National Instruments 370755B-01 manuel d'utilisation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Aller à la page of

Un bon manuel d’utilisation

Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation National Instruments 370755B-01. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel National Instruments 370755B-01 ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.

Qu'est ce que le manuel d’utilisation?

Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation National Instruments 370755B-01 décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.

Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.

Donc, ce qui devrait contenir le manuel parfait?

Tout d'abord, le manuel d’utilisation National Instruments 370755B-01 devrait contenir:
- informations sur les caractéristiques techniques du dispositif National Instruments 370755B-01
- nom du fabricant et année de fabrication National Instruments 370755B-01
- instructions d'utilisation, de réglage et d’entretien de l'équipement National Instruments 370755B-01
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes

Pourquoi nous ne lisons pas les manuels d’utilisation?

Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage National Instruments 370755B-01 ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles National Instruments 370755B-01 et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service National Instruments en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées National Instruments 370755B-01, comme c’est le cas pour la version papier.

Pourquoi lire le manuel d’utilisation?

Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif National Instruments 370755B-01, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.

Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation National Instruments 370755B-01. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.

Table des matières du manuel d’utilisation

  • Page 1

    MA TRIXx TM Xmath TM Model Reduction Module Xmath Mo del Reducti on Modul e April 2004 Edit ion Part Numb er 37075 5B-01[...]

  • Page 2

    Supp ort Worl dwide Tec hnical Supp ort and Pro duct Infor mation ni.com Nati onal In strum ents Corp orate Headqu arter s 11500 Nor th Mopac E xpressway Austin, T exas 78759 -3504 USA Tel: 512 683 01 00 Worldwide Offices A u s t r a l i a1 8 0 03 0 08 0 0 , A u s t r i a4 306 6 2 4 57 99 00 , B e l g i u m3 2027 5 70 02 0 , B r a z i l 5 51 13 2 6[...]

  • Page 3

    Important Information Warrant y The media on whi ch you receive National Instruments softw are are warranted n ot to fail to exec ute programming ins tructions , due to defects in mat erials an d workman ship, for a period of 9 0 days fr om date of sh ipment, a s evidence d by receipt s or othe r documenta tion. N ational Instruments will, at its o[...]

  • Page 4

    Conventions The follo wing con ventions are used in this manual: [ ] Square brackets enclose optional items—for ex ample, [ response ]. Square brackets also cite bibliographic references. » The » symbol leads you throu gh nested menu items and dialog box options to a f inal action. The s equence File»P age Setup »Options di rects y ou to pull[...]

  • Page 5

    © Nationa l Instrume nts Corpora tion v Xmath Mod el Redu ction Modu le Contents Chapter 1 Introdu ctio n Using This Manual.............. ........... ................. ........... ................. ............ ........... ............ 1-1 Document Organization... ........... ................. ............ ................. ........... ...........[...]

  • Page 6

    Contents Xmath Model R eduction M odule vi ni.com Onepass Algorithm ................... ................. ........... ................. ........... ............ .. 2- 18 Multipass Algorithm ................ ................. ........... ........... ................. ............ .. 2- 20 Discrete-Time Systems .................. ............ .......[...]

  • Page 7

    Contents © Nationa l Instrume nts Corpora tion vii Xmath Mod el Redu ction Modu le Algorithm ....... ............ ................ ............ ........... ................. ........... ................. . 4-18 Additional Backgr ound .................... ........... ................. ............ ........... ............ 4-20 Related Functions . .[...]

  • Page 8

    © Nationa l Instrume nts Corpora tion 1-1 Xmath Mod el Redu ction Modu le 1 Introduction This chapter starts with an outlin e of the m anual and s ome usefu l notes. It also provides an ov erview of the Model Re duction Module, describes th e functions in this module, and introdu ces nomenclature and concepts used throughout this manual. Using Thi[...]

  • Page 9

    Chapter 1 Introduction Xmath Model R eduction M odule 1-2 ni.com • Chapter 5, Utilit ies , describes three utility functio ns: hankelsv( ) , stable( ) , and compare( ) . • Chapter 6, Tu torial , illustrates a nu mber of the MRM func tions and their underlying ideas. Bibliograph ic Reference s Througho ut this document, bibliog r aphic reference[...]

  • Page 10

    Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-3 Xmath Mod el Redu ction Modu le Relate d Publica tions For a complete list of MATRIXx publicat ions, refer to Chapter 2, MATRIXx Pu blication s, Onlin e Help, and Customer Support , o f the MATRIXx Getting Started Guide. The following do cuments are particularly useful for topics[...]

  • Page 11

    Chapter 1 Introduction Xmath Model R eduction M odule 1-4 ni.com As sho wn in Figure 1-1, fu nctions are p rov ided to ha ndle four broad t asks: • Model reduction with additi ve errors • Model reduction with multiplicativ e errors • Model reduction with frequency weighting of an additive error , including controller r eduction • Utility fu[...]

  • Page 12

    Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-5 Xmath Mod el Redu ction Modu le Certain restriction s re garding minimality and stability are required of the input data, and are summarized in T able 1-1. Documentation of the individual functions sometimes indicates how th e restrictions can be circu mvented. Th ere are a n umb[...]

