-
Página 1
Precision Cooling For Business -Critic al C ontinuity™ Li eber t ® XDC ™ Us er Man ual - 50 and 60 Hz , 130 & 160kW No minal C ooling C apa city[...]
-
Página 2
G ENERAL S AFETY G UIDELINES Before beginning the installation of the Liebert XDC, read all instructio ns, ve rify that all the parts a re included, and check the na meplate to be sure the Liebert XDC voltag e matches available utility power. Follow all local codes. Figure i Model number nomenclature ! WARNING Risk of electric shock. Can cause inju[...]
-
Página 3
i T ABLE OF CONTENTS G ENERAL S AFETY G UIDEL INES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I NSIDE F RONT C OVER 1.0 P RODUCT D ESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General Product Information . . . . . . . . . . . . . . . . . . . . . . .[...]
-
Página 4
ii 5.3 Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.1 Viewing or Changing Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.2 SETPOINTS . . . . . . . . . . . . . . . . . . . . . . . . [...]
-
Página 5
iii FIGURES Figure 1 Liebert XD C components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 Moving Lieber t XDC with forklift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 3 Remove tie-down bracke ts . . .[...]
-
Página 6
iv TA B L E S Table 1 Liebert XD C dimensions, weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 2 Liebert XDC piping connection sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 3 Liebert XDC water/glycol piping connec[...]
-
Página 7
Product De scription 1 1.0 P RODUCT D ESCRIPTION 1.1 General Product Information 1.1.1 Product/System Description The Liebert XDC ™ (eXtreme Densi ty Chiller) is self- contained refrigeration distribution unit designed to cool rooms with high heat producing equipment. There are two distinct circuits, each uti- lizing different refrigera nts and m[...]
-
Página 8
Product De scription 2 1.3.1 Handling With Skid • Always keep the unit upright, in doors and protected from damage. • If possible tra nsport the unit using a forklift tr uck; otherwise use a crane wit h belts or cables. When using a crane, apply spreader bars to avoidi ng pressing on the top edges of the packaging. • Personnel shou ld be prop[...]
-
Página 9
Product De scription 3 4. Move the Liebert XDC to its installation location. 5. Remove all lag bolts from the four (4) corner tie-do wn brackets. Remove the tie-down brackets from the unit. (see Figure 3 ). Figure 3 Remove tie-down bracket s 6. Lift the Liebert XDC about an inch and remove the shipping pallet. Figure 4 Remove p allet, insert piano [...]
-
Página 10
Product De scription 4 1.3.3 Removing Piano Jacks Once the unit has been moved to the installati on location, Em erson Network Power recommends using the follow ing method to remove the piano jacks. 1. Lower the unit as far as the piano jacks will all ow. 2. Undo all strapping holding the piano jacks to the unit. 3. Remove all cushioning materia l [...]
-
Página 11
Product De scription 5 Figure 6 Piping locations T able 2 Liebert XDC piping c onnection size s Air Cooled Model Piping Outlet Connection Sizes, OD Cu, inches 50/60Hz A B C D E F G XDC160 1-3/8 7/8 - - - 2-1/8 1-1/8 Install replaceable filter dryer assembly in liquid supply line G ** T o first cooling module or bypass flow controller Dimensions are[...]
-
Página 12
Product De scription 6 1.4.2 Placing the Liebert XDC on a Floo r St and The water/glycol floor stand can be located bene ath the XDC unit or can be installed nearby. Refer to the floor stand installa tion sheet shippe d in side the water regulating valv e package. 1. Move the floor stand assembly to its installa tion area and uncrate the unit. 2. P[...]
-
Página 13
Product De scription 7 Figure 7 W ater/glycol Liebert XDC on a floo r st and—positioning and piping connections T able 3 Liebert XDC water/glyc ol piping c onnection Sizes Model Piping Outl et Connectio n Sizes, OD Cu, inches 50/60Hz A B C D E* F** XDC160 2-1/8 1-1/8 1-3/8 7/8 2-1/2 2-1/8 or 2-5/8 * Threaded Female Conection ** 2-1/8" for 1&[...]
-
Página 14
Product De scription 8 Figure 8 Piping locations—floor st and and valve assembly Shaded areas indicate a recommended clearance of 36" (915mm) for component access and water/glycol piping. T OP VIE W OF FL OOR ST AND LEFT SIDE OF CABINET FL OOR ST AND C ONNECTIONS 33" (838mm) 33" (838mm) 72" (1,828mm) 12-5/16" (313mm) 26-1[...]
