Warning: mysql_fetch_array() expects parameter 1 to be resource, boolean given in /home/newdedyk/domains/bkmanuals.com/public_html/includes/pages/manual_inc.php on line 26
RayTek MI Miniature Infrared Sensor manuale d’uso - BKManuals

RayTek MI Miniature Infrared Sensor manuale d’uso

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Vai alla pagina of

Un buon manuale d’uso

Le regole impongono al rivenditore l'obbligo di fornire all'acquirente, insieme alle merci, il manuale d’uso RayTek MI Miniature Infrared Sensor. La mancanza del manuale d’uso o le informazioni errate fornite al consumatore sono la base di una denuncia in caso di inosservanza del dispositivo con il contratto. Secondo la legge, l’inclusione del manuale d’uso in una forma diversa da quella cartacea è permessa, che viene spesso utilizzato recentemente, includendo una forma grafica o elettronica RayTek MI Miniature Infrared Sensor o video didattici per gli utenti. La condizione è il suo carattere leggibile e comprensibile.

Che cosa è il manuale d’uso?

La parola deriva dal latino "instructio", cioè organizzare. Così, il manuale d’uso RayTek MI Miniature Infrared Sensor descrive le fasi del procedimento. Lo scopo del manuale d’uso è istruire, facilitare lo avviamento, l'uso di attrezzature o l’esecuzione di determinate azioni. Il manuale è una raccolta di informazioni sull'oggetto/servizio, un suggerimento.

Purtroppo, pochi utenti prendono il tempo di leggere il manuale d’uso, e un buono manuale non solo permette di conoscere una serie di funzionalità aggiuntive del dispositivo acquistato, ma anche evitare la maggioranza dei guasti.

Quindi cosa dovrebbe contenere il manuale perfetto?

Innanzitutto, il manuale d’uso RayTek MI Miniature Infrared Sensor dovrebbe contenere:
- informazioni sui dati tecnici del dispositivo RayTek MI Miniature Infrared Sensor
- nome del fabbricante e anno di fabbricazione RayTek MI Miniature Infrared Sensor
- istruzioni per l'uso, la regolazione e la manutenzione delle attrezzature RayTek MI Miniature Infrared Sensor
- segnaletica di sicurezza e certificati che confermano la conformità con le norme pertinenti

Perché non leggiamo i manuali d’uso?

Generalmente questo è dovuto alla mancanza di tempo e certezza per quanto riguarda la funzionalità specifica delle attrezzature acquistate. Purtroppo, la connessione e l’avvio RayTek MI Miniature Infrared Sensor non sono sufficienti. Questo manuale contiene una serie di linee guida per funzionalità specifiche, la sicurezza, metodi di manutenzione (anche i mezzi che dovrebbero essere usati), eventuali difetti RayTek MI Miniature Infrared Sensor e modi per risolvere i problemi più comuni durante l'uso. Infine, il manuale contiene le coordinate del servizio RayTek in assenza dell'efficacia delle soluzioni proposte. Attualmente, i manuali d’uso sotto forma di animazioni interessanti e video didattici che sono migliori che la brochure suscitano un interesse considerevole. Questo tipo di manuale permette all'utente di visualizzare tutto il video didattico senza saltare le specifiche e complicate descrizioni tecniche RayTek MI Miniature Infrared Sensor, come nel caso della versione cartacea.

Perché leggere il manuale d’uso?

Prima di tutto, contiene la risposta sulla struttura, le possibilità del dispositivo RayTek MI Miniature Infrared Sensor, l'uso di vari accessori ed una serie di informazioni per sfruttare totalmente tutte le caratteristiche e servizi.

Dopo l'acquisto di successo di attrezzature/dispositivo, prendere un momento per familiarizzare con tutte le parti del manuale d'uso RayTek MI Miniature Infrared Sensor. Attualmente, sono preparati con cura e tradotti per essere comprensibili non solo per gli utenti, ma per svolgere la loro funzione di base di informazioni e di aiuto.

Sommario del manuale d’uso

  • Pagina 1

     MI Miniature Infrared Sensor              Operating Instructions Rev. F 04/2006 54301[...]

