Texas Instruments TMS320C645x DSP manuel d'utilisation
- Voir en ligne ou télécharger le manuel d’utilisation
- 148 pages
- 0.97 mb
Aller à la page of
Les manuels d’utilisation similaires
-
Network Card
Texas Instruments TMS320TCI6486
160 pages 0.77 mb -
Network Card
Texas Instruments TMS320C64x DSP
306 pages 1.83 mb -
Network Card
Texas Instruments Adpater
37 pages 0.54 mb -
Network Card
Texas Instruments 4Q 2006
49 pages 1.17 mb -
Network Card
Texas Instruments TNETE211
179 pages 0.53 mb -
Network Card
Texas Instruments VLYNQ Port
49 pages 0.38 mb -
Network Card
Texas Instruments SLAU245
4 pages 0.09 mb -
Network Card
Texas Instruments UCC38500EVM
16 pages 0.11 mb
Un bon manuel d’utilisation
Les règles imposent au revendeur l'obligation de fournir à l'acheteur, avec des marchandises, le manuel d’utilisation Texas Instruments TMS320C645x DSP. Le manque du manuel d’utilisation ou les informations incorrectes fournies au consommateur sont à la base d'une plainte pour non-conformité du dispositif avec le contrat. Conformément à la loi, l’inclusion du manuel d’utilisation sous une forme autre que le papier est autorisée, ce qui est souvent utilisé récemment, en incluant la forme graphique ou électronique du manuel Texas Instruments TMS320C645x DSP ou les vidéos d'instruction pour les utilisateurs. La condition est son caractère lisible et compréhensible.
Qu'est ce que le manuel d’utilisation?
Le mot vient du latin "Instructio", à savoir organiser. Ainsi, le manuel d’utilisation Texas Instruments TMS320C645x DSP décrit les étapes de la procédure. Le but du manuel d’utilisation est d’instruire, de faciliter le démarrage, l'utilisation de l'équipement ou l'exécution des actions spécifiques. Le manuel d’utilisation est une collection d'informations sur l'objet/service, une indice.
Malheureusement, peu d'utilisateurs prennent le temps de lire le manuel d’utilisation, et un bon manuel permet non seulement d’apprendre à connaître un certain nombre de fonctionnalités supplémentaires du dispositif acheté, mais aussi éviter la majorité des défaillances.
Donc, ce qui devrait contenir le manuel parfait?
Tout d'abord, le manuel d’utilisation Texas Instruments TMS320C645x DSP devrait contenir:
- informations sur les caractéristiques techniques du dispositif Texas Instruments TMS320C645x DSP
- nom du fabricant et année de fabrication Texas Instruments TMS320C645x DSP
- instructions d'utilisation, de réglage et d’entretien de l'équipement Texas Instruments TMS320C645x DSP
- signes de sécurité et attestations confirmant la conformité avec les normes pertinentes
Pourquoi nous ne lisons pas les manuels d’utilisation?
Habituellement, cela est dû au manque de temps et de certitude quant à la fonctionnalité spécifique de l'équipement acheté. Malheureusement, la connexion et le démarrage Texas Instruments TMS320C645x DSP ne suffisent pas. Le manuel d’utilisation contient un certain nombre de lignes directrices concernant les fonctionnalités spécifiques, la sécurité, les méthodes d'entretien (même les moyens qui doivent être utilisés), les défauts possibles Texas Instruments TMS320C645x DSP et les moyens de résoudre des problèmes communs lors de l'utilisation. Enfin, le manuel contient les coordonnées du service Texas Instruments en l'absence de l'efficacité des solutions proposées. Actuellement, les manuels d’utilisation sous la forme d'animations intéressantes et de vidéos pédagogiques qui sont meilleurs que la brochure, sont très populaires. Ce type de manuel permet à l'utilisateur de voir toute la vidéo d'instruction sans sauter les spécifications et les descriptions techniques compliquées Texas Instruments TMS320C645x DSP, comme c’est le cas pour la version papier.
Pourquoi lire le manuel d’utilisation?
Tout d'abord, il contient la réponse sur la structure, les possibilités du dispositif Texas Instruments TMS320C645x DSP, l'utilisation de divers accessoires et une gamme d'informations pour profiter pleinement de toutes les fonctionnalités et commodités.
Après un achat réussi de l’équipement/dispositif, prenez un moment pour vous familiariser avec toutes les parties du manuel d'utilisation Texas Instruments TMS320C645x DSP. À l'heure actuelle, ils sont soigneusement préparés et traduits pour qu'ils soient non seulement compréhensibles pour les utilisateurs, mais pour qu’ils remplissent leur fonction de base de l'information et d’aide.
Table des matières du manuel d’utilisation
-
Page 1
TMS320C645x DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) User's Guide Literature Number: SPRU975B August 2006[...]
-
Page 2
2 SPRU975B – August 2006 Submit Documentation Feedback[...]
-
Page 3
Contents Preface .............................................................................................................................. 10 1 Introduction .............................................................................................................. 11 1.1 Purpose of the Peripheral ............................................[...]
-
Page 4
4.15 MDIO User PHY Select Register 1 (USERPHYSEL1) .................................................... 80 5 EMAC Port Registers ................................................................................................. 81 5.1 Introduction ...................................................................................................... [...]
-
Page 5
5.48 Transmit Channel 0-7 Completion Pointer Register (TX n CP) ........................................... 134 5.49 Receive Channel 0-7 Completion Pointer Register (RX n CP) ........................................... 135 5.50 Network Statistics Registers ................................................................................. 136 Appendi[...]
-
Page 6
List of Figures 1 EMAC and MDIO Block Diagram ........................................................................................ 12 2 Ethernet Configuration with MII Interface ............................................................................... 16 3 Ethernet Configuration with RMII Interface ........................................[...]
-
Page 7
53 Receive Buffer Offset Register (RXBUFFEROFFSET) .............................................................. 109 54 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) .............................. 110 55 Receive Channel n Flow Control Threshold Register (RX n FLOWTHRESH) ..................................... 111 56 Recei[...]
-
Page 8
List of Tables 1 Interface Selection Pins ................................................................................................... 16 2 EMAC and MDIO Signals for MII Interface ............................................................................. 17 3 EMAC and MDIO Signals for RMII Interface .......................................[...]
-
Page 9
50 Receive Unicast Enable Set Register (RXUNICASTSET) Field Descriptions .................................... 106 51 Receive Unicast Clear Register (RXUNICASTCLEAR) Field Descriptions ....................................... 107 52 Receive Maximum Length Register (RXMAXLEN) Field Descriptions ............................................ 108 53 Recei[...]
-
Page 10
Preface SPRU975B – August 2006 Read This First About This Manual This document provides a functional description of the Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data Input/Output (MDIO) module integrated with TMS320C645x devices. Notational Conventions This document uses the following conventions. • Hex[...]
-
Page 11
1 Introduction 1.1 Purpose of the Peripheral 1.2 Features User's Guide SPRU975B – August 2006 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) This document provides a functional description of the Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data Input/Output (MDIO) module int[...]
-
Page 12
www.ti.com 1.3 Functional Block Diagram Configuration bus DMA memory transfer controller Peripheral bus EMAC control module EMAC module MDIO module MII MDIO bus EMAC/MDIO interrupt Interrupt controller RMII GMII RGMII Introduction Figure 1 shows the three main functional modules of the EMAC/MDIO peripheral: • EMAC control module • EMAC module ?[...]
-
Page 13
www.ti.com 1.4 Industry Standard(s) Compliance Statement Introduction The EMAC peripheral conforms to the IEEE 802.3 standard, describing the “Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer” specifications. ISO / IEC has also adopted the IEEE 802.3 standard and re-designated it as ISO/IEC 8802-[...]
