i a b l e s i n t h e VA R C a t a l o g The z X ( memory ) function provides information about memory: QQQ)Q # ?[...]
-
Página 60
3–4 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Store zero in it: Press 0 H variable . To clear select ed variabl es: 1. Press z X { # } and use z or z to dis play the v ar iable. 2. Pr ess z b . 3. Pre ss to cance[...]
-
Página 61
S t o r i n g D a t a into Variables 3–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A 15 A 12 Results: 15–3 thatis, A – x T t T t Z z Z z Y y Y y X 3 H X 3 Reca ll Arit hmetic Recall arithm etic uses a K , K y , or K p to do arithmetic in the X–register usin[...]
-
Página 62
3–6 S t o r i n g D a t a into Variables Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Suppose the variables D , E , an d F contai n the values 1, 2, and 3. Use st orage arithmetic to add 1 to ea ch of those variables. Keys: Displa y: Description: 1 H D 2 H E 3 [...]
-
Página 63
S t o r i n g D a t a into Variables 3–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 12 H A ) Stores 12 in variable A. 3 _ Display x . { Y A ) Exchange contents of the X–register and variable[...]
-
Página 64
[...]
-
Página 65
Real–Number Functions 4–1 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 Real– Num ber Funct ions This chapter co vers most of the c alculator's fun ctions that perform computation s on real num bers, includin g some nume ri c fu nc ti ons u se d i n programs (such a[...]
-
Página 66
4–2 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculat e: Press: Natural logarithm (base e ) - Comm on log arithm (base 10 ) z + Natural e xpone ntial * Common exponential (antilogarithm) z ( Po w e r F u n c t i o n s To calculate the s quare of[...]
-
Página 67
Real–Number Functions 4–3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 . 1 37893 . − .37893 1.4 _ z . ) T r igonom etr y Enter i ng π Press { M to place the first 12 digits of π into the X–register. (The num ber displayed de pends on the displ[...]
-
Página 68
4–4 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tri gonom etr ic F unc t ions Wit h x in the display: To Calculate: Press: Sine of x . N Cosine of x . Q Tangent of x . T Arc sine of x . z L Arc cosine of x . z O Arc tangent of x . z R Note Calc ulatio[...]
-
Página 69
Real–Number Functions 4–5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Programming Note: Equations using inverse trigonom etri c functions to determine an angle θ , often look something like this: θ = arctan ( y / x ). If x = 0, then y / x is un defined , resultin g in th[...]
-
Página 70
4–6 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To Calculate Press: x % of y y x { P Percentage change fro m y to x . ( y ≠ 0) y x { S Example: Find the sales tax at 6% and th e total cos t of a $15.76 it em. Use FIX 2 display format so th e[...]
-
Página 71
Real–Number Functions 4–7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Conv er sion F unc t ions There are f our types of conversions: coordinate (polar /rec tangular), angular (degrees/radians), ti me (decimal/minutes –seconds), and unit (cm /in, °C/ °F, l/gal, Kg/l b)[...]
-
Página 72
4–8 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x y r X Y ry , x y, x , r θ θ θ , Example: Polar to Rectangu lar Conversion. In the follow ing right trian gles, find sides x and y in the triangle on the le ft, and hypotenuse r and angle θ in the t[...]
-
Página 73
Real–Number Functions 4–9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Conversion w ith Vectors. Engineer P.C. Bard has de termined that in the RC circ uit sho wn, t he tota l impeda nce is 77.8 ohms and vol tage lag s current by 36.5 º. What a .re the values of r[...]
-
Página 74
4–10 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To convert between decim al fr actions an d minutes–secon ds: 1. K e y in the tim e o r an gle (in dec im al form or mi nutes –se con ds form) tha t yo u wa n t t o c o nve r t. 2. Pr ess { t or z s[...]
-
Página 75
Real–Number Functions 4–11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Uni t c on v e r si on s The HP 32SII has e ight unit–convers ion function s on th e keybord: kg, lb, ºC, ºF, cm, in, l, gal. To Convert: To: Press: Displayed Results[...]
-
Página 76
4–12 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr obabil i t y M enu Press { [PROB] to see the PROB (probabil ity) m enu shown, in the following table. It has function s to calculate combination s and permutations , to generate seeds for random numb[...]
-
Página 77
Real–Number Functions 4–13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Combinations of People. A compa ny emp loyi ng 14 wo men and 10 men is for ming a six–p erso n sa fet y commi ttee. How ma ny dif fere nt comb inat ions of pe ople a re p ossi ble ? Keys: Dis[...]
-
Página 78
4–14 Real–Number Functions F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pa r t s o f N u m b e r s The functions in the PARTS menu ( { [PAR TS] ) shown in the follow ing table and the z I func tion alter the number in the X–regi ster in simple ways. These functions are pr[...]
-
Página 79
Fractions 5–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5 Fracti ons "Fractions" in ch apter 1 in troduces the basics abou t entering, displaying, and calculating with fractions: T o ente r a f r actio n , pre s s tw ic e —after the integer part, and betw[...]
-
Página 80
5–2 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: z Turns on Fraction–display mode. 1.5 + Enters 1.5; shown as a fraction . 1 3 4 + Enters 1 3 / 4 . z )[...]
-
Página 81
Fractions 5–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The denomi nator i s no gr eater than 40 9 5 . The f r action is r educed as f ar as po ssible . Examples: Thes e are exampl es of e ntered value s and the resulting displays. For comparison , the internal 12–[...]
-
Página 82
5–4 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This diagram show s how th e displayed fr action relates to nearby value s — S means the exact nume rator is "a little abov e" the displayed numerator, an d T means the exa ct numer ato r is "a [...]
-
Página 83
Fractions 5–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Keys: Displa y: Description: 14 * ... + Calculates e 14 . { ) Shows all decimal digits. H A ... + Stores [...]
-
Página 84
5–6 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m the de fa ult if y ou u se 40 9 5 or gr eater .) This als o tur ns on F r acti on–dis pla y mode . The /c function uses the absolute v alue of the intege r part of th e num ber in the X–register. It doesn&ap[...]
-
Página 85
Fractions 5–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m You can chan ge flags 8 and 9 to set the fraction form at using the steps listed here. (Because f lags are especiall y usefu l in program, their use us covere d in detail in chapter 13.) 1. Pr ess { x to get the f lag m[...]
-
Página 86
5–8 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table sh ows ho w different num bers are displayed in the three fraction form ats for a / c value of 16 . Number En tered and Fractio n Display ed Fraction Format 2 2.5 2 2 / 3 2.9999 2 16 / 25[...]
-
Página 87
Fractions 5–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and 9. The accurac y indicator turns o ff if the fract ion m a tches the decimal representation exactly . Oth erwise, th e accuracy indicator stay s on, (See "Accuracy Indicators" ear lier in this chapte r.) I[...]
-
Página 88
5–10 Fractions Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When you're evaluating an equation an d you'r e prom pted for variable values, you may enter fractions — v alues are displayed using the current display format. See chapter 6 for information about w[...]
-
Página 89
Entering and Evalua ting Equations 6–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 6 Enteri ng and Ev aluat i ng Equations How Y ou Can Use Equati ons You can use equati ons on th e HP 32SII in several way: F or s pec if y ing an equation to e valuate (this c hapter ) . ?[...]
-
Página 90
6–2 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K ¾ Begins a new equation, turnin g on the " ¾ " equation–entry cursor. K turns on the A..Z annunciator so you can enter a variable name. V { c #/¾ K V types # and m[...]
-
Página 91
Entering and Evalua ting Equations 6–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: Prompts for D first; value is the current value of D . 2 1 2 @ + Enters 2 1 / 2 inches as a fraction. f @ value Stores D , prom pts fo[...]
-
Página 92
6–4 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Key Operation { G Ente rs and leav es Equation m ode. Evaluates the displayed equati on. If the equation is an assignment , evaluates the right–ha nd side and stores the result in t[...]
-
Página 93
Entering and Evalua ting Equations 6–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter an equatio n: 1. Mak e sur e the cal c ulato r is in it s nor mal ope r at ing mode , usuall y w ith a number in the display . F or e x ampl e , y ou can't be v ie w ing the catal [...]
-
Página 94
6–6 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To enter a num ber in an equation , you can use th e st andar d numb er–entry keys, in cludin g , _ , and ` . Press _ only after you type one or more dig its. Don't use _ for s[...]
-
Página 95
Entering and Evalua ting Equations 6–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ar ent h eses i n Equations You can include parenth eses in equati ons to control t he order in which operations are performe d. Press { and { ] to inse rt pa renth eses. (For more in format[...]
-
Página 96
6–8 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To display equatio ns: 1. Pr ess { G . This acti v ates E quation mode and turns on the EQN annunc iator . T he display sh o ws an en try fr om the equati on list: ! [...]
-
Página 97
Entering and Evalua ting Equations 6–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m right. < /ºº 1!. Shows one character to the left. Leaves Equation mode. Editin g a nd C l eari ng Equation s You can edit or clear an equation that you're ty [...]
