Ir para a página of
Manuais similares
-
Carbon Monoxide Alarm
Teledyne t320u
0 páginas 10.62 mb -
Carbon Monoxide Alarm
Teledyne T360
0 páginas 6.5 mb -
Carbon Monoxide Alarm
Teledyne T801
0 páginas 7.2 mb -
Carbon Monoxide Alarm
Teledyne GFC 7001EM
0 páginas 10.13 mb -
Carbon Monoxide Alarm
Teledyne 300
121 páginas 1.07 mb -
Carbon Monoxide Alarm
Teledyne M300EM
0 páginas 11.9 mb -
Carbon Monoxide Alarm
Teledyne T360M
0 páginas 6.5 mb -
Carbon Monoxide Alarm
Teledyne 7300A
85 páginas 0.61 mb
Bom manual de uso
As regras impõem ao revendedor a obrigação de fornecer ao comprador o manual com o produto Teledyne 7300A. A falta de manual ou informações incorretas fornecidas ao consumidor são a base de uma queixa por não conformidade do produto com o contrato. De acordo com a lei, pode anexar o manual em uma outra forma de que em papel, o que é frequentemente utilizado, anexando uma forma gráfica ou manual electrónicoTeledyne 7300A vídeos instrutivos para os usuários. A condição é uma forma legível e compreensível.
O que é a instrução?
A palavra vem do latim "Instructio" ou instruir. Portanto, no manual Teledyne 7300A você pode encontrar uma descrição das fases do processo. O objetivo do manual é instruir, facilitar o arranque, a utilização do equipamento ou a execução de determinadas tarefas. O manual é uma coleção de informações sobre o objeto / serviço, um guia.
Infelizmente, pequenos usuários tomam o tempo para ler o manual Teledyne 7300A, e um bom manual não só permite conhecer uma série de funcionalidades adicionais do dispositivo, mas evita a formação da maioria das falhas.
Então, o que deve conter o manual perfeito?
Primeiro, o manual Teledyne 7300A deve conte:
- dados técnicos do dispositivo Teledyne 7300A
- nome do fabricante e ano de fabricação do dispositivo Teledyne 7300A
- instruções de utilização, regulação e manutenção do dispositivo Teledyne 7300A
- sinais de segurança e certificados que comprovam a conformidade com as normas pertinentes
Por que você não ler manuais?
Normalmente, isso é devido à falta de tempo e à certeza quanto à funcionalidade específica do dispositivo adquirido. Infelizmente, a mesma ligação e o arranque Teledyne 7300A não são suficientes. O manual contém uma série de orientações sobre funcionalidades específicas, a segurança, os métodos de manutenção (mesmo sobre produtos que devem ser usados), possíveis defeitos Teledyne 7300A e formas de resolver problemas comuns durante o uso. No final, no manual podemos encontrar as coordenadas do serviço Teledyne na ausência da eficácia das soluções propostas. Atualmente, muito apreciados são manuais na forma de animações interessantes e vídeos de instrução que de uma forma melhor do que o o folheto falam ao usuário. Este tipo de manual é a chance que o usuário percorrer todo o vídeo instrutivo, sem ignorar especificações e descrições técnicas complicadas Teledyne 7300A, como para a versão papel.
Por que ler manuais?
Primeiro de tudo, contem a resposta sobre a construção, as possibilidades do dispositivo Teledyne 7300A, uso dos acessórios individuais e uma gama de informações para desfrutar plenamente todos os recursos e facilidades.
Após a compra bem sucedida de um equipamento / dispositivo, é bom ter um momento para se familiarizar com cada parte do manual Teledyne 7300A. Atualmente, são cuidadosamente preparados e traduzidos para sejam não só compreensíveis para os usuários, mas para cumprir a sua função básica de informação
Índice do manual
-
Página 1
i Infrared Gas Analyzer Teledyne Analytical Instruments OPERA TING INSTR UCTIONS Model 7300A Infrared Gas Analyzer P/N M00000 10/13/00 ECO # 00-0000 HIGHLY TOXIC AND OR FLAMMABLE LIQUIDS OR GASES MAY BE PRESENT IN THIS MONITORING SYSTEM. PERSONAL PROTECTIVE EQUIPMENT MAY BE REQUIRED WHEN SERVICING THIS SYSTEM. HAZARDOUS VOLTAGES EXIST ON CERTAIN CO[...]