  • Page 13

    Chapter 1 Introduction Xmath Model R eduction M odule 1-6 ni.com • L 2 approximation, in which the L 2 norm of impuls e respon se erro r (or, by P arse v al’ s theorem, the L 2 norm of the transf er-fun ction error along the imaginary axis ) serv es as the error measur e • Marko v param eter or i mpulse respo nse matchin g, moment m atching, [...]

  • Page 14

    Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-7 Xmath Mod el Redu ction Modu le • An inequality or bound is tigh t if it can be met in practice, for e xample is tight because the inequality becomes an equality for x =1 . A g a i n , if F ( j ω ) denotes the Fourier transform of some , the Heisenber g inequa lity states, and[...]

  • Page 15

    Chapter 1 Introduction Xmath Model R eduction M odule 1-8 ni.com • The controllabilit y grammian is also E [ x ( t ) x ′ ( t )] when the system has been e xcited from time – ∞ b y zero mean white noise with . • The observability grammian can be thought of as measuring the information contained in the outp ut concerning an initial state. I[...]

  • Page 16

    Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-9 Xmath Mod el Redu ction Modu le • Suppose t he transfer -fu nction matri x corresponds to a discr ete-ti me system, with state v ariable dimen sion n . Then the infinite Hank el matrix, has for its singular values the n nonzero Hankel s ingular v alues, together with an infinit[...]

  • Page 17

    Chapter 1 Introduction Xmath Model R eduction M odule 1-10 ni.com Interna lly Ba lanced Re alizatio ns Suppose that a realization of a transfer-fu nction matrix has the controllability and observ ability grammian property that P = Q = Σ for some diagonal Σ . Then the realization is termed internally balanced. Notice that the diagona l entries σ [...]

  • Page 18

    Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-11 Xma th Model Re ductio n Module This is almost the algorith m set out in Section II of [LHPW87]. The one dif ference (and it is minor) is that in [LH PW87], lower triangular Cholesky factors of P and Q are used, in place of U c S c 1/2 and U O S O 1/2 in forming H in step 2. Th [...]

  • Page 19

    Chapter 1 Introduction Xmath Model R eduction M odule 1-12 ni.com and also: Re λ i ( A 22 )< 0 and . Usually , we expect that, in the sense that th e intuiti ve ar gument h inges on this, b ut it is n ot necessary . Then a sing ular perturbation is ob tained by r eplacing by zero ; this means that: Acco rdin gly, (1-2) Equation 1-2 may be an ap[...]

  • Page 20

    Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-13 Xma th Model Re ductio n Module Similar considerations govern the discrete-time problem, where, can be appro ximated by: mreduce( ) can carry out si ngular pe rturbatio n. For fu rther di scussion , refer to Chapter 2, Addi tive Erro r Reduct ion . If Equation 1-1 is b alanced, [...]

  • Page 21

    Chapter 1 Introduction Xmath Model R eduction M odule 1-14 ni.com nonnegati ve h ermitian for all ω . If Φ is scalar , then Φ ( j ω ) ≥ 0 for all ω . Normally one restricts attention to Φ (·) with lim ω→∞ Φ ( j ω )< ∞ . A key result is that, gi ven a rational, nonnegati ve hermitian Φ ( j ω ) with lim ω→∞ Φ ( j ω )<[...]

  • Page 22

    Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-15 Xma th Model Re ductio n Module Low Order Controller De sign Through Order Reduction The Model Reduction Mo dule is par ticularly sui table for ach ieving l ow order cont roller des ign for a high or der plant. Th is section ex plains s ome of the bro ad issu es involved . Most [...]

  • Page 23

    Chapter 1 Introduction Xmath Model R eduction M odule 1-16 ni.com multiplicati ve red uction, as described in Chapter 4, Frequ ency-Weighted Error Redu ction , is a sound appro ach. Chapter 3, Multiplicative Error Reduction , and Ch apter 4, Frequency- Weighted Error Reduction , de v elop these ar guments mor e fully .[...]

  • Page 24

    © Nationa l Instrume nts Corpora tion 2-1 Xmath Mod el Redu ction Modu le 2 Additive Error Reduction This chapter describes additive error reduction includin g discussions of truncation of, redu ction by, and p erturbatio n of balanced real izations. Introduction Additive erro r reduction focuses o n errors of t he form, where G is the originally [...]

  • Page 25

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-2 ni.com T runcation of Bal anced Realizations A group of funct ions can be used to achieve a reduct ion through tru ncation of a balanced r ealization. This m eans that if the original s ystem is (2-1) and the realization is internally balanced, then a tru ncation is provided b y[...]

  • Page 26

    Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-3 Xmath Mod el Redu ction Modu le A very attracti ve f eature of the truncation procedure is the av ailability of an error bound. More precisely , suppose that the controllability and observability grammians for [E nn84] are (2-2) with the diagonal entries of Σ in decre[...]

  • Page 27

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-4 ni.com proper . So, ev en if all zeros are un stable, the max imum phase shift when ω mov es from 0 to ∞ is (2 n – 3) π /2 . It follows that if G ( j ω ) rem ains large in magnitude at frequen cies when the phase s hift has mo ved pas t (2n – 3) π /2, approximat ion of[...]

  • Page 28

    Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-5 Xmath Mod el Redu ction Modu le order model is not one in general obtainable by truncation of an internally-balanced realization of the full order model. Figure 2-1 sets o ut se veral rou tes to a reduced-o rder realization. In continuous time, a truncation of a bala n[...]