  • Pagina 2

          Declaratio n  of  Conformity  for  the  European  Communit y This  instrument  conforms  to:  EMC:  IEC/EN  61326 ‐ 1  Safety:  EN  61010 ‐ 1:1993  /  A2:1995 [...]

  • Pagina 3

      Contacts  Europe  Raytek  GmbH  13127  Berlin,  German y  Blankenburger  Str.  135  Tel:  +49  30  478008  –  0   +49  30  478008  –  400  Fax:  +49  30  4710251  raytek@raytek.de  USA  Raytek  Corporation  CA  95061  –  1820,  Santa [...]

  • Pagina 4

      W ARRANTY  The  manufacturer  warrants  this  ins trument  to  be  free  from  defects  in  material  and  workmans hip  under  normal  use  and  service  for  the  period  of  two  years  fr om  date  of  purchase.  This  warranty  extends  o[...]

  • Pagina 5

      T ABLE  OF  C ONTENTS  1  SAFETY  INSTRUCTIONS............................................ 1 2  DESCRIPTION ............................................................... 3 3  TECHNICAL  DATA ...................................................... 4 3.1  M EASUREMENT  S PECIFICATIONS ...........................[...]

  • Pagina 6

      5.3.1  Signal  Output ................................................... 19 5.3.2  Head  Ambient  Temp.  /  Alarm  Out p ut ............. 20 5.3.3  Thermo couple  Output ....................................... 22 5.4  I NPUTS  FTC.............................................................. 23 5.4.1 [...]

  • Pagina 7

      8  ACCESSORIES ............................................................. 46 8.1  O VERVIEW ................................................................ 46 8.2  A DJUSTABLE  M OUNTING  B RACKET ......................... 48 8.3  F IXED  M OUNTING  B RACKET .................................... 49 8.4  A IR ?[...]

  • Pagina 8

      11.6.2  Analog  Output,  Scaling ................................. 73 11.6.3  Alarm  Output................................................. 73 11.6.4  Factory  defaul t  values ..................................... 73 11.6.5  Lock  Mode ....................................................... 74 11.6.6  Mode[...]

  • Pagina 9

    Safety  Instru ctions  MI  1  1  Safety  Instructions  This  document  contains  important  infor mation,  which  should  be  kept  at  all  times  with  the  instrumen t  during  its  operational  life.  Other  users  of  this  instrument  should  be ?[...]

  • Pagina 10

    Safety  Instru ctions  2  MI  Operating  In struc tions  The  following  symbols  are  used  to  highlight  essential  safe ty  information  in  the  operation  in structions:  Helpful  information  regarding  the  optimal  use  of  the  instrume nt.  Warnings ?[...]

  • Pagina 11

    Description  MI  3  2  Description  The  miniature  infrared  sensor s  MI  are  noncontact  infrared  temperature  me asurement  sys tems.  They  accurately  and  repeat  ably  measure  the  amoun t  of  energy  emitted  from  an  object  and  convert  [...]

  • Pagina 12

    Technical  Data  4  MI  3  Technical  Data  3.1  Measur ement  Specif ications  Temperature  Range  LT ‐ 40  to  600°C  ( ‐ 40  to  1112°F)  for  J ‐ Thermocouple: ‐ 25  to  600°C  ( ‐ 13  to  1112°F)  Spectral  Response  LT  8  to  14 ?[...]

  • Pagina 13

    Technical  Data  MI  5  Temperature  Resolution  LT  ±  0.1  K  (±  0.2°F)*   ±  0.25  K  (±  0.5°F)**  *  For  a  zoomed  temperat ure  spa n  of  300°C  (600°F)  **  For  the  full  temperature  range  of  the  unit  Temperature [...]

  • Pagina 14

    Technical  Data  6  MI  3.2  Optica l  Specifications  Optical  Resolution  D:S  MID,  MIC;  MIH  22:1  (typ.),  21:1  (guaranteed)  MID,  MIC;  MIH  10:1  MID,  MIC  2:1  At  90%  energy  in  minimum  and  distanc e  400  mm  (15.7  in.)   F[...]

  • Pagina 15

    Technical  Data  MI  7  3.3  Electric al  Specifications  Power  Supply  Voltage  12  to  26  VDC  Current  100  mA  Outputs  1.  Output  (OUT)  0  to  20  mA,  or  4  to  20  mA,  or  0  to  5  V,  or  Thermocouple  (J  or  K)  2[...]

