Ir para a página of
Manuais similares
-
Computer Hardware
Intel CM8064601466003
50 páginas 0.52 mb -
Computer Hardware
Intel 9EJL4
39 páginas 1.41 mb -
Computer Hardware
Intel BOXDH87RL
2 páginas 5.7 mb -
Computer Hardware
Intel Bx80601960
2 páginas 0.18 mb -
Computer Hardware
Intel KEMX-2030
60 páginas 1.43 mb -
Computer Hardware
Intel BX80646I74771
2 páginas 0.18 mb -
Computer Hardware
Intel BX80605I7870
2 páginas 0.18 mb -
Computer Hardware
Intel 80C188EB
88 páginas 0.59 mb
Bom manual de uso
As regras impõem ao revendedor a obrigação de fornecer ao comprador o manual com o produto Intel BX80646I74770K. A falta de manual ou informações incorretas fornecidas ao consumidor são a base de uma queixa por não conformidade do produto com o contrato. De acordo com a lei, pode anexar o manual em uma outra forma de que em papel, o que é frequentemente utilizado, anexando uma forma gráfica ou manual electrónicoIntel BX80646I74770K vídeos instrutivos para os usuários. A condição é uma forma legível e compreensível.
O que é a instrução?
A palavra vem do latim "Instructio" ou instruir. Portanto, no manual Intel BX80646I74770K você pode encontrar uma descrição das fases do processo. O objetivo do manual é instruir, facilitar o arranque, a utilização do equipamento ou a execução de determinadas tarefas. O manual é uma coleção de informações sobre o objeto / serviço, um guia.
Infelizmente, pequenos usuários tomam o tempo para ler o manual Intel BX80646I74770K, e um bom manual não só permite conhecer uma série de funcionalidades adicionais do dispositivo, mas evita a formação da maioria das falhas.
Então, o que deve conter o manual perfeito?
Primeiro, o manual Intel BX80646I74770K deve conte:
- dados técnicos do dispositivo Intel BX80646I74770K
- nome do fabricante e ano de fabricação do dispositivo Intel BX80646I74770K
- instruções de utilização, regulação e manutenção do dispositivo Intel BX80646I74770K
- sinais de segurança e certificados que comprovam a conformidade com as normas pertinentes
Por que você não ler manuais?
Normalmente, isso é devido à falta de tempo e à certeza quanto à funcionalidade específica do dispositivo adquirido. Infelizmente, a mesma ligação e o arranque Intel BX80646I74770K não são suficientes. O manual contém uma série de orientações sobre funcionalidades específicas, a segurança, os métodos de manutenção (mesmo sobre produtos que devem ser usados), possíveis defeitos Intel BX80646I74770K e formas de resolver problemas comuns durante o uso. No final, no manual podemos encontrar as coordenadas do serviço Intel na ausência da eficácia das soluções propostas. Atualmente, muito apreciados são manuais na forma de animações interessantes e vídeos de instrução que de uma forma melhor do que o o folheto falam ao usuário. Este tipo de manual é a chance que o usuário percorrer todo o vídeo instrutivo, sem ignorar especificações e descrições técnicas complicadas Intel BX80646I74770K, como para a versão papel.
Por que ler manuais?
Primeiro de tudo, contem a resposta sobre a construção, as possibilidades do dispositivo Intel BX80646I74770K, uso dos acessórios individuais e uma gama de informações para desfrutar plenamente todos os recursos e facilidades.
Após a compra bem sucedida de um equipamento / dispositivo, é bom ter um momento para se familiarizar com cada parte do manual Intel BX80646I74770K. Atualmente, são cuidadosamente preparados e traduzidos para sejam não só compreensíveis para os usuários, mas para cumprir a sua função básica de informação
Índice do manual
-
Página 1
Desktop 4th Generation Intel ® Core ™ Processor Family, Desktop Intel ® Pentium ® Processor Family, and Desktop Intel ® Celeron ® Processor Family Datasheet – Volume 1 of 2 December 2013 Order No.: 328897-004[...]
-
Página 2
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRES[...]
-
Página 3
Contents Revision History.................................................................................................................. 9 1.0 Introduction................................................................................................................ 10 1.1 Supported Technologies..................................................[...]
-
Página 4
4.2.3 Requesting Low-Power Idle States...............................................................53 4.2.4 Core C-State Rules.................................................................................... 54 4.2.5 Package C-States...................................................................................... 55 4.2.6 Package C-States[...]
-
Página 5
7.0 Electrical Specifications.............................................................................................. 90 7.1 Integrated Voltage Regulator.................................................................................. 90 7.2 Power and Ground Lands ..............................................................................[...]
-
Página 6
Figures 1 Platform Block Diagram ........................................................................................... 11 2 Intel ® Flex Memory Technology Operations................................................................. 21 3 PCI Express* Related Register Structures in the Processor............................................ 25 4 [...]
-
Página 7
Tables 1 Terminology........................................................................................................... 13 2 Related Documents.................................................................................................. 16 3 Processor DIMM Support by Product...............................................................[...]
-
Página 8
54 GTL Signal Group and Open Drain Signal Group DC Specifications................................ 102 55 PCI Express* DC Specifications................................................................................ 103 56 Platform Environment Control Interface (PECI) DC Electrical Limits............................... 103 57 Processor Loading Spec[...]
-
Página 9
Revision History Revision Description Date 001 • Initial Release June 2013 002 • Added Desktop 4th Generation Intel ® Core ™ i7-4771, i5-4440, i5-4440S, i3-4340, i3-4330, i3-4330T, i3-4130, and i3-4130T processors • Added Desktop Intel ® Pentium ® G3430, G3420, G3220, G3420T, G3220T processors • Updated Section 4.2.4, Core C-State Rule[...]
-
Página 10
1.0 Introduction The Desktop 4th Generation Intel ® Core ™ processor family , Desktop Intel ® Pentium ® processor family, and Desktop Intel ® Celeron ® processor family are 64-bit, multi-core processors built on 22-nanometer process technology. The processors are designed for a two-chip platform consisting of a processor and Platform Control[...]
-
Página 11
Figure 1. Platform Block Diagram Processor PCI Express* 3.0 Digital Display Interface (DDI) (3 interfaces) System Memory 1333 / 1600 MT/s 2 DIMMs / CH CH A CH B Intel ® Flexible Display Interface (Intel ® FDI) (x2) Direct Media Interface 2.0 (DMI 2.0) (x4) Note: 2 DIMMs / CH is not supported on all SKUs. Platform Controller Hub (PCH) SATA, 6 GB/s[...]