  • Page 29

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-6 ni.com with controllability and obser vab ility grammians given b y , in which the diagonal entries o f Σ are in decreasing order , that is, σ 1 ≥σ 2 ≥ ···, and su ch that the last diagonal entry of Σ 1 ex ceeds the fir st diagonal entry of Σ 2 . It turns out that Re[...]

  • Page 30

    Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-7 Xmath Mod el Redu ction Modu le function matrix. Consider th e way th e associated impulse resp onse maps inputs defined over (– ∞ ,0] in L 2 into output s, and focus on the output over [0, ∞ ). Define the input as u ( t ) for t <0 , a n d s e t v ( t )= u (?[...]

  • Page 31

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-8 ni.com Further , the which is optimal for Hankel norm approxim ation also is optimal for this seco nd type o f approximat ion. In Xmath Han kel no rm approximat ion is achie ved with ophank( ) . The most com prehensive ref erence is [Glo84]. balmoore( ) [SysR,HSV,T] = balmoore(S[...]

  • Page 32

    Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-9 Xmath Mod el Redu ction Modu le of the balanced system occurs, ( assuming nsr is less than the number of states). Thus, if the state-space repres e ntation of the balanced system is with A 11 p ossessing dimensi on nsr × nsr , B 1 posses sing nsr ro ws and C 1 posse s[...]

  • Page 33

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-10 ni.com The actual ap proximati on error for discrete systems als o depends on frequenc y , and can be lar ge at ω = 0. The error bou nd is almos t ne v er tight, that is, the actual erro r magnitude as a function o f ω alm ost never at ta ins the error boun d, so that the bou[...]

  • Page 34

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-11 Xma th Model Re ductio n Module Related F unctions balance() , truncate() , redschur () , mreduce() truncate( ) SysR = truncate(Sys,nsr,{VD,VA}) The truncate( ) function r educes a system Sys b y retaining the first nsr states and throwing aw ay the rest to form a s y[...]

  • Page 35

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-12 ni.com redschur( ) [SysR,HSV,slbig,srbig,VD,VA] = redschur(Sys,{nsr,bound}) The redschur( ) functi on us es a Sc hur m ethod (from Safonov a nd Chiang) t o calculate a reduced v ersion of a continu ous or dis crete system withou t balancin g. Algorith m The objective of redschu[...]

  • Page 36

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-13 Xma th Model Re ductio n Module Nex t, Schur decomposi tions of W c W o are formed with th e eigen v alues of W c W o in ascending and descending order . These eigenv alues are the square of the Hankel singular v alues of Sys , and if Sys is non minimal, some can be z[...]

  • Page 37

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-14 ni.com For the d iscrete-time case: When {bound} is specif ied, the error bound jus t enunciated is use d to choose the nu mber of states in SysR so that the bound is satisfied and nsr is as small as possible. If the desired error bound is smaller than 2 σ ns , no reduction is[...]

  • Page 38

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-15 Xma th Model Re ductio n Module Algorith m The algorithm do es the following. T he system Sys an d the reduced or der system SysR are stable; the system SysU h as all its poles in Re [ s ] > 0. If the transfer f unction matrices are G ( s ), G r ( s ) and G u ( s )[...]

  • Page 39

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-16 ni.com By ab use of notatio n, when we say that G is r educed to a certain order, this correspon ds to the order of G r ( s ) alone; the uns table part of G u ( s ) of the approximation is mo st frequently thrown away . The number of eliminated states (retaining G u ) refer s t[...]

  • Page 40

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-17 Xma th Model Re ductio n Module Thus, the penalty for not being allo wed to include G u in the approximation is an increase in the er ror bound , b y σ n i + 1 + ... + σ ns . A num ber of theoretical dev el opment s hinge on boundi ng the Hank el singular val ues of[...]

  • Page 41

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-18 ni.com being appro ximated by a stable G r ( s ) with the actual error (as opposed to just the er ror bou nd) satis fying: Note G r is optimal, that is, there is no other G r achie ving a lower b ound. Onepass Algorithm The first steps of the algorithm are to obtain the Hankel [...]

  • Page 42

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-19 Xma th Model Re ductio n Module and f inally: These four matrices are the constituents o f the system matrix of , where: Digress ion: This choice is related to the ideas of [Glo84] in the foll o wing way; in [Glo84], the complete set is id entified of satisfying with [...]

  • Page 43

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-20 ni.com to choose the D matrix of G r ( s ), by splitting between G r ( s ) and G u ( s ). This is done by using a separate function ophiter( ) . Suppos e G u ( s ) is the un sta ble ou tput of stable( ) , a nd le t K ( s )= G u (– s ). By ap plyi ng t he multipass Hankel redu[...]

  • Page 44

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-21 Xma th Model Re ductio n Module 2. Find a stab le order ns – 2 approxi mation G ns –2 of G ns –1 ( s ), with 3. (S tep ns–nr ) : Find a stable orde r nsr approximation of G nsr +1 , with Then, becaus e for , for , ..., this being a property of the algor ithm, [...]

  • Page 45

    Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-22 ni.com We u s e sysZ to den ote G(z) and def ine: bilinsys=makepoly([-1,a]/makepoly([1,a ]) as the mappin g from the z-domain to the s-domain. The specif ication is re vers ed because this fu nction uses b ackward poly nomial rotation. Ha nkel norm reduction is then applied to [...]