  • Pagina 16

    Technical  Data  8  MI  3.4  Environmental  Specif ications  Ambient  Temperature  MIH  sensing  head  0  to  180°C  (32  to  356°F)  MIC  sensing  hea d  0  to  125°C  (32  to  257°F)  MID  sensing  head  0  to  85°C  (32  to  185°F)  [...]

  • Pagina 17

    Technical  Data  MI  9  3.5  Dimensions   Figure  2:  Dim ensions  of  Se nsing  Head   Standard cable length 1 m (3 ft.) MID/MIC: Ø 5 mm (0.2 in) MIH: Ø 3 mm (0.12 in) 2 mounting holes, Ø 4.5 mm ( 0.17 in )[...]

  • Pagina 18

    Technical  Data  10  MI   Figure  3:  Dim ensions  of  Ele ctronic  Box  3.6  Scope  of  Delivery  The  scope  of  delivery  includes  the  following:  • Sensing  head  • 1  m  head  cable  • Mounting  nut  • Electronic  box  • Operating  in[...]

  • Pagina 19

    Basics  MI  11  4  Basics  4.1  Measur ement  of  Infr ared  Temperature  All  surfaces  emit  infrared  rad iation  The  intensity  of  this  infr ared  radiation  changes  according  to  the  temperatur e  of  the  object.  Depending  on  the  materia [...]

  • Pagina 20

    Basics  12  MI  4.2  Emissivity  of  Target  Object  To  determine  the  emissivity  of  the  target  object  refer  to  section  12.1  Determination  of  Emissivity  on  page  81.  If  emissivity  is  low,  measured  results  could  be  falsified [...]

  • Pagina 21

    Basics  MI  13  4.5  Electric al  Interference  To  minimize  electrical  or  electromagnetic  interference  or  “noise”  be  aware  of  the  following:  • Mount  th e  unit  as  far  away  as  possible  from  potential  sources  of  electrical  in[...]

  • Pagina 22

    Installation  14  MI  5  Installation  5.1  Positio ning  Sensor  location  depends  on  the  application.  Before  deciding  on  a  location,  you  need  to  be  aware  of  the  ambient  temp erature  of  the  location,  the  atmospheric  quality  of[...]

  • Pagina 23

    Installation  MI  15   Figure  4:  Proper  Sensor  Placement  5.2  Wiring  5.2.1  Sensor  Head  Cable  The  manufacturer  preinstall’s  the  sensor  head  cable  between  sensor  head  and  electronic  box.  It  may  be  shortened  but  not  leng[...]

  • Pagina 24

    Installation  16  MI  5.2.2  Cable  for  Power  Supply  and  Outputs  You  need  to  connect  the  power  supply  (12  to  26  VDC)  and  the  signal  output  wires.  Use  only  cable  with  outside  diameter  from  4  to  6  mm  (0.16 [...]

  • Pagina 25

    Installation  MI  17   Figure  6:  Connecting  of  Cables  to  the  Electronic  Box  5.  Put  the  following  on  the  cable  (as  shown  in  the  figure  above):  the  cap  (1),  the  plastic  compression  fitting  (2),  the  rubber  washer [...]

  • Pagina 26

    Installation  18  MI  5.3  Outputs   Figure  7:  Signal  Outputs  and  Power  Supply  Electronic Box Signal Output Head Ambient Temp. or Alarm Power 0 to 5 V J or K 0 to 5 V 4 to 20 m A 0 to 20 m A 12 to 26 VDC[...]

  • Pagina 27

    Installation  MI  19  5.3.1  Signal  Output  Figure  8:  Wiring  of  the  Signal  Output  (mA  or  V)  The  signal  output  can  be  configured  either  as  current  or  as  voltage  output.  The  minimum  load  impedance  for  the  0  to [...]

  • Pagina 28

    Installation  20  MI  5.3.2  Head  Ambient  Temp.  /  Alar m  Output  This  output  can  be  configured  either  as  output  for  the  head  ambient  temperature  (default  configuration)  or  as  an  alarm  output.  Figure  10:  Wiring  the  Outpu[...]