-
Página 98
6–10 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To clear a saved equat ion: 1. Dis pla y the desir ed eq uati on . (See "Dis pla y ing and S electing E quati ons" abo v e.) 2. Press z b . T he displa y sho w s the pr e v iou[...]
-
Página 99
Entering and Evalua ting Equations 6–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exp re ssions. Th e e qu a ti on d o es not contain an "=". F or e x ample , x 3 + 1 is an e xp r ession. Wh en yo u're calculatin g with an e quation, you might use any ty p[...]
-
Página 100
6–12 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following table shoves the tw o ways to evaluate equations. Type of Equation Result for Result for W Equality: g (x) = f(x) Example: x 2 + y 2 = r 2 g (x) – f(x) x 2 + y 2 – [...]
-
Página 101
Entering and Evalua ting Equations 6–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If th e equa tion is an assignment , onl y the r ight –hand si de is ev aluated . The r esul t is returned to the X–r egister and stored in the left –hand v ar iable , then the v ar i[...]
-
Página 102
6–14 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Us i ng XE Q f o r E v a l ua t i on If an equatio n is displayed in th e equation list , you can press W to evalu ate the e quation . The en tire eq uation is evaluated, re gardless of [...]
-
Página 103
Entering and Evalua ting Equations 6–15 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T o l ea v e t he number unc hanged , just p r ess f . T o c h ange t he n umber , t y pe the n ew nu mber an d pre ss f .This ne w n umber w r ites o v er t he old v alue i n the X–r[...]
-
Página 104
6–16 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Order Opera tion Example 1 Fun ctions an d Parentheses 1%-2 , 1%-2 2 Una ry Minus ( _ ) . 3 Power ( 0 ) %: 4 Multiply and Divide %º& , ª 5 Add a[...]
-
Página 105
Entering and Evalua ting Equations 6–17 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Eq uatio n Fu nc tion The following table lists the functions that are valid in equat ions. A ppe ndix F , "Operation Index," also g ives this inform ation. LN LOG EXP AL OG SQ SQRT I[...]
-
Página 106
6–18 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 01.% .2 01% 1.&22 Six of the equation functi on s have names that d iffer from their equ ivalent RPN operations: RPN Operation Equation function x 2 SQ e x[...]
-
Página 107
Entering and Evalua ting Equations 6–19 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sin g le lett er name No impl ie d multipl i c ati on Di v isi on is done be f or e addit i on Pa r e n t h eses use d to g ro u p items P=A+B+Hx(1 SI N(T)+1 SIN(F )) ÷ ÷ Th e next equat ion [...]
-
Página 108
6–20 Entering and Evaluating Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m /)ºº:º 1 π ª2ª 1 π ª2 Notice how the operators and functi ons combi ne to g ive the de sired equation. You can enter the e quation into [...]
-
Página 109
Entering and Evalua ting Equations 6–21 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The checksum an d length allow you to verify th at equations yo u type are correct. The checksum and length of the equation you ty pe in an example should match the values sh own in this manual[...]
-
Página 110
[...]
-
Página 111
Solving Equations 7–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 7 So lving Eq ua tions In chapter 6 you sa w how you can use to find the value of th e left–han d v ariab le in an assignment –type equation. W ell, yo u can use S OLVE to find the value of any variable [...]
-
Página 112
7–2 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f or a v alue fo r e v ery other v ar iable in the eq uatio n . 3. F or each pr ompt , enter the desir ed v alue; If the displa ye d c lue is the one y ou w ant , pr es s f . If y ou w a nt a dif[...]
-
Página 113
Solving Equations 7–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m or current equation K D { c K V y K T /#º!-¾ Starts the equation. .5 y K G y K T 0 2 !-)ºº!: _ /#º!-)ºº! Terminates the equation and displays the left en[...]
-
Página 114
7–4 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f # !/) Retain s 9.8 in G ; prom pts for T . Example: Solv ing the Id eal Gas Law Eq uation. The Ideal Gas Law descri bes the re lationsh ip betw een pressure , vol[...]
-
Página 115
Solving Equations 7–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 24 273.1 !@) Calculates T (Kelvins). f #O /) Stores 297.1 in T ; sol ves for P in atmospheres. A 5–liter flask contains n itrogen g as. The p[...]
-
Página 116
7–6 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m When SOLVE eval uates a n equatio n, it does i t the sa me way W does — any "=" in the equation is treate d as a " – " For example , the Id eal Gas Law equation is evaluated as P [...]
-
Página 117
Solving Equations 7–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ro o t. I f the X– a nd Y–r e gister v alues are close together , and t he Z–register v alue is c lose to z er o, the estimate fr om the X– r eg ister may be an appr o x imation to a r oot . Inte r r[...]
-
Página 118
7–8 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m to ent er gu esses before solv i ng for T be ca us e in the f irst part of that e x ample y ou stor ed a v al ue f or T and sol ved f or D. The v alue that w as left in T w as a good (r ealisti c) one , [...]
-
Página 119
Solving Equations 7–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If H is the h eight, then th e le ngth of the box is (80 – 2 H ) and th e widt h is (4 0 – 2 H ). The volum e V is: V = ( 80 – 2 H ) × (40 – 2 H ) × H which you can simplify and enter as V = ( 40 – H[...]
-
Página 120
7–10 Solving Equations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m { G #/1.2º Displays current equation. { H #@ value Solves for H ; prom pts for V . 7500 f /) Stores 7500 in V ; solv es for H . Now check th e quality [...]
-
Página 121
Solving Equations 7–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 75 0 0 _ (4 0 _ ) ( 2 0 _ ) 4 HH H 20, 000 _ 10, 000 50 H _ 10 For M ore I n form at ion This chapt er gives you ins tructions f or solving for un knowns or roo ts over a wide ran ge of appl ication s. Appen di[...]
-
Página 122
[...]
-
Página 123
Integrating Equations 8–1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 8 Integ rating Equ ation s Many pro blems in m athematics, scie nce, an d engineering require calculating the definite in tegral of a function – If the function is denoted by f(x) an d the interval of int[...]
-
Página 124
8–2 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ) works only with real num bers. Int egr ati ng Equa ti ons ( ∫ FN ) To Integrat ing Equations: To integrate an equation: 1. If the equati on that d ef ines the integr and's f u nc tio n isn't s[...]
-
Página 125
Integrating Equations 8–3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To integrate the same equation w ith different information: If you use the same limits of int egration, pr ess 9 9 move them into the X– and Y–registers. Then star t at step 3 in the above list. If you [...]
-
Página 126
8–4 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Leaves Equation mode. Now integrate this function with respect to t fro m zero to π ; x = 2. Keys: Displa y: Description: z { } Selects Radians mode. 0 { M ) En[...]
-
Página 127
Integrating Equations 8–5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Sine Integral. Certain problems in comm unications theo ry (for exam ple, pulse transmission through idealized networks) require calculating an in tegral (sometim es called the sine integral) of th[...]
-
Página 128
8–6 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 2 _ Enters lim its of integration (low er first). { G 1%2ª% Displays the current equation. { ) X !! ∫ /) Calculates the result for S[...]
-
Página 129
Integrating Equations 8–7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte r pretin g A cc uracy After calculating the integral, the calculator places the e stimated uncertaint y of that in tegr al's result in th e Y–reg ister. Press Z to view the va lue of th e uncert[...]
-
Página 130
8–8 Integrating Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m integration calculation decr ea ses by a factor of ten for each additional digit, specified in the display format. Example: Ch ang ing th e Accu racy. For the integral of Si(2) just calculated, spec ify tha[...]
-
Página 131
Integrating Equations 8–9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For M ore I n form at ion This ch apter gives yo u instruction s for us ing integration in th e HP 32SI I ove r a wide rang e of applic ations. A ppendix D c ontain s mo re de tailed info rmation about how [...]
-
Página 132
[...]
-
Página 133
Operations with Comb Numbers 9–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 Oper at i o ns wi t h C omb Numbe rs The HP 32SII can use comple x numbers in the form x + iy . It has oper ations for complex arithmetic (+, –, × , ÷ ), complex trigon ometry ( sin, cos, tan), [...]
-
Página 134
9–2 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T t iy 1 Z z Z 1 x 1 Y y iy 2 X x Z 2 x 2 Real Stack Complex Stack Since the im aginary and real p arts of a compl ex numb er a re ent ered and stored separately, you can easily work with or a[...]
-
Página 135
Operations with Comb Numbers 9–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Compl e x O per at ions Use the com plex operations as you do real operati ons, but p recede the operator with z F . To do an operation wit h on e complex num ber: 1. Enter the com plex n umber z , co[...]
-
Página 136
9–4 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m To do an arithmetic o peratio n with two co mplex num bers: 1. Enter the first com plex n u mber , z 1 (c ompo sed of x 1 + i y 1 ), b y k e y in g i n y 1 x 1 . (F or 2 1 z z , k ey i[...]
-
Página 137
Operations with Comb Numbers 9–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z 1 × [1 ÷ (z 2 + z 3 )] Keys: Displa y: Description: 1 2 _ 3 _ 4 z F ) Add z 2 + z 3 ; displays real part. z F 3 ) 1 ÷ (z 2 +z 3 )[...]