  • Page 46

    Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-23 Xma th Model Re ductio n Module It follows by a result of [BoD87] th at the impulse response error for t >0 satisfies: Evidently , Hankel norm approx imation ensures some fo rm of approximat ion of th e impulse res ponse too. Unstable System Approximation A transf [...]

  • Page 47

    © Nationa l Instrume nts Corpora tion 3-1 Xmath Mod el Redu ction Modu le 3 Multiplicative Error Reduction This chapter describes multiplicative error reductio n presenting two reasons to consider multiplicativ e rather than additive error reduction, one general and on e specific. Selecting Multiplicative Error Reduction The general reason to use [...]

  • Page 48

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-2 ni.com Multipl icative Robustness Re sult Suppose C stab ilizes , that has no j ω -axis pol es, and that G has the s ame number of poles in Re [ s ] ≥ 0 as . If for a ll ω, (3-1) then C stabilizes G . This result indicates that if a controller C is designed to stabili z[...]

  • Page 49

    Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-3 Xmath Mod el Redu ction Modu le bandwidth at the e xpense o f being lar ger out side this bandwidth, which would be preferable. Second, the previously used multiplicati ve error is . In the algorithms that follow , the er ror appears. It is easy to check that: an[...]

  • Page 50

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-4 ni.com The objecti ve of the algorithm is to ap proximate a high-order stable transfer function matri x G ( s ) b y a lower -order G r ( s ) with either in v(g)(g-gr) or (g-gr)inv(g) minimi zed, under the condition t hat G r is stable and of the prescribed order . Restricti[...]

  • Page 51

    Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-5 Xmath Mod el Redu ction Modu le These cases are secured with the keyw ords right and left , respecti v ely . If the wrong opt ion is req uested for a nonsq uare G ( s ) , an error message will result. The algorithm has the prop erty that right half plane zeros of[...]

  • Page 52

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-6 ni.com 2. W ith G ( s )= D + C ( sI – A ) –1 B and stable, with DD ´ nonsingul ar and G ( j ω ) G '(– j ω ) nonsin gular for al l ω , part of a state va riable realization of a minimum phase stab le W ( s ) is determined such that W´(–s) W(s) = G(s)G´ (?[...]

  • Page 53

    Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-7 Xmath Mod el Redu ction Modu le strictly proper s table par t of θ ( s ) , as the square r oots of the eigen v alues of PQ . Call these q uantities ν i . The Schur decompositions are, where V A , V D are orthogonal and S asc , S des are upper tri angular . 4. D[...]

  • Page 54

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-8 ni.com state-v ariable representation of G . In this case, the user is ef fectiv ely asking for G r = G . When the phase matrix h as repeated Hankel s ingular v alues, they must all be included or all excluded from the model, that is, ν nsr = ν nsr + 1 is not permitted; t[...]

  • Page 55

    Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-9 Xmath Mod el Redu ction Modu le Hankel Singul ar Values of Phase Matrix of G r The ν i , i = 1 ,2,..., ns have been termed above the Hank el singular v alues of the phase matrix associated with G . The c orrespondin g quant ities for G r are ν i , i = 1,..., ns[...]

  • Page 56

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-10 ni.com which also can be rele vant i n find ing a redu ced order model of a plant. The procedure requires G again to be n onsingul ar at ω = ∞ , an d to ha v e no j ω -axis poles. It is as follows: 1. Form H = G –1 . If G is des cribed b y stat e-v ariable matrice s [...]

  • Page 57

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-11 Xma th Model Re ductio n Module The v alues of G ( s ), as sho wn in Figure 3-2, al ong the j ω -axis are the same as the v alues o f around a circle with diameter def ined b y [ a – j 0, b –1 + j 0] on the positi ve real axis. Figu re 3- 2. Biline ar Mapp [...]

  • Page 58

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-12 ni.com An y zero (or rank r eduction) o n the j ω -axis of G ( s ) becomes a zero (or rank reduction) in Re [ s ] > 0 of , and if G ( s ) has a zero ( or rank reduction) at infinity , thi s is shifted to a zero (or rank reduction) of at the point b –1 , (in Re [ s ] [...]

  • Page 59

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-13 Xma th Model Re ductio n Module again with a bilinear transformation to secure multip licati ve approximat ions o ver a limited fr equenc y band. S uppose that Create a system that co rresponds to with: gtildesys=subs(gsys,(makep([-eps,1])/m akep([1,-])) bilinsy[...]

  • Page 60

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-14 ni.com There is one potential source of f ailure of th e algorithm. Because G ( s ) i s stable, certainly will be, as i ts poles wil l be in th e left half p lane circle on diameter . If acq uires a pole outside this circle (but still in the left half plane of course)—an[...]

  • Page 61

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-15 Xma th Model Re ductio n Module The conceptual b asis of the algo rithm can best be g rasped b y considering the case of scalar G ( s ) o f de gree n . Then one can form a minimum phas e, stable W ( s ) with | W ( j ω )| 2 = | G ( j ω )| 2 and then an all-pas [...]

  • Page 62

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-16 ni.com eigen v al ues of A – B/D * C with the aid of schur( ) . If an y real part of th e eigenvalues is less than eps , a war ning is displayed. Next, a stabilizing solution Q is found for the fo llo wing Riccati equation: The funct ion singriccati( ) is used; f ailure [...]