-
Página 2
ii Model 7300A Teledyne Analytical Instruments Copyright © 2000 Teledyne Analytical Instruments All Rights Reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any other language or computer language in whole or in part, in any form or by any means, whether it be electronic,[...]
-
Página 3
iii Infrared Gas Analyzer Teledyne Analytical Instruments Technician Record Sheet Technician Record Sheet Technician Record Sheet Technician Record Sheet Technician Record Sheet The following data is recorded by the technitian at the end of the testing of the analyzer: APPLICATION (IMPURITY OF INTEREST):__________________ RANGE 1: FROM____________ [...]
-
Página 4
iv Model 7300A Teledyne Analytical Instruments[...]
-
Página 5
i Table of Contents Teledyne Analytical Instruments OPERA TING INSTR UCTIONS Model 7300A Infrared Gas Analyzer T ab le of Contents General Pur pose[...]
-
Página 6
ii Model 7300A Infrared Gas Analyzer Teledyne Analytical Instruments Table of Contents 1 Introduction 1. 1 Overview ........................................................................ 1-1 1. 2 T ypical Gas Applications ................................................ 1-1 1.3 Main Features of the Analyzer .......................................[...]
-
Página 7
iii Table of Contents Teledyne Analytical Instruments 3 Start-up and Theory of Operation ......................................... 3-1 3. 1 Preliminary ..................................................................... 3-1 3. 2 NDIR Analyzer set-up .................................................... 3-1 3.2.1 Initial Set-up and Zeroing ........[...]
-
Página 8
iv Model 7300A Infrared Gas Analyzer Teledyne Analytical Instruments 4.4.2 Span Cal ................................................................ 4-19 4.4.2.1 Auto Mode Spanning ..................................... 4-19 4.4.2.2 Manual Mode Spanning ................................. 4-20 4. 5 The Alarms Function .................................[...]
-
Página 9
1-1 Infrared Gas Analyzer Introduction 1 Teledyne Analytical Instruments 1.0 Introduction 1.1 Overview The Teledyne Analytical Instruments Model 7300A Analyzer, is a versatile microprocessor-based instrument. The manual covers the Model 7300A General Purpose 19 ” Panel/Rack mounted analyzer. Consisting of an Analysis section and Control Unit sect[...]
-
Página 10
1-2 1 Introduction Model 7300A Teledyne Analytical Instruments 1 . 3 Main Features of the Analyzer The Model 7300A Infrared Gas Analyzer is sophisticated yet simple to use. The main features of the analyzer include: • A easy-to-use front panel interface that includes a red 5-digit LED display and a vacuum fluorescent display, driven by microproce[...]
-
Página 11
1-3 Infrared Gas Analyzer Introduction 1 Teledyne Analytical Instruments being measured. There is a direct correlation between absorption and the concentration of the component of interest in the liquid mixture. 1 . 5 NDIR Analyzer The Model 7300A contains an optical system consisting of an infrared (IR) source, sample cell, and detectors. In front[...]
-
Página 12
1-4 1 Introduction Model 7300A Teledyne Analytical Instruments[...]
-
Página 13
Infrared Gas Analyzer Installation 2 2-1 Teledyne Analytical Instruments 2.0 Installation Installation of the Model 7300A Infrared Gas Analyzer includes: 1. Unpacking 2. Mounting 3. Gas connections 4. Electrical connections 5. Testing the system. 2 . 1 Unpacking the Analyzer/Inspection The analyzer is shipped with all the materials you need to inst[...]
-
Página 14
2 Installation Model 7300A 2-2 Teledyne Analytical Instruments placed as close to the sample point as possible and bolted to its supporting surface. When installed as a system with enclosure (non-panel or rack mounted) a waterproof mastic should be liberally applied to the under surfaces of all supporting legs of the cubicle system before placing i[...]
-
Página 15
Infrared Gas Analyzer Installation 2 2-3 Teledyne Analytical Instruments 2.2.4 Pipe Connections Refer to Appendix Piping Drawings for information about pipe connec- tions. On special systems, consult the text in the manual that describes your particular sample system in detail. 2.2.5 Sample Delivery System The sample delivery system should be desig[...]