-
Página 138
9–6 Operations with Comb Numbers Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 1 0 2 _ z F 0 ) Intermediate result of (1 + i ) –2 z F * ) Real part of final results. Z .) Final result is 0.8[...]
-
Página 139
Operations with Comb Numbers 9–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Add th e follow ing th ree load s. You w ill first ne ed to co nvert th e polar coordinates to rectangular coordinates. y 1 8 5 l b 62 o 1 0 0 l b 26 1 o 1 70 l b 1 4 3 o L 1 L 2 L 3 x Keys: Displa y:[...]
-
Página 140
[...]
-
Página 141
Base Conversions and Arithmetic 10–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 10 Base Conversions a nd A r ithm etic The BASE me nu ( z w ) lets you change the number base used f or entering n umb ers and othe r operat ions (including program ming). C hanging bases also con[...]
-
Página 142
10–2 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m w { % } of the decimal num ber to base 16 and displays this value. z w { } Base 8. z w { } Base 2. z w { } )[...]
-
Página 143
Base Conversions and Arithmetic 10–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Arithmetic in base s 2, 8, and 16 is in 2's compl ement form and us es integers only: I f a number has a fr act ional par t , on l y the in teger part is use d fo r an ar ithmetic calc ul[...]
-
Página 144
10–4 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m annunciator on. z w { } 1001100 _ Changes to base 2; BIN annunciator on. This terminates digit entry, so n o is needed betw een the numbers. [...]
-
Página 145
Base Conversions and Arithmetic 10–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 546 z w { % } Enters a positive, decimal number; then con verts it to hexadecimal. _ 2's complem ent (sign changed). z w { } [...]
-
Página 146
10–6 Base Conversions and Arithmetic Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If a number entered in dec imal base is outside the range given abo ve, then it produces t he message ! in the oth er bas e modes. Any operation using ! cau[...]
-
Página 147
Base Conversions and Arithmetic 10–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ( ))) ). Press { to view t he digits obscur ed by the / … or @ …label. Keys: Displa y: Description: z w { } 123456712345 _ Enters a large[...]
-
Página 148
[...]
-
Página 149
Statistical Operations 11–1 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 11 Sta tistical O pe ra tions The statis tics m enus in the HP 32SI I provid e functi ons to st atistically analyze a set of one– or two–variable data: Mean , sam ple and po pulati on s tandar d de[...]
-
Página 150
11–2 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E n te rin g On e – V a ria b l e D a ta 1. Pr ess z b { Σ } to c lear e x isting statis tical data . 2. Ke y i n e a c h x –value an d pr ess 6 . 3. The displa y sho ws n , the n umber of s t[...]
-
Página 151
Statistical Operations 11–3 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C orrec ting Errors in D a ta E n tr y If you ma ke a mist ake wh en entering stat istic al data, delete the inco rrect data and add the correct data. Even if only one valu e of an x , y –pair is incorre[...]
-
Página 152
11–4 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4 20 z 4 ) Deletes the first data pair. 5 20 6 ) Reenters the first data pair. There is still a. total of two data pairs in the statistics registers. S t[...]
-
Página 153
Statistical Operations 11–5 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y –v alues as w eigh ts or fr equenc ies. T he we ights can be integers or non–inte gers. Example: Mean (One Variable). Production supervisor May K itt wants to determ ine the av erage time that a cert[...]
-
Página 154
11–6 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1000 4. 1 6 ) Four data pairs accumulated. { / { · º } ) Calculates the mean price weighted for the quantity purchased. Sampl e S t andar d Dev i at io[...]
-
Página 155
Statistical Operations 11–7 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P opul at ion S t andar d De v iat i on Population standard deviation is a m eas ure of how dispersed the data values are about the mean . Pop ulation standar d deviat ion assumes the data constitutes the [...]
-
Página 156
11–8 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m L.R. (Linear Regression) Menu Menu Label Description { º ˆ } Estimates (predicts) x for a given hypothetical value of y , based on the line calc ulated to fit th e data. { ¸ ˆ } Estimates (pred[...]
-
Página 157
Statistical Operations 11–9 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m data. 4.63 0 6 5.78 20 6 6.61 40 6 7.21 60 6 ) ) ) ) Enters data; displays n . 7.78 80 6 ) Five[...]
-
Página 158
11–10 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m x 0 2 0 4 0 6 0 8 0 8. 50 7. 5 0 6.5 0 5.5 0 4. 50 r = 0 . 9 8 8 0 m = 0 . 0 3 8 7 b = 4 . 8 5 6 0 (7 0 , y ) y X What i f 70 kg of nitrogen fertili zer were a pplied to th e rice field ? Pr edict[...]
-
Página 159
Statistical Operations 11–11 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Normalizing Close, Large Numbers The calculator might be unab le to correctly calculate the standard deviation and linear regression for a variable wh ose data v alues differ by a relatively small amount.[...]
-
Página 160
11–12 Statistical Operations Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P r ess { º }, { ¸ }, and { º¸ } to r ecall t he sums of the square s and the su m of the pr odu cts o f the x and y — v alues that ar e of in ter es t w hen perf ormin g other s[...]
-
Página 161
Statistical Operations 11–13 F ile n am e 3 2s ii-M a n ual-E -04 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If not en ough calculator m emory is av ai lable to hold the st atistics registers when you first press 6 (or 4 ), the calculator displays & " . You will ri ved to clear v[...]
-
Página 162
Statistics Programs F i l e name 3 2si i- Man ual -E-04 2 4P age: 14/16 2 Pr inted D ate : 20 0 3/4 /2 4 Si z e : 17 .7 x 2 5 .2 cm Part 2 Programm i ng[...]
-
Página 163
Simple Programming 12–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 12 Si mpl e P ro gr ammi n g Part 1 of this man ual introduce d you to functions an d operations that you can use ma nual ly , that is, by pressing a key fo r ea ch individual oper a tion. And you saw [...]
-
Página 164
12–2 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This very si mple program assumes that th e value for the radius is in t he X– registe r (the di splay) w hen t he progr am st arts to run . It computes the area an d leaves it in the X–reg ister. [...]
-
Página 165
Simple Programming 12–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Pr ogr am Boundar i es (LBL and RT N ) If you want more than one progr am stored in program memory, then a program need s a label to mark its be ginning (suc h as ) and a return[...]
-
Página 166
12–4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m U sing RP N an d Eq ua tion s in Pro gra ms You can calculate in programs the sam e ways you calculate on the. keyboard: Us in g R PN op er at ions (which wor k wi th the stack , as explained in ch[...]
-
Página 167
Simple Programming 12–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m For output, you can display a variable with the VIEW instruc tion, you can display a me ssage derive d from an e quation, or you can leave un marked values on the stack. These are cov e red later in th[...]
-
Página 168
12–6 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 5. End t he pr ogr am w i th a re t u r n instr ucti on , w hi ch s ets th e pr ogr am po inter bac k to ! after the pr ogr am r uns . Pr ess { . 6. Pr ess (or z d ) to can [...]
-
Página 169
Simple Programming 12–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F unc t i on N am es i n Pr ogr ams Then name of function that is used in a program line is not necessarily the same as the function's n ame on its ke y, i n its m enu, or in an e qua tion. Th e n[...]
-
Página 170
12–8 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A di fferen t chec ksum means th e progra m was not entered exactly as given here. Example: Enter ing a Progr am with a n Equat ion. The following program calculates the ar ea of a circle using an equa[...]
-
Página 171
Simple Programming 12–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exec ut ing a Pr ogr am (XE Q ) Press W label to execute the program labeled with th at letter. If there is only one prog ram in m emor y, you ca n also execute it by pressing z U f ( run / sto[...]
-
Página 172
12–10 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m only pr ogr am , y ou can pre ss z U to mo ve to its beginning .) 3. Pr ess and hold z . T his di spla ys the c urr ent pr ogram line. W h en y ou release , the line is e x ecuted . Th[...]
-
Página 173
Simple Programming 12–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Ent er ing and Di spl ay i ng Data The calculator's variables are use d to store data in put, intermediate results, and final results. (V ariabl es , as ex plained in chap te r 3, are identified [...]
-
Página 174
12–12 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m "R" is the variable's name, " ? " is the prom pt for information, and 0.0000 is the curren t value stored in the variable . Press f (run/stop) to resume the program . The valu[...]
-
Página 175
Simple Programming 12–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T hu s the pr ogram sho uld no t assum e that the X–, Y–, an d Z–r egis ter s' contents will be t he same b ef o r e a n d after the INP UT instr uctio n. If y ou coll ect , a ll th e data [...]
-
Página 176
12–14 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Usin g VI E W fo r Di spl ay i ng Data The programm ed VIEW in struction { variable stops a runni ng program and displays and iden tifies the contents of the given variable, such as /)[...]
-
Página 177
Simple Programming 12–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m press { G to start the equation. Press number and ma th keys t o get numbers and sym bols. Press K before each let ter. Press to en d the equation. If flag 10 is set, equations ar e displayed inst[...]
-
Página 178
12–16 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Des cription: π º:º { / ) Checksum and leng th of equation . H V ! # Store the volume in V . { G 2 y?[...]