-
Página 12
• PCLMULQDQ Instruction • Intel ® Secure Key • Intel ® Transactional Synchronization Extensions - New Instructions (Intel ® TSX- NI) • PAIR – Power Aware Interrupt Routing • SMEP – Supervisor Mode Execution Protection Note: The availability of the features may vary between processor SKUs. Interfaces The processor supports the follo[...]
-
Página 13
Thermal Management Support • Digital Thermal Sensor • Adaptive Thermal Monitor • THERMTRIP# and PROCHOT# support • On-Demand Mode • Memory Open and Closed Loop Throttling • Memory Thermal Throttling • External Thermal Sensor (TS-on-DIMM and TS-on-Board) • Render Thermal Throttling • Fan speed control with DTS Package Support The p[...]
-
Página 14
Term Description ECC Error Correction Code eDP* embedded DisplayPort* EPG Electrical Power Gating EU Execution Unit FMA Floating-point fused Multiply Add instructions FSC Fan Speed Control HDCP High-bandwidth Digital Content Protection HDMI* High Definition Multimedia Interface HFM High Frequency Mode iDCT Inverse Discrete IHS Integrated Heat Sprea[...]
-
Página 15
Term Description MLC Mid-Level Cache MSI Message Signaled Interrupt MSL Moisture Sensitive Labeling MSR Model Specific Registers NCTF Non-Critical to Function. NCTF locations are typically redundant ground or non-critical reserved, so the loss of the solder joint continuity at end of life conditions will not affect the overall product functionality[...]
-
Página 16
Term Description TAP Test Access Point T CASE The case temperature of the processor, measured at the geometric center of the top- side of the TTV IHS. TCC Thermal Control Circuit T CONTROL T CONTROL is a static value that is below the TCC activation temperature and used as a trigger point for fan speed control. When DTS > T CONTROL , the process[...]
-
Página 17
Document Document Number / Location LGA1150 Socket Application Guide 328999 Intel ® 8 Series / C220 Series Chipset Family Platform Controller Hub (PCH) Datasheet 328904 Intel ® 8 Series / C220 Series Chipset Family Platform Controller Hub (PCH) Specification Update 328905 Intel ® 8 Series / C220 Series Chipset Family Platform Controller Hub (PCH[...]
-
Página 18
2.0 Interfaces System Memory Interface • Two channels of DDR3/DDR3L Unbuffered Dual In-Line Memory Modules (UDIMM) or DDR3/DDR3L Unbuffered Small Outline Dual In-Line Memory Modules (SO- DIMM) with a maximum of two DIMMs per channel. • Single-channel and dual-channel memory organization modes • Data burst length of eight for all memory organi[...]
-
Página 19
System Memory Technology Supported The Integrated Memory Controller (IMC) supports DDR3/DDR3L protocols with two independent, 64-bit wide channels each accessing one or two DIMMs. The type of memory supported by the processor is dependent on the PCH SKU in the target platform. Note: The IMC supports a maximum of two DDR3/DDR3L DIMMs per channel; th[...]
-
Página 20
Raw Card Version DIMM Capacity DRAM Device Technology DRAM Organization # of DRAM Devices # of Physical Devices Ranks # of Row / Col Address Bits # of Banks Inside DRAM Page Size B 2 GB 1 Gb 128 M X 8 16 2 14/10 8 8K 4 GB 2 Gb 256 M X 8 16 2 15/10 8 8K 4 GB 4 Gb 512 M X 8 8 1 15/10 8 8K 8 GB 4 Gb 512 M X 8 16 2 16/10 8 8K Note: DIMM module support [...]
-
Página 21
Note: System memory timing support is based on availability and is subject to change. System Memory Organization Modes The Integrated Memory Controller (IMC) supports two memory organization modes – single-channel and dual-channel. Depending upon how the DIMM Modules are populated in each memory channel, a number of different configurations can e[...]
-
Página 22
be on opposite channels. Use Dual-Channel Symmetric mode when both Channel A and Channel B DIMM connectors are populated in any order, with the total amount of memory in each channel being the same. When both channels are populated with the same memory capacity and the boundary between the dual channel zone and the single channel zone is the top of[...]
-
Página 23
Data Scrambling The system memory controller incorporates a Data Scrambling feature to minimize the impact of excessive di/dt on the platform system memory VRs due to successive 1s and 0s on the data bus. Past experience has demonstrated that traffic on the data bus is not random and can have energy concentrated at specific spectral harmonics creat[...]
-
Página 24
• PCI Express* extended configuration space. The first 256 bytes of configuration space aliases directly to the PCI Compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space. • PCI Express* Enhanced Access Mechanism. Accessing th[...]
-
Página 25
Figure 3. PCI Express* Related Register Structures in the Processor PCI-PCI Bridge representing root PCI Express ports (Device 1 and Device 6) PCI Compatible Host Bridge Device (Device 0) PCI Express* Device PEG0 DMI PCI Express* extends the configuration space to 4096 bytes per-device/function, as compared to 256 bytes allowed by the conventional [...]
-
Página 26
Figure 4. PCI Express* Typical Operation 16 Lanes Mapping 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 X 16 Co ntroller Lane 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15 0 1 2 3 4 5 6 7 1 X 8 Controller 0 1 2 3 1 X 4 Cont ro ller Direct Media Interf[...]
-
Página 27
• 5 GT/s point-to-point DMI interface to PCH is supported. • Raw bit-rate on the data pins of 5.0 GB/s, resulting in a real bandwidth per pair of 500 MB/s given the 8b/10b encoding used to transmit data across this interface. Does not account for packet overhead and link maintenance. • Maximum theoretical bandwidth on interface of 2 GB/s in e[...]
-
Página 28
Processor Graphics The processor graphics contains a generation 7.5 graphics core architecture. This enables substantial gains in performance and lower power consumption over previous generations. Up to 20 Execution Units are supported depending on the processor SKU. • Next Generation Intel Clear Video Technology HD Support is a collection of vid[...]
-
Página 29
Figure 5. Processor Graphics Controller Unit Block Diagram 3D and Video Engines for Graphics Processing The Gen 7.5 3D engine provides the following performance and power-management enhancements. 3D Pipeline The 3D graphics pipeline architecture simultaneously operates on different primitives or on different portions of the same primitive. All the [...]