-
Página 16
2 Installation Model 7300A 2-4 Teledyne Analytical Instruments 2.3.1 Primary Input Power The power cord receptacle and fuse block are located in the same assembly. Insert the power cord into the power cord receptacle. DANGER: POWER IS APPLIED TO THE INSTRUMENT'S CIR- CUITRY AS LONG AS THE INSTRUMENT IS CON- NECTED TO THE POWER SOURCE. THE STAN[...]
-
Página 17
Infrared Gas Analyzer Installation 2 2-5 Teledyne Analytical Instruments 4 – 20 mA dc % Range: Current rises linearly with concentration, from 4 mA at 0 concentration to 20 mA at full scale. (Full scale = 100% of programmable range.) 4 – 20 mA dc Range ID: 8 mA = Range 1, 12 mA = Range 2, 16 mA = Range 3, 20 mA = Range 4. Table 2-2: Analog Outp[...]
-
Página 18
2 Installation Model 7300A 2-6 Teledyne Analytical Instruments 6 0.6 13.6 7 0.7 15.2 8 0.8 16.8 9 0.9 18.4 10 1.0 20.0 To provide an indication of the range, the Range ID analog outputs are used. They generate a steady preset voltage (or current when using the current outputs) to represent a particular range. Table 2-4 gives the range ID output for[...]
-
Página 19
Infrared Gas Analyzer Installation 2 2-7 Teledyne Analytical Instruments System Alarm: Actuates when DC power supplied to circuits is unacceptable in one or more parameters. Permanently configured as failsafe and latching. Cannot be de- feated. Actuates if self test fails. (Reset by pressing button to remove power. Then press again and any other bu[...]
-
Página 20
2 Installation Model 7300A 2-8 Teledyne Analytical Instruments Table 2-6: Remote Calibration Connections Pin Function 9 + Remote Zero 11 – Remote Zero 10 + Remote Span 12 – Remote Span 40 Cal Contact 41 Cal Contact Remote Calibration Protocol: To properly time the Digital Remote Cal Inputs to the Model 7300A Analyzer, the customer's contro[...]
-
Página 21
Infrared Gas Analyzer Installation 2 2-9 Teledyne Analytical Instruments 2.3.3.4 Range ID Relays Four dedicated Range ID relay contacts. For any single application they are assigned to relays in ascending order. For example: if all ranges have the same application, then the lowest range is assigned to the Range 1 ID relay, and the highest range is [...]
-
Página 22
2 Installation Model 7300A 2-10 Teledyne Analytical Instruments The voltage from these outputs is nominally 0 V for the OFF and 15 V dc for the ON conditions. The maximum combined current that can be pulled from these output lines is 100 mA. (If two lines are ON at the same time, each must be limited to 50 mA, etc.) If more current and/or a differe[...]
-
Página 23
Infrared Gas Analyzer Installation 2 2-11 Teledyne Analytical Instruments Table 2-8: Commands via RS-232 Input Command Description as <enter> Immediately starts an autospan. az <enter> Immediately starts an autozero. rp <enter> Allows reprogramming of two System functions: APPLICATION (gas use) and ALGORITHM (linearization). st &l[...]
-
Página 24
2 Installation Model 7300A 2-12 Teledyne Analytical Instruments 2 . 5 T esting the System Before plugging the instrument into the power source: • Check the integrity and accuracy of the fluid connections. Make sure there are no leaks. • Check the integrity and accuracy of the electrical connections. Make sure there are no exposed conductors •[...]
-
Página 25
Infrared Gas Analyzer Installation 2 2-13 Teledyne Analytical Instruments 1. Introduce zero fluid and set zero as referred in section 4.4.1 NOTE: When calibrating from 0% to an upper concentration gas, obtain a zero gas (minus the analyte) that typically is as pure as the minimum resolution needed to control to. This usually meets or exceeds the mi[...]
-
Página 26
2 Installation Model 7300A 2-14 Teledyne Analytical Instruments[...]
-
Página 27
Infrared Gas Analyzer Start-up and Operation 3-1 Teledyne Analytical Instruments 3.0 Start-up and Operation 3.1 Preliminary Before applying power to the system, TAI suggests that the electrical wiring installation be checked against the system input-output diagram. Proper attention to this preliminary check will prevent severe damage caused by wiri[...]