-
Página 179
Simple Programming 12–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now fin d the volume an d surface area –of a cylinder with a radius of 2 1 / 2 cm and a h eight of 8 cm . Keys: Displa y: Description: W C @ value Starts executing C ; prompts for R . (It dis[...]
-
Página 180
12–18 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Sto p p i ng o r I n te rru p ti n g a Pr og ra m Pr ogra m ming a S t op or P ause (S TO P , PSE) Pre ssing f ( ru n / stop ) dur i ng pr ogram e ntr y inserts a S T OP i nstru ctio n . T his w i[...]
-
Página 181
Simple Programming 12–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Editin g Program You can modify a progr am in program memory by inser ting, delet ing, and editing program lines. If a program line contain s an eq uation, y ou can edit the equation— if any other p[...]
-
Página 182
12–20 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m then en ter the de sir ed corr ecti ons . 4. Pre ss to end the equati on . Pr o gr a m M e mor y View ing P rog ram Mem or y Pressing z d toggles the calc ulator into and out of pro gram en try ( [...]
-
Página 183
Simple Programming 12–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m which use only 1 .5 b ytes. Al l ot her inst ruction s use 1 .5 b ytes. Equations use 1.5 b y tes , plus 1. 5 b ytes for each function , plus 9 . 5 or 1.5 b ytes f or eac h n umber . E ac h &q[...]
-
Página 184
12–2 2 Si mple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C l ear ing O n e or M o r e Pr ogr am s To clear a specific program fr om memory 1. Press z X { } and di splay (using z and z ) the label of the pr ogr am . 2. Pr ess z b . 3. Pre[...]
-
Página 185
Simple Programming 12–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m (hold) If your checksum does not match this nu mber, then you have not entered th is program correctly. You w ill see that all of the ap plicatio n program s pro vided in cha pters 1 5 through 17 inc[...]
-
Página 186
12–2 4 Simple Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Se l ec ting a B a se M o d e in a P rog ram Insert a BIN, O CT, or HEX instruction into the beginnin g of the pro gram. Y ou should us ually i nclude a DEC ins tructi on at the end of the program so[...]
-
Página 187
Simple Programming 12– 2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m P ol y nomial Expr es sions and Hor n er' s M et hod Some expressions, such as polynom ials, use the sam e variable se veral times for their solution. For ex ample, the expression Ax 4 + Bx 3 +[...]
-
Página 188
12–2 6 Simpl e Programming Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! ! 5 y º 5 x . 2 - 5 x + 2. y º (5 x + 2) x . y º[...]
-
Página 189
Simple Programming 12–2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! º - º - º - º ?[...]
-
Página 190
[...]
-
Página 191
Programming Techniques 13–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 Programm i ng Techni ques Chapter 12 covered the basics of progra mm ing. This cha pter expl ores m ore sophisticated but useful tech niques: Using su br outines t o simplify pr og r ams b y[...]
-
Página 192
13–2 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A routine typically starts wi th a label (LBL) and en ds with an instruction that alters or s tops program executi on, such as RTN, GTO, or ST OP, or perhaps another label. Call i ng Subr outi n es[...]
-
Página 193
Programming Techniques 13–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Starts here. "! % % 1 Calls subroutine Q. ! 2 Return here. #$ ! [...]
-
Página 194
13–4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Nested Subroutine. The following subroutine, labeled S, calculates the value of the expression 2 2 2 2 d c b a + + + as part of a larger calculation in a large r program. The subroutine [...]
-
Página 195
Programming Techniques 13–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Bran c hin g (G T O) As we have seen with subroutines, it is often desira ble to tran sfer execut ion to a part of the program other than the nex t line. This is called branching. Uncon ditional br[...]
-
Página 196
13–6 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Can start here. . . . ! ' 1 Branches to Z. Can start here. . . . ! ' 1 Branches to Z. [...]
-
Página 197
Programming Techniques 13–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Condit ional I nst r uc t ions Another w ay to alter the sequen ce of program ex ecution is by a con dition al test , a true/ false test that co mpare s tw o n umber s and skips the n ext program i[...]
-
Página 198
13–8 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Tests o f Compari s on ( x ? y, x ? 0) There are 12 com parisons av ailab le f or programmi ng. Pr essing z l or { n displays a. menu for one of the two categories of tests: x ? y fo r tests co[...]
-
Página 199
Programming Techniques 13–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! º < ¸@ Tests to see if the corre ction is significant. ! ! ! Goes back to start of loop if correction is significant. C ontinues if correction is n ot significant. ! [...]
-
Página 200
13–10 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m tested . F l ags 5 and 6 all o w yo u to c ontr ol ov erflo w conditions that o cc ur durin g a pr ogram . Setting flag 5 s tops a pr ogra m at the line j ust after the line that cau sed the o v e[...]
-
Página 201
Programming Techniques 13–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 4. If the n e xt pr ogr am line is a P SE ins tru ctio n, e x ec utio n co ntinue s afte r a 1–second pa us e . T he s tat us of flag 10 is co ntr olled o nl y b y e x ec utio n o f the SF and C[...]
-
Página 202
13–12 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Using Flags Pressing { x displays the F LAGS menu: { } { } { @ } After sele cting the fun ction yo u w ant , you will be prompted for the flag num ber (0 –11). F or ex am ple, pre[...]
-
Página 203
Programming Techniques 13–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Line L0 3 s ets f l ag 0 so th at line W 0 7 t ak es the na tur al log of th e X–in put f or a L ogarithm ic–m odel c ur v e. Line E04 sets flag 1 so that li ne W1 1 tak es the natural[...]
-
Página 204
13–14 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: Controlling th e Fraction Display. The following program lets yo u exercise the calc ulator's fraction–display capability. The program prom pts for and uses your inputs for a fract[...]
-
Página 205
Programming Techniques 13–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description: ! Sets f lag 8. ! Displays message, then sh ows the fraction. ?[...]
-
Página 206
13–16 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: c + format (denominator is factor of 16), then shows the fraction . f % c + Message indicates the fraction [...]
-
Página 207
Programming Techniques 13–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program lines: Description: "! "! Checksum and leng th: 6157 004.5 It is easie[...]
-
Página 208
13–18 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m . . . %! variable A DSE in struction is like a FO R–NEX T loop with a n egative incre ment. After pressing a shifte d key for IS G or D SE ( z k or { m ), you will be prompted f or a vari [...]
-
Página 209
Programming Techniques 13–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1 $ $ . . . $ 2 1 $ ! $ $ % % 2 If current value > final value, continue loop. . . . If current value ≤ final value, [...]
-
Página 210
13–20 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Indir ec tl y A ddr es sing V ar iabl es and L abels Indirect ad dre ssing is a tech nique used in advanced programming to specify a variable or label w ithout specif ying before hand exactl y whi[...]
-
Página 211
Programming Techniques 13–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T h e I ndir ec t A ddr es s, (i ) Many fun ctions that use A through Z (as variables or labels) can use to refer to A th rough Z (v ariables or labe ls) or statis tics r egisters in directly [...]
-
Página 212
13–2 2 Progra mming Techni ques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m STO ( i ) RCL ( i ) STO +, –, × , ÷ , ( i ) RCL +, –, × , ÷ , ( i ) XEQ ( i ) GTO ( i ) X<> ( i ) INPUT ( i ) VIEW ( i ) DSE ( i ) ISG (i) SOLVE(i) ∫ FN d(i) FN= (i) Pr ogra m C[...]
-
Página 213
Programming Techniques 13–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and line Y 08 c alls a differe nt subroutine to compute x ˆ after i h as been increased by 6: & & !- L & % 1 L 2 If i hold: Then XEQ(i) ca lls: To: 1 L[...]
-
Página 214
13–2 4 Programming Techniques Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ! L Stores loop–control number in i . The n ext rout ine is L, a loo p to collect al l 12 know n valu es for a 3x3 coefficient matrix (variables A – I ) and th e three co nstants[...]
-
Página 215
Programming Techniques 13–2 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Disables equation pro mpting. ) Sets counter for 1 to 26 . ! L Stores counter. Initializes sum . Checksum and leng th: EA5[...]
-
Página 216
[...]
-
Página 217
Solving and Integrating Programs 14–1 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 14 So lving a nd Integ rating Programs Sol v i ng a Pr ogra m In chapter 7 you saw how you can enter an equati on — it's added to the equation list — and then solve it fo r any variable[...]
-
Página 218
14–2 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. Inc lude an INP UT instr uc tio n f or each var iable , inc luding the unkno wn . INP UT ins tr uc tions ena ble y ou t o so l v e fo r an y v ar i able in a mu lti–v ar ia ble functi on . [...]
-
Página 219
Solving and Integrating Programs 14–3 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m R = The universal gas co nstant (0.0821 liter–atm/mole–K or 8.314 J/mole–K). T = Temperature (kelvins; K = °C + 273.1). To begin, put the calculator in Pr ogram mode; i f necessary, posit[...]
-
Página 220
14–4 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m unknown variable. { P #@ value Selec ts P ; prompts for V . 2 f @ value Stores 2 in V; prompts for N. .005 f @ value Stores .005 in N ; prom pts for R . .0821 f !@ value ?[...]