-
Página 15
Product De scription 9 1.4.3 Positioning the Liebert XDC with Floor S tand Install the Liebert XDC acco rding to the site-specific d ocumentatio n and secure the unit to the floor. The Liebert XDC can be installed ne ar a wall or another Liebert XDC. There must be at least 3 feet (914mm) clearance in front of the Liebert XDC for service access. Whe[...]
-
Página 16
Product De scription 10 1.5 High V oltage Connections Make sure the actual supply voltage and f requenc y correspond to the voltage and frequency indicated on the Liebert XDC’s rating plate. Connect cables for high voltage supply to the electrical box in the Li ebert XDC according to Figures 5 , 11 and 12 and make sure that the ph ases are correc[...]
-
Página 17
Product De scription 11 2. Determine which kn ockouts in the electrical enclosure will be used and rem ove them (see Figure 11 ). Figure 1 1 Electrical enclosure knocko ut locations for field wiring 3. Route the input hazardous voltage electrical po wer wiring through the top right knockout on the primary electrical enclosure (see Figure 11 ) to th[...]
-
Página 18
Product De scription 12 Figure 13 50Hz models high volt age connections—primary disconnect switch Figure 14 60Hz models high volt age connections—secondary dis connect switch Compressor Circuit Breakers Compressor Contactors T ransformer 3 Wire Raceway Relay Ground Lug Customer Power Connection Primary Power Block Primary Disconnect Switch Elec[...]
-
Página 19
Product De scription 13 Figure 15 50Hz models high volt age connections—secondary dis connect switch 1.6 Extra Low V oltage Connections Extra Low Voltage (ELV) power output is 30V and 100VA or less. 1. Turn off all unit power before connecting cables or wires. Failure to do so may damage this equipment. 2. Route low voltage electrical connections[...]
-
Página 20
Product De scription 14 Figure 17 Electrical enclosure knockout loca tions for Extra Low V oltage connections Field Connections—All Unit s • Connect the control display panel cable to term inal block TB3 terminals 1 through 4 on the Lie- bert XDC control bo ard as shown (refer to Figure 18 ). The display panel must always be installe d in the c[...]
-
Página 21
Product De scription 15 Figure 18 Extra Low V olt age field connections point s Control wiring must be Class 2 and installed in accordance with the National Electrical Code (NEC) Requires shielded cable Control Display Panel Four thermostatic wires to be connected toTB3 T emperature/Humidity Sensor Cable Provided with T emperature/Humidity Sensor B[...]
-
Página 22
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 16 2.0 P IPING AND F ILLING WITH R EFRIGERANT : R-134 A AND R-407 C C IRCUIT S 2.1 European Union Fluorinated Greenhouse Gas Requirement s Stationary air conditioning, refrigerat ion, heat pu mp equipments and stationa ry fire protection sys- tems in the European Community market and [...]
-
Página 23
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 17 Figure 19 Liebert XD system diagram 2.4 Piping Inst allation Method The assembly and connection means used for piping in the Liebert XD sy stem are similar to those used for conventional refrigeratio n systems. All piping should be installed with high-temperatu re brazed joints. So[...]
-
Página 24
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 18 Byp ass Flow Controllers To ensure the Liebert XDC pumps operate within the optimum range, some installations require one or more bypass flow controll er(s). Th ese devices are added to the f ield piping, and simula te the flow of additional cooli ng modules. Each bypass flow contr[...]
-
Página 25
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 19 Figure 22 Bypa ss flow controller piping Evacuation and Leak Check—R-134a Pumped Circuit 1. Open all service valves, including th ose located outside of the Liebert XDC. 2. Place 150 psig (1034kPa: 10.34 bars) of dry nitr ogen with a tracer of R-13 4a in the system. 3. Check the [...]
-
Página 26
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 20 2.5 Filling the Pumped Circuit—R-134a 1. Connect a charging manifold to the serv ice port of the receiver outlet valve. 2. Purge the hoses. 3. Calculate the amount of R- 134a refrigera nt needed to char ge the system, using th e values in Tables 6 , 7 , 8 and 9 ; for assistance, [...]
-
Página 27
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 21 2.5.1 Calculating Refrigerant Charge—Example Using Tables 6 , 7 , 8 and 9 , calculate the refrigerant charge of the indi vidual sections of your Liebert XD system. Add the calculated ch arge amounts to determine the amount of R-134a refrigerant required for one system combining a[...]
-
Página 28
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 22 2.5.2 Piping for Direct Exp ansion (DX) Circuit—R-407c Air Cooled Unit s 2.6 Inst all Double Discharge Risers For air-cooled systems, double disc harge risers must be installed in the hot gas lines that have verti- cal heights of 15 feet (4.6m) or more (see Figure 23 ). This will[...]