-
Página 28
3 Start-up and Theory of Operation Model 7300A 3-2 Teledyne Analytical Instruments and sample flow between 0.1 to 0.6 SCFH (50-250 cc/min) . Zero standard gas must have a composition similar to sample, an ideally, contains none of the components of interest. Initialize a zero operation through the system menu. Refer to Section 4 for Electronics /Co[...]
-
Página 29
Infrared Gas Analyzer Start-up and Operation 3-3 Teledyne Analytical Instruments are not used during automatic sampling. 3 . 3 Theory of operation 3.3.1 General T he non-dispersive infrared (NDIR) analyzer is one of the major components of the system. It employs the basic principles of spectroscopic analysis to measure a specific concentration of o[...]
-
Página 30
3 Start-up and Theory of Operation Model 7300A 3-4 Teledyne Analytical Instruments These lamps are typically rated for 20,000 hours continuous operation when run in the DC mode (+5VDC). This collimated energy is directed through parallel infrared beams. The radiant energy passes through tubes containing a continuously flowing sample gas. As the bea[...]
-
Página 31
Infrared Gas Analyzer Start-up and Operation 3-5 Teledyne Analytical Instruments 3.4 Circuit Description The Teledyne Analytical Instruments IR bench is a multiple wave- length, single beam design. It uses a quadruple detector that consists of a specially designed, patented thermopile with small IR filters mounted in front of it to produce independ[...]
-
Página 32
3 Start-up and Theory of Operation Model 7300A 3-6 Teledyne Analytical Instruments 3 . 5 Digital Signal Processing & Electronics The Model 7300A uses an 8031 microcontroller (Central Processing Unit — CPU) with 32 kB of RAM and 128 kB of ROM to control all signal processing, input/output, and display functions for the analyzer. System power i[...]
-
Página 33
Infrared Gas Analyzer Start-up and Operation 3-7 Teledyne Analytical Instruments The CPU also provides appropriate control signals to the Displays, Alarms, and External Valve Controls, and accepts digital inputs for external Remote Zero and Remote Span commands. It monitors the power supply through an analog to digital converter as part of the data[...]
-
Página 34
3 Start-up and Theory of Operation Model 7300A 3-8 Teledyne Analytical Instruments Piece-wise approximation is the method used to linearize the signal, i.e., the linearizer ’ s output to input relationship can be graphed as a number of straight line segments connected together to approximate the desired curve that would be required to compensate [...]
-
Página 35
Infrared Gas Analyzer Start-up and Operation 3-9 Teledyne Analytical Instruments 3.7 AUTOMATIC FUNCTION (Optional) The events talking place during a zero cycle are as follows: l. The zero cycle starts with activation of the calibration contact. The analyzer outputs are held during the zero cycle. 2. The Auto Zero solenoid valve (optional) is activa[...]
-
Página 36
3 Start-up and Theory of Operation Model 7300A 3-10 Teledyne Analytical Instruments[...]
-
Página 37
Infrared Gas Analyzer Operation 4 4-1 Teledyne Analytical Instruments Operation 4. 1 Introduction Although the Model 7300A is usually programmed to your application at the factory, it can be further configured at the operator level, or even, cautiously , reprogrammed. Depending on the specifics of the application, this might include all or a subset[...]
-
Página 38
4 Operation Model 7300A 4-2 Teledyne Analytical Instruments 4 . 2 Using the Controls To get the proper response from these controls, press the desired key (ESCAPE or ENTER — DOWN or UP). To enter the screen menu, press any key. The item that is between arrows on the screen is the item that is currently selectable by pressing the ENTER enter key. [...]
-
Página 39
Infrared Gas Analyzer Operation 4 4-3 Teledyne Analytical Instruments Figure 4-1: Hierarchy of Functions and Subfunctions Span/Zero Timing Span/Zero Off/On Span/Zero Off/On Change Yes/No Change Password Verify Password Show Model and Version Secure Sys & Analyze Only Enter Password Yes PSWD LOGOUT MODEL AUTO-CAL Self-Test in Progress Slef-Test [...]