-
Page 14
www.ti.com 2 EMAC Functional Architecture 2.1 Clock Control 2.1.1 MII Clocking 2.1.2 RMII Clocking 2.1.3 GMII Clocking EMAC Functional Architecture This chapter discusses the architecture and basic function of the EMAC peripheral. The frequencies for the transmit and receive clocks are fixed by the IEEE 802.3 specification as shown below: • 2.5 M[...]
-
Page 15
www.ti.com 2.1.4 RGMII Clocking 2.2 Memory Map EMAC Functional Architecture For timing purposes, data in 10/100 mode is transmitted and received with reference to MTCLK and MRCLK, respectively. For 1000 Mbps mode, receive timing is the same, but transmit is relative to GMTCLK. When the RGMII interface is selected by setting MACSEL to 11b, you must [...]
-
Page 16
www.ti.com 2.3 System Level Connections 2.3.1 Media Independent Interface (MII) Connections MTCLK MTXD[3−0] MTXEN MCOL MCRS MRCLK MRXD[3−0] MRXDV MRXER MDCLK MDIO Physical layer device (PHY) System core Transformer 2.5 MHz or 25 MHz RJ−45 EMAC MDIO EMAC Functional Architecture The C645x device supports four different interfaces to a physical [...]
-
Page 17
www.ti.com EMAC Functional Architecture Table 2 summarizes the individual EMAC and MDIO signals for the MII interface. For more information, refer to either the IEEE 802.3 standard or ISO/IEC 8802-3:2000(E). The EMAC module does not include a transmit error (MTXER) pin. If a transmit error occurs, CRC inversion is used to negate the validity of the[...]
-
Page 18
www.ti.com 2.3.2 Reduced Media Independent Interface (RMII) Connections MTXD[1−0] MTXEN MCRSDV MREFCLK MRXD[1−0] MRXER MDCLK MDIO Physical layer device (PHY) System core Transformer RJ−45 EMAC MDIO EMAC Functional Architecture Figure 3 shows a device with integrated EMAC and MDIO interfaced via a RMII connection. This interface is only availa[...]
-
Page 19
www.ti.com EMAC Functional Architecture The RMII interface has the same functionality as the MII, but it does so with a reduced number of pins, thus lowering the total cost for an application. In devices incorporating many PHY interfaces such as switches, the number of pins can add significant cost as the port counts increase. Table 3 summarizes th[...]
-
Page 20
www.ti.com 2.3.3 Gigabit Media Independent Interface (GMII) Connections MTCLK MTXD[7−0] MTXEN MCOL MCRS MRCLK MRXD[7−0] MRXDV MRXER MDCLK MDIO Physical layer device (PHY) System core Transformer 2.5 MHz, 25 MHz, RJ−45 EMAC MDIO GMTCLK or 125 MHz EMAC Functional Architecture Figure 4 shows a device with integrated EMAC and MDIO interfaced via [...]
-
Page 21
www.ti.com EMAC Functional Architecture Table 4 summarizes the individual EMAC and MDIO signals for the GMII interface. Table 4. EMAC and MDIO Signals for GMII Interface Signal Name I/O Description MTCLK I Transmit clock (MTCLK). The transmit clock is a continuous clock that provides the timing reference for transmit operations in 10/100 Mbps mode.[...]
-
Page 22
www.ti.com 2.3.4 Reduced Gigabit Media Independent Interface (RGMII) Connections TXC TXD[3−0] TXCTL REFCLK RXC RXD[3−0] RXCTL MDCLK MDIO Physical layer device (PHY) System core Transformer 2.5 MHz 25 MHz, or 125 MHz RJ−45 EMAC MDIO EMAC Functional Architecture Figure 5 shows a device with integrated EMAC and MDIO interfaced via a RGMII connec[...]
-
Page 23
www.ti.com EMAC Functional Architecture Table 5 summarizes the individual EMAC and MDIO signals for the RGMII interface. Table 5. EMAC and MDIO Signals for RGMII Interface Signal Name I/O Description TXC O Transmit clock (TXC). The transmit clock is a continuous clock that provides the timing reference for transmit operations. The TXD and TXCTL sig[...]
-
Page 24
www.ti.com 2.4 Ethernet Protocol Overview 2.4.1 Ethernet Frame Format Preamble SFD Destination Source Len Data 7 1 6 6 2 46 − (RXMAXLEN - 18) 4 FCS Number of bytes Legend: SFD=Start Frame Delimiter; FCS=Frame Check Sequence (CRC) EMAC Functional Architecture Ethernet provides an unreliable, connectionless service to a networking application. A br[...]
-
Page 25
www.ti.com 2.4.2 Multiple Access Protocol EMAC Functional Architecture Nodes in an ethernet local area network are interconnected by a broadcast channel. As a result, when an EMAC port transmits a frame, all of the adapters on the local network receive the frame. Carrier sense multiple access with collision detection (CSMA/CD) algorithms are used w[...]
-
Page 26
www.ti.com 2.5 Programming Interface 2.5.1 Packet Buffer Descriptors EMAC Functional Architecture The buffer descriptor is a central part of the EMAC module. It determines how the application software describes ethernet packets to be sent and empty buffers to be filled with incoming packet data. The basic descriptor format is shown in Figure 7 and [...]
-
Page 27
www.ti.com SOP | EOP 60 0 60 pBuf fer pNext Packet A 60 bytes 0 SOP Fragment 1 Packet B 512 1514 pBuf fer pNext 512 bytes EOP 0 0 −−− Packet B Fragment 3 500 bytes 502 pBuf fer −−− 500 pNext −−− pBuf fer pNext Packet B Fragment 2 502 bytes SOP | EOP 0 1514 bytes Packet C 1514 pBuf fer pNext (NULL) 1514 EMAC Functional Architecture[...]
-
Page 28
www.ti.com 2.5.2 Transmit and Receive Descriptor Queues EMAC Functional Architecture The EMAC module processes descriptors in linked list chains ( Section 2.5.1 ). The lists controlled by the EMAC are maintained by the application software via the head descriptor pointer (HDP) registers. Since the EMAC supports eight channels for both transmit and [...]
-
Page 29
www.ti.com 2.5.3 Transmit and Receive EMAC Interrupts EMAC Functional Architecture The EMAC processes descriptors in linked list chains ( Section 2.5.1 ), using the linked list queue mechanism ( Section 2.5.2 ). The EMAC synchronizes the descriptor list processing by using interrupts to the software application. The interrupts are controlled by the[...]
-
Page 30
www.ti.com 2.5.4 Transmit Buffer Descriptor Format EMAC Functional Architecture A transmit (TX) buffer descriptor ( Figure 9 ) is a contiguous block of four 32-bit data words aligned on a 32-bit boundary that describes a packet or a packet fragment. Example 1 shows the transmit buffer descriptor described by a C structure. Figure 9. Transmit Descri[...]
-
Page 31
www.ti.com 2.5.4.1 Next Descriptor Pointer 2.5.4.2 Buffer Pointer 2.5.4.3 Buffer Offset 2.5.4.4 Buffer Length 2.5.4.5 Packet Length 2.5.4.6 Start of Packet (SOP) Flag EMAC Functional Architecture The next descriptor pointer indicates the 32-bit word aligned memory address of the next buffer descriptor in the transmit queue. The pointer creates a li[...]
-
Page 32
www.ti.com 2.5.4.7 End of Packet (EOP) Flag 2.5.4.8 Ownership (OWNER) Flag 2.5.4.9 End of Queue (EOQ) Flag 2.5.4.10 Teardown Complete (TDOWNCMPLT) Flag 2.5.4.11 Pass CRC (PASSCRC) Flag EMAC Functional Architecture When set, this flag indicates that the descriptor points to the last packet buffer for a given packet. For a single fragment packet, bot[...]