-
Página 221
Solving and Integrating Programs 14–5 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Now calculate the chang e in pressure of the carbon dioxide if its tempe rature drops by 10 °C from th e previous ex ample. Keys: Displa y: Description: H L ) Stores previo us[...]
-
Página 222
14–6 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m before displaying it). If you do want this result di splayed, add a VIEW variable instruction after th e SOLVE instruction. If no solution is foun d for the unknown variable, then the next progr[...]
-
Página 223
Solving and Integrating Programs 14–7 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Inte grat ing a P rogram In chap ter 8 you saw how you can enter an equation (or expres sion) — i t's added to the list of e quations — an d th en integrate it wi th respect to any vari[...]
-
Página 224
14–8 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m is ignor e d b y t he calculator , so y ou need to w rite onl y one pr ogram that cont ains a sep ara te I NP UT inst ruction for ever y v ar iable (including the v ari able o f integr atio n). [...]
-
Página 225
Solving and Integrating Programs 14–9 F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m z { } Selects Radians mode. { V S Selects label S as the integrand. 0 2 _ Enters lower and upper lim its of integration . { ) X !! ?[...]
-
Página 226
14–10 Solving and Integrating Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The 2 ) ) (( 2 ÷ ÷ − S M D e function is calcul ated by the routine l abeled F. Other routines prompt for th e kno wn values an d do th e other calcul ation s to find Q(D) , the uppe r–ta[...]
-
Página 227
Mathematics Programs 15–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 15 Ma t hem atics Progra ms Ve c t o r O p e r a t i o n s This program performs the basic vector operations of addition, subtraction , cros s product , and dot (o r sca lar ) product. T he program u[...]
-
Página 228
15–2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m This program uses the following equation s. C oordinate conversion: X = R sin( P ) cos( T ) R = 2 2 2 Z Y X + + Y = R sin( P ) sin ( T ) T = arctan ( Y / X ) Z = R co s( P ) P = arctan 2 2 Y X Z + Ve[...]
-
Página 229
Mathematics Programs 15–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description Defin es the beginning of th e rectang ular input/display routine. "! % Displays or accepts input of X . [...]
-
Página 230
15–4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description º65¸ ! & Saves Y = R sin( P ) sin( T ). ! Loops back for another display of polar form. Checksum [...]
-
Página 231
Mathematics Programs 15–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ! % Saves X + U in X . # - & ! & Saves V + Y in Y. [...]
-
Página 232
15–6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description º # . ! ' Stores ( XV – YU), which is the Z component. ¶ ! &[...]
-
Página 233
Mathematics Programs 15–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description ¶ ª Divides previous result by the magnitude. Calc ulates angle. ! #[...]
-
Página 234
15–8 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 3. Ke y i n R an d pr ess f , k e y in T and pr es s f , the n k e y in P and press f C ontin ue at step 5 . 4. Ke y i n X and pr es s f , k e y in Y and p r ess f , and k e y in Z an d pr es s f . 5[...]
-
Página 235
Mathematics Programs 15–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m rectangular to polar conver sion capabil ity to find the total di st a n ce a n d the direction to the transmitter. N ( y ) S W E (x) An te n na Tra n s m i t t e r 7. 3 15 .7 Keys: Displa y: Des cri[...]
-
Página 236
15–10 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 2: What is the moment at the or igin of the lever sho wn below ? Wha t i s t h e componen t of force along the lev er ? Wh at is th e ang le betw een the result ant of the force vectors and [...]
-
Página 237
Mathematics Programs 15–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 74 f @) Sets P equal to 74. W A @) Adds the vectors and displays the resultant R . f !@) Displays T of resultant v ector. f @?[...]
-
Página 238
15–12 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m W D /) Calculates dot product. f /) Calculates angle between resultant force vector and lever. f @) G ets back to input routin e.[...]
-
Página 239
Mathematics Programs 15–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description Starting point for input of co efficients. ) Loop–control value: loops from I to 12, one at a time. [...]
-
Página 240
15–14 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description º . ! ' Calculates H' × determinant = BG – AH. ?[...]
-
Página 241
Mathematics Programs 15–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description º º . ! Calculates G' , ?[...]
-
Página 242
15–16 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % Sets index value to point to last element in second row. % Sets index value to point to l[...]
-
Página 243
Mathematics Programs 15–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description Checksum a nd length: 4E79 012.0 This routine calculates the determinant. º ?[...]
-
Página 244
15–18 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 348 bytes: 212 for pr ogram, 136 fo r variable s. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W A to inpu t coef[...]
-
Página 245
Mathematics Programs 15–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: For the system below , compute th e invers e and the system solution . Review the inverted m atrix. Invert the matrix ag ain and review the result to mak e sure that the original matrix is [...]
-
Página 246
15–20 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f @.) Displays next value. f @) Displays next value. f @) Displays next value. W I ) Inverts inverse to produce origi[...]
-
Página 247
Mathematics Programs 15–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m b 0 = a 0 (4 a 2 – a 3 2 ) – a 1 2 . Let y 0 be the largest re al root o f the above cubic. Then the fourth–ord er polynomial is reduced to two quadratic polyn omials: x 2 + ( J + L ) × + ( K[...]
-
Página 248
15–2 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !1L2 Starts root finding routine. Checksum and leng th: CE86 010.5 Evaluates polynomials usin g Horner's m ethod, and s[...]
-
Página 249
Mathematics Programs 15–2 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ª a 1 /2. -+. – a 1 /2. ! ! Saves – a 1 /2. ! Stores[...]
-
Página 250
15–2 4 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % Solv es rem ainin g secon d–orde r polyn omial and store s roots. #$ % Displays real root of cubic. ! [...]
-
Página 251
Mathematics Programs 15–25 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description -+. b 2 = – a 2 . ! Stores b 2 . a 3 . º a 3 a 1 . ?[...]
-
Página 252
15–2 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !ª K = y 0 /2 % +º Creates 1 0 –9 as a lower bo und for M 2 K [...]
-
Página 253
Mathematics Programs 15–2 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description polynomial. J . . J – L . K . . K – M . Checksum a nd length[...]
-
Página 254
15–28 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: Flag 0 i s used to rememb er if t he root is real or com plex (that is, to re mem ber the sign of d ). If d is negative, then flag 0 is set . Flag 0 is test ed later in the program to as[...]
-
Página 255
Mathematics Programs 15–2 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 2. K e y in the pr ogr am r outine s; pr ess whe n d o n e. 3. Pre ss W P to s tart the poly nomi al r oot finder . 4. K e y in F , the or der of the pol yn omi al , and pr ess f 5. At eac h pr[...]
-
Página 256
15–30 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Exampl e 1: Find the roots of x 5 – x 4 – 101 x 3 +101 x 2 + 100 x – 100 = 0. Keys: Displa y: Description: W P @ value Starts the polynomial root finder; prompts for order. 5 f @ val[...]
-
Página 257
Mathematics Programs 15–31 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 22 @ value Stores –10/4 in B ; prompts for A. 4 p f %/) Stores 22/4 in A ; calculates the first root. f %/) Calculates the second root. f %/.)?[...]
-
Página 258
15–3 2 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The following formulas are us ed to co nvert a point P fr om the Cartesian coordi nate pair ( x, y ) i n the old sys tem to the pair ( u , v ) in the new, translate d, rotated system. u = ( x – m[...]
-
Página 259
Mathematics Programs 15–33 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y ' x x' [] m, n New coordinate s y stem Old coor di nate s y stem [0, 0] x P u y v θ Program Listing: Program Lines: Description This routine de fines the ne[...]
-
Página 260
15–34 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description "! % Prompts for and stores X , the old x –coordinate. "! & Prompts for and stores Y , the old y –coordinate.[...]
-
Página 261
Mathematics Programs 15–3 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! % Stores the x –coordinate in variable X . º65¸ Swaps the positions of the coordinates. ! & Stores the y –coordin[...]
-
Página 262
15–3 6 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 13 . Ke y i n U (the x –coor dinate in the new s y stem) and pr ess f . 14 . Ke y i n V (the y –coor dinate in the new s y stem) and pr ess f to see X . 15 . Pr es s f to see Y . 16 . F or a no[...]
-
Página 263
Mathematics Programs 15–3 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y y' x P 3 ( 6 , 8 ) P 1 ( _ 9, 7 ) P 2 ( _ 5, _ 4) P' 4 (2 .7 , _ 3. 6 ) (, ) = ( 7 , _ 4) T = 27 MN o (M, N ) T Keys: Displa y: Description: z { } Sets Degrees mode since[...]
-
Página 264
15–38 Mathematics Programs Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 9 _ f &@ value Stores –9 in X . 7 f "/.) Stores 7 in Y and calculates U . f #/) Calculates V . f %@.) Resume s the old–to–[...]
-
Página 265
Statistics Programs 16–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 16 Stat is ti c s Programs Cur v e Fi t ting This program can be used to f it one of four m ode ls of eq ua tions to your data. These models a re the st r aight lin e, th e log arithm i c curve, the e[...]