  • Pagina 29

    Installation  MI  21  You  may  use  a  solid  state  relay  for  the  alarm  output.  The  outp ut  is  short  circuit  resistant  with  100 Ω out put  imped ance.  The  alarm  output  is  only  enabled  through  the  DataTemp  MultiDrop  soft[...]

  • Pagina 30

    Installation  22  MI  5.3.3  Thermocouple  Output  If  you  are  using  a  J ‐ or  K ‐ thermocouple  you  must  inst all  a  compensation  cable.  The  cable  is  available  as  an  accessory  (XXXCI1CB25  for  Type  J,  XXXCI2CB25  fo r  Type [...]

  • Pagina 31

    Installation  MI  23  5.4  Inputs  FTC  The  three  inputs  FTC1,  FTC2,  and  FTC3  are  used  for  the  external  control  of  the  unit.  All  input  funct ions  are  enabled  through  the  Data Temp  MultiDrop  software  only,  see  the  sof[...]

  • Pagina 32

    Installation  24  MI  5.4.1  Emissivity  Setting  (a nalog  contr olled)  The  input  FTC1  can  be  configured  to  accept  an  analog  voltage  signal  (0  to  5  VDC)  to  provide  real  time  emissivi ty  setting.  The  following  table  show s ?[...]

  • Pagina 33

    Installation  MI  25  5.4.2  Emissivity  Setting  ( digital  controlle d)  The  sensor’s  electronics  contains  a  table  with  8  pre ‐ installed  settings  for  emissivity.  To  activate  the se  emissi vity  settings,  you  need  to  have  the  inputs [...]

  • Pagina 34

    Installation  26  MI  5.4.3  Ambient  Background  Temperature  Compensatio n  The  sensor  is  capable  of  improving  the  accuracy  of  target  temperature  me asurements  by  taking  into  account  the  ambient  or  background  temperature.  This  featu re [...]

  • Pagina 35

    Installation  MI  27  • Ambient  background  temperatu re  compensation  from  a  second  temperature  sensor  (infrared  or  contact  te mperature  sensor)  ensures  extremely  accurate  results.  For  example,  the  outpu t  of  the  second  unit,  set  fo[...]

  • Pagina 36

    Installation  28  MI  5.4.4  Trigger  and  Hold  Function  The  FTC3  input  can  be  used  as  ex ternal  trigger  in  conjunction  with  the  software  trigger  mo de  setting  “Trigger”  or  “Hold”.   Figure  17:  Wiring  of  FTC3  as ?[...]

  • Pagina 37

    Installation  MI  29  Hold:  This  mode  acts  as  external  generated  hold  function.  A  transition  at  the  input  FTC3  from  logical  high  level  to ward  logical  low  level  will  transfer  the  current  temperature  toward  the  output. [...]

  • Pagina 38

    Installation  30  MI  5.5  Connec ting  to  the  PC  via  RS232  The  RS232  interface  comes  with  each  model.  Connect  a  single  unit  with  a  RS232  COM  port  by  using  the  connection  kit  RAYMISCON.  Figure  20:  Connecting  the [...]

  • Pagina 39

    Installation  MI  31  5.6  Installin g  of  Multiple  Sensors  vi a  RS485  The  distance  between  the  sensor  and  a  computer  can  be  up  to  1200  m  (4000  ft.)  via  RS485  interface.  This  allows  ample  distance  from  the  harsh [...]

  • Pagina 40

    Installation  32  MI  For  an  installation  of  two  or  more  sensor s  in  a  RS485  network,  each  sensor  is  wired  parallel  to  the  othe rs.  You  may  connect  up  to  32  units.  Make  sure  to  deactiva te  the  preset  shunt [...]

  • Pagina 41

    Installation  MI  33  Go  to  the  menu  <Setup>  <Sensor  Setup>,  and  then  select  the  register  <Advanced  Setup>.  Use  <Polling  Address>  for  selecting  the  requested  address.   Figure  23:  Address  Settin g  Step ‐ by ?[...]

  • Pagina 42

    Operation  34  MI  6  Operation  Once  you  have  the  sensor  positioned  and  connected  properly,  the  system  is  ready  for  continuous  operation.  The  operation  of  the  sensor  can  be  done  by  means  of  the  built ‐ in  control [...]