-
Página 29
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 23 For Air Cooled Lee-Temp / Flood Back Head Pressure Control Uni ts Only NOTE Proper safety equipment and pr oper refrigeration to ols are required. Check unit nameplate for correct refrigerant type before topping off or recharging a system. NOTE Refrigerant R-407c is a blend of thre[...]
-
Página 30
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 24 Figure 24 Inst allation dat a—Lee-T emp, one-circuit, four-fan mode l Field-supplied mai n disconnect swi tch in accordance with local codes or main unit switch ordered as optional equipment factory-installed i n condenser control box. * Liquid line from condenser (Circui t 1) Se[...]
-
Página 31
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 25 Figure 25 Inst allation dat a—Lee-T emp, one -circuit, high ambient six-fan model Mou nti ng Inst ructi ons 1. Uncr ate car ton and inspect f or damage to condenser and c ondenser c ontrol panel. 2. Assemble legs per in structions as shown. 3. W hen piping long, vertic al rises, [...]
-
Página 32
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 26 Figure 26 Liebert XDC piping schematic and Lee-T emp heater p ad wiring Lee-temp Winter System DPN000937 Pg. 3, Rev . 6 Rotalock V alve Combination Head Pressure Control & Check V alve Condenser Control Box Inverted T rap (By Others) Pressure Relief V alve Liquid Level Indicato[...]
-
Página 33
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 27 Figure 27 General arrangement air cooled Liebert XDC Lee-T emp Control T able 12 Recommended refrigerant line sizes, DX R-407c, OD copper Liebert XDC 160 Equivalent Length, ft., (m) * Hot Gas Line, in. Liquid Line, in. 50 (15) 1-1/8 7/8 100 (30) 1-1/8 1-1/8 150 (45) 1-3/8 1-1/8 200[...]
-
Página 34
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 28 Figure 28 DCSL616 piping connections—two refr igerant circuit s conne cted for p arallel flow T able 13 Recommended refrigerant line sizes for DCSL616 Liebert XDC 160 Equivalent Length, ft., (m) * Hot Gas Line, in. Liquid Line, in. 50 (15) 1-1/8 7/8 100 (30) 1-1/8 1-1/8 150 (45) [...]
-
Página 35
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 29 Figure 29 CSL616 piping connections—two refriger ant circuit s connected for parallel ref rigerant flow Refrige rant lines are to be rou ted and se cured t o prevent excess ive vibra tion and str ess at the con nectio ns. Connect the tw o refriger ant coils for parallel refriger [...]
-
Página 36
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 30 2.6.1 Air Cooled Condenser with Lee-T emp “Flooded Condenser” Head Pressure Control System—R-407c (DX) Circuit The Lee-Temp system consists of a modulating type head p ressure control valves and insulat ed receivers with heater pa ds to ensure operation at ambient temperature[...]
-
Página 37
Piping and Filling with Refrigerant: R-134 a and R-407c Circuits 31 2.7 Filling the Direct Ex pansion (DX) Circuit—R-407c Any recommended v olumes will be appro ximate. The us er must verify that all circuits of the system have been adequately filled . For Air Cooled Lee-Temp / Flood Back Head Pressure Control Uni ts Only 1. Make sure the Liebert[...]
-
Página 38
Installation Checklist 32 3.0 I NST ALLATION C HECK LIST ___ 1. Unpack and check received material. ___ 2. Position L iebert XDC and secure to floor. ___ 3. Wire high voltage connections. ___ 4. Wire low voltage connections. ___ 5. Connect Liebert XD cooling module piping to Liebert XDC. ___ 6. Check all circuits of the sy stem for leaks. ___ 7. Ho[...]
-
Página 39
Checklist for Lieb ert XDC Startup 33 4.0 C HECKLIST FOR L IEBERT XDC S T ARTUP 1. Verify that bypass f low controllers were instal led (if a pplicable), see Table 5 : 2. Check all isolation ball valves in the Liebert XD C and Liebert XD cooling m odule and verify th at all are open. 3. Check rotation of Liebert XDC pumps. Use the rotation device p[...]
-
Página 40
Checklist for Lieb ert XDC Startup 34 4.1 System Refrigerant Charges Over 35 lb. (15.9kg) Require Additional Oil System charges over 35 lb. (15.9kg) requir e additional oi l charge to be added. See Figure 30 for the amount requi red for va rious charge levels. Once the system has been fully charged with refrigerant, use a hand pump to add the addit[...]