-
Página 40
4 Operation Model 7300A 4-4 Teledyne Analytical Instruments 4.2.1.2 Setup Mode The MAIN MENU consists of 14 functions you can use to customize and check the operation of the analyzer. Figure 4-1 shows the functions available with the 7300A. They are listed here with brief descriptions: 1 AUTO-CAL: Used to define and/or start an automatic calibratio[...]
-
Página 41
Infrared Gas Analyzer Operation 4 4-5 Teledyne Analytical Instruments 15 OFFSET: This function helps set a non-zero offset to the zero calibration. It is useful when zeroing the analyzer with a background gas that is different than the sample. 16 CAL-INDEPD: Not generally accessed buy the end user. Forces analyzer to be in independent calibration m[...]
-
Página 42
4 Operation Model 7300A 4-6 Teledyne Analytical Instruments If you do not wish to continue a function, you can abort the session by escaping . Escaping a function takes the analyzer back to the previous screen, or to the ANALYZE Function, depending on the function escaped. reproduced, at the appropriate point in the procedure, in a Mono- spaced typ[...]
-
Página 43
Infrared Gas Analyzer Operation 4 4-7 Teledyne Analytical Instruments 4.3.3 Password Protection Before a unique password is assigned, the system assigns TAI by default. This password will be displayed automatically. The operator just presses the Enter key to be allowed total access to the instrument ’ s features. If a password is assigned, then s[...]
-
Página 44
4 Operation Model 7300A 4-8 Teledyne Analytical Instruments Press Escape to move on, or proceed as in Changing the Password , below. 4.3.3.2 Installing or Changing the Password If you want to install a password, or change an existing password, proceed as above in Entering the Password . When you are given the opportunity to change the password: Cha[...]
-
Página 45
Infrared Gas Analyzer Operation 4 4-9 Teledyne Analytical Instruments When you have finished typing the new password, press Enter . A verifica- tion screen appears. The screen will prompt you to retype your password for verification. Enter PWD To Verify: A A A Use the UP/DOWN key to retype your password and use ENTER to scroll through the letters, [...]
-
Página 46
4 Operation Model 7300A 4-10 Teledyne Analytical Instruments The self diagnostics are run automatically by the analyzer whenever the instrument is turned on, but the test can also be run by the operator at will. To initiate a self diagnostic test during operation, use the UP/DOWN key to scroll through the MAIN MENU to the SELFTEST and Enter . Th[...]
-
Página 47
Infrared Gas Analyzer Operation 4 4-11 Teledyne Analytical Instruments Dpt INPUT OUTPUT Ø Ø.ØØ Ø.ØØ The leftmost digit (under Dpt ) is the number of the data point being moni- tored. Use the UP/DOWN key to select the successive points. The INPUT value is the input to the linearizer. It is the simulated output of the analyzer. You do not need[...]
-
Página 48
4 Operation Model 7300A 4-12 Teledyne Analytical Instruments Hard_offset_C=3015 (This is the raw DAC count of the Coarse zero adjustment. It should read between 0 and 4095) Hard_offset_F=2715 (This is the raw DAC count of the Fine zero adjustment. It should read between 0 and 4095) Current_gain = 4 (This is the gain the analyzer is on, it should re[...]
-
Página 49
Infrared Gas Analyzer Operation 4 4-13 Teledyne Analytical Instruments 6 160 7 320 8 640 9 1280 10 2360 The response time listed above can and will change depending on the application and they merely serve to illustrate the effect of the digital filter. The digital filter disengages if there is an upset that is more than 5% of full scale. As the re[...]
-
Página 50
4 Operation Model 7300A 4-14 Teledyne Analytical Instruments How the offset value is selected: To find out what the offset value should be, the intended zero calibration gas and the mix of the process background gas must be procured. This of course assumes that the zero gas and the process background gas are very different and that an offset will o[...]
-
Página 51
Infrared Gas Analyzer Operation 4 4-15 Teledyne Analytical Instruments Adjst output to 4ma <ENT> to OK: - 7 Use the Up or Down key to adjust the number on the VFD display. The range of this number is from – 255 to 255. As this number changes, so should the reading of the ammeter. Adjust this number until the reading of the ammeter is, as cl[...]