-
Página 266
16–2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m y x y B _ Mx = Stra i g ht Li ne F i t S y x y Be Mx = Ex p onen tial C urve F it E y x y B M I n x =+ Lo g arithmic C urve Fit L y x y Bx M = Pow e r C u r v e Fi t P To fit log arithmic curves, va lues o f[...]
-
Página 267
Statistics Programs 16–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description This routine set, the status for the straight–line m odel. Enters index value fo r later storage in i (for indire ct ad[...]
-
Página 268
16–4 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ' ! L Sto res the index value in i for indirect addressin g. ' Sets the loop counter to ze ro for the first input. Checksum a nd length: 8C2F 006[...]
-
Página 269
Statistics Programs 16–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description @ If flag 1 is seta takes the natural antilog of b . H % ! Stores b in B . #$ Displays valu e, [...]
-
Página 270
16–6 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !. L Restores index value to its orig inal value . & . ª Calculates x ˆ =( Y – B [...]
-
Página 271
Statistics Programs 16–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description This subroutine calculates x ˆ for the exponential model. !. L Restores index value to its orig inal value . [...]
-
Página 272
16–8 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Required: 270 bytes : 174 for p rogram, 96 fo r data (statistic. registers 48). Program instru ctions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W and s elect the ty pe [...]
-
Página 273
Statistics Programs 16–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m also used for scratch. M Regression coefficient (sl ope o f a straight line). R Correlation coefficient; al so used for scratch. X The x –value of a data pair wh en entering data; the hypothetical x[...]
-
Página 274
16–10 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@) Retrieves %@ prom pt. W U %@) Deletes the las t pair. Now proce ed with the correct data entry. 37.9 f &@) Enters correct x –value of [...]
-
Página 275
Statistics Programs 16–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Logarithmic Exponential Power To start: W L W E W P R 0. 9965 0.9945 0. 9959 M –139.0088 51.1312 8.9730 B 65. 8446 0.0177 0. 6640 Y ( y ˆ when X =37) 98.7508 98.5 870 98. 6845 X ( x ˆ when Y =101[...]
-
Página 276
16–12 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ∫ ÷ ÷ − − − = x x x x dx e x Q 2 ) ) (( 2 2 1 5 . 0 ) ( σ π σ This program uses the built– in integration feature of the HP 32SIl to integrate the equation of the n ormal fre quency cu rve. T[...]
-
Página 277
Statistics Programs 16–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! . ! % ! ! ! ¶ ! % Calculates the de rivative at X guess . ! ª ![...]
-
Página 278
16–14 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description ! Returns to the calling routine. Checksum and leng th: F79E 032 .0 This subroutine calculates th e integrand for the norm al functio[...]
-
Página 279
Statistics Programs 16–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Yom do riot n e ed to key in the inv erse routine (in routines I and T) if you are not in terested in th e inverse capability. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss w[...]
-
Página 280
16–16 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example 1: Your good f riend inf orms you that your blind dat e has "3 σ " intellige nce. You interpret this to me an that this pe rs on is m ore intellig ent th an th e local population except f[...]
-
Página 281
Statistics Programs 16–17 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f %@) Resume s program. 2 f /) Enters X –value of 2 and calculates Q ( X ). 10000 y ) Multi plies by th e pop ulati on fo r the revise[...]
-
Página 282
16–18 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0.8 f %/) Stores 0.8 (100 percent m inus 20 percent) in Q ( X ) and calculates X . G r ouped S t andar d Dev iati on The stan dard deviat ion of grouped data, S xy , is the stan dard de[...]
-
Página 283
Statistics Programs 16–19 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description !- 1 L 2 Updates ∑ i f in register 28. º % i i f x ! L Stores index for register 29 . ?[...]
-
Página 284
16–20 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Flags Used: None. Memory Required: 143 bytes: 71 for progra ms, 72 for data. Program Instructions: 1. K e y in the pr ogr am r outine s; pre ss wh en d on e. 2. Pr ess W S to start entering ne w data. 3[...]
-
Página 285
Statistics Programs 16–21 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m i Index variable used to in directly address the c orre ct statistics register. Register 28 S u m m a t i o n Σ f i . Regist er 29 S u m m a t i o n Σ x i f i . Re gi st e r 3 1 Su mmat ion Σ x i [...]
-
Página 286
16–2 2 Statistics Programs F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: f /) Displays the coun ter. f %@) Prompts for the f our th x i . 15 f @) Prompts for th e fourth f i . 43 f ?[...]
-
Página 287
Miscellaneous Programs and Equations 17–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 17 Miscella neous Pro gra m s and Equations Time V alu e of Money Given any four of the five values in the "Time–V alue–of–Money equation" (TVM), y ou can solve for th[...]
-
Página 288
17–2 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m problem can he viewed fr om tw o persp ectives. The len d er and th e borrower view the same probl em with reversed signs. Equation Entry: Key in this equation: ºº1.1-?[...]
-
Página 289
Miscellaneous Programs and Equations 17–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Rem ark s: The TVM equation requires that I m ust be non –zero to avoid a # & error. I f you're solvi ng for I and aren't su re of its curre nt v[...]
-
Página 290
17–4 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Variables Used: N The n umber of co mpounding periods. I The periodic interest rate as a perc entage. (For example, if the annual interest rate is 15% and there are 12 paym ents per year, t[...]
-
Página 291
Miscellaneous Programs and Equations 17–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 36 f @ value Stores 36 in N ; prompts for F . 0 f @ value Stores 0 in F ; prom pts for D . 7250 1500 @8) Calculates B , the beginning loa[...]
-
Página 292
17–6 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Note th at the in terest rate, I , from part 2 is not z ero, so you w on't get a # & error when you calculate the new I . Keys: Displa y: Description: { G Rº[...]
-
Página 293
Miscellaneous Programs and Equations 17–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m LB L Y VIE W Pri me LB L Z P + 2 x → LB L P x P 3 D → → LB L X FP [ / ] x PD → x = 0 ? yes no DD + 2 → Star t no yes D > P √ ? No te: x i s the v a l u e i n t h e X - [...]
-
Página 294
17–8 Miscellaneous Programs and Equa tions F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Listing: Program Lines: Description & & This routine dis plays prime n umbe r P . & #$ Checksum a nd length: 5D0B 003.0 '?[...]
-
Página 295
Miscellaneous Programs and Equations 17–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Program Lines: Description % ! & If all factors have been trie d, branches to the display routine. % Calculates the next possible factor, D + 2. %?[...]
-
Página 296
17–10 Miscellaneous Prog rams and Equations F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 789 W P /) Calc ulates n ext pr ime n um ber aft e r 789. f /) Calc ulates n ext prime n um ber aft e r 797.[...]
-
Página 297
Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Part 3 Appendixes and Refer enc e[...]
-
Página 298
[...]
-
Página 299
Supp ort, Batteries, and Service A– 1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A Su pp or t, Ba tterie s, and Servic e Calc ulat or Su ppor t You can obtain answ ers to questions about using yo ur calculat or from our Calculator Su pport Department. O u r expe rien [...]
-
Página 300
A–2 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m A: Exponent of ten; that is, 2.51 × 10 –13 . Q: The calculator has displayed th e messag e & " . What should I do ? A: You must cle ar a porti on of memory bef[...]
-
Página 301
Supp ort, Batteries, and Service A– 3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C hanging t h e B at ter i es Replace the batteries as s oon as poss ible when the low battery annunciator ( ¤ ) appears. If the battery annunciator is on, an d the display dims, you [...]
-
Página 302
A–4 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m T esting Ca lc ulat or O peration Use the follow ing guidelines to determ ine if the calculat or is workin g properly. Test the calculator after ever y step to see if its operation has been re st[...]
-
Página 303
Supp ort, Batteries, and Service A– 5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e Sel f–T est If the display can be turned on, but the calculator does not seem to be operating properly, do the follo w ing diagno stic self–test. 1. Hold do wn the key , t h [...]
-
Página 304
A–6 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Limi te d One–Year W arr anty What I s Co v er ed The calculator (except for the batteries, or d a m age ca used by the b atteries) is warranted by H ewlett–Packard again st defects in materi[...]
-
Página 305
Supp ort, Batteries, and Service A– 7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Products are sold on the ba sis of specif icati ons applicable at the time of manufacture. Hewlett–Pa ckard shall hav e no o bligation to m odify or update products once sold. C on sume[...]
-
Página 306
A–8 Support, Batteries, and Servi ce F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All shipp ing , re importation ar r a ngem ents, and c ustom s co sts ar e y our re sp o n s i b i l i t y . Ser v ice C har g e There is a standard repa ir charge fo r out–of–warranty se rvi[...]
-
Página 307
Supp ort, Batteries, and Service A– 9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Servi ce Agreem ent s In the U.S., a support agre em ent is available for re pair an d service. Refer to the form that was p ackaged with th e manual. For addi tional informatio n, contac[...]
-
Página 308
[...]
-
Página 309
User Memory an d the Stack B–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m B User Mem ory and the St ack This appendix covers The allocati on and r equir emen ts of u ser mem or y , How to r es et the calc ulator w ithout affectin g memo ry , Ho w to c lear[...]