-
Page 33
www.ti.com 2.5.5 Receive Buffer Descriptor Format EMAC Functional Architecture A receive (RX) buffer descriptor ( Figure 10 ) is a contiguous block of four 32-bit data words aligned on a 32-bit boundary that describes a packet or a packet fragment. Example 2 shows the receive descriptor described by a C structure. Figure 10. Receive Descriptor Form[...]
-
Page 34
www.ti.com 2.5.5.1 Next Descriptor Pointer 2.5.5.2 Buffer Pointer 2.5.5.3 Buffer Offset 2.5.5.4 Buffer Length 2.5.5.5 Packet Length EMAC Functional Architecture The next descriptor pointer indicates the 32-bit word aligned memory address of the next buffer descriptor in the receive queue. The pointer creates a linked list of buffer descriptors. If [...]
-
Page 35
www.ti.com 2.5.5.6 Start of Packet (SOP) Flag 2.5.5.7 End of Packet (EOP) Flag 2.5.5.8 Ownership (OWNER) Flag 2.5.5.9 End of Queue (EOQ) Flag 2.5.5.10 Teardown Complete (TDOWNCMPLT) Flag 2.5.5.11 Pass CRC (PASSCRC) Flag 2.5.5.12 Jabber Flag 2.5.5.13 Oversize Flag EMAC Functional Architecture When set, this flag indicates that the descriptor points [...]
-
Page 36
www.ti.com 2.5.5.14 Fragment Flag 2.5.5.15 Undersized Flag 2.5.5.16 Control Flag 2.5.5.17 Overrun Flag 2.5.5.18 Code Error (CODEERROR) Flag 2.5.5.19 Alignment Error (ALIGNERROR) Flag 2.5.5.20 CRC Error (CRCERROR) Flag 2.5.5.21 No Match (NOMATCH) Flag EMAC Functional Architecture The EMAC sets this flag in the SOP buffer descriptor if the received p[...]
-
Page 37
www.ti.com 2.6 EMAC Control Module Arbiter and bus switches CPU DMA Controllers 8K byte descriptor memory Configuration registers Interrupt logic Single interrupt to CPU EMAC interrupts MDIO interrupts Configuration bus T ransmit and Receive 2.6.1 Internal Memory 2.6.2 Bus Arbiter EMAC Functional Architecture The EMAC control module ( Figure 11 ) i[...]
-
Page 38
www.ti.com 2.6.3 Interrupt Control 2.7 Management Data Input/Output (MDIO) Module 2.7.1 MDIO Module Components EMAC Functional Architecture The EMAC control module combines the multiple interrupt conditions generated by the EMAC and MDIO modules into a single interrupt signal that is mapped to a CPU interrupt via the CPU interrupt controller. The c[...]
-
Page 39
www.ti.com EMAC control module Control registers and logic PHY monitoring Peripheral clock MDIO clock generator USERINT MDIO interface polling PHY MDCLK MDIO LINKINT Configuration bus 2.7.1.1 MDIO Clock Generator 2.7.1.2 Global PHY Detection and Link State Monitoring 2.7.1.3 Active PHY Monitoring 2.7.1.4 PHY Register User Access EMAC Functional Arc[...]
-
Page 40
www.ti.com 2.7.2 MDIO Module Operational Overview 2.7.2.1 Initializing the MDIO Module EMAC Functional Architecture The MDIO module implements the 802.3 serial management interface to simultaneously interrogate and control up to two Ethernet PHYs, using a shared two-wired bus. It separately performs auto-detection and records the current link statu[...]
-
Page 41
www.ti.com 2.7.2.2 Writing Data to a PHY Register 2.7.2.3 Reading Data From a PHY Register 2.7.2.4 Example of MDIO Register Access Code EMAC Functional Architecture The MDIO module includes a user access register (USERACCESS n ) to directly access a specified PHY device. To write a PHY register, perform the following: 1. Ensure that the GO bit in t[...]
-
Page 42
www.ti.com EMAC Functional Architecture The implementation of these macros using the register layer Chip Support Library (CSL) is shown in Example 3 (USERACCESS0 is assumed). Note that this implementation does not check the ACK bit on PHY register reads; in other words, it does not follow the procedure outlined in Section 2.7.2.3 . As the ALIVE reg[...]
-
Page 43
www.ti.com 2.8 EMAC Module 2.8.1 EMAC Module Components Clock and reset logic Receive DMA engine Interrupt controller Transmit DMA engine Control registers Configuration bus EMAC control module Configuration bus RAM State FIFO Receive FIFO Transmit MAC transmitter Statistics receiver MAC SYNC MII RMII GMII RGMII address Receive 2.8.1.1 Receive DMA [...]
-
Page 44
www.ti.com 2.8.1.3 MAC Receiver 2.8.1.4 Receive Address 2.8.1.5 Transmit DMA Engine 2.8.1.6 Transmit FIFO 2.8.1.7 MAC Transmitter 2.8.1.8 Statistics Logic 2.8.1.9 State RAM 2.8.1.10 EMAC Interrupt Controller 2.8.1.11 Control Registers and Logic EMAC Functional Architecture The MAC receiver detects and processes incoming network frames, de-frames th[...]
-
Page 45
www.ti.com 2.8.1.12 Clock and Reset Logic 2.8.2 EMAC Module Operational Overview EMAC Functional Architecture The clock and reset sub-module generates all the clocks and resets for the EMAC peripheral. After reset, initialization, and configuration of the EMAC, the application software running on the host may initiate transmit operations. Transmit [...]
-
Page 46
www.ti.com 2.9 Media Independent Interfaces 2.9.1 Data Reception 2.9.1.1 Receive Control 2.9.1.2 Receive Inter-Frame Interval 2.9.1.3 Receive Flow Control EMAC Functional Architecture The EMAC supports four physical interfaces to external devices: Media Independent Interface (MII), Reduced Media Independent Interface (RMII), Gigabit Media Independe[...]
-
Page 47
www.ti.com 2.9.1.4 Collision-Based Receive Buffer Flow Control 2.9.1.5 IEEE 802.3X Based Receive Buffer Flow Control EMAC Functional Architecture Collision-based receive buffer flow control provides a means of preventing frame reception when the EMAC is operating in half-duplex mode (FULLDUPLEX bit is cleared in MACCONTROL register). When receive f[...]
-
Page 48
www.ti.com 2.9.2 Data Transmission 2.9.2.1 Transmit Control 2.9.2.2 CRC Insertion 2.9.2.3 Adaptive Performance Optimization (APO) 2.9.2.4 Interpacket-Gap (IPG) Enforcement 2.9.2.5 Back Off EMAC Functional Architecture The EMAC passes data to the PHY from the transmit FIFO (when enabled). Data is synchronized to the transmit clock rate. Transmission[...]
-
Page 49
www.ti.com 2.9.2.6 Transmit Flow Control 2.9.2.7 Speed, Duplex, and Pause Frame Support EMAC Functional Architecture When enabled, incoming pause frames are acted upon to prevent the EMAC from transmitting any further frames. Incoming pause frames are only acted upon when the FULLDUPLEX and TXFLOWEN bits in the MACCONTROL register are set. Pause fr[...]
-
Page 50
www.ti.com 2.10 Packet Receive Operation 2.10.1 Receive DMA Host Configuration 2.10.2 Receive Channel Enabling EMAC Functional Architecture To configure the receive DMA for operation, the host must perform the following actions: • Initialize the receive addresses • Initialize the RX n HDP registers to zero • Write the MACHASH1 and MACHASH2 re[...]
-
Page 51
www.ti.com 2.10.3 Receive Channel Addressing 2.10.4 Hardware Receive QOS Support EMAC Functional Architecture The receive address block can store up to 32 addresses to be filtered or matched. Before enabling packet reception, all the address RAM locations should be initialized, including locations to be unused. The system software is responsible fo[...]