-
Página 52
4 Operation Model 7300A 4-16 Teledyne Analytical Instruments 4 . 4 The Zero and Span Functions (1) The Model 7300A can have as many as three analysis ranges plus a special calibration range (Cal Range); and the analysis ranges, if more than one, may be programmed for separate or identical gas applications. (2) If all ranges are for the same applica[...]
-
Página 53
Infrared Gas Analyzer Operation 4 4-17 Teledyne Analytical Instruments If you want to calibrate ALL of the ranges at once (multiple application analyzers only), use auto mode zeroing in the Cal Range. Make sure the zero gas is flowing to the instrument. If you get a CELL CANNOT BE BALANCED message while zeroing skip to section 4.4.1.3. 4.4.1.1 Auto[...]
-
Página 54
4 Operation Model 7300A 4-18 Teledyne Analytical Instruments 4.4.1.2 Manual Mode Zeroing Scroll to Zero and enter the Zero function. The screen that appears allows you to select between automatic or manual zero calibration. Use the UP/DOWN keys to toggle between AUTO and MAN zero settling. Stop when MANUAL appears, blinking, on the display. Select [...]
-
Página 55
Infrared Gas Analyzer Operation 4 4-19 Teledyne Analytical Instruments b. Check for leaks downstream from the sensor, where contamina- tion may be leaking into the system. c. Check flowmeter to ensure that the flow is no more than 200SCCM d. Check temperature controller board. e. Check gas temperature. If none of the above as indicated, the sensor [...]
-
Página 56
4 Operation Model 7300A 4-20 Teledyne Analytical Instruments ENTER will move the blinking field to units (%/ppm). Use UP/DOWN key to select the units, as necessary. When you have set the concentration of the span gas you are using, Enter to begin the Span calibration. ####.##% C O 2 Slope=#.### Span The beginning span value is shown in the upper le[...]
-
Página 57
Infrared Gas Analyzer Operation 4 4-21 Teledyne Analytical Instruments is pressed, the Span reading changes to the correct value. The instrument then automatically enters the Analyze function. 4 . 5 The Alarms Function The Model 7300A is equipped with 6 fully adjustable set points concentra- tion with two alarms and a system failure alarm relay. Ea[...]
-
Página 58
4 Operation Model 7300A 4-22 Teledyne Analytical Instruments alarm status will terminate when process conditions revert to non- alarm conditions. 4. Are either of the alarms to be defeated? The defeat alarm mode is incorporated into the alarm circuit so that maintenance can be performed under conditions which would normally activate the alarms. The[...]
-
Página 59
Infrared Gas Analyzer Operation 4 4-23 Teledyne Analytical Instruments the number. Holding down the key speeds up the incrementing or decrementing. • After the number (value) has been choosed, use Enter to move the desired parameter. Then use the UP/DOWN keys to change the parameter. • Once the parameters for alarm have been set, Enter the alar[...]
-
Página 60
4 Operation Model 7300A 4-24 Teledyne Analytical Instruments Note: If all three ranges are currently defined for different applica- tion gases, then the above screen does not display (because mode must be manual). Instead, the VFD goes directly to the following screen. If above screen displays, use the UP/DOWN arrow keys to Select MANU- AL , and pr[...]
-
Página 61
Infrared Gas Analyzer Operation 4 4-25 Teledyne Analytical Instruments range readings are accurate UNLESS the application uses linearization over the selected range. The concentration ranges can be redefined using the Range function Manual screen, and the application gases can be redefined using the APPLICA- TION function, if they are not already d[...]
-
Página 62
4 Operation Model 7300A 4-26 Teledyne Analytical Instruments • Ranges that overlap • Ranges whose limits are entirely within the span of an adjoining range. Figure 4-2 illustrates these schemes graphically. Figure 4-2: Examples of Autoranging Schemes 4 . 7 The Analyze Function Normally, all of the functions automatically switch back to the Anal[...]
-
Página 63
Infrared Gas Analyzer Operation 4 4-27 Teledyne Analytical Instruments If the concentration detected is over range, the first line of the display blinks continuously. 4. 8 Programming CAUTION: The programming functions of the Set Range and Curve Algorithm screens are configured at the facto- ry to the users application specification. These func- ti[...]