  • Pagina 43

    Operation  MI  35  6.2  Setting  the  Output  Jumper  In  addition  to  the  set  mode  in  the  unit,  see  section  6.3  Setting  of  Modes ,  on  page  36,  the  unit’s  outputs  must  be  configured  by  switching  the  <Ou tput > ?[...]

  • Pagina 44

    Operation  36  MI  6.3  Setting  of  Modes  You  can  easily  determine  the  unit’s  mode  or  parameter  by  doing  the  following:  Press  the  <Mode>  butto n  until  the  symbol  for  the  actual  set  mode  appears  in  the  displa[...]

  • Pagina 45

    Operation  MI  37  Display  Mode Range C  Target Temperature* (effected by signal processing) not adjustable A Head Ambient Temper ature not adjustable T Target Temperature (not effected by signal processing) not adjustable Output Mode mV mV output (default) TCK thermocouple type K output TCJ thermocouple type J output 4 - 20 4 - 20 [...]

  • Pagina 46

    Operation  38  MI  6.4  Post  Processing  6.4.1  Averaging  Averaging  is  used  to  smooth  the  output  signal.  The  signal  is  smoothed  depending  on  the  defined  time  basis,  whereby  the  outp ut  signal  track s  the  detector  signal  [...]

  • Pagina 47

    Operation  MI  39  object),  the  output  signal  reaches  only  90%  magnitude  of  the  actual  object  temperatur e  after  the  defined  average  time. [...]

  • Pagina 48

    Operation  40  MI  6.4.2  Peak  Hold  The  output  signal  follows  the  object  temperature  until  a  maximum  is  found.  Once  the  hold  time  is  exceeded  the  output  signal,  tracks  and  output  the  act ual  object  temperature  and  [...]

  • Pagina 49

    Operation  MI  41  6.4.3  Valley  Hold  The  output  signal  follows  the  object  temper ature  until  a  mini mum  is  found.  Once  the  hold  time  is  exceeded  the  output  signal,  tracks  and  output  the  act ual  object  temperature  and [...]

  • Pagina 50

    Operation  42  MI  6.4.4  Advanced  Peak  Hold  This  function  searches  the  sensor  signal  for  a  local  maximu m  (peak)  and  writes  this  value  to  the  output  until  a  new  local  maxi mum  is  found.  Before  the  algorithm  restar[...]

  • Pagina 51

    Operation  MI  43  6.4.5  Advanced  Valley  Hold  This  function  works  similar  to  the  advanced  peak  hold  function,  except  it  will  search  the  signal  for  a  local  minimum.  6.4.6  Advanced  Peak  Hold  with  Averaging  The  output ?[...]

  • Pagina 52

    Operation  44  MI  6.5  Factory  Defa ults  For  activating  the  unit’ s  factory  default  value s  press  the  <Mode/Up>  buttons  on  the  electronic  board  simultaneously.  The  factory  default  values  are  to  be  found  in  section  11 [...]

  • Pagina 53

    Options  MI  45  7  Options  Options  are  items  tha t  are  factory  installed  and  must  be  specified  at  time  of  order.  The  following  are  available:  • Longer  cable  lengths:  3  m  /  9.8  ft.  (…CB3),  8  m  /  26.2  ft[...]

  • Pagina 54

    Accessories  46  MI  8  Accessories  8.1  Overvi ew  A  full  range  of  accessories  for  various  applicatio ns  and  industrial  environme nts  are  available.  Accessories  include  items  that  may  be  ordered  at  any  time  and  added  on ‐ sit[...]

  • Pagina 55

    Accessories  MI  47   Figure  30:  Standard  Mounting  Accessories  Sensing Head Adjustable Bracket Fixed Bracket Electronic Box[...]

  • Pagina 56

    Accessories  48  MI  8.2  Adjustable  Mountin g  Bracket   Figure  31:  Adjustable  Mo unting  Bracket  (XXXMIACAB) [...]

  • Pagina 57

    Accessories  MI  49  8.3  Fixed  Moun ting  Bracket   Figure  32:  Fixed  Mounting  Bracket  (XXXMIACFB) [...]