-
Página 30
Vertex Shader (VS) Stage The VS stage performs shading of vertices output by the VF function. The VS unit produces an output vertex reference for every input vertex reference received from the VF unit, in the order received. Geometry Shader (GS) Stage The GS stage receives inputs from the VS stage. Compiled application-provided GS programs, specify[...]
-
Página 31
Logical 128-Bit Fixed BLT and 256 Fill Engine This BLT engine accelerates the GUI of Microsoft Windows* operating systems. The 128-bit BLT engine provides hardware acceleration of block transfers of pixel data for many common Windows operations. The BLT engine can be used for the following: • Move rectangular blocks of data between memory locatio[...]
-
Página 32
• The HDMI* interface supports HDMI with 3D, 4K, Deep Color, and x.v.Color. The DisplayPort* interface supports the VESA DisplayPort* Standard Version 1, Revision 2. • The processor supports High-bandwidth Digital Content Protection (HDCP) for high-definition content playback over digital interfaces. • The processor also integrates dedicated [...]
-
Página 33
• Organizing pixels into frames • Optionally scaling the image to the desired size • Re-timing data for the intended target • Formatting data according to the port output standard DisplayPort* DisplayPort* is a digital communication interface that uses differential signaling to achieve a high-bandwidth bus interface designed to support conn[...]
-
Página 34
make up the TMDS data and clock channels. These channels are used to carry video, audio, and auxiliary data. In addition, HDMI carries a VESA DDC. The DDC is used by an HDMI Source to determine the capabilities and characteristics of the Sink. Audio, video, and auxiliary (control/status) data is transmitted across the three TMDS data channels. The [...]
-
Página 35
embedded DisplayPort* embedded DisplayPort* (eDP*) is an embedded version of the DisplayPort standard oriented towards applications such as notebook and All-In-One PCs. Digital Port D can be configured as eDP. Like DisplayPort, embedded DisplayPort also consists of a Main Link, Auxiliary channel, and an optional Hot-Plug Detect signal. The eDP on t[...]
-
Página 36
Table 9. Valid Three Display Configurations through the Processor Display 1 Display 2 Display 3 Maximum Resolution Display 1 Maximum Resolution Display 2 Maximum Resolution Display 3 HDMI HDMI DP 4096x2304 @ 24 Hz 2560x1600 @ 60 Hz 3840x2160 @ 60 Hz DVI DVI DP 1920x1200 @ 60 Hz 3840x2160 @ 60 Hz DP DP DP 3840x2160 @ 60 Hz VGA DP HDMI 1920x1200 @ 60[...]
-
Página 37
Intel ® Flexible Display Interface (Intel ® FDI) • The Intel Flexible Display Interface (Intel FDI) passes display data from the processor (source) to the PCH (sink) for display through a display interface on the PCH. • Intel FDI supports 2 lanes at 2.7 GT/s fixed frequency. This can be configured to 1 or 2 lanes depending on the bandwidth re[...]
-
Página 38
Figure 9. PECI Host-Clients Connection Example V TT Host / Originator Q1 nX Q2 1X PECI C PECI <10pF/Node Q3 nX V TT PECI Client Additional PECI Clients Processor—Interfaces Desktop 4th Generation Intel ® Core ™ Processor Family, Desktop Intel ® Pentium ® Processor Family, and Desktop Intel ® Celeron ® Processor Family Datasheet – Volu[...]
-
Página 39
3.0 Technologies This chapter provides a high-level description of Intel technologies implemented in the processor. The implementation of the features may vary between the processor SKUs. Details on the different technologies of Intel processors and other relevant external notes are located at the Intel technology web site: http://www.intel.com/tec[...]
-
Página 40
• More reliable: Due to the hardware support, VMMs can now be smaller, less complex, and more efficient. This improves reliability and availability and reduces the potential for software conflicts. • More secure: The use of hardware transitions in the VMM strengthens the isolation of VMs and further prevents corruption of one VM from affecting [...]
-
Página 41
• Descriptor-Table Exiting — Descriptor-table exiting allows a VMM to protect a guest operating system from an internal (malicious software based) attack by preventing relocation of key system data structures like IDT (interrupt descriptor table), GDT (global descriptor table), LDT (local descriptor table), and TSS (task segment selector). — [...]
-
Página 42
Figure 10. Device to Domain Mapping Structures Root entry 0 Root entry N Root entry 255 Context entry 0 Context entry 255 Context entry 0 Context entry 255 (Bus 255) (Bus N) (Bus 0) Root entry table (Dev 31, Func 7) (Dev 0, Func 1) (Dev 0, Func 0) Context entry Table For bus N Context entry Table For bus 0 Address Translation Structures for Domain [...]
-
Página 43
• Memory controller and processor graphics comply with the Intel VT-d 1.2 Specification • Two Intel VT-d DMA remap engines — iGFX DMA remap engine — Default DMA remap engine (covers all devices except iGFX) • Support for root entry, context entry, and default context • 39-bit guest physical address and host physical address widths • S[...]
-
Página 44
Another aspect of the trust decision is the ability of the platform to resist attempts to change the controlling environment. The Intel TXT platform will resist attempts by software processes to change the controlling environment or bypass the bounds set by the controlling environment. Intel TXT is a set of extensions designed to provide a measured[...]
-
Página 45
Intel recommends enabling Intel HT Technology with Microsoft Windows* 8 and Microsoft Windows* 7 and disabling Intel HT Technology using the BIOS for all previous versions of Windows* operating systems. For more information on Intel HT Technology, see http://www.intel.com/technology/platform-technology/hyper- threading/ . Intel ® Turbo Boost Techn[...]
-
Página 46
digital signal processing software. FMA improves performance in face detection, professional imaging, and high performance computing. Gather operations increase vectorization opportunities for many applications. In addition to the vector extensions, this generation of Intel processors adds new bit manipulation instructions useful in compression, en[...]
-
Página 47
extensions to achieve the performance of fine-grain locking while actually programming using coarse-grain locks. Details on Intel TSX-NI are in the Intel ® Architecture Instruction Set Extensions Programming Reference. Intel ® 64 Architecture x2APIC The x2APIC architecture extends the xAPIC architecture that provides key mechanisms for interrupt [...]
-
Página 48
• The semantics for accessing APIC registers have been revised to simplify the programming of frequently-used APIC registers by system software. Specifically, the software semantics for using the Interrupt Command Register (ICR) and End Of Interrupt (EOI) registers have been modified to allow for more efficient delivery and dispatching of interru[...]