-
Página 310
B–2 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Memory Requirements Data or Operation Amount of Memory Used Variables 8 bytes per non– zero value. (No bytes for zero values.) Instructions in progra m lines 1.5 bytes . Numbers in prog ram lines Int[...]
-
Página 311
User Memory an d the Stack B–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Displa y the pr ogr am line cont aining the eq uation . 2. Pr ess { to se e the c hec ksum and length . F or e x ample , / ) . To m anu ally d eallo cate the[...]
-
Página 312
B–4 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 1. Pre ss and ho ld do wn the key . 2. Pr ess and hold do w n < . 3. P r ess 6 . ( Y o u w i l l b e p r e s s i n g t h r e e k e y s s i m u l t a n e o u s l y ) . W h e n y o u r elease all [...]
-
Página 313
User Memory an d the Stack B–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m All functions except those in th e follow ing tw o lists will enable stack lift. Disabl ing O per ati ons The four oper ations EN TER, Σ +, Σ –, an d CLx disable stack lift. A number keyed i[...]
-
Página 314
B–6 User Memory an d the Stack F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Th e S t atus o f t h e L A S T X R egister The following op erations save x in the LAST X register: +, –, × , ÷ SQRT, x 2 e x , 10x LN, LOG y x , X y I/x x ˆ , y ˆ SIN, COS, TAN ASIN, ACOS, ATAN[...]
-
Página 315
More about Solving C–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m C Mor e a bou t So l v i ng This appendix pr ovides information about the SOL VE oper ati on beyond t hat given in chapter 7. How S OL VE F inds a R oot SOLVE is an iterative opera tion; th at is, it re[...]
-
Página 316
C–2 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m If f(x) has one or more loca l mi nima or mini ma, each occurs si ngly betw een adjace nt r oots off f(x) (f igur e d, belo w) . f ( x ) x a f ( x ) b x f ( x ) x c f ( x ) x d Fun ctio n W hos e Roots C [...]
-
Página 317
More about Solving C–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m I n te rp ret in g Res u lt s The SOLVE op erati on wil l produc e a solu tion under either of the. follow ing conditions: If it finds an es timate for which f(x) equals zero. (See figure a, below.)[...]
-
Página 318
C–4 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G Select Equation mode. 2 _y K X 0 3 4 y K X 0 2 6 yK X 8 .º%:-%:. Enters the equation. { ?[...]
-
Página 319
More about Solving C–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: { G Selects Equation mode. K X 0 2 K X 6 %:-%. Enters the equation. { / ) Checksum and leng th. Can[...]
-
Página 320
C–6 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m betw een tw o neighbor ing v alues o f x , i t re t u r ns t h e p o s s i b l e ro o t. Ho w e ver , the v alue fo r f(x) w ill be relati v ely large . If the pole occur s at a v alue o f x that is e x actl [...]
-
Página 321
More about Solving C–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Cancel s Equation mode. Now, so lve to find the root: Keys: Displa y: Description: 0 H X 5 _ Your initial guesses for the root. { G 1%2/) Selects Equation mode; displays t[...]
-
Página 322
C–8 More about S olving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m K X p { K X 0 2 6 { ] 1 %ª1%:.22. Enters the equation. { / ) Checksum and leng th. Cancel s Equation mode. Now, so lv[...]
-
Página 323
More about Solving C–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m The s ear ch h alts becau se S OL VE is w or king on a ho r iz on tal as y mptote—an ar ea w her e f(x) is essentiall y constant f or a w ide r ange of x (see f igure b , below ) . The ending v al[...]
-
Página 324
C–10 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Example: A Relat ive Minimum. Calculate the root of this parabolic equation: x 2 – 6 x + 13 = 0. It ha s a mini mum at x = 3. Enter the equation as an expression: Keys: Displa y: Descri ption: { G Selec[...]
-
Página 325
More about Solving C–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m 0 1 10 = − X Enter the equation as an expression. Keys: Displa y: Description: { G Selects Equation mode. 10 3 K X { ] .#1%2 Enters the equation. { /[...]
-
Página 326
C–12 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m It's appa rent from in specti ng the equation that if x is a negative number, the smallest that f(x) can be is 10. f(x) approaches 10 as x becom e s a negative number of large magnitude. Example: A Math [...]
-
Página 327
More about Solving C–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Keys: Displa y: Description: 0 H X 10 _ . _ { G !1%ª1%-) Selects Equati on mode; displays the left end of the equation. { X !12 Math error. C[...]
-
Página 328
C–14 More about Solving F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Solve for X using initial guesses of 10 –8 an d –10 –8 . Keys: Displa y: Description: ` 8 _ H X 1 _ ` 8 _ .. _ Enters guesses. { V J .). Selects program "J"[...]
-
Página 329
More about Solving C–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m function nev er chan ges sign SOLVE returns the message ! . However, the final estim ate of x (press @ to se e it) is the best po ssible 12–digit approxima tion of the root [...]
-
Página 330
[...]
-
Página 331
More about Integration D–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m D Mor e abo ut I nt e gr at i on This appendix provides information ab out integration beyond that given in chapter 8. How t h e Int egr al I s E v al uate d The algorithm used by the integratio n o[...]
-
Página 332
D–2 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m As ex plained in ch apter 8 , the un certainty of the final a pproxim ation is a number derived from the disp lay format , which specifies th e uncertainty for the function. At the end of each it eration, [...]
-
Página 333
More about Integration D–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m showing (over a portion of the interv al of integration) three functions whose graphs in clude the man y sample po ints in com mon. f ( x ) x With this n umber of sam ple pints, the algorithm will c[...]
-
Página 334
D–4 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m ∫ ∞ − 0 dx xe x Since you' re ev aluatin g this inte gral n umeri cally, you might think that y ou should represent the upper limit of integrat ion as 10 499 , which is virtual ly the largest cu[...]
-
Página 335
More about Integration D–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x The graph is a spike very close to t he origin. Bec ause no sample point happened to discover the spike, the algorithm assumed that f(x) was identically equal to zero througho ut th e in t[...]
-
Página 336
D–6 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m fluctuat ions can be better ch aracteri zed by its sam ples whe n the se variat ions are spread out over m ost of the interv al of integr ation than if they are confined to only a sm all fraction of the in[...]
-
Página 337
More about Integration D–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m f ( x ) x Ca lculat ed i nte gra l of th is function will b e accu rate. f ( x ) a b x Ca lculat ed i nte gra l of th is function ma y be acc ur ate . a b In many cases you will be familiar eno ugh [...]
-
Página 338
D–8 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m and you suspect that it m a y cause problems, yo u can quickly plot a few points by evaluating the fun ction using the equation or program you wrote for that purpose. If, fo r any reason, after obtaining a[...]
-
Página 339
More about Integration D–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Z ). Uncertainty of approximation . This i s the c orrec t answer, but it to ok a very long time. T o unders tand why, compare the graph of the fun ction betwe en x = 0 and x = [...]
-
Página 340
D–10 More about Integration F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m calcul ation of the integr al of any f uncti on w ill be prolonged if the interval of integration includes mostly regions where the function is not interesting. Fortunately, if you must calculate such an [...]
-
Página 341
Messages E–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m E Me ssages The calculator responds t o certain cond itions or keystrok es by dis playing a message. The £ symbol comes on to c all your attention to th e messag e. For signifi cant con ditions , the mes sage re[...]
-
Página 342
E–2 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m !! The calculator is calculati ng the in tegral of an equation or program. This might take a wh ile . !"! A running SOLVE or ∫ FN operation was interrupted[...]
-
Página 343
Messages E–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m % !! Attempted to refer to a no ne xistent program label (or line number) w ith U , U , W , o r { }. Note that the error % !! can m ean yo u e xpli c it[...]
-
Página 344
E–4 Messages F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m while a S OLVE operation wa s runnin g. # The calculator is solving an equation or program for its root. This might take a while. ! 12 Attempted to calculate the s quare root of a neg[...]
-
Página 345
Operation Index F–1 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m F Operat i on I ndex This sec tion is a quick re ference for a ll functions a nd operations and their formulas, where appropriate. The listing is in a lphabetical order by th e function's name. Th is [...]
-
Página 346
F–2 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page to next e quation in equation list; moves p rogra m point er to ne xt l ine (during program entry); ex ecutes the current program line (n ot during program entry). 6–3 12–9 [...]
-
Página 347
Operation Index F–3 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page σ y { 2 { σ ¸ } Returns population standard deviation of y –values: n y y i ÷ − ∑ 2 ) ( 11–7 1 θ , r y , x { r Polar to rectangular coordinates . Conv[...]
-
Página 348
F–4 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Returns sin –1 x . ASINH z 7 z L Hyperbolic arc sine . Returns sinh –1 x . 4–5 1 ATAN z R Arc tangent . Returns tan –1 x . 4–4 1 ATANH z 7 z R Hyperbolic arc tang e[...]
-
Página 349
Operation Index F–5 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page z b { } Clears the displayed equation (calculator in P rogram mode). 12–6 CL Σ z b { ´ } Clears statistics registers. 11–12 CLVARS z b { # } Clears [...]