-
Página 64
4 Operation Model 7300A 4-28 Teledyne Analytical Instruments In the autoranging mode, the microprocessor automatically responds to concentration changes by switching ranges for optimum readout sensitivity. If the upper limit of the operating range is reached, the instrument automatically shifts to the next higher range. If the concentration falls t[...]
-
Página 65
Infrared Gas Analyzer Operation 4 4-29 Teledyne Analytical Instruments Note: The ranges must be increasing from low to high, for example, if Range 1 is set to 0 – 10 % and Range 2 is set to 0 – 100 %, then Range 3 cannot be set to 0 – 50 % since that makes Range 3 lower than Range 2. Ranges, alarms, and spans are always set in either percent [...]
-
Página 66
4 Operation Model 7300A 4-30 Teledyne Analytical Instruments Algorithm setup: VERIFY SETUP UP/DOWN to select and Enter VERIFY to check whether the linearization has been accomplished satisfactorily. Dpt INPUT OUTPUT Ø Ø.ØØ Ø.ØØ The leftmost digit (under Dpt ) is the number of the data point being moni- tored. Use the UP/DOWN keys to select t[...]
-
Página 67
Infrared Gas Analyzer Operation 4 4-31 Teledyne Analytical Instruments From the MAIN MENU Screen — 1. Use UP/DOWN to select ALGORITHM , and Enter . 2. Select and Enter SETUP . 3. Select MANUAL from the Calibration Mode Select screen. Dpt INPUT OUTPUT 1 Ø.ØØ Ø.ØØ The data entry screen resembles the verify screen, but the gas values can be mo[...]
-
Página 68
4 Operation Model 7300A 4-32 Teledyne Analytical Instruments Note: The span gas use to span the analyzer must be >90% of the range being analyzed. Before starting linearization, perform a standard calibration. See section 4.4. To enter data: From the MAIN MENU screen — 1. Use UP/DOWN to select ALGORITHM , and Enter . 2. Select and Enter SETUP [...]
-
Página 69
Infrared Gas Analyzer Operation 4 4-33 Teledyne Analytical Instruments tivity of the binary gas, the analyzer would normally be set up so that the 100% oxygen (0% argon) concentration would correspond to the zero level (4mA 0 V) of the output signal. Then, 85% oxygen (15% argon) would correspond to 20mA (1 V) in the signal output. It may be conveni[...]
-
Página 70
4 Operation Model 7300A 4-34 Teledyne Analytical Instruments Select STANDBY to restart the system. 4.9.3 Gain Preset NOTE: This function will apply only for the analizer that has multiple range and non-linearity. For nonlinear application, the signal produced by the infrared detector, will not correspond to the actual gas concentration. The amplifi[...]
-
Página 71
Infrared Gas Analyzer Maintenance 5 5-1 Teledyne Analytical Instruments 5.0 Maintenance Aside from normal cleaning and checking for leaks at the gas connec- tions, routine maintenance is limited to replacing filter elements and fuses, and recalibration. WARNING: SEE WARNINGS ON THE TITLE PAGE OF THIS MANUAL. 5 . 0 Replacing the Fuse Remove P ower t[...]
-
Página 72
5 Maintenance Model 7300A 5-2 Teledyne Analytical Instruments 4. Reassemble Housing as shown in Figure 5-1. American Fuses European Fuses Figure 5-2: Installing Fuses 5 .1 Routine Maintenance The 7300A should be inspected on a regular schedule to be determined by the maintenance personnel. The system filter and analyzer measurement cell should be m[...]
-
Página 73
Infrared Gas Analyzer Maintenance 5 5-3 Teledyne Analytical Instruments 5.3 NDIR Analyzer Measurement Cell The Infrared Analyzer contains an auto zero circuit which automatically zeroes the analyzer. This zeroing compensates for dirt in the sample cell and, under normal circumstances, will compensate for very large amounts of contamination in the c[...]
-
Página 74
5 Maintenance Model 7300A 5-4 Teledyne Analytical Instruments Table 5-1: Self Test Failure Codes Power 0O K 1 5 V Failure 2 15 V Failures 3 Both Failed Analog 0O K 1 DAC A (0 – 1 V Concentration) 2 DAC B (0 – 1 V Range ID) 3 Both Failed Preamp 0O K > 0 Amplifier failure high offset (number is a code that pinpoint which gains are at fault). D[...]