-
Página 49
4.0 Power Management This chapter provides information on the following power management topics: • Advanced Configuration and Power Interface (ACPI) States • Processor Core • Integrated Memory Controller (IMC) • PCI Express* • Direct Media Interface (DMI) • Processor Graphics Controller Figure 11. Processor Power States G0 - Working S0 [...]
-
Página 50
Advanced Configuration and Power Interface (ACPI) States Supported This section describes the ACPI states supported by the processor. Table 11. System States State Description G0/S0 Full On Mode. G1/S3-Cold Suspend-to-RAM (STR). Context saved to memory (S3-Hot state is not supported by the processor). G1/S4 Suspend-to-Disk (STD). All power lost (ex[...]
-
Página 51
Table 15. Direct Media Interface (DMI) States State Description L0 Full on – Active transfer state. L0s First Active Power Management low-power state – Low exit latency. L1 Lowest Active Power Management – Longer exit latency. L3 Lowest power state (power-off) – Longest exit latency. Table 16. G, S, and C Interface State Combinations Global[...]
-
Página 52
• Multiple frequency and voltage points for optimal performance and power efficiency. These operating points are known as P-states. • Frequency selection is software controlled by writing to processor MSRs. The voltage is optimized based on the selected frequency and the number of active processor cores. — Once the voltage is established, the[...]
-
Página 53
Figure 13. Thread and Core C-State Entry and Exit C 1 C 1 E C 7 C 6 C 3 C 0 M WAIT (C 1 ), HLT C 0 M WAIT (C 7 ), P_ LV L4 I/O R e ad M WAIT (C 6 ), P_ LV L3 I/O R e ad M WAIT (C 3 ), P_ LV L2 I/O R e ad M WAIT (C 1 ), HLT (C 1 E Enabl e d ) While individual threads can request low-power C-states, power saving actions only take place once the core [...]
-
Página 54
Note: When P_LVLx I/O instructions are used, MWAIT sub-states cannot be defined. The MWAIT sub-state is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O redirections enable the MWAIT 'break on EFLAGS.IF’ feature that triggers a wakeup on an interrupt, even if interrupts are masked by EFLAGS.IF. Core C-State Rules The foll[...]
-
Página 55
Core C6 State Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an MWAIT(C6) instruction. Before entering core C6 state, the core will save its architectural state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero volts. During exit, the core is powered on and its architectural sta[...]
-
Página 56
— For package C-states, the processor is not required to enter C0 state before entering any other C-state. — Entry into a package C-state may be subject to auto-demotion – that is, the processor may keep the package in a deeper package C-state than requested by the operating system if the processor determines, using heuristics, that the deepe[...]
-
Página 57
Figure 14. Package C-State Entry and Exit C 0 C 1 C 6 C 7 C 3 Package C0 State This is the normal operating state for the processor. The processor remains in the normal state when at least one of its cores is in the C0 or C1 state or when the platform has not granted permission to the processor to go into a low-power state. Individual cores may be [...]
-
Página 58
Package C2 State Package C2 state is an internal processor state that cannot be explicitly requested by software. A processor enters Package C2 state when: • All cores and graphics have requested a C3 or deeper power state; however, constraints (LTR, programmed timer events in the near future, and so on) prevent entry to any state deeper than C 2[...]
-
Página 59
Note: Package C6 state is the deepest C-state supported on discrete graphics systems with PCI Express Graphics (PEG). Package C7 state is the deepest C-state supported on integrated graphics systems (or switchable graphics systems during integrated graphics mode). However, in most configurations, package C6 will be more energy efficient than packag[...]
-
Página 60
Number of Displays 1 Native Resolution Deepest Available Package C- State Single 2880x1620 60 Hz PC3 Single 2880x1800 60 Hz PC3 Single 3200x1800 60 Hz PC3 Single 3200x2000 60 Hz PC3 Single 3840x2160 60 Hz PC3 Single 3840x2160 30 Hz PC3 Single 4096x2160 24 Hz PC3 Multiple 800x600 60 Hz PC6 Multiple 1024x768 60 Hz PC6 Multiple 1280x1024 60 Hz PC6 Mul[...]
-
Página 61
• Reduced possible overshoot/undershoot signal quality issues seen by the processor I/O buffer receivers caused by reflections from potentially un- terminated transmission lines. When a given rank is not populated, the corresponding chip select and CKE signals are not driven. At reset, all rows must be assumed to be populated, until it can be det[...]
-
Página 62
Selection of power modes should be according to power-performance or thermal trade-offs of a given system: • When trying to achieve maximum performance and power or thermal consideration is not an issue – use no power-down • In a system which tries to minimize power-consumption, try using the deepest power-down mode possible – PPD/DLL-off w[...]
-
Página 63
assertion with all pages closed). Pre-charge power-down provides greater power savings, but has a bigger performance impact since all pages will first be closed before putting the devices in power-down mode. If dynamic power-down is enabled, all ranks are powered up before doing a refresh cycle and all ranks are powered down at the end of refresh. [...]
-
Página 64
Graphics Power Management Intel ® Rapid Memory Power Management (Intel ® RMPM) Intel Rapid Memory Power Management (Intel RMPM) conditionally places memory into self-refresh when the processor is in package C3 or deeper power state to allow the system to remain in the lower power states longer for memory not reserved for graphics memory. Intel RM[...]
-
Página 65
5.0 Thermal Management This chapter provides both component-level and system-level thermal management. Topics covered include processor thermal specifications, thermal profiles, thermal metrology, fan speed control, adaptive thermal monitor, THERMTRIP# signal, Digital Thermal Sensor (DTS), Intel Turbo Boost Technology, package power control, power [...]
-
Página 66
Table 21. Desktop Processor Thermal Specifications Product PCG 8 Max Power Packag e C1E (W) 1, 2, 5, 9 Max Power Packag e C3 (W) 1, 3, 5, 9 Min Power Package C3 (W) 9 Max Power Packag e C6 (W) 1, 4, 5, 9 Max Power Package C7 (W) 1, 4, 5, 9 Min Power Package C6/C7 (W) 9 TTV Thermal Design Power (W) 6, 7, 10 Min T CASE (°C) Max TTV T CASE (°C) Quad[...]