  • Page 63

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-17 Xma th Model Re ductio n Module singu lar v alues of F ( s ) lar ger than 1– ε (ref er to step s 1 thro ugh 3 of the Restrictions section). The ma ximum order per mitted is t he number o f nonzero eigen values o f W c W o larger than ε . 4. Le t r be the mul[...]

  • Page 64

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-18 ni.com Note The e xpression is the strictly proper part of . The matrix is all pass; this property is not alway s secured in the multiv ariable case when ophank( ) is used to f ind a Hank el norm app roximation o f F ( s ). 5. The algorithm constructs and , which satisfy ,[...]

  • Page 65

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-19 Xma th Model Re ductio n Module • and stand in the s ame relation as W ( s ) and G ( s ), that is: – – W ith , there holds or – W ith there holds or – – is the stab le strictly proper part of . • The Hankel s ingular v alues of (and ) ar e the firs[...]

  • Page 66

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-20 ni.com Error Bounds The error b ound formu la (Equation 3-3) is a simple consequence o f iterating (Equation 3-5). To illustrate, suppose there ar e three reductions →→ → , each by degree one. Th en, Also, Similarly , Then: The error b ound (Equation 3 -3) is on ly e[...]

  • Page 67

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-21 Xma th Model Re ductio n Module For mulhank( ) , this translates for a scalar system into and The bound s are do uble for bst( ) . The error as a fu nction of frequency is always zero at ω = ∞ for bst( ) (or at ω = 0 if a tran sformation s → s –1 is used[...]

  • Page 68

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-22 ni.com The v alues of G ( s ) along t he j ω -axis are the same as the v alues of around a circle with diameter d efined b y [ a – j 0, b –1 + j 0] on th e positi ve real axis (refer to Figure 3-2). Also, th e valu es of along the j ω -axis are the same as the values[...]

  • Page 69

    Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-23 Xma th Model Re ductio n Module The error will be ov erbounded by the error , and G r will contain the same zeros in Re [ s ] ≥ 0 a s G . If th ere i s no zer o (or rank r educ tion) of G ( s ) at the origin , one can take a =0 a n d b –1 = ban dwidth ov er [...]

  • Page 70

    Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-24 ni.com Multiplicativ e approximation of (along the j ω -axis) corresp onds to multiplicat i ve appr oximatio n of G ( s ) around a circle in the r ight half plane, touching the j ω -axis at the origin. For those points on the j ω -axis near the circle, there will be goo[...]

  • Page 71

    © Nationa l Instrume nts Corpora tion 4-1 Xmath Mod el Redu ction Modu le 4 Frequency-W eighted Error Reduction This chapter descr ibes frequency-weighted error reduction problems. This includes a discuss ion of controller reduction and fractional repres entations. Introduction Frequency-w eighted erro r reduction m eans that the erro r is measure[...]

  • Page 72

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-2 ni.com (so that ) is logical. Howe ver , a major use of weighting is in controll er reductio n, which i s no w descr ibed. Controller Red uction Frequency weighted error reducti on become s particul arly impor tant in reducing controller dimen sion. The LQG and desi g[...]

  • Page 73

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-3 Xmath Mod el Redu ction Modu le is minimized (and of course is less th an 1). Notice that these two error measures are like thos e of Equation 4-1 and Equation 4-2. The f act that the plant ought to show up in a goo d formulation of a controller reductio n p[...]

  • Page 74

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-4 ni.com Most of thes e ideas are discuss ed in [Enn84 ], [AnL89], and [AnM89]. The fun ction wt balance( ) implements weighted reduct ion, with fi v e choices of error measure, namely E IS , E OS , E M , E MS , and E 1 with arbitrary V( j ω ). The first fo ur are spec[...]

  • Page 75

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-5 Xmath Mod el Redu ction Modu le Fractional R epresentatio ns The treatment of j ω -axis or right half plane poles in the above schemes is crude: they are simply co pied into the reduced order contro ller. A differen t approach com es when one uses a so -cal[...]

  • Page 76

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-6 ni.com • For m the redu ced controll er by intercon necting us ing ne gati v e feedback the secon d output of G r to the input, that is, set Nothing h as been sa id as to ho w shou ld be chosen— and the en d result of the reduction, C r ( s ), depends on . Nor has[...]

  • Page 77

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-7 Xmath Mod el Redu ction Modu le Matrix algebra shows that C ( s ) can be desc ribe d thr ough a left or righ t matrix fraction descr iption with D L , and related values, all stable transfer function matrices. In particul ar: For matrix C(s), the left and ri[...]

  • Page 78

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-8 ni.com The left MF D corresp onds to the setup of Figu re 4-3. Figu re 4-3 . C(s) Implement ed to Display L eft MFD Repr esentatio n The setu p of Figur e 4-2 su ggests approxim ation of : whereas that of Figu re 4-3 s uggests appro ximation of: In the LQG optimal cas[...]

  • Page 79

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-9 Xmath Mod el Redu ction Modu le Figu re 4- 4. Redrawn; Indivi dual Sign al Paths as Vector Path s It is possible to verify that and according ly the output weig ht can be us ed in an error measure . It turns out that the calculations for frequenc y weighted [...]