-
Página 75
Infrared Gas Analyzer Maintenance 5 5-5 Teledyne Analytical Instruments Figure 5-3: Cell Assembly WARNING: HAZARDOUS VOLTAGES EXIST ON CERTAIN COMPONENTS INTERNALLY WHICH MAY PER- SIST FOR A TIME EVEN AFTER THE POWER IS TURNED OFF AND DISCONNECTED. Figure 5-4: Major Internal Components[...]
-
Página 76
5 Maintenance Model 7300A 5-6 Teledyne Analytical Instruments 5.6 T roubleshooting 5.7 General This section contains information on the assembly and the electronic sections of the Model 7300A Infrared Analyzer. The sample-handling sections of the system are statistically low failure items and only require the maintenance as pertinent to sample syst[...]
-
Página 77
Infrared Gas Analyzer Maintenance 5 5-7 Teledyne Analytical Instruments 5.8 TROUBLE SHOO TING CHART SYMPTOM CORRECTIVE ACTION A . Unit does not turn ON (a) Check AC voltage at inlet for when actuating Power correct voltage. Reset breaker Switch (Motor does not or switch to supply power to turn). receptacle. (b) Check power to terminal strip located[...]
-
Página 78
5 Maintenance Model 7300A 5-8 Teledyne Analytical Instruments C. Meter reads Negative (a) ZERO control may be misadjusted. (with zero gas flowing Adjust control to bring indication through analyzer) up to zero. (refer to Section 4). (b) If zero indication unattainable with ZERO control centered, monitor TP6 on preamp board. (c) Check that infrared [...]
-
Página 79
Infrared Gas Analyzer Maintenance 5 5-9 Teledyne Analytical Instruments (b) Chopper hitting housing. (c) Noisy detector. (d) AC pickup at printed circuit board. (e) Optical unit not grounded to cabinet. (f) Detector connections loose. (g) Faulty preamplifier board. (h) Contamination in cell.[...]
-
Página 80
5 Maintenance Model 7300A 5-10 Teledyne Analytical Instruments[...]
-
Página 81
A-1 Infrared Gas Analyzer Appendix Teledyne Analytical Instruments Appendix A-1 Specifications 7300A Digital Control P ortion : Ranges: Three Programmable Ranges, field selectable within limits (application dependent) and Auto Ranging Display: 2 line by 20 alphanumeric VFD accompanied by 5 digit LED display Signal Output: 4-20mADC iso or 0-1 VDC ne[...]
-
Página 82
A-2 Appendix Model 7300A Teledyne Analytical Instruments 7300 Specifications Chemical and petrochemical processes Gas Analysis • Combustion and flue gas processes CO2 0-2% to 0-100% • Pulp and paper CO 0-10% to 0-100% • Vapor recovery systems CH4 0-10% to 0-100% • Enhanced oil recovery C2 to C5 0-5% to 0-100% Food, agriculture, medical Liqu[...]
-
Página 83
A-3 Infrared Gas Analyzer Appendix Teledyne Analytical Instruments Recommended 2-Y ear Spare P ar ts List NOTE: Part list may or not be part of your system, due to the wide range of applications implicated. Q t y P/ N Description 1 C-67435B Main CPU PCB Assy 1 C-72760 Preamp PCB Assy 1 C-62371A Display PCB Assy, Model 7300A/7300 Bulk Head M ount 1 [...]
-
Página 84
A-4 Appendix Model 7300A Teledyne Analytical Instruments ATTACHMENT 7300A Quote "Exceptions" and "GAS PHASE Conditions" for this application: 1 Response Time is proportional to sample system design for take-off distance, process pressure, line size, by-pass flow design, dead- volumes/tee's, sample cell volume and instrument[...]
-
Página 85
A-5 Infrared Gas Analyzer Appendix Teledyne Analytical Instruments 10 If condensables occur, such as moisture, acid gases, solvents, etc., sample system materials may be compromised for corrosion resis- tance integrity. Special materials may be required. 11 Teledyne is not responsible for applying a general purpose instrument in a hazardous area or[...]