-
Página 67
Processor (PCG 2013D) Thermal Profile Figure 15. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013D) 40 45 50 55 60 65 70 75 80 0 20 40 60 80 100 TTV Case Tem perature (° C) TTV Power (W) T CASE = 0.33 * Po wer + 45.0 See the following table for discrete points that constitute the thermal profile. Table 22. Thermal Test Vehicle Thermal [...]
-
Página 68
Processor (PCG 2013C) Thermal Profile Figure 16. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013C) See the following table for discrete points that constitute the thermal profile. Table 23. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013C) Power (W) T CASE_MAX (°C) Y = 0.41 * Power + 44.7 0 44.7 2 45.52 4 46.34 6 47.16 8 [...]
-
Página 69
Power (W) T CASE_MAX (°C) 62 70.12 64 70.94 65 71.35 Processor (PCG 2013B) Thermal Profile Figure 17. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013B) See the following table for discrete points that constitute the thermal profile. Table 24. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013B) Power (W) T CASE_MAX (°C) Y =[...]
-
Página 70
Processor (PCG 2013A) Thermal Profile Figure 18. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013A) See the following table for discrete points that constitute the thermal profile. Table 25. Thermal Test Vehicle Thermal Profile for Processor (PCG 2013A) Power (W) T CASE_MAX (°C) Y = 0.51 * Power + 48.5 0 48.50 2 49.52 4 50.54 6 51.56 8[...]
-
Página 71
Thermal Metrology The maximum Thermal Test Vehicle (TTV) case temperatures (T CASE-MAX ) can be derived from the data in the appropriate TTV thermal profile earlier in this chapter. The TTV T CASE is measured at the geometric top center of the TTV integrated heat spreader (IHS). The following figure illustrates the location where T CASE temperature[...]
-
Página 72
The Ψ CA point at DTS = -1 defines the minimum Ψ CA required at TDP considering the worst case system design T AMBIENT design point: Ψ CA = (T CASE-MAX – T AMBIENT-TARGET ) / TDP For example, for a 95 W TDP part, the T case maximum is 72.6 °C and at a worst case design point of 40 °C local ambient this will result in: Ψ CA = (72.6 – 40) /[...]
-
Página 73
Table 26. Digital Thermal Sensor (DTS) 1.1 Thermal Solution Performance Above T CONTROL Processor TDP Ψ CA at DTS = T CONTROL 1, 2 At System T AMBIENT- MAX = 30 °C Ψ CA at DTS = -1 At System T AMBIENT-MAX = 40 °C Ψ CA at DTS = -1 At System T AMBIENT-MAX = 45 °C Ψ CA at DTS = -1 At System T AMBIENT- MAX = 50 °C 84 W 0.627 0.390 0.330 0.270 6[...]
-
Página 74
Figure 21. Digital Thermal Sensor (DTS) Thermal Profile Definition Table 27. Thermal Margin Slope PCG Die Configuration (Native) Core + GT TDP (W) TCC Activation Temperature (°C) MSR 1A2h 23:16 Temperature Control Offset MSR 1A2h 15:8 Thermal Margin Slope (°C / W) 2013D 4+2 (4+2) 84 100 20 0.654 4+0 (4+2) 82 100 20 0.671 2013C 4+2 (4+2) 65 92 6 0[...]
-
Página 75
Adaptive Thermal Monitor The Adaptive Thermal Monitor feature provides an enhanced method for controlling the processor temperature when the processor silicon exceeds the Thermal Control Circuit (TCC) activation temperature. Adaptive Thermal Monitor uses TCC activation to reduce processor power using a combination of methods. The first method (Freq[...]
-
Página 76
after 1 ms the processor is still too hot (the temperature has not dropped below the TCC activation point, DTS still = 0 and PROCHOT is still active), then a second frequency and voltage transition will take place. This sequence of temperature checking and frequency and voltage reduction will continue until either the minimum frequency has been rea[...]
-
Página 77
If TM1 and TM2 have both been active for greater than 20 ms and the processor temperature has not dropped below the TCC activation point, the Critical Temperature Flag in the IA32_THERM_STATUS MSR will be set. This flag is an indicator of a catastrophic thermal solution failure and that the processor cannot reduce its temperature. Unless immediate [...]
-
Página 78
a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. THERMTRIP# Signal Regardless of whether or not Adaptive Thermal Monitor is enabled, in the event of a catastrophic cooling [...]
-
Página 79
have the capability of generating interrupts using the core's local APIC. Refer to the Intel ® 64 and IA-32 Architectures Software Developer’s Manual for specific register and programming details. Digital Thermal Sensor Accuracy (Taccuracy) The error associated with DTS measurements will not exceed ±5 °C within the entire operating range.[...]
-
Página 80
• Uncharacterized workloads may exist that could result in higher turbo frequencies and power. If that were to happen, the processor Thermal Control Circuitry (TCC) would protect the processor. The TCC protection must be enabled by the platform for the product to be within specification. An illustration of Intel Turbo Boost Technology power contr[...]
-
Página 81
Figure 22. Package Power Control Turbo Time Parameter Turbo Time Parameter is a mathematical parameter (units in seconds) that controls the Intel Turbo Boost Technology algorithm using an average of energy usage. During a maximum power turbo event of about 1.25 x TDP, the processor could sustain Power_Limit_2 for up to approximately 1.5 the Turbo T[...]
-
Página 82
6.0 Signal Description This chapter describes the processor signals. The signals are arranged in functional groups according to the associated interface or category. The following notations are used to describe the signal type. Notation Signal Type I Input pin O Output pin I/O Bi-directional Input/Output pin The signal description also includes the[...]
-
Página 83
Signal Name Description Direction / Buffer Type SA_RAS# RAS Control Signal: This signal is used with SA_CAS# and SA_WE# (along with SA_CS#) to define the SRAM Commands. O DDR3/DDR3L SA_CAS# CAS Control Signal: This signal is used with SA_RAS# and SA_WE# (along with SA_CS#) to define the SRAM Commands. O DDR3/DDR3L SA_DQS[8:0] SA_DQSN[8:0] Data Stro[...]
-
Página 84
Signal Name Description Direction / Buffer Type SB_CK[3:0] SDRAM Differential Clock: Channel B SDRAM Differential clock signal pair. The crossing of the positive edge of SB_CK and the negative edge of its complement SB_CK# are used to sample the command and control signals on the SDRAM. O DDR3/DDR3L SB_CKE[3:0] Clock Enable: (1 per rank). These sig[...]