-
Página 350
F–6 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page CMPLXSIN z F N Complex s ine . Returns sin ( z y + i z y ). 9–3 CMPLXTAN z F T Comp lex tangent . Returns tan ( z x + i z y ). 9–3 CMPLXy x z F 0 Comple x power . Returns ) [...]
-
Página 351
Operation Index F–7 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page digits following the first digit ( n = 0 through 11). Separates two num bers key ed in sequentially; com p letes equation entry; evaluates the display ed equation (an[...]
-
Página 352
F–8 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page GRAD z { } Sets Grads angular mode. 4–3 GTO label z U label Sets the program pointer to the beginning of program label in program mem ory. 13–5 13–16 z U la[...]
-
Página 353
Operation Index F–9 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page input in the variabl e. (Used only in programs.) INV 3 Reciprocal of argument. 6–17 2 IP { [PARTS] { } Integer part of x . 4–14 1 ISG variable z k variable Inc[...]
-
Página 354
F–10 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page z Displays menu to set Angular modes and the radix ( • or , ). 1–14 4–3 n z 5 { Q } Returns the number of sets of data points. 11–11 1 OCT z w { } Selects Oc[...]
-
Página 355
Operation Index F–11 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Selects the period as the radix mark (decimal point). RANDOM { [PROB] { } Executes the RANDOM fu nction. Returns a random number in the range 0 through 1. 4–11 1 R[...]
-
Página 356
F–12 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page SCI n z { } n Selects Scie ntific display with n decimal places. ( n = 0 through 11.) 1–15 { [SCRL] Scroll . En ables an d disable s scrollin g of equations in Equati[...]
-
Página 357
Operation Index F–13 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page Stores variable ÷ x into variable. STOP f Run /stop. Begins progra m execut ion at the current prog ram lin e; stops a runnin g program and displays the X–register. 1[...]
-
Página 358
F–14 Operation Index F ile n am e 3 2s ii-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page returns the x – estimate based on th e regression line: x ˆ = ( y – b) ÷ m. x! z 1 Factorial (or gam ma). Returns ( x )( x – 1) ... (2)(1), or Γ ( x + 1). 4–11 1 X R[...]
-
Página 359
Operation Index F–15 Fi l e n a m e 32s i i - M a n u a l - E- 0 42 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 S i z e : 1 7 . 7 x 2 5 . 2 c m Name Keys and Description Page menu. x ≠ 0 ? z n { ≠ } If x ≠ 0, executes next program line; if x =0, skips the next prog ram line. 13–8 x ≤ 0 ? z n { ≤ } If x ≤ 0, executes next program[...]
-
Página 360
[...]
-
Página 361
Index–1 F ile n am e 3 2 sii-M an ua l -E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm Ind ex Spec ial c har ac t ers £ , 1- 21 @ . Se e bac kspace k ey ¤ annunc iator , 1-1, A - 2 an nunc iato rs bina ry numbers, 10 - 7 equati ons, 6 -8 , 12 - 7 , 12 -16 _. See equ ation - entr y cursor ¾ . Se e digit-[...]
-
Página 362
Index–2 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm A..Z annunci ator , 1- 2 , 3- 2 , 6 -5 B bac kspace k e y canc eling VI EW , 3- 4 clear ing messages , 1- 3, E-1 clearing X-register , 2 - 2 , 2 -8 deleting pr ogram lines , 12 - 20 equati on e ntry , 1-3, 6 -9 leav i ng menus ,[...]
-
Página 363
Index–3 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cas h fl ow s, 17 -1 catalog s lea v ing , 1-3 pr ogram , 1- 21, 12 - 2 2 usi ng, 1- 21 v ar iable , 1- 21, 3- 4 c hain calc ulatio ns , 2 -13 ch ange -per centage fu ncti on , 4 -6 c hanging sign of n umb ers , 1-11, 1-14, 9-3 [...]
-
Página 364
Index–4 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm denominator s con tr olling , 5-6 , 13-9 , 13-13 r ange of , 1- 19 , 5-1, 5- 3 sett ing max im urn, 5-5 digit- entry c urs or bac kspac ing, 1-3, 6 -9 , 12 - 7 in eq uati ons , 6 -6 in pr ogram s, 12 - 7 meaning, 1-12 di sconti [...]
-
Página 365
Index–5 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm deleting in pr ogra ms, 12 - 7 , 12 - 20 displa y ing , 6 -8 displa y ing in pr ogr ams, 12 -15, 12 -18 , 13-10 editing , 1- 3, 6 -9 , 6 -10 editing the pr ogr ams , 12 - 7 , 12 - 20 e n t e r i n g , 6- 5 , 6- 9 ent er ing in p[...]
-
Página 366
Index–6 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm equati on pr ompting , 13-10 fr acti on dis pla y , 5-6 , 13-9 mean ings , 13-8 oper a ti ons, 13-11 o ve r flo w , 13-9 sett ing, 13-11 testing , 13- 8 , 13-11 unassi gned , 13-9 FL A G S menu , 13-11 flo w diagram s, 13- 2 ∫[...]
-
Página 367
Index–7 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm nu mbe rs HEX ann unc iator , 10 -1 hex numb ers. See nu mbers a rith metic, 10 - 3 con v erting to , 10 -1 r ange of , 10 -6 typ ing , 10 -1 Horner's met hod , 12 - 2 6 hum idity limits f or calc ulator , A- 2 h yperbolic [...]
-
Página 368
Index–8 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm lend er (f inance), 17 -1 l e n g t h c o nve rs io n s , 4 - 1 2 let ter ke ys , 1- 2 limits o f integr ation , 8- 2 , 14 - 7 linear r egr essi on (es timati on), 11-8 , 16 -1 linear -r egre ssio n me nu , 11-8 l o g a ri t h m[...]
-
Página 369
Index–9 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm mini mum of function , C- 9 modes . See angular mode , base mode , E quation m ode , F r acti on-displa y mode , Pr ogram-en try mode MOD E S m enu angular mode , 4 - 4 sett ing r adi x , 1-1. 6 mone y (finance) , 17 -1 N negati[...]
-
Página 370
Index–10 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm i n e q u a t i o n s , 6- 6 , 6- 7 , 6-1 6 memor y usage, 12 - 2 2 PA R T S m e n u , 4 - 1 5 paus e . See P SE pa y ment (f inan ce) , 17 -1 per c entage functi ons, 4 -6 per i ods (in n umber s) , 1-16 , A-1 perm utations, 4[...]
-
Página 371
Index–11 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing, 1 2 -5 equati on e v aluatio n , 13-10 equati on pr ompting , 13-10 equati ons in , 12 - 4 , 12 -6 er r ors in , 12 -19 e x ecuting , 12 - 10 flags , 13-8 , 13-11 f or integr atio n , 14 - 7 fo r S OL VE , 14 -1, C-[...]
-
Página 372
Index–12 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm r eal par t (c omple x numbers), 9-1, 9- 2 r ecall ar ithme tic , 3-6 , B-8 r ectangular - to -polar coor dinate con v ersion , 4 - 8 , 9-6 , 15-1 r egr es sion (linear ) , 11-8 , 16 -1 r epair serv ice , A- 7 r esetting the ca[...]
-
Página 373
Index–13 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm v ar ia ble di gits , 3-3, 3- 4 , 10 -8 , 12 - 15 sign con v entio ns (f inance) , 17 -1 sign (of numbers) , 1- 11, 1-14, 9-3, 10 -5 sim ultaneou s equati ons, 15-13 sine (trig) , 4 - 4, 9-3, A- 2 single -ste p e xec uti on , 1[...]
-
Página 374
Index–14 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm ent er ing , 11-1 initia li zing , 11- 2 memor y usage, 12 - 2 2 , B- 2 one - var iabl e , 11- 2 pr ecisi on, 11-11 su ms of variabl es, 1 1- 12 two - v ar iable, 11- 2 st atis ti cs calc ulating , 11- 4 c urv e f itti n g , 1 [...]
-
Página 375
Index–15 F ile n am e 3 2s i i-M an ua l-E -0 4 2 4 P r i n t e d D a t e : 2 0 0 3 / 4 / 2 4 Si z e : 17 .7 x 2 5 .2 cm cl e a ri n g wh i l e vi ewi n g, 1 2- 1 5 defau lt, B- 5 excha n g i n g wi t h X , 3 - 8 indir ect addr es sing , 13-19 , 13- 20 in eq uati ons , 6 -5, 7 -1 in pr ogr ams , 12 -12 , 14 -1, 14 - 7 memor y usage:, 12 - 2 2 , B[...]
-
Página 376
F ile n am e 3 2s ii-Ma nu al-E -0 4 2 4P a ge : 16 /3 7 6 Pr inted D ate : 200 3/ 4/ 2 4 Siz e : 17 .7 x 2 5 .2 cm Batteri es are deliv ered with this prod uct, when empty do not th row them aw ay b ut correct as small chemical waste. Bij dit pro dukt zijn batt erijen. W an neer deze leeg zijn, moet u ze niet weggo oien maar inlev eren aIs K CA.[...]