-
Page 52
www.ti.com 2.10.5 Host Free Buffer Tracking 2.10.6 Receive Channel Teardown 2.10.7 Receive Frame Classification EMAC Functional Architecture The host must track free buffers for each enabled channel (including unicast, multicast, broadcast, and promiscuous) if receive QOS or receive flow control is used. Disabled channel free buffer values are don?[...]
-
Page 53
www.ti.com 2.10.8 Promiscuous Receive Mode EMAC Functional Architecture When the promiscuous receive mode is enabled by setting the RXCAFEN bit in the RXMBPENABLE register, non-address matching frames that would normally be filtered are transferred to the promiscuous channel. Address matching frames that would normally be filtered due to errors are[...]
-
Page 54
www.ti.com 2.10.9 Receive Overrun EMAC Functional Architecture Table 8. Receive Frame Treatment Summary (continued) RXMBPENABLE Bits ADDRESS MATCH RXCAFEN RXCEFEN RXCMFEN RXCSFEN Frame treatment 1 X 1 0 1 Proper/oversize/jabber/fragment/undersized/cod e/align/CRC data frames transferred to address match channel. No control frames are transferred. 1[...]
-
Page 55
www.ti.com 2.11 Packet Transmit Operation 2.11.1 Transmit DMA Host Configuration 2.11.2 Transmit Channel Teardown 2.12 Receive and Transmit Latency EMAC Functional Architecture The transmit DMA is an eight channel interface. Priority between the eight queues may be either fixed or round robin as selected by the TXPTYPE bit in the MACCONTROL registe[...]
-
Page 56
www.ti.com 2.13 Transfer Node Priority 2.14 Reset Considerations 2.14.1 Software Reset Considerations 2.14.2 Hardware Reset Considerations EMAC Functional Architecture Latency to system’s internal and external RAM can be controlled through the use of the transfer node priority allocation register in the C645x devices. Latency to descriptor RAM is[...]
-
Page 57
www.ti.com 2.15 Initialization 2.15.1 Enabling the EMAC/MDIO Peripheral 2.15.2 EMAC Control Module Initialization EMAC Functional Architecture When the device is powered on, the EMAC peripheral is disabled. Prior to EMAC-specific initialization, the EMAC must be enabled; otherwise its registers cannot be written, and the reads will all return a val[...]
-
Page 58
www.ti.com 2.15.3 MDIO Module Initialization EMAC Functional Architecture Example 4. EMAC Control Module Initialization Code Uint32 tmpval; /* // Globally disable EMAC/MDIO interrupts in the control module /* CSL_FINST(ECTL_REGS->EWCTL, ECTL_EWCTL_INTEN, DISABLE ); /* Wait about 100 cycles */ for( I=0; i<5; I++ ) tmpval = ECTL_REGS->EWCTL;[...]
-
Page 59
www.ti.com 2.15.4 EMAC Module Initialization EMAC Functional Architecture The EMAC module sends and receives data packets over the network by maintaining up to 8 transmit and receive descriptor queues. The EMAC module configuration must also be kept current based on the PHY negotiation results returned from the MDIO module. Programming this module [...]
-
Page 60
www.ti.com 2.16 Interrupt Support 2.16.1 EMAC Module Interrupt Events and Requests 2.16.1.1 Transmit Packet Completion Interrupts EMAC Functional Architecture The EMAC/MDIO generates 18 interrupt events, as follows: • TXPEND n : Transmit packet completion interrupt for transmit channels 7 through 0 • RXPEND n : Receive packet completion interru[...]
-
Page 61
www.ti.com 2.16.1.2 Receive Packet Completion Interrupts 2.16.1.3 Statistics Interrupt EMAC Functional Architecture The receive DMA engine has eight channels, and each channel has a corresponding interrupt (RXPEND n ). The receive interrupts are level interrupts that remain asserted until cleared by the CPU. Each of the eight receive channel interr[...]
-
Page 62
www.ti.com 2.16.1.4 Host Error Interrupt 2.16.2 MDIO Module Interrupt Events and Requests 2.16.2.1 Link Change Interrupt 2.16.2.2 User Access Completion Interrupt EMAC Functional Architecture The host error interrupt (HOSTPEND) is issued, if enabled, under error conditions due to the handling of buffer descriptors detected during transmit or receiv[...]
-
Page 63
www.ti.com 2.16.3 Proper Interrupt Processing 2.16.4 Interrupt Multiplexing 2.17 Power Management 2.18 Emulation Considerations EMAC Functional Architecture All the interrupts signaled from the EMAC and MDIO modules are level-driven. If they remain active, their level remains constant. However, the CPU core requires edge-triggered interrupts. To pr[...]
-
Page 64
www.ti.com 3 EMAC Control Module Registers 3.1 Introduction 3.2 EMAC Control Module Interrupt Control Register (EWCTL) EMAC Control Module Registers Table 11 lists the memory-mapped registers for the EMAC Control Module. See the device-specific data manual for the memory address of these registers. Table 11. EMAC Control Module Registers Offset Acr[...]
-
Page 65
www.ti.com 3.3 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT) EMAC Control Module Registers The EMAC control module interrupt timer count register (EWINTTCNT) is used to control the generation of back-to-back interrupts from the EMAC and MDIO modules. The value of this timer count is loaded into an internal counter every time interr[...]
-
Page 66
www.ti.com 4 MDIO Registers 4.1 Introduction MDIO Registers Table 14 lists the memory-mapped registers for the Management Data Input/Output (MDIO). See the device-specific data manual for the memory address of these registers. Table 14. Management Data Input/Output (MDIO) Registers Offset Acronym Register Description Section 0h VERSION MDIO Version[...]
-
Page 67
www.ti.com 4.2 MDIO Version Register (VERSION) MDIO Registers The MDIO version register (VERSION) is shown in Figure 16 and described in Table 15 . Figure 16. MDIO Version Register (VERSION) 31 16 MODID R-7 15 8 7 0 REVMAJ REVMIN R-1 R-3 LEGEND: R = Read only; R/W = Read/Write; - n = value after reset Table 15. MDIO Version Register (VERSION) Field[...]
-
Page 68
www.ti.com 4.3 MDIO Control Register (CONTROL) MDIO Registers The MDIO control register (CONTROL) is shown in Figure 17 and described in Table 16 . Figure 17. MDIO Control Register (CONTROL) 31 30 29 28 24 23 21 20 19 18 17 16 IDLE ENABLE Reserved HIGHEST_USER_CHANNEL Reserved PREAMBLE FAULT FAULT Reserved ENB R-1 R/W-0 R-0 R-1 R-0 R/W-0 R/WC-0 R/W[...]
-
Page 69
www.ti.com 4.4 PHY Acknowledge Status Register (ALIVE) MDIO Registers The PHY acknowledge status register (ALIVE) is shown in Figure 18 and described in Table 17 . Figure 18. PHY Acknowledge Status Register (ALIVE) 31 16 ALIVE R/WC-0 15 0 ALIVE R/WC-0 LEGEND: R/W = Read/Write; R/WC = Read/Write 1 to clear; - n = value after reset Table 17. PHY Ackn[...]
-
Page 70
www.ti.com 4.5 PHY Link Status Register (LINK) MDIO Registers The PHY link status register (LINK) is shown in Figure 19 and described in Table 18 . Figure 19. PHY Link Status Register (LINK) 31 16 LINK R-0 15 0 LINK R-0 LEGEND: R = Read only; - n = value after reset Table 18. PHY Link Status Register (LINK) Field Descriptions Bit Field Value Descri[...]