-
Página 41
Checklist for Lieb ert XDC Startup 35 The Liebert XDC system is now ready to be turned ON. 1. Turn On all fans of the Liebert XD cooling mo dules. 2. Turn the Liebert XDC On via user inte rface (I/O button). Allow the system to attempt to start for at least 2 minutes. If the Liebert XDC pump cannot ma intain flow and continues to switch over due to[...]
-
Página 42
Microprocessor Control 36 5.0 M ICROPROCESSOR C ONTROL 5.1 Feature Overview The microprocessor control for the Liebert XDC unit features an easy-to-use menu-driven LCD. The menus, control features and circuit board detai ls are described in this section. Figure 32 User interface Active alarms are displayed on the LCD screen and sound an audible bee[...]
-
Página 43
Microprocessor Control 37 5.2 Controls The Microprocessor Control for the Liebert X DC featur es an easy-to-use, menu-driven liquid crystal display. The menus, control features and circuit board de tails are described in this section. 5.2.1 Feature Overview The Liebert XDC maintains the cool ant being pumped to Liebert XD cooling modules at a tempe[...]
-
Página 44
Microprocessor Control 38 5.3.2 SETPOINTS Selecting SETPOINTS from the Main Menu will reveal the following menu items: To reach the SETPOINTS menu: 1. Press the MENU button. 2. Press ENTER when the SE TPOINTS menu is displayed. 3. Use the up an d down arrow keys to mo ve through the menu and view the setpoints. To change a setpoint, follow the step[...]
-
Página 45
Microprocessor Control 39 5.3.3 ST A TUS The user can check the status of cooling percentag e, pump and compressor operating st atus and tem- perature of the refrigerant. VALVE OPEN %—0-100 COMP 1A, 2A, 1B, 2B—On/Off PUMP 1—On/Off PUMP 2—On/Off REFRIG T—Refrigerant temperature 0-100°F 5.3.4 ACTIVE ALARMS This submenu allows the user to r[...]
-
Página 46
Microprocessor Control 40 5.3.8 SETUP OPERA TION Selecting Setpoint/Setu p from the Main Men u will display the fo llowing selections: To view the SETUP OPERATION menu 1. Press the MENU key. 2. Use the up an d down arrow keys to move to the SETUP OPERATIONS menu. 3. Press the ENTER key to enter into the m enu. 4. Use the up an d down arrow keys to [...]
-
Página 47
Microprocessor Control 41 PUMP OFF TD The user can set the amount of time a pump will rema in off when refrigerant flow is interrupted or stops. After the time delay has expired, the co ntrol will try to restart the pump (see PUMP START TD ). LEAD PUMP This allows the us er to select which pump is the active pump. It can be se t to PUMP 1 or PUMP 2[...]
-
Página 48
Microprocessor Control 42 5.3.9 SETPT P ASSWORD To prevent unauthorized changes to the control setpoints an d alarm settings, the Liebert XDC may be configured to require a three-digit password before permitting setpoint or alarm setting changes. To enable this feature, set DIP swi tch #8 in the wall b ox to the Off position. If DIP switch # 8 is O[...]
-
Página 49
Microprocessor Control 43 5.3.1 1 CALIBRA TE SENSORS The temperature and humidity sensor ca n be calibrated by selecting this menu item . The tempera- ture sensor can be calibrated ± 5°F an d the humidity sensor can be calibrated ±10% RH. To prevent coil condensation that could dama ge the Liebert XDC, the sensors must be calibra ted to a known [...]
-
Página 50
Microprocessor Control 44 5.3.13 ALARM TIME DELA Y Some alarms can be programmed wi th a time delay as a means of preventing nuisance alarms. This function specifies the amount of time an alarm must be present be fore the Liebert XDC recognizes and annunciates the alarm. If the alarm conditi on goes away before the time delay has expired, the alarm[...]
-
Página 51
Microprocessor Control 45 5.3.16 CUSTO M TEXT This menu permits the user to set up a custom text message with a maximum le ngth of 16 characters. The message may use any of the foll owing char acters or a blank space: ABCDEFGHIJKLMNOPQURSTUVWXYZ#%*-0123 456789. This custom text can be designated as the cu stom alarm text in the CUSTOM ALARMS menu ([...]
-
Página 52
Alarm Descriptions and Solutions 46 6.0 A LARM D ESCRIPTIONS AN D S OLUTIONS 6.1 Alarm Descriptions • LOSS OF FLOW P1 – Activated when pump 1 is commanded to run and the differential pres- sure switch does not sense differen tial pressure ( set at 6 psi; 41 kPa; 0.41 bars). After attempting to start pump 1 for a period of 120 second s (inclu di[...]