  • Page 80

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-10 ni.com (Here, the W i and V i are submatr ices of W ,V .) Evidently , Some manipulation sh o ws that trying to preserve these identities after approximat ion of D L , N L or N R , D R suggests use of the err or measures and . For fu rther details , refer to [AnM89 ] [...]

  • Page 81

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-11 Xma th Model Re ductio n Module • Reduce the or der of a transfer fu nction matrix C ( s ) t hrough frequenc y-we ighted bala nced truncatio n, a stable frequenc y wei ght V ( s ) being prescribed. The syntax is more accented to wards the fi rst use. For [...]

  • Page 82

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-12 ni.com This rather crude ap proach to the han dling of the un stable part of a controll er is a v oided i n fracred( ) , whi ch provi des an alter nat iv e to wtbalance( ) for controller reduction, at least for an important family of contr oll ers. Algorith m The maj[...]

  • Page 83

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-13 Xma th Model Re ductio n Module 3. Comput e weighted Hankel Si ngular V alues σ i (d escribed in more detail later). If the order of C r ( s ) is not specif ied a p riori , it must be input at this time. Certain v alues may be flagged as unacceptab le for [...]

  • Page 84

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-14 ni.com and the observ ability grammian Q , defined in the obvious way , is written as It is trivial to ver ify that so that Q cc is the observability gramian of C s ( s ) alone, as well as a s ubmatrix of Q . The weight ed Hankel singul ar val ues of C s ( s ) ar e t[...]

  • Page 85

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-15 Xma th Model Re ductio n Module From these quantities th e transformation matrices used for calculatin g C sr ( s ), the stable part of C r ( s ), are d efined and then Just as in un weighted balanced truncation, the reduced order transfer function matrix i[...]

  • Page 86

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-16 ni.com 3. Only continuou s systems are accep ted; for discrete syst ems use makecontinuous( ) before call ing bst( ) , then discretize the result. Sys=fracred(makecontinuous(SysD)); SysD=discretize(Sys); Defining and Reducing a Controller Suppose P ( s ) = C ( sI –[...]

  • Page 87

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-17 Xma th Model Re ductio n Module to, for e xample, throug h, for e xample, bala nced tru ncation, and then def ining: For the second rationale, consider Figure 4-5. Figur e 4-5. Inte rnal Struc ture of Contro ller Recognize that the contro ller C ( s ) (show[...]

  • Page 88

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-18 ni.com Controller reduction proceeds b y implem enting the same connection rule bu t on reduce d v ersions of the tw o transfer function matrices. When K E has been d efined through Kalman f iltering con siderations, the spectrum o f the si gnal dri ving K E in Figur[...]

  • Page 89

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-19 Xma th Model Re ductio n Module 6. Check the stability of th e closed-loop syst em with C r ( s ). When the type="left perf" is specif ied, one w orks with (4-1 1) which is f ormed fr om the numerat or and deno minator of the MFD in Equation 4-5. [...]

  • Page 90

    Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-20 ni.com Additional Background A discussion of the stability robu stness measure can be found in [AnM89] and [LAL90]. The idea can be un derstood with reference to the transfer functions E ( s ) a nd E r ( s ) used in d iscussi ng type="right perf" . It is po[...]

  • Page 91

    Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-21 Xma th Model Re ductio n Module The four schemes all produce dif ferent HSVs; it follows that it may be prudent to try all four schemes for a particular controller reductio n. Recall again that their relati ve s izes are only a guide as to what can b e thro[...]

  • Page 92

    © Nationa l Instrume nts Corpora tion 5-1 Xmath Mod el Redu ction Modu le 5 Utilities This chapter describes three utility fun ctions: hankelsv( ) , stable( ) , and compare( ) . The backgro und to hankelsv( ) , which calculates Hankel singular v alues, was pres ented in Chapter 1, Introd uction . Hankel s ingula r v alues are also calculated in ot[...]

  • Page 93

    Chapte r 5 Utiliti es Xmath Model R eduction M odule 5-2 ni.com The grami an matrices are defi ned by solving the equat ions (in cont inuous time) and, in discrete time The computations are ef fected with lyapunov( ) and stability is checked, which is t ime-consumi ng. The Hank el sing ular v alues are t he square r oots of the eigen values of the [...]

  • Page 94

    Chapte r 5 Utili ties © Nationa l Instrume nts Corpora tion 5-3 Xmath Mod el Redu ction Modu le Doubtful ones are those for which the real part of the eigen v al ue has magnitude less than or equal to tol fo r continuo us-time, or eigen value magnitude within the following range for discrete time: A warn ing is gi ven if dou btful eigen v alues ex[...]

  • Page 95

    Chapte r 5 Utiliti es Xmath Model R eduction M odule 5-4 ni.com After this last transform ation, and with it follows that and By combini ng the transf ormation yi elding the real ordered Schur form for A with th e transfor mation def ined using X, th e ov erall tra nsform ation T is readily identif ied. In case all eigen v alue s of A are stable or[...]

  • Page 96

    © Nationa l Instrume nts Corpora tion 6-1 Xmath Mod el Redu ction Modu le 6 T utorial This chapter illustrates a number of the MRM functio ns and their underly ing ideas. A plant and fu ll-ord er controll er are defi ned, and th en the effects of various red uction algo rith ms ar e examined. Th e data for this example is stored in the file mr_dis[...]