-
Page 71
www.ti.com 4.6 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) MDIO Registers The MDIO link status change interrupt (unmasked) register (LINKINTRAW) is shown in Figure 20 and described in Table 19 . Figure 20. MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) 31 16 Reserved R-0 15 2 1 0 Reserved LINKINTRAW R-0 R/[...]
-
Page 72
www.ti.com 4.7 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) MDIO Registers The MDIO link status change interrupt (masked) register (LINKINTMASKED) is shown in Figure 21 and described in Table 20 . Figure 21. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) 31 16 Reserved R-0 15 2 1 0 Reserved LINKINT MASKED[...]
-
Page 73
www.ti.com 4.8 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) MDIO Registers The MDIO user command complete interrupt (unmasked) register (USERINTRAW) is shown in Figure 22 and described in Table 21 . Figure 22. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) 31 16 Reserved R-0 15 2 1 0 Reserved USERINTR[...]
-
Page 74
www.ti.com 4.9 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) MDIO Registers The MDIO user command complete interrupt (Masked) register (USERINTMASKED) is shown in Figure 23 and described in Table 22 . Figure 23. MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) 31 16 Reserved R-0 15 2 1 0 Reserved USERI[...]
-
Page 75
www.ti.com 4.10 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) MDIO Registers The MDIO user command complete interrupt mask set register (USERINTMASKSET) is shown in Figure 24 and described in Table 23 . Figure 24. MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) 31 16 Reserved R-0 15 2 1 0 Reserved U[...]
-
Page 76
www.ti.com 4.11 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) MDIO Registers The MDIO user command complete interrupt mask clear register (USERINTMASKCLEAR) is shown in Figure 25 and described in Table 24 . Figure 25. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) 31 16 Reserved R-0 15 2 1 [...]
-
Page 77
www.ti.com 4.12 MDIO User Access Register 0 (USERACCESS0) MDIO Registers The MDIO user access register 0 (USERACCESS0) is shown in Figure 26 and described in Table 25 . Figure 26. MDIO User Access Register 0 (USERACCESS0) 31 30 29 28 26 25 21 20 16 GO WRITE ACK Reserved REGADR PHYADR R/WS-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 0 DATA R/W-0 LEGEND: R = Re[...]
-
Page 78
www.ti.com 4.13 MDIO User PHY Select Register 0 (USERPHYSEL0) MDIO Registers The MDIO user PHY select register 0 (USERPHYSEL0) is shown in Figure 27 and described in Table 26 . Figure 27. MDIO User PHY Select Register 0 (USERPHYSEL0) 31 16 Reserved R-0 15 8 7 6 5 4 0 Reserved LINKSEL LINKINTENB Reserved PHYADRMON R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R[...]
-
Page 79
www.ti.com 4.14 MDIO User Access Register 1 (USERACCESS1) MDIO Registers The MDIO user access register 1 (USERACCESS1) is shown in Figure 28 and described in Table 27 . Figure 28. MDIO User Access Register 1 (USERACCESS1) 31 30 29 28 26 25 21 20 16 GO WRITE ACK Reserved REGADR PHYADR R/WS-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 0 DATA R/W-0 LEGEND: R = Re[...]
-
Page 80
www.ti.com 4.15 MDIO User PHY Select Register 1 (USERPHYSEL1) MDIO Registers The MDIO user PHY select register 1 (USERPHYSEL1) is shown in Figure 29 and described in Table 28 . Figure 29. MDIO User PHY Select Register 1 (USERPHYSEL1) 31 16 Reserved R-0 15 8 7 6 5 4 0 Reserved LINKSEL LINKINTENB Reserved PHYADRMON R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R[...]
-
Page 81
www.ti.com 5 EMAC Port Registers 5.1 Introduction EMAC Port Registers Table 29 lists the memory-mapped registers for the Ethernet Media Access Controller (EMAC). See the device-specific data manual for the memory address of these registers. Table 29. Ethernet Media Access Controller (EMAC) Registers Offset Acronym Register Description Section 0h TX[...]
-
Page 82
www.ti.com EMAC Port Registers Table 29. Ethernet Media Access Controller (EMAC) Registers (continued) Offset Acronym Register Description Section 15Ch RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register Section 5.28 160h MACCONTROL MAC Control Register Section 5.29 164h MACSTATUS MAC Status Register Section 5.30 168h EMCONTROL Emulation Con[...]
-
Page 83
www.ti.com EMAC Port Registers Table 29. Ethernet Media Access Controller (EMAC) Registers (continued) Offset Acronym Register Description Section 658h TX6CP Transmit Channel 6 Completion Pointer (Interrupt Section 5.48 Acknowledge) Register 65Ch TX7CP Transmit Channel 7 Completion Pointer (Interrupt Section 5.48 Acknowledge) Register 660h RX0CP Re[...]
-
Page 84
www.ti.com EMAC Port Registers Table 29. Ethernet Media Access Controller (EMAC) Registers (continued) Offset Acronym Register Description Section 270h FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register Section 5.50.29 274h FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register Section 5.50.30 278h FRAME512T1023 Transmit[...]
-
Page 85
www.ti.com 5.2 Transmit Identification and Version Register (TXIDVER) EMAC Port Registers The transmit identification and version register (TXIDVER) is shown in Figure 30 and described in Table 30 . Figure 30. Transmit Identification and Version Register (TXIDVER) 31 16 TXIDENT R-12 15 8 7 0 TXMAJORVER TXMINORVER R-10 R-7 LEGEND: R = Read only; - n[...]
-
Page 86
www.ti.com 5.3 Transmit Control Register (TXCONTROL) EMAC Port Registers The transmit control register (TXCONTROL) is shown in Figure 31 and described in Table 31 . Figure 31. Transmit Control Register (TXCONTROL) 31 16 Reserved R-0 15 1 0 Reserved TXEN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 31. Transmit Co[...]
-
Page 87
www.ti.com 5.4 Transmit Teardown Register (TXTEARDOWN) EMAC Port Registers The transmit teardown register (TXTEARDOWN) is shown in Figure 32 and described in Table 32 . Figure 32. Transmit Teardown Register (TXTEARDOWN) 31 16 Reserved R-0 15 3 2 0 Reserved TXTDNCH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 32. [...]
-
Page 88
www.ti.com 5.5 Receive Identification and Version Register (RXIDVER) EMAC Port Registers The receive identification and version register (RXIDVER) is shown in Figure 33 and described in Table 33 . Figure 33. Receive Identification and Version Register (RXIDVER) 31 16 RXIDENT R-12 15 8 7 0 RXMAJORVER RXMINORVER R-10 R-7 LEGEND: R = Read only; - n = [...]
-
Page 89
www.ti.com 5.6 Receive Control Register (RXCONTROL) EMAC Port Registers The receive control register (RXCONTROL) is shown in Figure 34 and described in Table 34 . Figure 34. Receive Control Register (RXCONTROL) 31 16 Reserved R-0 15 1 0 Reserved RXEN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 34. Receive Contro[...]
-
Page 90
www.ti.com 5.7 Receive Teardown Register (RXTEARDOWN) EMAC Port Registers The receive teardown register (RXTEARDOWN) is shown in Figure 35 and described in Table 35 . Figure 35. Receive Teardown Register (RXTEARDOWN) 31 16 Reserved R-0 15 3 2 0 Reserved RXTDNCH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 35. Rec[...]
-
Page 91
www.ti.com 5.8 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) EMAC Port Registers The transmit interrupt status (unmasked) register (TXINTSTATRAW) is shown in Figure 36 and described in Table 36 . Figure 36. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) 31 16 Reserved R-0 1 5 876543210 Reserved TX7 TX6 TX5 TX4 TX3 TX2 T[...]