  • Pagina 58

    Accessories  50  MI  8.4  Air  Purg ing  Jacket  The  air  purge  jacket  is  used  to  keep  dust,  moi sture,  airborne  particles,  and  vapors  away  from  the  sensing  he ad.  Clea n,  oil  free  air  is  recommended.  The  air  purge  jac[...]

  • Pagina 59

    Accessories  MI  51   Figure  34:  Mounting  the  Air  Purge  Jacket  1.  Remove  the  sensor  (1) and  cable  from  the  electro nic  box  by  disconnecting  the  wires  from  the  electronic  box.  2.  Open  the  Air  Purging  Jacket  (3,  [...]

  • Pagina 60

    Accessories  52  MI  8.5  Air  Co oling  System  The  sensing  head  can  operate  in  ambient  temperatures  up  to  200°C  (392°F)  with  the  air ‐ cooling  system.  The  air ‐ cooling  sy stem  comes  with  a  T ‐ adapter  including  0.8  m ?[...]

  • Pagina 61

    Accessories  MI  53   Figure  37:  Maximum  Ambient  Temperature  depending  on  Air  Flow  and  Hose  Length  Note :  “Hose  Length“  is  the  length  of  hose  exposed  to  high  ambient  temperature  (no t  the  overall  length  of  the  [...]

  • Pagina 62

    Accessories  54  MI   Figure  38:  Air  Cooling  System:  Purgi ng  Jacket  The  Air  Cooling  Sys tem  consists  of:  (1)  sensing  head  (2)  inner  plastic  fitti ng  (air  purging  jacket)  (3)  front  part  of  the  air ‐ purging  jacket  (4[...]

  • Pagina 63

    Accessories  MI  55   Figure  39:  Air  Cooling  System:  T ‐ Adapter [...]

  • Pagina 64

    Accessories  56  MI   Figure  40:  Dimensions  of  Air  Cooling  System  Hose: inner Ø : 9 mm (0.35 in) outer Ø : 12 mm (0.47 in)[...]

  • Pagina 65

    Accessories  MI  57  8.6  Right  Angle  Mirror  The  right  angle  mirror  comes  in  two  different  versions:  XXXMIACRAJ  right  angle  mirror  as  accessory  for  air  purging  jacket  or  air  cooling  system  XXXMIACRAJ1  right  angle  mirror[...]

  • Pagina 66

    Accessories  58  MI  8.7  Box  Lid   Figure  43:  Box  Lid  with  Vi ew  Port  for  Post  Ins tallations  (XXXMIACV) [...]

  • Pagina 67

    Accessories  MI  59  8.8  Protective  Window  The  protective  windo w  can  be  used  to  protect  the  sensing  head  from  dust  and  other  contam ination.  This  should  be  applied  especially  for  sensors  without  a  lens.  These  are  all[...]

  • Pagina 68

    Maintenance  60  MI  9  Maintenance  Our  sales  representatives  and  cust omer  service  are  always  at  your  disposal  for  questi ons  regarding  application  assistance,  calibration,  repair,  and  solutions  to  specific  problems.  Please  contact  y[...]

  • Pagina 69

    Maintenance  MI  61  9.2  Fail ‐ Safe  Operat ion  The  Fail ‐ Safe  system  is  designed  to  alert  the  operator  and  provide  a  safe  output  in  case  of  an y  syste m  failure.  The  sensor  is  designed  to  shutdown  the  process  in[...]

  • Pagina 70

    Maintenance  62  MI  Error  Codes  via  RS232/485  Output Error Code Description T------ Invalid temperature reading T>>>>>> Temperature over range T<<<<<< Temperature under range Table  8:  Error  Codes  (v ia  RS232/485)  Error  Codes  for  the  LCD  Display[...]

  • Pagina 71

    Maintenance  MI  63  9.3  Sensing  Head  Exchange  Sensing  heads  and  electronic  b oxes  can  only  be  interchanged  in  accordance  to  the  following  ta ble!  MID02 MIC02 MI D10 MIC10 MIH10 MID20 MIC20 MIH20 MID02 x x x x MIC02 x x x x MID10 x x x x MIC10 x x x x M I H 1 0 x M[...]