-
Página 53
Alarm Descriptions and Solutions 47 • SHORT CYCLE C1A – Activated when compressor 1A turn s On, Off, then back On, 5 times within 10 minutes, or 10 times within 1 hour. • SHORT CYCLE C1B – Activated when compressor 1B turn s On, Off, then back On, 5 times within 10 minutes, or 10 times within 1 hour. • SHORT CYCLE C2A – Activated when c[...]
-
Página 54
Alarm Descriptions and Solutions 48 6.3 Enable / Disable Alarms Any alarm may be enabled or disabl ed. If an alarm is di sabled, the alarm cond ition will not be moni- tored and will not trip, will not be in ACTIVE AL ARMS, will not be in ALARM HISTORY and will not be annunciated. To enable or disable an alarm, or to check whether an alarm is enabl[...]
-
Página 55
Alarm Descriptions and Solutions 49 6.6 View Alarm History To view t he alarm histo ry: 1. Press the MENU key. 2. Use the up or down arrow key to move to the ALARM HISTORY menu. 3. Press the ENTER key to enter into the m enu. 4. Use the up or down arrow key to move th rough the menu and vi ew the alarm hi story. This menu will show the most re cent[...]
-
Página 56
Trou bleshoot ing 50 7.0 T ROUBLESHOOTING T able 24 Liebert XDC troubleshooting Symptom Possible Cause Check or Remedy Pump/compressor will not energize No main power Check L1, L2, and L3 for rated voltage. Loose electrical connections Tighten connections. Overloa ds tripped Allow pump to co ol. Check amp draw . Tripped circuit breaker Check circui[...]
-
Página 57
Trou bleshoot ing 51 Room become s too warm Liebert XDC is off. Check status of the Liebert XDC at the user interface. Turn system On at I/O butt on if system is Off. High dew point Check temperature and relative humidity (RH) of room. Lower RH setpoint if necessary to lower dew point. At normal room temperature of 68°F (2 0°C), the RH shoul d be[...]
-
Página 58
Maintenance 52 8.0 M AINTENANCE The Liebert XD system components require little maintena nce when proper fl uid levels are mai n- tained and proper startup and operation procedu res are followed. The follow ing tasks should be per- formed at the intervals stated: 1. Check sight glass level of receiv er on all circuits every 4-6 weeks. During normal[...]
-
Página 59
Maintenance 53 8.3 W ater/Glycol Fl oor St and Condenser 8.3.1 Shell and T ube Condensers Each water or glycol cooled modu le has a shell and tube condenser which consists of a shell, remov- able heads, g askets and cleanable co pper tubes. It may be necessary to clean the co pper tubing periodica lly to remove any scale or lime that should collect[...]
-
Página 60
Specifications 54 9.0 S PECIFICATIONS T able 25 Liebert XDC specifications Models XDC160 Air XDC160 Water / Glycol XDC160AA XDC160AM 189192G3 189192G5 Cooling Capacity, tons (kW) 46 (160) 37 (130 ) See Tables 26 , 27 and 28 for Water/Glycol performance data Minimum Load The Liebert XDC’s minimum re commended operating load is 40% of system nomina[...]
-
Página 61
Specifications 55 T able 26 Floor stand s pecificat ions—water -cooled Liebert XDC Models - 60 Hz XDC160 W a ter Floor S tand - 60Hz Entering Fluid Temp °F (C) 65 (18) 70 (21) 75 (24) 85 (29) 95 (35) Performance Data Cooling capacity, tons (kW) 46.1(162.3) 46. 1(162.3) 46.1(162.3) 46. 1(162.3) 44.5 (156.5) Flow, GPM 50 58 70 110 142 Pressure Dro[...]
-
Página 62
Specifications 56 T able 28 Floor stand s pecifications—Liebert XDC wit h 40% ethylene glycol Models - 60 Hz XDC160 Glycol Floor St and - 60Hz - 40% EG Outside Ambient °F (°C) 95 (35) 100 (38) 105 (41) Entering Fluid Temp °F (°C) 110 (43) 110 (43) 110 (43) Performance Da t a Cooling capacity, tons (kW) 42.5 (149.4) Total Heat Rejection, (kW) [...]
-
Página 63
[...]
-
Página 64
Ensuring The Hi gh A vai labilit y 0f Mission-Critic al Data And Ap plic ations. Emerson Net work P ower , the global leader in enabling business-critical continuity , ensures network resiliency and adaptabilit y through a family of technologies—inc luding Liebert power and cooling technologies—that prot ec t and suppor t business-critical syst[...]