-
Page 92
www.ti.com 5.9 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) EMAC Port Registers The transmit interrupt status (Masked) register (TXINTSTATMASKED) is shown in Figure 37 and described in Table 37 . Figure 37. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) 31 16 Reserved R-0 1 5 876543210 Reserved TX7 TX6 TX5 TX4 TX3 TX[...]
-
Page 93
www.ti.com 5.10 Transmit Interrupt Mask Set Register (TXINTMASKSET) EMAC Port Registers The transmit interrupt mask set register (TXINTMASKSET) is shown in Figure 38 and described in Table 38 . Figure 38. Transmit Interrupt Mask Set Register (TXINTMASKSET) 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0 MASK MASK MA[...]
-
Page 94
www.ti.com 5.11 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) EMAC Port Registers The transmit interrupt mask clear register (TXINTMASKCLEAR) is shown in Figure 39 and described in Table 39 . Figure 39. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0 [...]
-
Page 95
www.ti.com 5.12 MAC Input Vector Register (MACINVECTOR) EMAC Port Registers The MAC input vector register (MACINVECTOR) is shown in Figure 40 and described in Table 40 . Figure 40. MAC Input Vector Register (MACINVECTOR) 31 30 29 18 17 16 USER LINK Reserved HOST STAT INT INT PEND PEND R-0 R-0 R-0 R-0 R-0 15 0 RXPEND TXPEND R-0 R-0 LEGEND: R = Read [...]
-
Page 96
www.ti.com 5.13 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) EMAC Port Registers The receive interrupt status (Unmasked) register (RXINTSTATRAW) is shown in Figure 41 and described in Table 41 . Figure 41. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) 31 16 Reserved R-0 1 5 876543210 Reserved RX7 RX6 RX5 RX4 RX3 RX2 RX1[...]
-
Page 97
www.ti.com 5.14 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) EMAC Port Registers The receive interrupt status (Masked) register (RXINTSTATMASKED) is shown in Figure 42 and described in Table 42 . Figure 42. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) 31 16 Reserved R-0 1 5 876543210 Reserved RX7 RX6 RX5 RX4 RX3 RX2 [...]
-
Page 98
www.ti.com 5.15 Receive Interrupt Mask Set Register (RXINTMASKSET) EMAC Port Registers The receive interrupt mask set register (RXINTMASKSET) is shown in Figure 43 and described in Table 43 . Figure 43. Receive Interrupt Mask Set Register (RXINTMASKSET) 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0 MASK MASK MASK [...]
-
Page 99
www.ti.com 5.16 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) EMAC Port Registers The receive interrupt mask clear register (RXINTMASKCLEAR) is shown in Figure 44 and described in Table 44 . Figure 44. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0 MAS[...]
-
Page 100
www.ti.com 5.17 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) EMAC Port Registers The MAC interrupt status (unmasked) register (MACINTSTATRAW) is shown in Figure 45 and described in Table 45 . Figure 45. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) 31 16 Reserved R-0 15 2 1 0 Reserved HOST STAT PEND PEND R-0 R-0 R-0 LEGEND: R[...]
-
Page 101
www.ti.com 5.18 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) EMAC Port Registers The MAC interrupt status (masked) register (MACINTSTATMASKED) is shown in Figure 46 and described in Table 46 . Figure 46. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) 31 16 Reserved R-0 15 2 1 0 Reserved HOST STAT PEND PEND R-0 R-0 R-0 LEGEND[...]
-
Page 102
www.ti.com 5.19 MAC Interrupt Mask Set Register (MACINTMASKSET) EMAC Port Registers The MAC interrupt mask set register (MACINTMASKSET) is shown in Figure 47 and described in Table 47 . Figure 47. MAC Interrupt Mask Set Register (MACINTMASKSET) 31 16 Reserved R-0 15 2 1 0 Reserved HOST STAT MASK MASK R-0 R/WS-0 R/WS-0 LEGEND: R = Read only; R/W = R[...]
-
Page 103
www.ti.com 5.20 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) EMAC Port Registers The MAC interrupt mask clear register (MACINTMASKCLEAR) is shown in Figure 48 and described in Table 48 . Figure 48. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) 31 16 Reserved R-0 15 2 1 0 Reserved HOST STAT MASK MASK R-0 R/WC-0 R/WC-0 LEGEND: R = Read o[...]
-
Page 104
www.ti.com 5.21 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) EMAC Port Registers The receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) is shown in Figure 49 and described in Table 49 . Figure 49. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) 31 30 29 28 27 [...]
-
Page 105
www.ti.com EMAC Port Registers Table 49. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions (continued) Bit Field Value Description 22 RXCEFEN Receive copy error frames enable bit. Enables frames containing errors to be transferred to memory. The appropriate error bit will be set in the frame EOP buffer[...]
-
Page 106
www.ti.com 5.22 Receive Unicast Enable Set Register (RXUNICASTSET) EMAC Port Registers Table 49. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions (continued) Bit Field Value Description 2-0 RXMULTCH 0-3h Receive multicast channel select 0 Select channel 0 to receive multicast frames 1h Select channel [...]
-
Page 107
www.ti.com 5.23 Receive Unicast Clear Register (RXUNICASTCLEAR) EMAC Port Registers The receive unicast clear register (RXUNICASTCLEAR) is shown in Figure 51 and described in Table 51 . Figure 51. Receive Unicast Clear Register (RXUNICASTCLEAR) 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved RXCH7EN RXCH6EN RXCH5EN RXCH4EN RXCH3EN RXCH2EN RXCH1EN [...]
-
Page 108
www.ti.com 5.24 Receive Maximum Length Register (RXMAXLEN) EMAC Port Registers The receive maximum length register (RXMAXLEN) is shown in Figure 52 and described in Table 52 . Figure 52. Receive Maximum Length Register (RXMAXLEN) 31 16 Reserved R-0 15 0 RXMAXLEN R/W-1518 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 52. Rec[...]
-
Page 109
www.ti.com 5.25 Receive Buffer Offset Register (RXBUFFEROFFSET) EMAC Port Registers The receive buffer offset register (RXBUFFEROFFSET) is shown in Figure 53 and described in Table 53 . Figure 53. Receive Buffer Offset Register (RXBUFFEROFFSET) 31 16 Reserved R-0 15 0 RXBUFFEROFFSET R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after r[...]
-
Page 110
www.ti.com 5.26 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) EMAC Port Registers The receive filter low priority frame threshold register (RXFILTERLOWTHRESH) is shown in Figure 54 and described in Table 54 . Figure 54. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) 31 16 Reserved R-0 15 8 7 0 Re[...]
-
Page 111
www.ti.com 5.27 Receive Channel 0-7 Flow Control Threshold Register (RX nFLOWTHRESH) EMAC Port Registers The receive channel 0-7 flow control threshold register (RX n FLOWTHRESH) is shown in Figure 55 and described in Table 55 . Figure 55. Receive Channel n Flow Control Threshold Register (RX n FLOWTHRESH) 31 16 Reserved R-0 15 8 7 0 Reserved RX n [...]
-
Page 112
www.ti.com 5.28 Receive Channel 0-7 Free Buffer Count Register (RXnFREEBUFFER) EMAC Port Registers The receive channel 0-7 free buffer count register (RXnFREEBUFFER) is shown in Figure 56 and described in Table 56 . Figure 56. Receive Channel n Free Buffer Count Register (RX n FREEBUFFER) 31 16 Reserved R-0 15 0 RX n FREEBUF WI-0 tLEGEND: R = Read [...]
-
Page 113
www.ti.com 5.29 MAC Control Register (MACCONTROL) EMAC Port Registers The MAC control register (MACCONTROL) is shown in Figure 57 and described in Table 57 . Figure 57. MAC Control Register (MACCONTROL) 31 24 Reserved R-0 23 19 18 17 16 Reserved RGMIIEN GIGFORCE RMIIDUPLEX- MODE R-0 R/W-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 RMIISPEED RXOFFLENBLOCK RX[...]