  • Page 97

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-2 ni.com A minimal realization in modal coordinates is C ( sI – A ) –1 B where: The specifications seek high loop gain at low frequ encies (f or perfor mance) and low loop gain at high f requencies (to guar antee st ability in the presen ce of unstructured uncertainty). More sp ecifically, t[...]

  • Page 98

    Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-3 Xmath Mod el Redu ction Modu le With a state weightin g matrix, Q = 1e-3*diag([2,2,80,80,8,8,3,3]); R = 1; (and unity control weighting), a state-f eedback control-gain is de termined throug h a linear-qu adratic p erformance index minimi zation as: [Kr,ev] = regulator(sys,Q,R); A –[...]

  • Page 99

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-4 ni.com recovery at low f requencies; there is consequ ently a faster roll-o ff of the loop gain at high f requencies than for , and this is desi red. Figure 6- 2 displays the (magn itudes of t he) plant tran sfer fun ction, th e compensator transfer functio n and the loop gain, as well as the [...]

  • Page 100

    Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-5 Xmath Mod el Redu ction Modu le Controller Reduction This section contras ts the effect of u nweighted and weighted controller reduction. U nweighted reduct ion is at f irst examined, through redschur( ) (usi ng balance( ) or balmoore( ) will give similar results). The Hank el singula[...]

  • Page 101

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-6 ni.com Figures 6-3, 6-4, and 6-5 displ ay the outcome o f the redu ction. The loo p gain is shown in Figure 6-3. The error near the unity gain cros sover frequency m ay not look large, but it is con siderably larger than that obtained throu gh frequ ency weight ed reductio n methods, as descri[...]

  • Page 102

    Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-7 Xmath Mod el Redu ction Modu le Gen erate Figu re 6- 4: compare(syscl,sysclr,w,{radians,type=5 }) f4=plot({keep,legend=["original","redu ced"]}) Figu re 6-4 . Closed -Loo p Gain with redsch ur[...]

  • Page 103

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-8 ni.com Gen erate Figu re 6- 5: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f5=plot({keep,legend=["original","redu ced"]}) Figu re 6-5 . Step Response with redschur[...]

  • Page 104

    Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-9 Xmath Mod el Redu ction Modu le ophank( ) ophank( ) is next used to reduce the controller with the re sults shown in Figures 6 -6, 6-7, an d 6-8. Gen erate Figu re 6- 6: [syscr,sysu,hsv]=ophank(sysc,2); svalsrol = svplot(sys*syscr,w,{radians }); plot(svalsol, {keep}) f6=plot(wc, const[...]

  • Page 105

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-10 ni.com Gen erate Figu re 6- 7: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f7=plot({keep,legend=["original","redu ced"]}) Figur e 6-7. Closed-L oop Ga in with ophank[...]

  • Page 106

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-11 Xma th Model Re ductio n Module Gen erate Figu re 6- 8: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f8=plot({keep,legend=["original","redu ced"]}) Figur e 6-8. St ep Re spons e with o phank The open-l oop gai n, closed-loop gain and s tep resp onse ar[...]

  • Page 107

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-12 ni.com wtbalan ce The next comman d examined is wtbal ance with the option "match" . [syscr,ysclr,hsv] = wtbalance(sys,sysc ,"match",2) Recall that this command should p romote matching of clo sed-loop transfer functions. The weigh ted Hankel sing ular values are: 1.486 4.[...]

  • Page 108

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-13 Xma th Model Re ductio n Module The following fu nction calls produce Figur e 6-9: svalsrol = svplot(sys*syscr,w,{radians }) plot(svalsol, {keep}) f9=plot(wc, constr, {keep,!grid, legend=["reduced","original","constrai ned"], title="Open-Loop Gain U[...]

  • Page 109

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-14 ni.com Gen erate Figu re 6- 10: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f10=plot({keep,legend=["original","red uced"]}) Figu re 6-1 0. Clos ed-L oop G ain with wtb alance[...]

  • Page 110

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-15 Xma th Model Re ductio n Module Gen erate Figu re 6- 11: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f11=plot({keep,legend=["original","red uced"]}) Figu re 6-11. Ste p Response wit h wtbalance Figures 6-9, 6-10, and 6-11 are obtained for wtbalance wi[...]

  • Page 111

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-16 ni.com Gen erate Figu re 6- 12: vtf=poly([-0.1,-10])/poly([-1,-1.4]) [,sysv]=check(vtf,{ss,convert}); svalsv = svplot(sysv,w,{radians}); Figu re 6-12 . Frequency Re sponse of th e Weight V( j ω )[...]

  • Page 112

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-17 Xma th Model Re ductio n Module Gen erate Figu re 6- 13: [syscr,sysclr,hsv] = wtbalance(sys,sys c, "input spec",2,sysv) svalsrol = svplot(sys*syscr,w,{radians }) plot(svalsol, {keep}) f13=plot(wc,constr,{keep, !grid, legend=["reduced","original","co[...]

  • Page 113

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-18 ni.com Gen erate Figu re 6- 14: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f14=plot({keep,legend=["original","red uced"]}) Figu re 6-14 . System Sing ular Values of wtbalanc e with "i nput spec "[...]