-
Página 85
Reset and Miscellaneous Signals Table 33. Reset and Miscellaneous Signals Signal Name Description Direction / Buffer Type CFG[19:0] Configuration Signals: The CFG signals have a default value of '1' if not terminated on the board. • CFG[1:0]: Reserved configuration lane. A test point may be placed on the board for these lanes. • CFG[2[...]
-
Página 86
PCI Express*-Based Interface Signals Table 34. PCI Express* Graphics Interface Signals Signal Name Description Direction / Buffer Type PEG_RCOMP PCI Express Resistance Compensation I A PEG_RXP[15:0] PEG_RXN[15:0] PCI Express Receive Differential Pair I PCI Express PEG_TXP[15:0] PEG_TXN[15:0] PCI Express Transmit Differential Pair O PCI Express Disp[...]
-
Página 87
Phase Locked Loop (PLL) Signals Table 37. Phase Locked Loop (PLL) Signals Signal Name Description Direction / Buffer Type BCLKP BCLKN Differential bus clock input to the processor I Diff Clk DPLL_REF_CLKP DPLL_REF_CLKN Embedded Display Port PLL Differential Clock In: 135 MHz I Diff Clk SSC_DPLL_REF_CLKP SSC_ DPLL_REF_CLKN Spread Spectrum Embedded D[...]
-
Página 88
Error and Thermal Protection Signals Table 39. Error and Thermal Protection Signals Signal Name Description Direction / Buffer Type CATERR# Catastrophic Error: This signal indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this for non-recoverable machine check errors or other unrec[...]
-
Página 89
Processor Power Signals Table 41. Processor Power Signals Signal Name Description Direction / Buffer Type VCC Processor core power rail. Ref VCCIO_OUT Processor power reference for I/O. Ref VDDQ Processor I/O supply voltage for DDR3. Ref VCOMP_OUT Processor power reference for PEG/Display RCOMP. Ref VIDSOUT VIDSCLK VIDALERT# VIDALERT#, VIDSCLK, and[...]
-
Página 90
7.0 Electrical Specifications This chapter provides the processor electrical specifications including integrated voltage regulator (VR), V CC Voltage Identification (VID), reserved and unused signals, signal groups, Test Access Points (TAP), and DC specifications. Integrated Voltage Regulator A new feature to the processor is the integration of pla[...]
-
Página 91
Table 45. Voltage Regulator (VR) 12.5 Voltage Identification B i t 7 B i t 6 B i t 5 B i t 4 B i t 3 B i t 2 B i t 1 B i t 0 Hex V CC 0 0 0 0 0 0 0 0 00h 0.0000 0 0 0 0 0 0 0 1 01h 0.5000 0 0 0 0 0 0 1 0 02h 0.5100 0 0 0 0 0 0 1 1 03h 0.5200 0 0 0 0 0 1 0 0 04h 0.5300 0 0 0 0 0 1 0 1 05h 0.5400 0 0 0 0 0 1 1 0 06h 0.5500 0 0 0 0 0 1 1 1 07h 0.5600 [...]
-
Página 92
B i t 7 B i t 6 B i t 5 B i t 4 B i t 3 B i t 2 B i t 1 B i t 0 Hex V CC 0 1 0 0 0 0 1 0 42h 1.1500 0 1 0 0 0 0 1 1 43h 1.1600 0 1 0 0 0 1 0 0 44h 1.1700 0 1 0 0 0 1 0 1 45h 1.1800 0 1 0 0 0 1 1 0 46h 1.1900 0 1 0 0 0 1 1 1 47h 1.2000 0 1 0 0 1 0 0 0 48h 1.2100 0 1 0 0 1 0 0 1 49h 1.2200 0 1 0 0 1 0 1 0 4Ah 1.2300 0 1 0 0 1 0 1 1 4Bh 1.2400 0 1 0 0[...]
-
Página 93
B i t 7 B i t 6 B i t 5 B i t 4 B i t 3 B i t 2 B i t 1 B i t 0 Hex V CC 1 0 0 0 0 1 1 0 86h 1.8300 1 0 0 0 0 1 1 1 87h 1.8400 1 0 0 0 1 0 0 0 88h 1.8500 1 0 0 0 1 0 0 1 89h 1.8600 1 0 0 0 1 0 1 0 8Ah 1.8700 1 0 0 0 1 0 1 1 8Bh 1.8800 1 0 0 0 1 1 0 0 8Ch 1.8900 1 0 0 0 1 1 0 1 8Dh 1.9000 1 0 0 0 1 1 1 0 8Eh 1.9100 1 0 0 0 1 1 1 1 8Fh 1.9200 1 0 0 1[...]
-
Página 94
B i t 7 B i t 6 B i t 5 B i t 4 B i t 3 B i t 2 B i t 1 B i t 0 Hex V CC 1 1 0 0 1 0 1 0 CAh 2.5100 1 1 0 0 1 0 1 1 CBh 2.5200 1 1 0 0 1 1 0 0 CCh 2.5300 1 1 0 0 1 1 0 1 CDh 2.5400 1 1 0 0 1 1 1 0 CEh 2.5500 1 1 0 0 1 1 1 1 CFh 2.5600 1 1 0 1 0 0 0 0 D0h 2.5700 1 1 0 1 0 0 0 1 D1h 2.5800 1 1 0 1 0 0 1 0 D2h 2.5900 1 1 0 1 0 0 1 1 D3h 2.6000 1 1 0 1[...]
-
Página 95
Reserved or Unused Signals The following are the general types of reserved (RSVD) signals and connection guidelines: • RSVD – these signals should not be connected • RSVD_TP – these signals should be routed to a test point • RSVD_NCTF – these signals are non-critical to function and may be left un- connected Arbitrary connection of thes[...]
-
Página 96
Signal Group Type Signals DDR3 / DDR3L Data Signals 2 Single ended DDR3/DDR3L Bi- directional SA_DQ[63:0], SB_DQ[63:0] Differential DDR3/DDR3L Bi- directional SA_DQSP[7:0], SA_DQSN[7:0], SB_DQSP[7:0], SB_DQSN[7:0] DDR3 / DDR3L Compensation Analog Input SM_RCOMP[2:0] DDR3 / DDR3L Reference Voltage Signals DDR3/DDR3L Output SM_VREF, SA_DIMM_VREFDQ, S[...]