-
Page 114
www.ti.com EMAC Port Registers Table 57. MAC Control Register (MACCONTROL) Field Descriptions (continued) Bit Field Value Description 1 Receive flow control enabled. For full-duplex mode, outgoing pause frames are sent when receive FIFO flow control is triggered. 11 CMDIDLE Command Idle bit 0 Idle not commanded 1 Idle commanded (read IDLE in the MA[...]
-
Page 115
www.ti.com 5.30 MAC Status Register (MACSTATUS) EMAC Port Registers The MAC status register (MACSTATUS) is shown in Figure 58 and described in Table 58 . Figure 58. MAC Status Register (MACSTATUS) 31 30 24 IDLE Reserved R-0 R-0 23 20 19 18 16 TXERRCODE Reserved TXERRCH R-0 R-0 R-0 15 12 11 10 8 RXERRCODE Reserved RXERRCH R-0 R-0 R-0 7 5 4 3 2 1 0 R[...]
-
Page 116
www.ti.com EMAC Port Registers Table 58. MAC Status Register (MACSTATUS) Field Descriptions (continued) Bit Field Value Description 15-12 RXERRCODE Receive host error code. These bits indicate that EMAC detected receive DMA related host errors. The host should read this field after a host error interrupt (HOSTPEND) to determine the error. Host erro[...]
-
Page 117
www.ti.com 5.31 Emulation Control Register (EMCONTROL) EMAC Port Registers The emulation control register (EMCONTROL) is shown in Figure 59 and described in Table 59 . Figure 59. Emulation Control Register (EMCONTROL) 31 16 Reserved R-0 15 2 1 0 Reserved SOFT FREE R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Tabl[...]
-
Page 118
www.ti.com 5.32 FIFO Control Register (FIFOCONTROL) EMAC Port Registers The FIFO control register (FIFOCONTROL) is shown in Figure 60 and described in Table 60 . Figure 60. FIFO Control Register (FIFOCONTROL) 31 23 22 16 Reserved RXFIFOFLOWTHRESH R-0 R/W-2 15 5 4 0 Reserved TXCELLTHRESH R-0 R/W-24 LEGEND: R/W = Read/Write; R = Read only; - n = valu[...]
-
Page 119
www.ti.com 5.33 MAC Configuration Register (MACCONFIG) EMAC Port Registers The MAC configuration register (MACCONFIG) is shown in Figure 61 and described in Table 61 . Figure 61. MAC Configuration Register (MACCONFIG) 31 24 23 16 TXCELLDEPTH RXCELLDEPTH R-24 R-68 15 8 7 0 ADDRESSTYPE MACCFIG R-2 R-3 LEGEND: R/W = Read/Write; R = Read only; - n = va[...]
-
Page 120
www.ti.com 5.34 Soft Reset Register (SOFTRESET) EMAC Port Registers The Soft Reset Register (SOFTRESET) is shown in Figure 62 and described in Table 62 . Figure 62. Soft Reset Register (SOFTRESET) 31 16 Reserved R-0 15 1 0 Reserved SOFTRESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 62. Soft Reset Register (SO[...]
-
Page 121
www.ti.com 5.35 MAC Source Address Low Bytes Register (MACSRCADDRLO) EMAC Port Registers The MAC source address low bytes register (MACSRCADDRLO) is shown in Figure 63 and described in Table 63 . Figure 63. MAC Source Address Low Bytes Register (MACSRCADDRLO) 31 16 Reserved R-0 15 8 7 0 MACSRCADDR0 MACSRCADDR1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; [...]
-
Page 122
www.ti.com 5.36 MAC Source Address High Bytes Register (MACSRCADDRHI) EMAC Port Registers The MAC Source Address High Bytes Register (MACSRCADDRHI) is shown in Figure 64 and described in Table 64 . Figure 64. MAC Source Address High Bytes Register (MACSRCADDRHI) 31 24 23 16 MACSRCADDR2 MACSRCADDR3 R/W-0 R/W-0 15 8 7 0 MACSRCADDR4 MACSRCADDR5 R/W-0 [...]
-
Page 123
www.ti.com 5.37 MAC Hash Address Register 1 (MACHASH1) EMAC Port Registers The MAC hash registers allow group addressed frames to be accepted on the basis of a hash function of the address. The hash function creates a 6-bit data value (hash_fun) from the 48-bit destination address (DA) as follows: Hash_fun(0)=DA(0) XOR DA(6) XOR DA(12) XOR DA(18) X[...]
-
Page 124
www.ti.com 5.38 MAC Hash Address Register 2 (MACHASH2) EMAC Port Registers The MAC hash address register 2 (MACHASH2) is shown in Figure 66 and described in Table 66 . Figure 66. MAC Hash Address Register 2 (MACHASH2) 31 16 MACHASH2 R/W-0 15 0 MACHASH2 R/W-0 LEGEND: R/W = Read/Write; - n = value after reset Table 66. MAC Hash Address Register 2 (MA[...]
-
Page 125
www.ti.com 5.39 Back Off Test Register (BOFFTEST) EMAC Port Registers The back off test register (BOFFTEST) is shown in Figure 67 and described in Table 67 . Figure 67. Back Off Random Number Generator Test Register (BOFFTEST) 31 26 25 16 Reserved RNDNUM R-0 R-0 15 12 11 10 9 0 COLLCOUNT Reserved TXBACKOFF R-0 R-0 R-0 LEGEND: R = Read only; - n = v[...]
-
Page 126
www.ti.com 5.40 Transmit Pacing Algorithm Test Register (TPACETEST) EMAC Port Registers The Transmit Pacing Algorithm Test Register (TPACETEST) is shown in Figure 68 and described in Table 68 . Figure 68. Transmit Pacing Algorithm Test Register (TPACETEST) 31 16 Reserved R-0 15 5 4 0 Reserved PACEVAL R-0 R-0 LEGEND: R = Read only; - n = value after[...]
-
Page 127
www.ti.com 5.41 Receive Pause Timer Register (RXPAUSE) EMAC Port Registers The receive pause timer register (RXPAUSE) is shown in Figure 69 and described in Table 69 . Figure 69. Receive Pause Timer Register (RXPAUSE) 31 16 Reserved R-0 15 0 PAUSETIMER R-0 LEGEND: R = Read only; - n = value after reset Table 69. Receive Pause Timer Register (RXPAUS[...]
-
Page 128
www.ti.com 5.42 Transmit Pause Timer Register (TXPAUSE) EMAC Port Registers The Transmit Pause Timer Register (TXPAUSE) is shown in Figure 70 and described in Table 70 . Figure 70. Transmit Pause Timer Register (TXPAUSE) 31 16 Reserved R-0 15 0 PAUSETIMER R-0 LEGEND: R = Read only; - n = value after reset Table 70. Transmit Pause Timer Register (TX[...]
-
Page 129
www.ti.com 5.43 MAC Address Low Bytes Register (MACADDRLO) EMAC Port Registers The MAC address low bytes register (MACADDRLO) is shown in Figure 71 and described in Table 71 . Figure 71. MAC Address Low Bytes Register (MACADDRLO) 31 21 20 19 18 16 Reserved VALID MATCH CHANNEL FILT R-0 R/W-x R/W-x R/W-x 15 8 7 0 MACADDR0 MACADDR1 R/W-0 R/W-0 LEGEND:[...]
-
Page 130
www.ti.com 5.44 MAC Address High Bytes Register (MACADDRHI) EMAC Port Registers The MAC address high bytes register (MACADDRHI) is shown in Figure 72 and described in Table 72 . Figure 72. MAC Address High Bytes Register (MACADDRHI) 31 24 23 16 MACADDR2 MACADDR3 R/W-0 R/W-0 15 8 7 0 MACADDR4 MACADDR5 R/W-0 R/W-0 LEGEND: R/W = Read/Write; - n = valu[...]