  • Pagina 72

    Maintenance  64  MI  <Down/Up>  button s.  Activa te  your  settings  by  pressing  the  <Mode>  button.   Figure  45:  Sensing  Head  Calibration  Data  printed  on  the  Cable  (e.g.  Head  with  two  blocks  of  4  numbers)  For  MIH ?[...]

  • Pagina 73

    Software  MI  65  10  Software  For  use  with  RS232  or  RS485  models,  DataTemp  MultiDrop  software  allows  access  to  the  extended  digital  features  of  the  MID  with  an  easy ‐ to ‐ use  interface.  Compatible  with  WIN  95/98/NT/2000/[...]

  • Pagina 74

    Programming  Guide  66  MI  11  Programming  Guide  This  section  explains  th e  sensor’s  communication  protocol.  A  protocol  is  the  set  of  commands  that  define  all  possible  communications  with  the  sensor.  The  commands  are  describ[...]

  • Pagina 75

    Programming  Guide  MI  67  11.1  Transf er  Modes  The  unit’s  serial  interface  is  either  RS232  or  RS485,  depending  on  the  model.  Settings:  transfe r  rate:  9.6  kBaud,  8  data  bits,  1  stop  bit,  no  parity,  flow  control: ?[...]

  • Pagina 76

    Programming  Guide  68  MI  11.2  Gener al  Command  Structure  Requesting  a  paramete r  (Poll  Mode)  ?ECR  “?“  is  the  command  for  “Request“   “E“  is  the  parameter  req uested   “CR“  (carriage  retu rn,  0Dh)  is  closing  [...]

  • Pagina 77

    Programming  Guide  MI  69  After  switc hing  the  power  to  “ON“,  the  device  is  sending  a  notification:  #XICRLF  “#“  is  the  parameter  for  “Notification“   “XI“  is  the  value  for  the  notifi cation  (her e  “XI“; [...]

  • Pagina 78

    Programming  Guide  70  MI  11.4  Device  Setup  11.4.1  Temperat ure  Calcula tion  U=C  unit  for  the  tempe rature  value  E=0.950  Emissivity  setting  (Cau tion:  according  to  the  sett ings  for  “ES”,  see  section  11.4.2  Emissiv ity  Setting ?[...]

  • Pagina 79

    Programming  Guide  MI  71  There  are  eight  ent ries  possible  for  emissivity  setting  (1)  and  a  related  set  point  (threshold)  (2).  To  be  able  to  write  or  read  the se  values,  use  the  following  command s:  EP=2  set  poi[...]

  • Pagina 80

    Programming  Guide  72  MI  11.4.3  Post  Processing  The  following  parameters  can  be  set  to  deter mine  the  post  processing  mode,  see  section  6.4  Post  Proc essing  on  page  38.  P=5  peak  hold,  hol d  time:  5  s  F=12.5  vall[...]

  • Pagina 81

    Programming  Guide  MI  73  11.6  Device  Con trol  11.6.1  Output  for  the  Ta rget  Temperature  The  signal  output  can  be  set  to  4  –  20  mA,  0  –  20  mA  or  mV.  If  current  output  is  activated,  the  output  can  [...]

  • Pagina 82

    Programming  Guide  74  MI  XF  factory  default  values  will  be  set  11.6.5  Lock  Mode  The  access  to  the  unit  is  possible  via  serial  interface  (software)  and  via  the  direct  user  input  (mode  butto ns,  LCD  display).  It ?[...]

  • Pagina 83

    Programming  Guide  MI  75  AC=2  compensation  with  an  extern al  voltage  signa l  at  the  analog  input  FTC2  (0  V  –  5V  corresponds  to  low  end  and  high  end  of  temperature  range),  current  ambient  temperature  is  readable ?[...]

  • Pagina 84

    Programming  Guide  76  MI  11.7  Multip le  Units  (RS485  Multidrop  Mode)  Up  to  32  units  can  be  connected  within  a  RS485  networ k,  see  section  5.6  Installing  of  Mult iple  Sensors  via  RS485  on  page  31.  To  direct  a [...]

  • Pagina 85

    Programming  Guide  MI  77  11.8  Command  Set  Description Char Format P B S Legal values Factory default LCD Poll parameter ? ?X/?XX * ?T Set parameter = X/XX=... * E=0 . 85 Set parameter without EEPROM storage # X/XX# * E#0.85 Multidrop addressing 001?E * * answer: 001!E0.95 Error message * *Syntax error Acknowledge message [...]