-
Página 97
Signal Group Type Signals Test Point RSVD_TP Other SKTOCC#, PCI Express* Graphics Differential PCI Express Input PEG_RXP[15:0], PEG_RXN[15:0] Differential PCI Express Output PEG_TXP[15:0], PEG_TXN[15:0] Single ended Analog Input PEG_RCOMP Digital Media Interface (DMI) Differential DMI Input DMI_RXP[3:0], DMI_RXN[3:0] Differential DMI Output DMI_TXP[...]
-
Página 98
• AC tolerances for all DC rails include dynamic load currents at switching frequencies up to 1 MHz. Voltage and Current Specifications Table 47. Processor Core Active and Idle Mode DC Voltage and Current Specifications Symbol Parameter Min Typ Max Unit Note 1 Operational VID VID Range 1.65 2013D: 1.75 2013C: 1.75 2013B: 1.75 2013A: 1.75 1.86 V 2[...]
-
Página 99
Symbol Parameter Min Typ Max Unit Note 1 I CC 2013A PCG I CC — — 48 A 4, 8 P MAX 2013D PCG P MAX — — 153 W 9 P MAX 2013C PCG P MAX — — 121 W 9 P MAX 2013B PCG P MAX — — 99 W 9 P MAX 2013A PCG P MAX — — 83 W 9 Notes: 1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical da[...]
-
Página 100
Table 49. VCCIO_OUT, VCOMP_OUT, and VCCIO_TERM Symbol Parameter Typ Max Units Notes VCCIO_OUT Termination Voltage 1.0 — V ICCIO_OUT Maximum External Load — 300 mA VCOMP_OUT Termination Voltage 1.0 — V 1 VCCIO_TERM Termination Voltage 1.0 — V 2 Notes: 1. VCOMP_OUT may only be used to connect to PEG_RCOMP and DP_RCOMP. 2. Internal processor p[...]
-
Página 101
Symbol Parameter Min Typ Max Units Notes 1 R ON_DN(CTL) DDR3/DDR3L Control Buffer pull-down Resistance 19 25 31 Ω 5, 11, 13 R ON_UP(RST) DDR3/DDR3L Reset Buffer pull-up Resistance 40 80 130 Ω — R ON_DN(RST) DDR3/DDR3L Reset Buffer pull-up Resistance 40 80 130 Ω — I LI Input Leakage Current (DQ, CK) 0V 0.2*V DDQ 0.8*V DDQ — — 0.7 mA — I[...]
-
Página 102
Table 52. embedded DisplayPort* (eDP*) Group DC Specifications Symbol Parameter Min Typ Max Units V IL HPD Input Low Voltage 0.02 — 0.21 V V IH HPD Input High Voltage 0.84 — 1.05 V V OL eDP_DISP_UTIL Output Low Voltage 0.1*V CC — — V V OH eDP_DISP_UTIL Output High Voltage 0.9*V CC — — V R UP eDP_DISP_UTIL Internal pull-up 100 — — Ω[...]
-
Página 103
Symbol Parameter Min Max Units Notes 1 V IH Input High Voltage (other GTL) V CCIO_TERM * 0.72 — V 2, 4 R ON Buffer on Resistance (CFG/BPM) 16 24 Ω — R ON Buffer on Resistance (other GTL) 12 28 Ω — I LI Input Leakage Current — ±150 μA 3 Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.[...]
-
Página 104
Symbol Definition and Conditions Min Max Units Notes 1 V n Negative-Edge Threshold Voltage 0.275 * V CCIO_TERM 0.500 * V CCIO_TERM V — V p Positive-Edge Threshold Voltage 0.550 * V CCIO_TERM 0.725 * V CCIO_TERM V — C bus Bus Capacitance per Node N/A 10 pF — C pad Pad Capacitance 0.7 1.8 pF — Ileak000 leakage current at 0 V — 0.6 mA — Il[...]
-
Página 105
8.0 Package Mechanical Specifications The processor is packaged in a Flip-Chip Land Grid Array package that interfaces with the motherboard using the LGA1150 socket. The package consists of a processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surfac[...]
-
Página 106
mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load- bearing surface for thermal and mechanical solution. Table 57. Processor Loading Specifications Parameter Minimum Maximum Notes Static Compressive Load — 600 N [135 lbf] 1, 2, 3 Dynamic[...]
-
Página 107
Table 59. Processor Materials Component Material Integrated Heat Spreader (IHS) Nickel Plated Copper Substrate Fiber Reinforced Resin Substrate Lands Gold Plated Copper Processor Markings The following figure shows the top-side markings on the processor. This diagram aids in the identification of the processor. Figure 25. Processor Top-Side Marking[...]
-
Página 108
Figure 26. Processor Package Land Coordinates Processor Storage Specifications The following table includes a list of the specifications for device storage in terms of maximum and minimum temperatures and relative humidity. These conditions should not be exceeded in storage or transportation. Table 60. Processor Storage Specifications Parameter Des[...]
-
Página 109
Parameter Description Minimum Maximum Notes RH sustained storage The maximum device storage relative humidity for a sustained period of time. 60% @ 24 °C 5, 6 TIME sustained storage A prolonged or extended period of time; typically associated with customer shelf life. 0 Months 6 Months 6 Notes: 1. Refers to a component device that is not assembled[...]
-
Página 110
9.0 Processor Ball and Signal Information This chapter provides processor ball information. The following table provides the ball list by signal name. Note: References to SA_ECC_CB[7:0] and SB_ECC_CB[7:0] are for processor SKUs that support ECC. These signals are reserved on the Desktop 4th Generation Intel ® Core ™ processor family. Table 61. P[...]
-
Página 111
Signal Name Ball # DPLL_REF_CLKN W6 DPLL_REF_CLKP W5 EDP_DISP_UTIL E16 FC_K9 K9 FC_Y7 Y7 FDI_CSYNC D16 FDI0_TX0N0 B14 FDI0_TX0N1 C13 FDI0_TX0P0 A14 FDI0_TX0P1 B13 IST_TRIGGER C39 IVR_ERROR R36 PECI N37 PEG_RCOMP P3 PEG_RXN0 F15 PEG_RXN1 E14 PEG_RXN10 F6 PEG_RXN11 G5 PEG_RXN12 H6 PEG_RXN13 J5 PEG_RXN14 K6 PEG_RXN15 L5 PEG_RXN2 F13 PEG_RXN3 E12 PEG_R[...]