-
Page 131
www.ti.com 5.45 MAC Index Register (MACINDEX) EMAC Port Registers The MAC index register (MACINDEX) is shown in Figure 73 and described in Table 73 . Figure 73. MAC Index Register (MACINDEX) 31 16 Reserved R-0 15 5 4 0 Reserved MACINDEX R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; - n = value after reset Table 73. MAC Index Register (MACINDEX[...]
-
Page 132
www.ti.com 5.46 Transmit Channel 0-7 DMA Head Descriptor Pointer Register (TXnHDP) EMAC Port Registers The transmit channel 0-7 DMA head descriptor pointer register (TXnHDP) is shown in Figure 74 and described in Table 74 . Figure 74. Transmit Channel n DMA Head Descriptor Pointer Register (TX n HDP) 31 16 TX n HDP R/W-x 15 0 TX n HDP R/W-x LEGEND:[...]
-
Page 133
www.ti.com 5.47 Receive Channel 0-7 DMA Head Descriptor Pointer Register (RXnHDP) EMAC Port Registers The receive channel 0-7 DMA head descriptor pointer register (RXnHDP) is shown in Figure 75 and described in Table 75 . Figure 75. Receive Channel n DMA Head Descriptor Pointer Register (RX n HDP) 31 16 RX n HDP R/W-x 15 0 RX n HDP R/W-x LEGEND: R/[...]
-
Page 134
www.ti.com 5.48 Transmit Channel 0-7 Completion Pointer Register (TX nCP) EMAC Port Registers The Transmit Channel 0-7 Completion Pointer Register (TX n CP) is shown in Figure 76 and described in Table 76 . Figure 76. Transmit Channel n Completion Pointer Register (TX n CP) 31 16 TX n CP R/W-x 15 0 TX n CP R/W-x LEGEND: R/W = Read/Write; - n = valu[...]
-
Page 135
www.ti.com 5.49 Receive Channel 0-7 Completion Pointer Register (RX nCP) EMAC Port Registers The receive channel 0-7 completion pointer register (RX n CP) is shown in Figure 77 and described in Table 77 . Figure 77. Receive Channel n Completion Pointer Register (RX n CP) 31 16 RX n CP R/W-x 15 0 RX n CP R/W-x LEGEND: R/W = Read/Write; - n = value a[...]
-
Page 136
www.ti.com 5.50 Network Statistics Registers 5.50.1 Good Receive Frames Register (RXGOODFRAMES) 5.50.2 Broadcast Receive Frames Register (RXBCASTFRAMES) EMAC Port Registers The EMAC has a set of statistics that record events associated with frame traffic. The statistics values are cleared to zero 38 clocks after the rising edge of reset. When the G[...]
-
Page 137
www.ti.com 5.50.3 Multicast Receive Frames Register (RXMCASTFRAMES) 5.50.4 Pause Receive Frames Register (RXPAUSEFRAMES) 5.50.5 Receive CRC Errors Register (RXCRCERRORS) 5.50.6 Receive Alignment/Code Errors Register (RXALIGNCODEERRORS) EMAC Port Registers The total number of good multicast frames received on the EMAC. A good multicast frame is defi[...]
-
Page 138
www.ti.com 5.50.7 Receive Oversized Frames Register (RXOVERSIZED) 5.50.8 Receive Jabber Frames Register (RXJABBER) 5.50.9 Receive Undersized Frames Register (RXUNDERSIZED) 5.50.10 Receive Frame Fragments Register (RXFRAGMENTS) EMAC Port Registers The total number of oversized frames received on the EMAC. An oversized frame is defined as having all [...]
-
Page 139
www.ti.com 5.50.11 Filtered Receive Frames Register (RXFILTERED) 5.50.12 Receive QOS Filtered Frames Register (RXQOSFILTERED) 5.50.13 Receive Octet Frames Register (RXOCTETS) 5.50.14 Good Transmit Frames Register (TXGOODFRAMES) EMAC Port Registers The total number of frames received on the EMAC that the EMAC address matching process indicated shoul[...]
-
Page 140
www.ti.com 5.50.15 Broadcast Transmit Frames Register (TXBCASTFRAMES) 5.50.16 Multicast Transmit Frames Register (TXMCASTFRAMES) 5.50.17 Pause Transmit Frames Register (TXPAUSEFRAMES) 5.50.18 Deferred Transmit Frames Register (TXDEFERRED) 5.50.19 Transmit Collision Frames Register (TXCOLLISION) EMAC Port Registers The total number of good broadcast[...]
-
Page 141
www.ti.com 5.50.20 Transmit Single Collision Frames Register (TXSINGLECOLL) 5.50.21 Transmit Multiple Collision Frames Register (TXMULTICOLL) 5.50.22 Transmit Excessive Collision Frames Register (TXEXCESSIVECOLL) 5.50.23 Transmit Late Collision Frames Register (TXLATECOLL) 5.50.24 Transmit Underrun Error Register (TXUNDERRUN) EMAC Port Registers Th[...]
-
Page 142
www.ti.com 5.50.25 Transmit Carrier Sense Errors Register (TXCARRIERSENSE) 5.50.26 Transmit Octet Frames Register (TXOCTETS) 5.50.27 Transmit and Receive 64 Octet Frames Register (FRAME64) 5.50.28 Transmit and Receive 65 to 127 Octet Frames Register (FRAME65T127) 5.50.29 Transmit and Receive 128 to 255 Octet Frames Register (FRAME128T255) EMAC Port[...]
-
Page 143
www.ti.com 5.50.30 Transmit and Receive 256 to 511 Octet Frames Register (FRAME256T511) 5.50.31 Transmit and Receive 512 to 1023 Octet Frames Register (FRAME512T1023) 5.50.32 Transmit and Receive 1024 to RXMAXLEN Octet Frames Register (FRAME1024TUP) 5.50.33 Network Octet Frames Register (NETOCTETS) EMAC Port Registers The total number of 256-byte t[...]
-
Page 144
www.ti.com 5.50.34 Receive FIFO or DMA Start of Frame Overruns Register (RXSOFOVERRUNS) 5.50.35 Receive FIFO or DMA Middle of Frame Overruns Register (RXMOFOVERRUNS) 5.50.36 Receive DMA Start of Frame and Middle of Frame Overruns Register (RXDMAOVERRUNS) EMAC Port Registers The total number of frames received on the EMAC that had either a FIFO or D[...]
-
Page 145
www.ti.com Appendix A Glossary Appendix A Broadcast MAC Address — A special Ethernet MAC address used to send data to all Ethernet devices on the local network. The broadcast address is FFh-FFh-FFh-FFh-FFh-FFh. The LSB of the first byte is odd, qualifying it as a group address; however, its value is reserved for broadcast. It is classified separa[...]
-
Page 146
www.ti.com Appendix A Jumbo Packets — Jumbo frames are defined as those packets whose length exceeds the standard Ethernet MTU, which is 1500 kbytes. For the C64x+ devices, it is recommended not to use packets exceeding 35K in length. The PHY that you use can place additional limits on to the length of the packets that you can transfer in a syste[...]
-
Page 147
www.ti.com Appendix B Revision History Appendix B Table B-1 lists the changes made since the previous version of this document. Table B-1. Document Revision History Reference Additions/Modifications/Deletions Section 2.1 Changed Section 2.1 . Section 2.1.2 Changed Section 2.1.2 . Section 2.15.4 Changed Step 19 . Figure 3 Changed Figure 3 . Table 3 [...]
-
Page 148
IMPORT ANT NOTICE T exas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orde[...]