  • Pagina 86

    Programming  Guide  78  MI  Description Char Format P B S Legal values Factory default LCD Source: emissivity / setpoint for alarm output ES X * * I=constant number (E=0.950) E=external analogous input FTC1 D= E/XS digital selected FTC1-3 I Presel. emissivity value EV n.nnn * * 0.100 - 1. 100 Valley hold time(4) F nnn.n * * * 0.000 - 99[...]

  • Pagina 87

    Programming  Guide  MI  79  Description Char Format P B S Legal values Factory default LCD Presel. setpoint / relay function SV nnn.n (1) Target temperature T nnn.n * * in current scale (°C / °F) Temperature unit U X * * * C / F C U Poll / Burst mode V X * * P = poll B = burst Poll mode Burst string contents X$ * Multidrop address XA [...]

  • Pagina 88

    Programming  Guide  80  MI  (3)  $  =  UTQE  (4)  setting  average  /  peak  /  valley  /  advanced  hold  cancels  all  other  hold  modes  (6)  LT:  23°C  (73°F)  (7)  LT:  500°C  (932°F)  (8)  LT:  0°C  (32°F)  (9)  XZ  =  0123[...]

  • Pagina 89

    Appendix  MI  81  12  Appendix  12.1  Determ ination  of  Emissivity  Emissivity  is  a  measure  of  an  object’s  ability  to  absorb  and  emit  infrared  energy.  It  can  have  a  value  between  0  and  1.0.  For  example  a  mirror  [...]

  • Pagina 90

    Appendix  82  MI  0.95.  Finally,  measure  the  te mperature  of  an  adjacent  area  on  the  object  and  adjust  the  em issivity  unt il  the  sa me  tempera ture  is  reached.  This  is  the  correct  emissivity  for  the  measured  material . ?[...]

  • Pagina 91

    Appendix  MI  83  12.2  Typical  Emissivity  Va lues  The  following  table  provides  a  brief  reference  guide  for  determining  emissivity  and  can  be  used  when  one  of  the  above  methods  is  not  practical.  Emissivity  value s  shown ?[...]

  • Pagina 92

    Appendix  84  MI  M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0. 2-0.4 Alloy A3003, Oxidized 0.4 0.4 0.3 Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.02-0.1 0.02-0.1 Brass Polished 0.01-0.05 0.01-0.05 0.01-0.05 Burnished 0.3 0.3 0.3 Oxidized 0.5 0.5[...]

  • Pagina 93

    Appendix  MI  85  Polished 0.05-0.2 0.05-0.2 0.05-0.1 Rough 0.4 0.4 0. 4 Oxidized 0.2-0.7 0.2-0.7 0. 2-0.6 Magnesium 0.03-0.15 0.03-0.15 0.02-0.1 Mercury 0.05-0.15 0.05-0.15 0.05-0.15 Molybdenum Oxidized 0.3-0.7 0.3-0.7 0. 2-0.6 Unoxidized 0.1-0.15 0.1-0.15 0.1 Monel (Ni-Cu) 0.1-0.5 0.1-0.5 0.1-0.14 Nickel Oxidized 0.3-0.6 0.3-0.6 0. 2-0.5[...]

  • Pagina 94

    Appendix  86  MI  N ON -M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.9 0.95 Asphalt 0.95 0.95 Basalt 0.7 0.7 Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum 0.9 0.9 Ceramic 0.8-0.95 0.95 Clay 0.85-0.95 0.95 Concrete 0.9 0.95 Cloth 0.95 0.95 Glass Plate 0.98 0.85 “Gob” 0.9 — Gravel 0.95 0.95[...]

  • Pagina 95

    Index  MI  87  Index  Accessories 46 Accuracy 4 Air pressure 12 Air Purge 46 Air Purge Jacket 12 Ambient Temperature 12 Average 60 Control Panel 34, 59 Emissivity 5, 11, 12, 60, 80, 82, 84, 85 Loop impedance 19 Maintenance 60 Mirror 57, 80 Network 32 Noise 13 Optical Resolution 6 Power Supply 60 Repeatability 4 Response Time 4 Sensing H[...]