-
Página 112
Signal Name Ball # RSVD J17 RSVD J40 RSVD J9 RSVD L10 RSVD L12 RSVD M10 RSVD M11 RSVD M38 RSVD N35 RSVD P33 RSVD R33 RSVD R34 RSVD T34 RSVD T35 RSVD T8 RSVD U8 RSVD W8 RSVD Y8 RSVD_TP A4 RSVD_TP AV1 RSVD_TP AW2 RSVD_TP B3 RSVD_TP C2 RSVD_TP D1 RSVD_TP H16 RSVD_TP J10 RSVD_TP J12 RSVD_TP J13 RSVD_TP J16 RSVD_TP J8 RSVD_TP K11 RSVD_TP K12 RSVD_TP K13[...]
-
Página 113
Signal Name Ball # SA_DQ53 AL3 SA_DQ54 AJ2 SA_DQ55 AJ1 SA_DQ56 AG1 SA_DQ57 AG4 SA_DQ58 AE3 SA_DQ59 AE4 SA_DQ6 AF37 SA_DQ60 AG2 SA_DQ61 AG3 SA_DQ62 AE2 SA_DQ63 AE1 SA_DQ7 AF40 SA_DQ8 AH40 SA_DQ9 AH39 SA_DQSN0 AE38 SA_DQSN1 AJ38 SA_DQSN2 AN38 SA_DQSN3 AU36 SA_DQSN4 AW5 SA_DQSN5 AP2 SA_DQSN6 AK2 SA_DQSN7 AF2 SA_DQSN8 AU32 SA_DQSP0 AE39 SA_DQSP1 AJ39 S[...]
-
Página 114
Signal Name Ball # SB_DQ3 AH35 SB_DQ30 AP29 SB_DQ31 AP28 SB_DQ32 AR12 SB_DQ33 AP12 SB_DQ34 AL13 SB_DQ35 AL12 SB_DQ36 AR13 SB_DQ37 AP13 SB_DQ38 AM13 SB_DQ39 AM12 SB_DQ4 AD34 SB_DQ40 AR9 SB_DQ41 AP9 SB_DQ42 AR6 SB_DQ43 AP6 SB_DQ44 AR10 SB_DQ45 AP10 SB_DQ46 AR7 SB_DQ47 AP7 SB_DQ48 AM9 SB_DQ49 AL9 SB_DQ5 AD35 SB_DQ50 AL6 SB_DQ51 AL7 SB_DQ52 AM10 SB_DQ5[...]
-
Página 115
Signal Name Ball # VCC A24 VCC A25 VCC A26 VCC A27 VCC A28 VCC A29 VCC A30 VCC B25 VCC B27 VCC B29 VCC B31 VCC B33 VCC B35 VCC C24 VCC C25 VCC C26 VCC C27 VCC C28 VCC C29 VCC C30 VCC C31 VCC C32 VCC C33 VCC C34 VCC C35 VCC D25 VCC D27 VCC D29 VCC D31 VCC D33 VCC D35 VCC E24 VCC E25 VCC E26 VCC E27 VCC E28 continued... Signal Name Ball # VCC E29 VCC[...]
-
Página 116
Signal Name Ball # VCC L28 VCC L29 VCC L30 VCC L31 VCC L32 VCC L33 VCC L34 VCC M13 VCC M15 VCC M17 VCC M19 VCC M21 VCC M23 VCC M25 VCC M27 VCC M29 VCC M33 VCC M8 VCC P8 VCC_SENSE E40 VCCIO_OUT L40 VCOMP_OUT P4 VDDQ AJ12 VDDQ AJ13 VDDQ AJ15 VDDQ AJ17 VDDQ AJ20 VDDQ AJ21 VDDQ AJ24 VDDQ AJ25 VDDQ AJ28 VDDQ AJ29 VDDQ AJ9 VDDQ AT17 VDDQ AT22 VDDQ AU15 c[...]
-
Página 117
Signal Name Ball # VSS AG40 VSS AG5 VSS AG8 VSS AH1 VSS AH2 VSS AH3 VSS AH33 VSS AH36 VSS AH4 VSS AH5 VSS AH8 VSS AJ11 VSS AJ14 VSS AJ16 VSS AJ18 VSS AJ19 VSS AJ22 VSS AJ23 VSS AJ26 VSS AJ27 VSS AJ30 VSS AJ31 VSS AJ32 VSS AJ33 VSS AJ34 VSS AJ35 VSS AJ36 VSS AJ37 VSS AJ40 VSS AJ5 VSS AJ8 VSS AK1 VSS AK10 VSS AK11 VSS AK12 VSS AK13 continued... Signa[...]
-
Página 118
Signal Name Ball # VSS AP24 VSS AP27 VSS AP30 VSS AP36 VSS AP4 VSS AP5 VSS AR11 VSS AR14 VSS AR16 VSS AR17 VSS AR18 VSS AR19 VSS AR20 VSS AR21 VSS AR22 VSS AR23 VSS AR24 VSS AR27 VSS AR30 VSS AR31 VSS AR32 VSS AR33 VSS AR34 VSS AR35 VSS AR36 VSS AR37 VSS AR38 VSS AR39 VSS AR40 VSS AR5 VSS AT1 VSS AT10 VSS AT11 VSS AT12 VSS AT13 VSS AT14 continued..[...]
-
Página 119
Signal Name Ball # VSS C6 VSS D11 VSS D13 VSS D15 VSS D17 VSS D2 VSS D23 VSS D24 VSS D26 VSS D28 VSS D30 VSS D32 VSS D34 VSS D36 VSS D37 VSS D5 VSS D6 VSS D7 VSS D9 VSS E10 VSS E18 VSS E20 VSS E22 VSS E23 VSS E3 VSS E36 VSS E38 VSS E6 VSS E7 VSS E8 VSS F1 VSS F12 VSS F14 VSS F16 VSS F19 VSS F21 continued... Signal Name Ball # VSS F22 VSS F24 VSS F2[...]
-
Página 120
Signal Name Ball # VSS K40 VSS K7 VSS L11 VSS L13 VSS L14 VSS L3 VSS L35 VSS L36 VSS L38 VSS L6 VSS L7 VSS L8 VSS L9 VSS M1 VSS M12 VSS M14 VSS M16 VSS M18 VSS M20 VSS M22 VSS M24 VSS M26 VSS M28 VSS M30 VSS M32 VSS M34 VSS M35 VSS M37 VSS M4 VSS M40 VSS M5 VSS M6 VSS M7 VSS M9 VSS N1 VSS N2 continued... Signal Name Ball # VSS N3 VSS N33 VSS N34 VS[...]