  • Page 114

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-19 Xma th Model Re ductio n Module Gen erate Figu re 6- 15: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f15=plot({keep,legend=["original","red uced"]}) Figur e 6-15. Step Respon se of wtba lanc e with "inp ut spec "[...]

  • Page 115

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-20 ni.com fracred fracred , the next command examined, has f our options — "right stab" , "left stab" , "right perf " , and "left perf" . The optio ns "left stab" , "right perf" , and "left perf" all produce instability. Giv[...]

  • Page 116

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-21 Xma th Model Re ductio n Module Gen erate Figu re 6- 17: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f17=plot({keep,legend=["original","red uced"]}) Figu re 6-17. Closed -Loop Respon se with fracred[...]

  • Page 117

    Chapter 6 T utoria l Xmath Model R eduction M odule 6-22 ni.com Gen erate Figu re 6- 18: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f18=plot({keep,legend=["original","red uced"]}) Figur e 6-18. Step Response with fracre d The end result is comparable to that from wtbalance( ) with option "match" . We can [...]

  • Page 118

    Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-23 Xma th Model Re ductio n Module hsvtable = [... "right stab:", string(hsvrs'); "left stab:", string(hsvls'); "right perf:", string(hsvrp'); "left perf:", string(hsvlp')]? hsvtable (a rectangular matrix of stri ngs) = right s[...]

  • Page 119

    © Nationa l Instrume nts Corpora tion A-1 Xmath Mod el Redu ction Modu le A Bibliography [AnJ] BDO Anderson and B. James, “ Algorithm for multiplicati v e approximation of a s table linear system, ” in preparation. [AnL89] BDO Anderson and Y . Liu, “C ontroll er reduction : Concepts and approaches , ” IEEE T r ansa ction s on Auto matic Co[...]

  • Page 120

    Appendix A Bibliogr aphy Xmath Model R eduction M odule A-2 ni.com [GrA90] M. Green an d BDO Anderson, “Gener alized balanced stochas tic truncation, ” Pr oceedings for 29th CDC , 1990. [Gre88] M. Green, “Balanced stochastic realization, ” Linear Alg ebra and Ap plications , V ol. 98, 1988, pp . 211–2 47. [Gre88a] M. Green , “ A relati [...]

  • Page 121

    Appendix A Bibliography © Nationa l Instrume nts Corpora tion A-3 Xmath Mod el Redu ction Modu le [SaC88] M. G. Safono v and R. Y . Chiang , “Model redu ction for r ob ust control : a Schur relati v e-error m ethod, ” Pr oceedings for the American Contr ols Confer ence , 1988, pp. 1685 –1690. [Saf87] M. G. Saf onov , “Imaginary-axi s zeros[...]

  • Page 122

    Appendix A Bibliogr aphy Xmath Model R eduction M odule A-4 ni.com [Do y82] J. C. Doyle. “ Analysis of Feedback Systems with Struct ured Uncertainties. ” IEEE Pr oceedings , Nove mber 1982. [ D W S 8 2 ] J . C . D o y l e , J . E . Wa l l , a n d G . S t e i n . “Performance and Robu stness Analysis for Structu re Uncertainties, ” Proceedin[...]

  • Page 123

    Appendix A Bibliography © Nationa l Instrume nts Corpora tion A-5 Xmath Mod el Redu ction Modu le [SLH81] M. G. Safono v , A. J. Laub, and G. L. Hartman n, “Feedback Prop erties of Multi variable Systems: The R ole and Use of the Return Dif ference Matrix, ” IEEE T ransac tions on Automatic Contr ol , V ol. A C-26, Februar y 1981. [SA88] G. S [...]

  • Page 124

    © Nationa l Instrume nts Corpora tion B-1 Xmath Mod el Redu ction Modu le B T echnical Support and Professional Ser vices Visit the followin g sections of the Nationa l Instruments Web site at ni.com for technical suppor t and prof essional services: • Support — Online technical s upport resources at ni.c om/support include the following: – [...]

  • Page 125

    © Nationa l Instrume nts Corpora tion I-1 Xmath Mod el Redu ction Modu le Index Symbols *, 1-6 ´, 1-6 A additive error, reduction, 2-1 algorithm bala nced stocha stic trunc atio n (bst) , 3-4 fractional re presentat ion redu ction, 4-18 Hankel multi-pass, 2-20 optimal Ha nkel norm redu ction, 2-15 stable, 5- 2 weighted bal ance, 4-12 all-pass tra[...]

  • Page 126

    Index Xmath Model R eduction M odule I-2 ni.com G grammians controllability, 1- 7 desc ripti on of , 1-7 observability, 1- 7 H Hankel matrix, 1-9 Hankel no rm approxi mation, 2-6 Hankel si ngular values, 1-8, 3-9 , 5-1 hankels v, 1-5, 5-1 algorithm, m ultipass, 2 -20 help, technical support, B-1 I instrum ent drivers (NI resources ), B-1 internal b[...]

  • Page 127

    Index © Nationa l Instrume nts Corpora tion I-3 Xmath Mod el Redu ction Modu le stable, 1 -5, 5-2 sup, 1-6 suppor t, technical, B -1 T technical support, B -1 tight equality bounds, 1-7 training and certification (NI r esources), B-1 transfer function, allpass, 1-6 troubles hooting (NI resou rces), B-1 truncate, 1 -5, 2-4, 2- 11 U unstable zer os,[...]